
GaliLEO: a simulation tool
for LEO satelliteconstellations

�

LaurentFranck
ENST/T́eSA

Toulouse(FR)
Laurent.Franck@enst.fr

FrancescoPotort̀ı
CNUCE-CNR

Pisa(IT)
F.Potorti@cnuce.cnr.it

Abstract

We presentGalileo, a simulatorfor the trans-
missionof bothconnection-orientedandconnec-
tionlesstraffic over a constellationof LEO/MEO
(Low / MediumEarth Orbit) satellites. Its scope
is limited to thesatellitesandthestationsaccess-
ing them, without any modelling of the terres-
trial network,but insidethis scopethegoal is to
studytheperformanceof satellite-basedcommu-
nicationnetworksfromasmanyaspossiblepoints
of view. Typical applicationsincludesimulation
of accesstechniques,routingpolicies,fault man-
agement.Thesimulatoris written in Java,andit
makesuseof dynamicloading to easilyintegrate
user-written modules. A draft manual is avail-
able, and a preliminary version of the program
will bepublishedby theendof 2000.

1 Intr oduction: the newborn and its
family

The motivation behind Galileo’s conception
emerged during an exchangeof ideas among
somemembersof the EuropeanCOST253 Ac-

�
This work waspartially supportedby theCNR (Italian

NationalResearchCouncil)underthe5% MultimediaPro-
gramme.

tion1, a forum whereresearchersfrom all around
Europeperiodicallymeetto addressissuesrelated
to LEO constellationsof communicationsatel-
lites. Thepoint madewasthatnoneof the com-
merciallyor freely availablesimulationtoolswas
reasonablyusableasagenericsimulationtool for
LEOs.Thisseminaldiscussionlaterledto theini-
tial designof theGalileoarchitecture,which was
the outcomeof a collaborationbetweentwo in-
stituteswhereresearchershadalreadyhadexperi-
encesin developingspecialpurposesimulators.

Thebasicideaandmostof theconceptsregard-
ing the connectionsetupandthe channelaccess
from agroundstationweredevelopedatCNUCE,
aninstituteof CNRin Pisa(IT), asaconsequence
of theinadequacy of thelocally developedFracas
[3] simulatorfor thestudyof LEO networks.The
routing conceptsand the detailsof the architec-
ture that form theglueof theactualimplementa-
tion of Galileo comefrom the experienceof the
LeoSim[6] simulator, developedoriginally at the
BrusselsUniversity(BE), andcurrentlyat ENST
in Toulouse(FR), andtheinitial specificationsof
SimToc [5], designedat CNUCE. Interestingly,
while having verydifferentscopesandobjectives,
all of thesesimulatorstookanobjectorientedap-

1COST stands for COoperation in the
field of Scientific and Technical research, see� URL:http://www.eeng.brad.ac.uk/Research/cost253/ �
for informationon COST253.

1



proachto implementation,principally asa mean
to easeextensibility. Galileo aims to be a gen-
eral purpose,customisabletool, freely available
for thewholesatellitecommunity.

Fracas(FRAmed ChannelAccessSimulator)
is essentiallya commandline driven emulator
whosetime advancesin fixed lengthsteps,usu-
ally of thesamelengthof a frameof theprotocol
understudy. While very fastandvery well suited
to thestudyof accessprotocolsfor GEOsystems,
it cannotbeadaptedto LEO systems.Its heritage
consistsof the conceptsbehindstatisticscollec-
tion andmanipulation.

LeoSim, the most important of Galileo’s an-
cestors,is an event-driven,continuoustime sim-
ulator accessedthrougha graphicalinterface. It
has beendevelopedat ENST (FR) in order to
studylink stateroutingalgorithmsfor LEO satel-
lite constellations. LeoSim provides statistics
on the numberof call requests,the call block
probability, andthecostintroducedby maintain-
ing the link statedatabase;shortestpathrouting,
handover managementandelaborateroutingsig-
nallingareimplemented.Its designapproachand
its coresimulationenginehave beentransported
into Galileo.

