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Abstract

Objective—Our aims were (a) to perform a systematic literature review of epidemiological 

studies that examined the interaction of force and repetition with respect to musculoskeletal 

disorder (MSD) risk, (b) to assess the relationship of force and repetition in fatigue failure studies 

of musculoskeletal tissues, and (c) to synthesize these findings.

Background—Many epidemiological studies have examined the effects of force and repetition 

on MSD risk; however, relatively few have examined the interaction between these risk factors.

Method—In a literature search, we identified 12 studies that allowed evaluation of a force

−repetition interaction with respect to MSD risk. Identified studies were subjected to a 

methodological quality assessment and critical review. We evaluated laboratory studies of fatigue 

failure to examine tissue failure responses to force and repetition.

Results—Of the 12 epidemiological studies that tested a Force × Repetition interaction, 10 

reported evidence of interaction. Based on these results, the suggestion is made that force and 

repetition may be interdependent in terms of their influence on MSD risk. Fatigue failure studies 

of musculoskeletal tissues show a pattern of failure that mirrors the MSD risk observed in 

epidemiological studies.

Conclusions—Evidence suggests that there may be interdependence between force and 

repetition with respect to MSD risk. Repetition seems to result in modest increases in risk for low

−force tasks but rapid increases in risk for high−force tasks. This interaction may be representative 

of a fatigue failure process in affected tissues.
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INTRODUCTION

Musculoskeletal disorders (MSDs) represent one of the leading causes of lost workdays in 

industry and are associated with major economic costs (American Academy of Orthopaedic 

Surgeons [AAOS], 2008). In 2004, 16.3 million strains and/or sprains were treated in the 

U.S. health care system, and the estimated cost of treating all musculoskeletal injuries was 

$127.4 billion (AAOS, 2008). MSDs have been shown to be more severe than the average 

nonfatal workplace injury or illness, to require longer recovery times, and to be responsible 

for millions of lost workdays every year (AAOS, 2008).

Several risk factors are known to be associated with MSDs. Among the most commonly 

accepted physical risk factors are exposure to tasks involving high force demands, tasks 

involving high rates of repetition, tasks involving awkward postures, and tasks of long 

duration (Bernard, 1997; Hoogendoorn, Poppel, Bongers, Koes, & Bouter 1999). It must 

also be recognized that other risk factors, including physiological or psychosocial factors, 

comorbid diseases, and personal factors, have been shown to play a role in the expression of 

MSDs (National Research Council & Institute of Medicine, 2001). However, in the current 

article, we seek to scrutinize more closely the physical risk factors of force and repetition in 

the development of MSDs.

Force and repetition have often been assumed to function as independent factors with 

respect to MSD risk. This tacit assumption can be found in many epidemiological studies 

and reviews, in ergonomics exposure assessment tools, and in guidelines developed to 

reduce the risk of MSDs. Nevertheless, it is always important to verify such assumptions. As 

discussed in this article, there is evidence to suggest that force and repetition interact and 

that the combination of both factors may be necessary to accurately ascertain MSD risk (risk 

being defined as the number of individuals experiencing an MSD divided by the number 

exposed to particular divided by the number risk factor[s]). Furthermore, the nature of the 

interaction observed in several epidemiological studies matches what would be anticipated if 

exposed tissues were to become injured as the result of a fatigue failure process. In this 

article, we describe results of a systematic literature review of studies that have examined a 

Force × Repetition interaction on MSD risk, describe a potential mechanism underlying the 

observed results, and explore implications for research, exposure assessment methods, and 

recommendations for reducing MSD risk.

LITERATURE REVIEW: EPIDEMIOLOGY

Identification of Relevant Studies

A literature search was performed to identify studies that evaluated an interaction between 

force demands and repetition with respect to MSD risk. We identified relevant studies using 

the following strategies:

1. A search of the PUBMED database was-formed. The search strategy specified that 

papers have epidemiological study or epidemiology and occupational or work-

related low back pain or low back disorders in the title or abstract. Limits were that 

documents were journal articles on humans and were published between January 1, 

1980, and May 3, 2011. In addition to the low back (as in the aforementioned 
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example), searches were performed for other MSDs or common MSD 

symptomatology (i.e., joint pain), including carpal tunnel syndrome, hand-wrist 

tendonitis, elbow pain, shoulder and neck pain, and knee pain.

2. Studies contained in the National Institute for Occupational Safety and Health 

(NIOSH) critical review Musculoskeletal Disorders and Workplace Factors 

(Bernard, 1997) were reviewed.

3. Bibliographies of relevant articles were reviewed.

A more detailed review was undertaken if studies met the following criteria: (a) They were 

published in English, (b) they addressed any of the MSDs or symptoms detailed previously, 

(c) they were conducted in one or more working populations, (d) the study group had 

exposure to varying levels of repetition and/or force, (e) the study design was case control, 

was cross-sectional, or used a longitudinal cohort or randomized controlled trial.

A study was selected for inclusion in this review if the exposed and control working 

populations were well defined, the exposure was explicitly and operationally defined with 

respect to force and repetition, and the study allowed an appraisal of whether evidence of an 

interaction between force and repetition might be present. The latter criterion included 

analysis of plots of odds ratios (ORs), risk ratios (RRs), or prevalence rate ratios (PRRs) 

from contingency tables or a statistical analysis (for example, logistic regression) in which 

an interaction between force and repetition was explicitly tested by the authors. Outcomes 

included either one or more well-defined MSDs assessed via explicit and clinically relevant 

criteria as well as outcomes consisting of self-reported pain or discomfort. It is important to 

emphasize that studies that considered force and/or repetition solely as main effects without 

assessing a Force × Repetition interaction were not included in this review.