From SimToc, the other ancestor from
CNUCE, Galileo took the global architecture,
the ideaof theup-down link betweentheground
stationanda satelliteof theconstellation,andthe
waya connectionis setup andmodified.SimToc
hasnevergonepastthedesignstage.

Consim[1] is a simulatordevelopedat CSELT
(IT) for evaluatingtheperformancesof constella-
tionsof communicationsatellitesaffectedby dif-
ferenttypesof failures.Consimwill beintegrated
by results into Galileo. By “integration by re-
sults” we meanthat the two simulatorsarekept
separate,and the resultsof Consimare usedby
Galileo. This is a simpleway to programinter-
actionbetweentwo simulatorsthat werewritten
separately, while minimisingthecouplingneeded
betweenthe different teamsresponsiblefor the
programs.However, this approachis only feasi-

ble whenthetwo studiescoveraspectswhich are
not interdependent.In this case,Consimrunsa
failure model to producea list of failure events
occurringduring the constellationlifetime, each
onetaggedwith the type of failure andthe time
of occurrence.Sincethe fault occurrenceis in-
dependentof thetraffic generation,Consimneeds
no feedbackfrom Galileo,andthedataexchange
betweenthe simulatorscanbe unidirectional. In
practice,thelist of failureeventsis provideddur-
ing the simulation initialisation phaseand then
usedto feedGalileo’s simulatorenginein order
to triggertheright faultmanagersat theappropri-
atetime.

2 Ar chitecture

Figure1 highlightsthethree-layerarchitecture
of Galileo.

Configuration
files

Graphical
interactive

constellation
builder

Graphical
interactive

data
analysis

scheduler

Core modules

Custom modules

Simulation
engineSource

segment

Ground
segment

Space
segment

Measurement
modules

configuration
validator

input user
interface

initialiser

Results
files

CONSIM

output user
interface

agenda

Figure 1. Galileo architecture .

Thefirst layer(Simulationengine) definesboth
thestructureof components, whicharetheblocks
from which Galileois built, andtheway they be-
have andinteract. Thecomponents’dynamicsis
thejob of theschedulerthatrunsthecomponents



anddefinesa messagepassingstructurefor inter-
componentcommunication.Thus the first layer
constitutesa genericinfrastructurefor a discrete-
event,message-passingsimulator.

The secondlayer (Core modules) implements
the network model of Galileo, by defining the
scopeof Galileo possibilitiesthroughthe defini-
tion of a set of classes. Theseclasses(called
templates2) also specify the rules for using the
network modelandcreatingcustomcomponents.
This layer is not customisableper se,andin fact
is the core of Galileo’s functionalities. Experi-
mentersneedingto implementtheir own set of
purposefullymademodulesshould be well ac-
quaintedwith thenetwork model.

The third layer (Custommodules) is thesetof
moduleswhich aredynamicallyloadedfrom a li-
brary, including both standard andcustomcom-
ponents. Standardcomponentsare components
shippedwith Galileo. Customcomponentsare
developed(possibly basedon standardcompo-
nents)by theuserof Galileoin orderto tailor the
simulatorto its needs.This layeris wheread-hoc
built modulesareintegratedin Galileo.Examples
includemodulesdefiningthebehaviour of actual
routing algorithms,channelallocationmethods,
traffic generators,call admissioncontrolpolicies,
etcetera.

To summarisetherelationbetweenthesecond
and third layer, layer two defineswhat are the
generalcharacteristicsof, say, a channelalloca-
tion method(in termsof what are the provided
services)while layer threedefinesactualchannel
allocationmethods.

2.1 Componentsasbuilding blocks

Galileo is extremelymodular, becauseit aims
at providing a simulationframework whereone
plugs in a locally developed,e.g., routing algo-
rithm, andevaluatestheresultingbehaviour. The
basicmoduleis calleda component,which is a
classof Java objectsthat provide the ability to

2They areunrelatedto C++ templates.

be duplicated,andmethodsto initialise andstart
themselvesafter creation. Initialisation may be
basedon thepresenceof othercomponentsin the
system,and may make useof a dedicatedsec-
tion in the initialisation file, whosesectionscan
bestructuredandnestedto arbitrarydepths.Start-
ing a componentis doneafter initialisation. This
usually makes senseonly for entities (modules
with a specialprocessingcapability), which are
describedbelow. Galileocomeswith a smallcol-
lectionof standardcomponents,which aremeant
to be usedas-is or replacedwith customones.
Hopefully, Galileo’s library of standardcompo-
nentswill grow with time.

Standardand custom componentsare built
upon templates,which are Java abstractclasses
usedto provide an API for the developmentof
components.Providing an API hassomeshort-
comingswith respectto providing an extension
language;for example,it is generallymorediffi-
cult to programin Java thanin an extensionlan-
guage,an extensionlanguagecan be limited to
provide only specialconstructs,andcanbe well
insulatedfrom the details of the programcore,
which in practiceis impossiblein Java. However,
usinganAPI is a far easierandmoreflexible ap-
proach,and certainly more efficient in termsof
resourcesusage.

Componentscontainboth codeanddata. Af-
ter initialisation,thecomponentcaneitherliveas
a passive element,whosemethodsarecalledby
the systemor from othercomponents,or behave
asan independentpieceof code. This latter spe-
cial kind of componentis called an entity. En-
tities run concurrentlywith the rest of the sys-
tem and other entities, by using the communi-
cation and schedulingfacilities provided by the
simulationengine. The Galileo network model
describedlater is thereforea collectionof inter-
operatingcomponents.



3 The simulation engine

The simulation enginecomesfrom LeoSim,
andincludestheschedulerandtheagenda.

Componentcreates an event for
selector S of instance
2 of entity A at time t

Scheduler

when the event is the first of
the queue, set global time to t,
dequeue the event, requeue it
if it has a repetition count > 0

check that entity A
supports selector S,
and dispatch selector
S of instance 2

Agenda

Selector S

Selector T

Entity A
instance 1

Selector S

Selector T

Entity A
instance 2

Figure 2. Creating, scheduling, and consum-
ing events.

Any module inside Galileo can generatean
eventby calling thescheduleAction method
of the scheduler, which createsa pendingevent.
The argumentsof this methodare the delay af-
ter which the eventshouldbe triggered,a repeat
count,andtheactiontriggeredby theevent. The
schedulerorganisesthependingeventsin astruc-
ture called an agenda, which is conceptuallya
queuewheretheeventsarekeptsortedaccording
to the time when they shouldbe triggered. The
exact implementationof the agendais customis-
able, to allow experimentation,easyupgrading,
andplatform-specificoptimisations.Currently, a
simple-mindeddeltalist is implemented,together
with a moresophisticatedcalendarqueueimple-
mentation.

A deltalist is astructureallowing basicallytwo
operations,namelyinsertionof arandomelement
andextractionof the smallestelement. The im-
plementationconsistsof a linked list where an
event is insertedin order, so the extractioncon-
sistssimply of extractingthe first elementof the
list. Unfortunately, inserting an elementneeds
scanningthelist from thebeginning,sotheinser-
tion time is O

�
N � , N beingthe numberof pend-

ing events.For big simulations,like thosewe are
planning,this is notacceptable,becausetheover-
headintroducedby event schedulingwould be
O

�
N2 � . A calendarqueueis a structureallowing

thesameoperationsasthoseprovidedby a delta
list, but usingamorecomplex datastructure,con-
sistingof anarrayof linkedlists. It is possibleto
make ananalogywith a calendar, wherefor each
dayonewritesdown zeroor moreappointments,
orderedby the time of the day. Finding the day
wheretheappointmentshouldbewritten is O

�
1� ,

andinsertingit in the queueof that day is O
�
n� ,

n being the numberof events(appointmentsfor
thatparticularday). Two parametersmustbeset
for acalendarqueue,thatis theslotsize,which is
thelengthof thedayin thecalendaranalogy, and
thenumberof slots. It hasbeenshown in [4] that
the optimal numberof slotsis O

�
N � . By chang-

ing dynamicallythe numberand the size of the
slotsdependingon N we obtaina dynamiccalen-
darqueue,for whichempiricalevidencehasbeen
givenin [2] thatinsertionandextractiontimesare
O

�
1� . Currently, Galileo implementsa staticcal-

endarqueue,whoseparametersarereadfrom the
configuration.