The search led to 501 citations from which relevant studies were selected for the review. We 

examined titles and abstracts to evaluate potential relevance of these papers, with 457 

citations excluded as irrelevant. We reviewed and assessed the remaining 44 papers that 

examined force and repetition as potential risk factors to determine whether the data 

contained in the papers might provide information regarding a force-repetition interaction. 

Of these, 12 studies were identified that evaluated combinations of force and repetition in a 

manner that allowed for assessment of an interaction. A methodological quality assessment 

of these papers was performed by two raters (SG and JRH) using criteria from Huisstede et 

al. (2006); Lievense, Bierma-Zeinstra, Verhagen, Verhaar, and Koes (2001); van Tulder, 

Furlan, Bombardier, and Bouter (2003); and the Dutch Cochrane Centre as described by van 

Rijn, Huisstede, Koes, and Burdorf (2009). Criteria for the methodological assessment are 

contained in Table 1, and results of the assessment are contained in Table 2. Initial 

agreement of the two raters was 79.2% (152 of 192 items). Initial disagreements were 

resolved in a consensus meeting of the raters. Average quality ratings of studies 

demonstrating positive versus negative findings were found to be non-significant, t(9) = 

−0.36, p = .73. Table 2 presents the consensus ratings of these studies.
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Assessment of Epidemiological Studies Examining an Interaction of Force and Repetition 
on MSD Risk

Of the 12 studies that met the inclusion criteria, 10 provided evidence of interaction between 

the MSD risk factors of force and repetition. Figures 1a through 1g provide plots of data 

from seven cross-sectional studies that permitted assessment of MSD risk broken down into 

four quadrants of risk: low force, low repetition (LFLR); low force, high repetition (LFHR); 

high force, low repetition (HFLR), and high force, high repetition (HFHR). It should be 

noted that the findings of two of the studies listed were analyzed post hoc (J. F. Thomsen, 

personal communication, November 18, 2011; Thomsen et al., 2007; Zurada, Karwowski, & 

Marras, 1997). We analyzed data from these two studies by performing median splits of the 

existing data sets, allowing data to be separated into the four quadrants listed previously.

Several observations regarding the relationship of force and repetition can be made from 

these figures. One consistent feature is that the slope of the low-force and high-force lines 

exhibit very different tendencies. Low-force activities were often associated with a mild to 

moderate increase in risk (Armstrong et al., 1987; Haahr & Andersen, 2003; Silverstein, 

Fine, & Armstrong, 1987; Zurada et al., 1997); however, occasionally no change or slight 

decreases in risk were observed with LFHR tasks (Frost et al., 2002; Nathan, Meadows, & 

Doyle, 1988; J. F. Thomsen, personal communication, November 18, 2011; Thomsen et al., 

2007). As opposed to the variable (positive or negative) slopes observed with low-force 

tasks, the slope for high-force tasks was always positive and the slope greater (often 

substantially greater) than for low-force tasks.

A common finding in many of the studies was that the HFHR condition was the only 

condition found to be significantly different from the LFLR referent (Armstrong et al., 1987; 

Haahr & Andersen, 2003; Nathan et al., 1988; Silverstein et al., 1987). To compare with the 

previously cited studies, we ran a stepwise logistic regression analysis on the data from one 

study that originally used a “nonrepetitive” group as a referent so as to use the LFLR group 

as a referent (Frost et al., 2002). When the LFLR group was used as a referent, this study 

also showed that the HFHR group was the only group that was significantly different from 

the LFLR group.

For the Frost et al. (2002) study, the HFHR odds ratio against LFLR was 1.90 (95% 

confidence interval [CI] [1.05, 3.43]). In another study involving a nonrepetitive referent (J. 

F. Thomsen, personal communication, November 18, 2011; Thomsen et al., 2007), LFLR 

(OR = 1.6, 95% CI [1.1, 2.3]), HFLR (OR = 1.9, 95% CI [1.2, 3.0]), and HFHR (OR = 2.4, 

95% CI [1.6, 3.7]) conditions were significantly different from the nonrepetitive referent 

(sufficient data were not available to examine LFLR as a referent). The analysis of data from 

the Marras et al. (1993) study data presented in Zurada et al. (1997) was accomplished by 

the performance of a median split on both frequency and peak moment (used as a force 

surrogate measure). Results of logistic regression of this data indicate that compared with 

the LFLR referent, both HFLR (OR = 9.54, 95% CI [3.16, 28.78]) and HFHR (OR = 42.62, 

95% CI [11.02, 164.77]) were significantly different.

Given the patterns of interaction observed in the seven studies listed, it was of interest to 

evaluate contrasts of “simple effects” for these studies. We performed contrasts to examine 
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differences in the proportions of MSD risk attributed to increased force in low-repetition and 

high-repetition conditions separately, using a directional hypothesis (HF > LF) in six of the 

studies, as the necessary data were not available for the seventh. Fisher’s exact test was used 

when samples available for the test were less than 500, whereas z tests were employed for 

sample sizes greater than that number. A Bonferroni adjustment was employed for the two 

contrasts tested within each study. As shown in Table 3, significant differences in MSD risk 

were observed between low force and high force for low repetition in just two studies 

(Haahr & Anderson, 2003; Zurada et al., 1997). On the other hand, significant differences in 

MSD risk between low force and high force for high-repetition tasks were observed in five 

of the six studies. Difference scores between high force and low force were consistently 

higher for high-repetition tasks compared with low-repetition tasks in these studies.