The actiontriggeredby an event is definedby
a selectorand a list of argumentsto it. A se-
lector is an entry point in a module, that is, a
methodwhichpossiblyacceptsarguments.When
an event is triggered, the associatedselectoris
called,andtherelative list of argumentsis passed
to it. Thissimplemessagepassingmechanismal-
lowsasynchronouscommunicationbetweencom-
ponents.More precisely, any pieceof codeinside
Galileo can generatean event, and thus senda
message,but only entitiescanhaveselectors,and
thusbeawakenedby theschedulerandreceive a
message.

Thescheduleris theheartof thesimulator. Af-
ter theinitialisationphase,thesimulationconsists
of a loop runninginsidethescheduler, which just
removesthefirst event from thequeue,advances
the system’s time to that of the event, andcalls
the selectorspecifiedtherein,with the appropri-



ateargumentlist. Whentheselectoris finished,it
returnsto the scheduler. The loop finisheswhen
thereareno moreeventsin the queue,a special
stoppingevent is encountered,or whenmanually
stoppedby theoperator.

Since it is anticipatedthat Galileo will go
distributed in the future, the scheduleris cus-
tomisable, to allow experimentationand local
customisationsof distributedschedulingcriteria.
Currently, a simpleserial scheduleris available,
which is the normally used one, and a paral-
lel scheduleris implemented,which is usefulfor
multiprocessormachines.

After selectinga first event for running on a
given CPU, the schedulercould remove a sec-
ond event from the headof the queueto have it
run on a secondCPU.This is alwayspossibleif
theselectorhasthesametrigger time asthefirst
one,andtheJavacodeis written with parallelism
in mind (i.e., by properly using the Synchro-
nized statementor modifier). In the general
case,however, thesecondselectorshouldbe run
only if thefirst selectordoesnot changeany state
in thesimulatoron which thesecondselectorde-
pends. This constraintcannotbe automatically
detected,so selectorswishing to allow parallel
executionof otherselectorsmustprovide anis-
SafeWithmethod,whichtakesthenext selector
asan argument. In our example,the first selec-
tor’sisSafeWith methodwouldbecalledwith
the secondselectoras an argument,and should
returntrue only if thesecondselectoris known
not to rely on any statethat thefirst selectormay
change.

Moreover, if thefirst selectorcreatesany events
whosetime is less than the time of the second
event, theseevents(recursively) shouldnot trig-
ger any changeof stateon which the secondse-
lector relies. In orderto easethis requirement,a
secondargumentis passedto theisSafeWith
method,which is thetimeof thesecondevent.

This mechanismis far from being automatic,
but in practiceit canallow someparallelismfor
carefullycraftedcomponentsthathavebeenwrit-

tenby thesameprogrammer. For example,com-
puting a route is a time consumingtask (it in-
volves usually a shortestpath algorithm). If
two successive routing eventsare presentin the
agenda,they couldbelaunchedconcurrentlypro-
videdthatthey donothaveto beperformedin the
samesatellite.

4 The network model

Thesecondlayerof thearchitecturedepictedin
Figure1 definesthebasiccapabilitiesof thesimu-
latorasfarasthemodellingof thecommunication
network is concerned.The relevant modulesare
theSource,GroundandSpacesegments.Eachis
a collectionof componentsandtemplates.Cus-
tom andstandardcomponentsareinstantiationof
templates,andoccupy thethird layerof thearchi-
tecture.Galileowill initially shipwith asmallset
of standardcomponents,andamanualdescribing
theAPI for building customones.

4.1 Assumptionsand definitions

Many componentsin Galileo aremeantto de-
scribereal objectsin the satellitenetwork. We
describethemainconceptsusedwhendescribing
thenetwork, andwhenthereis adirectcorrespon-
dencebetweena conceptand a component,we
will indicatethenameof thecomponentin mono-
spacedfacebetweenbrackets, like in [Satel-
lite].

We definea cell as the areaof the earthillu-
minatedby a satellitespotbeam. A footprint is
the whole coverageareaof a satellite[Satel-
lite], i.e. it is thesumof theareascoveredby
its spot beams. An overlap area is the areain
which a groundstation[Station] (i.e. a single
subscriberor a concentrator)canreceive a signal
with an acceptablepower level from more than
oneadjacentspotbeams.A UDL (Up-Down link)
[Udl] is the aggregation of all spot beamsper-
tainingto thesamefootprint; it hasafixedcapac-
ity, andis unidirectional. A beam[Beam] is the



ISL
satellite

UDL

cell

footprint
station

beam overlap area

traffic generators

Resource management
Routing
Signaling
Handover mgt

Resource management
Access method
Signaling
Handover mgt

Figure 3. Names of some objects used in the
sim ulator .

communicationmediumbetweenasatelliteanda
spot on the ground. A beamhasa variableca-
pacity which cannotexceedthe capacityof the
UDL thebeambelongsto. A node[Node] of the
network is any stationor any satellite. Satellites
have multi-beamantennasfor up-link reception
anddown-link transmission,andareconnectedto
eachneighbouringsatelliteby meansof an ISL
(inter-satellitelink) [Isl] which a unidirectional
link.

A connection[Connection] is avirtual com-
municationpathbetweena sourceanda destina-
tion, whicharenormallydifferentstations.A con-
nectioncanbe created,modifiedby changingits
characteristics[Resources], andtorn down. It
is assumedto befull-duplex, composedby a for-
ward anda returnchannel[UniConnection],
wheretheforwardchannelis intendedto befrom
sourceto destination,andthereturnchannelfrom
destinationto source.

The proceduresupportingthe transition from
oneconnectionstateto anotheris implementedby
acall signallingprotocol[CallSignaling].

4.2 Call signalling

A call generator [CallGenerator] defines
when a connectionstarts, betweenwhich end-
points,andhow andwhenit is modifiedandtorn
down. It canbe associatedwith a packet gener-
ator, which producesthe packet traffic running
over a connection, for simulating connection-
orientedtraffic. It is envisagedthat Galileo will
beableto supportalsotraffic generatorsthatcre-
ate connectionlesstraffic. In the following we
will mainlyconsiderconnectionsandconnection-
orientedtraffic.

When a connectionis created,the stationse-
lectsthefirst andlasthopsatellitesfrom thecon-
stellation [StationUdlRouting]. The sta-
tion thenperformscall admissioncontrol [Sta-
tionQoSManager] to determinewhetherthere
are enoughresources[StationResources]
to support the connection. Then the connec-
tion requestis passedto the first satellitewhich
computestheroute[IslRouting] betweenthe
first and last satellites. If thereis sucha route,
all satelliteson the path perform call admission
control [SatelliteQoSManager], [Satel-
liteResources]. The sameproceduretakes
placein thedestinationstation.If it turnsout that
theconnectioncanberoutedthroughthatpath,re-
sourcesare actually allocated([StationQoS-
Manager], [SatelliteQoSManager]).

In orderto simulateconnectionscomingfrom
a call concentrator(aggregatedphonecalls), the
numberof channelsof theconnectionis not fixed
afteraconnectionhasbeensetup,but canchange
during the lifetime of theconnection.For exam-
ple,aconcentratormaysetupasingleconnection
for all the phonecalls it handles,andmay sim-
ulatebothnew phonecallsandold closedphone
callsby varying thenumberof channelsusedby
the singleconnectionassetup at start time. In
otherwords,a numberof n phonecalls from sta-
tion i to station j is simulatedby thegeneration,
in stationi, of a uniqueconnectionthat requests
n channels.Themodificationof a connectionre-



quirementsis performedin a similar way to the
connectionsetupprocedure.

A handover (or hand-off) occurswheneithera
UDL connectinga satelliteto a groundstationis
cutoff, or whenabeamchangeoccurs(insidethe
sameUDL), or whenan ISL is cut off. All con-
nectionspassingthroughtheaffectedlink mustbe
appropriatelyprocessed(reroutedor torn down)
[ConnectionChangeMonitor].