Other studies examining a Force × Repetition interaction did so using regression approaches. 

Using logistic regression, Shiri, Viikari-Juntura, Varonen, and Heliovaara (2006) found a 

significant Force × Repetition interaction for possible or definite lateral epicondylitis 

(although not for medial epicondylitis), and Chiang et al. (1993) found a marginally 

significant association between force and repetition for physician-observed shoulder girdle 

pain in a logistic regression model. In addition, Chiang et al.’s study found that crude ORs 

were significant for HFHR versus LFLR task comparisons in physician-observed carpal 

tunnel syndrome, shoulder girdle pain, and elbow pain. Menzel, Brooks, Bernard, and 

Nelson (2004) used linear regression to assess frequency and severity of musculoskeletal 

discomfort and found a significant Force × Repetition interaction for frequency and severity 

of knee discomfort, and a Force × Repetition factor was included in a significant regression 

analysis for frequency and severity of wrist discomfort as well. These authors stated that the 

same factors were significant in logistic regression analyses (not reported in the article).

Of the two studies that did not identify an interaction, both contained methodological issues 

that might reduce the chance of observing an interaction even if one were present. Babski-

Reeves and Crumpton-Young (2003) did not observe a wide range of force and repetition in 

their study; the tasks studied were generally all HFHR in nature, as the authors themselves 

attest. Although the authors did test for an interaction, the uniformity of force and repetition 

exposure for the activities studied (fish-processing tasks) practically assured that any test for 

interaction would be unsuccessful. Furthermore, both negative studies (Babski-Reeves & 

Crumpton-Young, 2003; Nathan, Keniston, Myers, & Meadows, 1992) make the incorrect 

assumption that each hand from an individual is statistically independent. It should be noted 

that one of the positive studies also makes this assumption (Nathan et al., 1988).

The findings of Nathan et al. (1992) differ dramatically from all other studies in that the 

HFHR condition was found have the same risk as the LFLR condition. The methodology of 

the Nathan et al. study came under critique in the review by Bernard (1997). One reason for 

the drop in prevalence in the HFHR group not addressed by the authors was the dramatic 

dropout rate of HFHR cases in the follow-up (Bernard, 1997). Furthermore, the 

categorization of participants from the Nathan et al. (1988) study seems to have changed in 

the later presentation (Nathan et al., 1992). Both tables should have been identical; however, 

it appears that numbers shifted between hand-use categories (Bernard, 1997). Finally, the 

statistical analysis of Nathan et al. (1992) was questioned by Bernard, who found statistical 
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differences between higher force and repetition categories using standard statistical tests, 

whereas none were detected in the analysis performed by Nathan et al. (1992).

It must be noted that most of the studies examining Force × Repetition interactions were 

cross-sectional in nature; only two prospective studies were found (Nathan et al., 1992; J. F. 

Thomsen, personal communication, November 18, 2011; Thomsen et al., 2007). One high-

quality prospective study (J. F. Thomsen, personal communication, November 18, 2011; 

Thomsen et al., 2007) reported an interactive pattern for hand pain at baseline (as reported 

earlier), and although HFHR tasks in the incident portion were significantly greater than the 

referent, the pattern of risk for the quadrants of force and repetition was not indicative of an 

interaction for hand pain (LFLR, OR = 1.2, 95% CI [0.8, 1.7]; LFHR, OR = 1.9, 95% CI 

[1.2, 2.9]; HFLR, OR = 1.4, 95% CI [0.9, 2.0]; HFHR, OR = 2.1, 95% CI [1.5, 2.9]). As 

discussed previously, methodological issues with the Nathan et al. (1992) prospective study 

limit the ability to interpret results with confidence.

Overall, Force × Repetition interactions were observed for MSDs across a wide range of 

joint disorders and symptoms, including low-back disorders, carpal tunnel syndrome, hand-

wrist tendinitis, wrist discomfort, lateral epicondylitis, shoulder tendinitis, shoulder 

discomfort, and knee discomfort. Although interactions were often not explicitly tested by 

the authors, it appears from the majority of these studies that repetition has a different 

influence on risk, dependent on the level of force exposure. These findings would seem to be 

sufficient to suggest that future epidemiological studies should routinely examine a Force × 

Repetition interaction. Since it is known that main effects are incorrectly estimated in the 

presence of an interaction (Meyer, 1991; Petersen, 1985; Underhill, 1997), examining the 

main effects of force and repetition alone would seem insufficient, given these results. 

Knowledge of both factors, working in tandem, may be required to accurately assess MSD 

risk.

The prospect that force and repetition interact in the development of MSD risk would have 

significant implications in terms of the etiology of MSDs, not to mention the development of 

recommendations and guidelines aimed at reducing these disorders. Specifically, guidelines 

should be sensitive to the large increase in MSD risk when high-force tasks are performed 

repetitively. On the other hand, if tasks are very low force in nature, high rates of repetition 

may not incur a large increase in MSD risk and may be more acceptable. As discussed next, 

the pattern of MSD risk related to force and repetition in epidemiological studies 

corresponds to what would be expected if tissues of the human body experienced damage in 

the same manner as other materials—and in the way they evidence failure in laboratory 

studies—through the process of fatigue failure.

EFFECT OF FORCE AND REPETITION IN FATIGUE FAILURE STUDIES OF 

BIOLOGICAL TISSUES

A limited number of fatigue failure studies have been performed on biological materials that 

can be specifically related to a potential Force × Repetition interaction; however, two studies 

in particular (one testing human spinal motion segments and the other testing human 

tendons) are useful. A comprehensive study that examined the effects of force levels and 
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repetition (i.e., loading cycles) on failure of spinal motion segment endplates was described 

by Brinckmann, Biggemann, and Helweg (1988). These authors sectioned cadaveric lumbar 

spines into multiple motion segments and tested the ultimate compressive strength (UCS) of 

a randomly selected motion segment from a spine. They did so to estimate the compressive 

strength of adjacent segments (a correction factor was applied to estimate the UCS of 

adjacent segments). These adjacent motion segments were then repeatedly loaded at a 

certain percentage of the predicted UCS and the number of cycles until failure of the motion 

segment was recorded.

Figure 2 presents data from the Brinckmann et al. (1988) study. The divergence in the lines 

between force levels (percentages of predicted UCS for the segments) and the number of 

repetitions to failure suggests that the amount of force imposed leads to a differential 

response in terms of the number of cycles to failure of spinal tissues. Congruent with 

findings of the epidemiological data discussed earlier, when spinal motion segments were 

subjected to relatively low-force loadings (<40% UCS), a small proportion of specimens 

experienced failure, even after thousands of cycles of repeated loading. In contrast, 

specimens exposed to higher loads (>40% UCS) led to a higher proportion of specimens 

failing overall, and these specimens experienced many more failures at low cycle counts. 

Similar responses were observed in studies that measured fatigue failure of lumbar motion 

segments with loads associated with lifting in varying levels of flexion (Gallagher, Marras, 

Litsky, & Burr, 2005; Gallagher, Marras, Litsky, Burr, Matkovic, & Landoll 2007).

Tests on human tendons exhibit similar results. Schechtman and Bader (1997) examined 

fatigue failure of 90 extensor digitorum longus (EDL) tendons from human legs and tested 

them to fatigue at percentages of ultimate tensile strength (UTS) from 10% to 90%. Figure 3 

presents the results of the data from 30% to 90% UTS up to 5,000 cycles. The results are 

consistent with the Brinckmann et al. (1988) data in that tendons subjected to low 

percentages of UTS last many thousands of cycles, whereas those subjected to high levels of 

force relative to UTS fail much more rapidly. Schechtman and Bader presented the 

following model that describes the relationship between normalized stress level and the 

number of cycles to failure, having an R2 = .88:

(1)

where S is the normalized stress (expressed as % UTS) and N is the number of cycles to 

failure.

These results indicate that the rate of damage experienced by tendons (as with spinal motion 

segments) is highly dependent on the level of loading. Low levels of loading resulted in a 

modest increase in failure with high rates of repetition, and high levels of loading result in 

much more rapid failure with repetition. The findings of both studies suggest that low-force 

loading of tissues can be well tolerated for many thousands of cycles, whereas exposure to 

repetitive high-force loading tends to cause damage to some specimens quite quickly and to 

most, if not all, specimens eventually.

An important point needs to be made when comparing results of epidemiological studies of 

MSD risk to results of in vitro studies of tissue failure. In many in vitro tissue studies, the 
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end result of fatigue failure is ultimate destruction of the tissue (for example, complete 

rupture of a tendon). MSDs are usually not characterized by complete rupture of a tissue but 

are instead characterized by a lower-magnitude, localized tissue damage sufficient to trigger 

an inflammatory response. The point to bear in mind is that fatigue failure is a process of 

progressive and localized structural damage that occurs when a material is subjected to 

repeated loading and unloading. The process begins with exposure of healthy tissues to 

sufficient levels of loading and repetition that leads to development of microscopic fissures 

in affected tissues. Continued loading of the tissue will cause these microscopic fissures to 

expand. The rate of this expansion depends on both the magnitude of the load and the 

number of loading cycles. The damage that accumulates during this process need not 

approach that required for complete tissue failure to result in an MSD. What fatigue failure 

studies demonstrate is that even this subultimate failure damage can accumulate rapidly 

when loads are high and will accumulate more slowly (or not at all) when loads are more 

modest.

It should also be noted that some fatigue failure studies on human tissues have not employed 

ultimate destruction of tissues as endpoints. The study by Brinckmann et al. (1988) and 

those by Gallagher et al. (2005, 2007), for example, used fracture of the vertebral endplate 

as an endpoint for their study. Fractured endplates are a common finding in spines of living 

persons and are believed to play an important role in disc degeneration and internal disc 

disruption (Adams, Bogduk, Burton, & Dolan, 2006). These findings indicate that in vitro 

fatigue failure studies can reproduce damage to tissues observed in vivo and that the pace of 

damage is dependent on the load incurred, as predicted by fatigue failure theory.