A connectiondrop occurs when an existing
connectionis forcibly torn down. It mayhappen
eitherwhenthereis a handover andthe connec-
tion cannotbe rerouted,or whenhigherpriority
traffic preemptsall the resourcesusedby a con-
nection. A partial drop may also occur, when
part of the resourcesof the connectionis taken
backby the network. A call block occurswhen
a new connectioncannotbe established.It may
happenwhenthereareno resourcesavailable in
the network in orderto supportthe new connec-
tion. At thecurrenttime,thelimitationsof thecall
connectionsare: only point-to-pointconnections
are considered;a connectioncannotbe split on
morethanonepath(however, forwardandreturn
channelsare not necessarilyon the samepath);
no reroutingof connectionshappensasa conse-
quenceof growing or shrinkingaconnection(ag-
gregateconnectionscase);andno partial rerout-
ing of connectionsis possibleinsidetheconstel-
lation.

4.3 Routing

Routing policies are one of the main aspects
thatwill bestudiedusingGalileo. As mentioned
in the last Subsection,routing is split into UDL
routing and ISL routing. Up-Link (UL) routing
is the processby which the sourcegroundsta-
tion selectsthe sourcesatelliteusedto forward
the packetsof the connection,while Down-Link
(DL) routingis theprocessby which thedestina-
tion groundstationselectsthedestinationsatellite
from which thepacketsof theconnectionwill ar-
rive. Given a sourcesatelliteand a destination

satellite,asprovided by UDL routing, ISL rout-
ing computesthe (or at leastone) optimal path
betweenthesetwo satellites.ISL routingincludes
asignallingscheme[SatelliteLinkState-
Manager] to distributeandgatherroutinginfor-
mation [RoutingInformation] to/from the
other satellites. End-to-endrouting is therefore
madeupby UDL plusISL routing.

4.4 Fault management

The generalreliability of a satellitemustcope
with thereliability of eachelementaswell asthe
relationshipsamongdifferentfailures. Trying to
computethe reliability function of a systemis
thusquitecomplex andmany simulationshave to
beusedin orderto have anestimateof the relia-
bility function.Galileoby itself,will notcompute
thereliability functionsinceConsimis dedicated
to this. Rather, the simulationengineof Galileo
will befedwith eventsnotifying failures.Thena-
ture andtime distribution of theseeventsis pro-
videdby Consim.

5 Someimplementation aspects

This sectionwill cover someimplementation
issuesrelatedto simulationperformance. As it
is often the casewith broadbandnetwork simu-
lations, the time neededto simulatea short pe-
riod of time may be in the orderof days;hence,
theconcernaboutperformanceenhancement.We
will go briefly throughconsiderationsaboutsim-
ulatingthenetwork packet flows,distributing the
simulation, programmingoptimisationsand the
selectionof anappropriatedevelopmenttool.

Simulatingtheactualpacket flow in a network
simulator provides valuable insight on the net-
work behaviour. Without doing so, a satisfac-
tory level of accuracy, especiallywhen it comes
to timerelationsof thevariousphenomenaoccur-
ring in the network, cannotbe achieved. Unfor-
tunately, it alsoresultsin a heavy process(if not
intractable)for a simulatorof LEO constellations



becauseof the potentialhugenumberof traffic
sources,andbecauseof thebandwidthrangesin-
volved (up to hundredsof Mbit/s). As a result,
simulatingeachpacket individually is oftenonly
a wishful thinking for realistic simulation sce-
narios. Two solutionsareavailableto overcome
this problem. The first solutionconsistsin using
mathematicaltools(whenit is possible)to model
theaveragebehaviour of the packetsanddeduce
useful measures. For example, if the traffic is
madeof a numberof constantbit rate sources,
onecan- given certainassumptions- model the
cell arrival patternin a switch usinga ND � D � 1
queue[9].

Thesecondsolutionis to implementdistributed
or parallelsimulationin orderto multiplicatethe
availableprocessingpower [7]. Galileo plansto
supportbothsolutions.Thesimulationengineof
Galileo was designedin order to easethe tran-
sition to a distributedparadigmwithout compro-
misingtheexistingarchitecture.