The Fatigue Failure Curve Suggests a Force × Repetition Interaction for Damage to 
Tissues

The pattern of Force × Repetition interactions observed in the epidemiological data (see 

Figure 1) matches what would be anticipated should musculoskeletal tissue damage result 

from a fatigue failure process. Figure 4 presents a typical fatigue failure (or S-N) curve with 

superimposed quadrants of force and repetition exposure (high and low for both). According 

to fatigue failure theory, the ultimate stress of a material is the amount of force that results in 

failure with just one loading cycle. However, as illustrated in the hypothetical example 

provided in Figure 4, if a material is repeatedly loaded at 80% of its ultimate stress, it will 

also fail but may take perhaps 100 cycles to do so. If loaded at 50% ultimate stress, the 

material may require 1,000 cycles to fail. Interestingly, for many materials, there exists an 

endurance (or fatigue) limit at which repeated loading will not lead to failure (or at which 

the material will last an extraordinarily large number of cycles). This limit often occurs at 

approximately 30% of a material’s ultimate stress. When materials are loaded at less than 

30% of their ultimate stress, fatigue damage would be expected to be relatively minor.

If one considers the epidemiological evidence of MSD risk for various levels of force and 

repetition in the context of the fatigue failure model, one finds a good correspondence to the 

epidemiological results discussed previously. For purposes of this illustration, we will 

consider exposure to lower than 40% ultimate stress to be low force and greater than this 

value to be high force. Fewer repetitions than 800 will be considered low repetition, and 
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more than 800 repetitions will be considered high repetition. Note that these values are 

arbitrary, and it must be understood that the exact parameters of the fatigue failure curve for 

many biological materials is not well established, although the general shapes of S-N curves 

are similar. The purpose of this example is simply to illustrate conceptually how different 

force and repetition combinations would relate to a fatigue failure curve.

As illustrated in Figure 4, LFLR exertions reside well beneath the fatigue failure curve and 

would not be expected to lead to tissue damage. LFHR tasks would be expected to incur 

only a slight increase in risk, or sometimes no increase in risk, dependent on the exact level 

of stress imposed on the tissue and on the number of cycles.

The HFLR quadrant is intriguing and suggests that it may be safe to perform tasks that 

require high force for a limited number of cycles. However, the number of repetitions that 

can be safely performed would be greatly reduced compared with low-force tasks and would 

be critically dependent on the percentage of ultimate stress imposed on the tissue. It should 

be noted that exertions in this quadrant may actually lead to a training effect that can 

improve the strength of muscles, ligaments, and tendons. Athletes seeking to develop 

increased muscle strength, for example, typically perform multiple sets of 10 to 15 high-

force exertions involving the muscles targeted for improvement. Importantly, strength-

training regimens usually involve periods of rest in between training days, allowing the body 

to recover and adaptively remodel musculoskeletal tissues. However, although tissue-

strengthening benefits can be derived from limited high-force exertions in this quadrant, it is 

critically important to realize that such gains might be quickly reversed if too many loading 

cycles are imposed.

When considering the HFLR quadrant further, it might be worthwhile to consider how 

exertions in this region might serve as a “setup” for the development of MSDs. The problem 

that might arise is that individuals may be deceived by their ability to perform a respectable 

number of high-force exertions without becoming injured. An expectation might 

understandably develop that one could continue to perform such exertions indefinitely 

without adverse effects. Unfortunately, continued exposure to high-force activities might at 

some point initiate the process of fatigue failure in exposed tissues.

The final quadrant is HFHR. On the basis of the fatigue failure framework, and for reasons 

discussed previously, frequent exposure to tasks requiring high forces would be expected to 

result in rapid tissue damage and a sizeable increase in MSD risk. Indications from 

epidemiologic studies suggest a rapid escalation in risk is indeed evident for HFHR tasks.

As alluded to previously, biological tissues differ from other materials in that biological 

tissues have the ability to repair and remodel. As discussed next, a fatigue failure injury will 

result only if the fatigue process proceeds at a rate faster than that of the remodeling or 

repair process (Schechtman & Bader, 1997). Unfortunately, there is a limit to the speed with 

which the body can repair tissue, and it should not be surprising if the deliberate pace of 

repair were to become overwhelmed in the face of continued exposure to physically 

demanding tasks.
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Fatigue Failure With Variable Exposures to Force and Repetition

The epidemiologic data and the framework discussed earlier presuppose categories (LFLR, 

LFHR, HFLR, and HFHR) that can be clearly defined and allow for some estimate of effect. 

However, mixed exposures to force and repetition are far more prevalent in the workplace. 

Fortunately, research in materials science may provide a framework to approximate the 

likelihood of fatigue failure in situations in which exposure to force and repetition levels is 

variable. For example, a cumulative damage model for metallic structures was proposed by 

Palmgren (1924) and later experimentally validated by Miner (1945), as follows:

(2)

where c is a constant (whose value is usually set at 1 but can range above or below this 

value) and ni equals the number of exposure cycles experienced at force levels at which Ni 

cycles would result in fatigue failure. When the sum of the right-hand side of the equation is 

equal to 1, the material would be expected to fail because of fatigue loading caused by the 

mixed force and repetition exposures. Nash (1966) extended this cumulative damage model 

to biological tissues as presented in the following:

(3)

where D(t) is the total tissue damage at time t, DS(t) is the tissue damage associated with 

mechanical loading as described by the Palmgren-Miner model (Equation 2), DA(t) 

represents damage associated with aging, DD(t) represents damage from disease, and H(t) 

represents the damage repaired by healing or remodeling. If loading occurs to an otherwise 

healthy individual across a relatively short time span, the equation can be simplified 

(Schechtman & Bader 1997):

(4)

where D(t) is the cumulative damage index, which ranges from 0 to 1 (0 = undamaged state 

prior to loading, 1= failure attributed to fatigue); the term  represents stress-

related damage per the Palmgren-Miner model, and H(t) represents healing that occurs 

across the time frame studied. Unfortunately, there is rather scant information regarding the 

healing rate of human tissues. However, studies that have examined the rate of increase in 

strength for tendons and ligaments during remobilization after a period of stress shielding 

suggest that a healing rate (increase in strength) of approximately 1% per day can be 

realized (Hayashi, 1996; Noyes, 1977; Woo et al., 1987). If one were to accept such a rate 

for healing, fatigue damage experienced because of repeated loading would be expected to 

accumulate in a tissue, such as a tendon or ligament, if the damage reduced tissue strength at 

a rate greater than 1% per day.

An interesting feature of the fatigue failure curve that might prove useful to the ergonomist 

is that the relationship between stress and the rate of damage to tissues is logarithmic in 
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nature. This relationship means that relatively small reductions in the level of imposed stress 

may result in large increases in the number of cycles to failure for a tissue (and thus a much 

slower rate of damage accumulation). In Table 4, for instance, reducing the stress from 45% 

to 40% UTS increases the human EDL fatigue life from 6,000 cycles to 13,000 cycles. Even 

more substantial gains in allowable loading cycles would be realized if the % UTS were 

decreased further. It should be noted that relatively small decreases in stress may not just 

expand fatigue life of exposed tissues; it may importantly permit a greater opportunity for 

the healing process to take place in the affected tissues. Again, it should be emphasized that 

values in Table 4 represent median cycles to tendon rupture for an isolated EDL tendon 

(more than needed to result in an MSD). However, even if one considers lesser insults to 

tissue, the development of fatigue damage could be substantially reduced if the loading on 

the tissue is decreased moderately, especially as one gets closer to the endurance limit.

DISCUSSION

Force and repetition have long been recognized as two key risk factors influencing the 

development of MSDs; however, these risk factors have generally been assumed to act 

independently. This assumption seems to have been implicit in the development of the vast 

majority of ergonomic tools as well as in several critical reviews of the MSD epidemiology 

literature. However, the current systematic review indicates that studies examining 

interaction between these factors have generally supported the notion that these factors 

interact with respect to MSD risk. Not only does there seem to be a dependency, but the 

pattern of the interaction is strikingly similar in many studies. To be fair, some recognition 

that force and repetition might interact may have been intuited by developers of certain 

ergonomics tools that multiply the effects of these risk factors in their models (e.g., Moore 

& Garg, 1995; Waters et al., 1993). However, in the development of the tools themselves, 

reference is never made to the interaction of force and repetition as a basis for the 

development of the multipliers chosen.

As mentioned previously, increased repetition for low-force tasks appears to result in 

somewhat variable estimates in MSD risk. A moderate increase in risk was the most 

common response; however, LFHR tasks sometimes exhibited no increase or a slight 

decrease in risk. It is possible that the variation in slope for low-force tasks may be because 

some low-force tasks reside above the tissue endurance limit, whereas other low-force tasks 

remain below this level. Other factors, such as the amount of rest available, may also play a 

role, as rest may permit some healing to occur. However, it should be recognized that 

humans often perform highly repetitive tasks (such as walking) for long periods without 

experiencing significant injury. It has been suggested that during normal activity, a tendon in 

vivo is subjected to less than 25% of its ultimate stress (Carlstedt & Nordin, 1980), which 

would be lower than the endurance limit and would presumably allow tissues to resist 

damage and/or allow for healing of minor injuries. However, it seems apparent that many 

occupational tasks raise force levels well above the endurance limit. If such tasks are 

repeated frequently enough, damage to the exposed tissues are sure to develop. The higher 

the magnitude of forces experienced, the more rapid the process of tissue deterioration.
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The consistency of the interaction pattern observed in this review would seem to suggest 

that epidemiological studies should consider an interaction term between force and 

repetition when the influence of these factors on MSD risk is being studied. As mentioned 

previously, if an interaction between variables is significant, the influence of main effects 

cannot be accurately estimated (Meyer, 1991; Petersen, 1985; Underhill, 1997). Thus, 

studies that examine only the main effects of force and repetition without considering an 

interaction may present results that may be misleading in terms of the influence of either or 

both factors.

Should one be surprised at the interactive nature of force and repetition demonstrated in 

epidemiology studies? Perhaps not, if one recognizes how materials (including biomaterials) 

accumulate damage during repeated loading at different levels of force. The fatigue failure 

process would seem to be extremely relevant to the ergonomist interested in disorders 

resulting from exposure to force and repetition. The epidemiologic literature and fatigue 

failure studies of bio-materials seem to suggest similar interactions of force and repetition in 

the development of tissue damage. Interestingly, a recent laboratory study indicated that 

tissue oxygenation (measured via near-infrared spectroscopy) was affected by a Force × 

Repetition interaction, with HFHR tasks leading to decreased oxygenation in the anterior 

deltoid during a weightlifting task (Ferguson, Allread, Le, Rose, & Marras, 2001).

The role of a third MSD risk factor may also be relevant in the context of this discussion—

that of posture. One aspect of this risk factor is that changes in posture, in particular, 

adoption of awkward or non-neutral postures, often lead to increased force requirements and 

thereby increased stresses on musculoskeletal tissues. According to the fatigue failure 

paradigm discussed earlier, any increased force demands that may result from the use of 

awkward or non-neutral postures would also be expected to lead to a more rapid escalation 

of MSD risk.

Typically, changes in posture result in increased compressive (spine) or tensile (tendon or 

ligament) forces on tissues. However, when one looks at the effects of awkward wrist 

postures, a different variety of force may come into play. As Armstrong and Chaffin (1979) 

demonstrated, increasingly deviated postures of the wrist result in corresponding increases 

in force placed on adjacent wrist structures (flexor retinaculum, carpal bones, etc.). The 

increased forces placed on these structures would lead to frictional stresses when the tendons 

slide against these structures, which may thereby become damaged as the result of a fatigue 

failure process. Of course, changes in posture can also result in changes in blood flow, 

ligament laxity, and other physiological changes that may influence MSD development. 

However, the increased forces that result from adoption of non-neutral or awkward postures 

may provide at least a partial explanation as to why non-neutral or awkward postures are 

frequently associated with higher MSD risk.

The Palmgren-Miner framework described earlier may eventually permit improved methods 

of risk assessment for occupational tasks that result in variable occupational loading 

regimens. This situation is currently difficult to assess with most available ergonomic tools. 

Such a method would require data on the distribution of forces in detailed biomechanical 

models as well as additional data on the fatigue life of human tissues of interest. It may 
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someday be possible to incorporate the remodeling and healing process for living tissue in 

an MSD risk assessment and, eventually, the effects of aging and disease. Furthermore, 

animal studies have recently demonstrated that force and repetition have important roles to 

play in the healing process of tissues. Specifically, it appears that injured tissues exposed to 

continued high-force or high-repetition activities are slower to heal, and continued exposure 

may lead to a vicious cycle of reinjury, chronic or systemic inflammation, fibrosis, and 

tissue breakdown (Barbe & Barr, 2006). In contrast, injured tissues exposed to low force and 

low rates of repetition appear to heal more quickly and completely (Backmann, Boquist, 

Friden, Lorentzon, & Toolanen, 1990; Barr, Barbe, & Clark, 2004; Stauber & Willems, 

2002).

Figure 5 presents a conceptual model of the effects of force and repetition on the 

development of (and recovery from) MSDs. This conceptual model summarizes the findings 

of studies presented in this article on the role of force and repetition on MSD development 

and recovery. In this model, musculoskeletal tissues maintain homeostasis, mostly when the 

tissues experience LFLR conditions and often (although not always) for LFHR conditions. 

When tissues experience high-force exertions, a low number of repetitions may be tolerated 

well and could even make tissues stronger, as long as repetitions are limited and sufficient 

rest is allowed. HFHR tasks are a clear recipe for injury development.

When a tissue is injured, it enters a phase of increased susceptibility to reinjury, 

experiencing an inflammatory response as the body attempts to repair the tissue. Studies 

suggest that low force can be tolerated during the repair process, but highly repetitive low-

force exposure appears to lengthen the time necessary for the tissue to heal. In many animal 

studies, exposing the injured (and vulnerable) tissue to higher force demands seems to lead 

to exacerbation of the injury, a chronic inflammatory state, and the development of fibrosis, 

pain, and loss of function.

Some limitations of the findings here must be noted. One is that the epidemiological studies 

cited are largely cross-sectional in nature, and although most of these studies have suggested 

a force-interaction association, more well-designed prospective studies are needed to 

confirm these findings. Most of the studies vary widely in terms of definition of high and 

low force and what constitutes high versus low repetition, and consistent definitions of what 

constitutes high versus low for both measures might help to clarify the relationship. Recent 

papers have examined this issue and may provide important guidance for future research in 

this area (Bao, Howard, Spielholz, & Silverstein, 2006; Bao, Spielholz, Howard, & 

Silverstein, 2006). Exposure assessment for force in some studies was in the form of 

questionnaires rather than the preferred quantitative assessment. Furthermore, it should be 

noted that examination of the force-repetition relationship may be best evaluated by studies 

evaluating all four quadrants of risk, as comparisons of interaction involving just HFHR 

versus LFLR (as in some studies analyzed by logistic regression) may not provide sufficient 

information regarding the nature of the interaction (J. F. Thomsen, personal communication, 

November 18, 2011). Clearly, additional research will be necessary to more fully understand 

the relationship of force and repetition and their effect on MSDs.
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As suggested previously, and assuming that the relationships discussed earlier are 

confirmed, recommendations aimed at the prevention of MSDs might benefit from 

incorporation of the concept of a force-repetition interaction. Recommendations based on a 

fatigue failure model may differ somewhat from current recommendations, in that high 

repetition in itself is not necessarily negative (if exposed to very low forces) and that 

exposure to high-force exertions is not necessarily negative (as long as repetition is 

sufficiently limited). Exposure to the latter condition might even lead to a beneficial training 

effect for the worker (i.e., strengthening muscles, tendons, and ligaments) if sufficient rest is 

made available for tissue remodeling between exposures. However, the number of high-

force exertions would have to be strictly limited so that any potential training benefit does 

not transition into a fatigue injury. Understanding the nature of this transition may be an 

important topic for future research. Of course, exposure to a combination of high force and 

high repetition would be expected to result in rapid tissue damage and a high MSD risk, and 

such tasks demand the immediate attention of the ergonomist.

Researchers are often relieved when no interactions are found in their data analysis, and 

understandably so. Interactions complicate the data analysis process as well as data 

interpretation. Nevertheless, interactions among variables occur commonly, and researchers 

must discard main effects explanations when they do. In the current article, evidence is 

presented that repetition does not have an equivalent impact on MSD risk for high-force as 

opposed to low-force tasks. These epidemiologic findings mirror the experience of tissue 

failure during repetitive loading of human tissue specimens at low versus high force levels. 

The suggestion is made that the reason for the Force × Repetition interaction is that tissues 

loaded repetitively at low levels have a higher fatigue life (lower rate of damage), whereas 

those loaded at higher levels have a greatly reduced fatigue life (higher rate of damage), in 

accordance with fatigue failure theory. Clearly, this proposition requires a great deal of 

further study, and the relationships of the factors involved require more clarification. 

However, the concept that MSDs may be affected by a Force × Repetition interaction may 

provide fertile ground for research in the quest to reduce the pain and disability associated 

with these disorders.

CONCLUSIONS

Based on this review, the following conclusions are drawn:

1. Epidemiological studies evaluating presence of a Force × Repetition interaction 

generally have reported evidence to support an interactive effect between these two 

factors. Typically, increased repetition led to modest increases in MSD risk with 

low-force exertions but rapid increases in MSD risk with high-force exertions.

2. Evidence from fatigue failure studies on biological tissues suggests a similar 

interaction between force and repetition, with low-force loadings resulting in a low 

rate of tissue damage and high-force loadings resulting in a more rapid progression 

of damage.

3. Models of fatigue failure exist for variable exposure to force and repetition levels 

as well as for self-healing structures, which may be of use in assessing MSD risk.
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4. Ergonomic guidelines and recommendations benefit from incorporating an 

interactive effect of force and repetition on MSD risk as well as a fatigue failure 

approach to assessing risk.
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KEY POINTS

• Of 12 studies that investigated the interaction between force and repetition, 10 

provided evidence of an interaction between these variables and risk for 

musculoskeletal disorders (MSDs).

• Increased repetition in low-force tasks results in a modest MSD risk response 

(ranging from slight decrease to moderate increase); however, high-force tasks 

resulted in a consistent and substantial increase in MSD risk.

• In vitro fatigue failure studies on human tissues exhibit a Force × Repetition 

interaction with respect to tissue damage in a pattern comparable to that 

observed in epidemiology studies.

• Ergonomic guidelines and recommendations may benefit from incorporating a 

force-repetition interaction to assessing MSD risk. This interaction may be the 

result of a fatigue failure process experienced by musculoskeletal tissues.
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Figure 1. 
Results of seven cross-sectional epidemiological studies allowing 2 × 2 analysis of force and 

repetition and that exhibit a Force × Repetition interaction: (a) Silverstein, Fine, and 

Armstrong (1987); (b) Armstrong, Fine, Goldstein, Lifshitz, and Silverstein (1987); (c) 

Marras et al. (1993; data reported in Zurada, Karwowski, & Marras, 1997); (d) Haahr and 

Andersen (2003); (e) Thomsen et al. (2007; additional data analysis provided by J. F. 

Thomsen, personal communication, November 18, 2011); (f) Frost et al. (2002); (g) Nathan, 

Meadows, and Doyle (1988).
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Figure 2. 
Data on fatigue failure of spinal motion segments by force and cycles of repetition 

(Brinckmann, Biggemann, & Helweg, 1988).
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Figure 3. 
Data on fatigue failure of human extensor digitorum longus tendons by force and cycles of 

repetition (Schechtman & Bader, 1997). UTS = ultimate tensile strength.
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Figure 4. 
Force × Repetition quadrants superimposed on a fatigue failure curve. LFLR = low force, 

low repetition; LFHR = low force, high repetition; HFLR = high force, low repetition; 

HFHR = high force, high repetition.

Gallagher and Heberger Page 22

Hum Factors. Author manuscript; available in PMC 2015 July 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Conceptual model of the effects of force and repetition on musculoskeletal disorder 

development and recovery. A + indicates an increased likelihood of a following event (more 

+ signs indicate higher likelihood); a − indicates decreased likelihood of a following event.
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TABLE 1

Criteria for Methodological Quality Assessment

Study population

 1. Study groups (exposed and unexposed) are clearly defined

 2. Participation > 70%

 3. Cases > 50

Assessment of exposure

 4. Exposure definition

 5. Assessment of exposure

 6. Blind for outcome status

Assessment of outcome

 7. Outcome definition

 8. Assessment method

 9. Blind for exposure status

Study design

 10. Prospective design

 11. Inclusion and exclusion criteria

 12. Follow-up period > 1 year

 13. Information between completers vs. withdrawals

Analysis and data presentation

 14. Data presentation

 15. Consideration for confounders

 16. Control for confounding

Note. Criteria were scored as + (positive), − (negative), or ? (unclear).
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TABLE 4

Data from Schechtman and Bader (1997) on Median Cycles to Failure at Different Percentages of Ultimate 

Tensile Strength

% Ultimate Tensile Strength Median Cycles to Failure

35 30,000

40 13,000

45 6,000

Note. Median cycles to failure are rounded to the nearest thousand for ease of computation.

Hum Factors. Author manuscript; available in PMC 2015 July 08.