Implementingdistributedsimulationraisestwo
issues.The first oneis how to partition the pro-
cessingspaceinto parallel processingentities.
The secondone is implementationrelatedand
concernsthecommunicationmeansthatareused
amongprocessingentities. As far as Galileo is
concerned,onepossiblepartition is to distribute
evenly the satellitesand stationson the pool of
availablecomputers.In orderto chooseasuitable
partition, eachpossiblesolution must be evalu-
atedtaking into accountthe amountof datathat
has to be exchangedbetweenthe various dis-
tributedentities,the balanceof the computation
loadon thedifferententities,the time dependen-
cies betweenthe entities and the available re-
sources.

Once a distribution schemehas been estab-
lished, the communicationmeansmust be cho-
sen. Commonlysucha mechanismprovides re-
mote function call like services. Java supports
a distribution paradigmthroughremotemethod
invocation. In a mediumterm range,the simu-
lation engineof Galileo and LeoSim have been

scheduledto makeuseof theRMI or otherfacili-
ties(suchasMPI) providedby Java. A survey of
thedifferentsolutionsavailableaswell asof their
performancehasstill to beperformed.Currently,
thesimulationengineoptionallysupportsparallel
eventprocessingonmultiprocessorcomputers.

In a sequentialor distributed simulation en-
vironment, performanceimprovementscan be
achieved at the implementationor systemlevel.
Enhancementsareeitherrelatedto thealgorithms
and datastructuresor to the developmenttools.
All algorithms and data structureswhich are
likely to beusedoftenduringthesimulationmust
becarefullychosen.Theagendain thesimulation
engineis anexample.Sincethousands,if notmil-
lions,of eventswill begenerated,queuedandpro-
cessedduring a simulationrun, theseoperations
have to beefficient. As far asdatastructuresare
concerned,Javaprovidesa library of coreclasses
such as linked list, dictionariesor hashtables.
Oneadvantageof suchlibrariesis thatthey areex-
ecutedin native code(asopposedto byte-code).
However, becausetheseclassesare designedto
be as generalas possible(regardingthe type of
objectsthey might storeor whetherthe accesses
might be concurrent),it results in performance
impairements. WhenJava 1.1 wasreleased,is-
sueshadbeenraisedregardingexcessive alloca-
tions, inefficient synchronisationor poor imple-
mentationin the coreclasses.Fortunately, these
issuesareaddressedastimegoeson.

Additional concernsarealsoraisedby the na-
ture of Java memorymanagementwhich usesa
garbagecollector. Although garbagecollection
makesit convenientto write codelessvulnerable
to memoryrelatedbugs,this featurecalls,during
the implementation,for a carefulattentionof the
object lifetime. Among other things, favouring
object reuseis crucial in order to minimise the
numberof allocationsas well as the numberof
objectseligible for garbagecollection.Thisprob-
lem hassurprisingramifications:pastexperience
shown thatLeoSim’s executionspeedhasalmost
doubledby increasingtheheapsize,thereforere-



ducingthenumberof timesthegarbagecollector
is invoked.

Java was initially a languagefor develop-
ing Internet applications and delivering them
on different hardware architectureswithout re-
compilation.CompilingaJavaprogramproduces
anintermediatelanguagecalledbyte-code.When
theJavaprogramis executed,theJavaVirtualMa-
chine(JVM) interpretsthe byte-code.The JVM
takescareof themappingbetweenthebyte-code
and the native host architecture. Nevertheless,
Javacanalsobeusedto developapplicationsthat
donot requireseamlesscrossplatformexecution.
Thebyte-codeinterpretationphaseis a drawback
from a performancestandpoint.Thefirst solution
is to translatedirectly a Javasourcein nativema-
chinecode. The GNU Java compiler (gcj) (still
in development)providessucha facility. An in-
termediatesolutionis two useaJVM with aJust-
in-Time (JIT) compiler that translatesbyte-code
to native codeupon classloading. Somemea-
surementsmadewith LeoSimshowedthatthein-
creasein executionspeedapproaches90%.These
measurementsweremadeusingIBM’ s JDK un-
derLinux. Othertestsarecarriedout with Sun’s
HotSpot,andSymantec’s JVM.

6 Galileo project management

Galileo is a medium-sizedprojectwith several
remotelylocatedteamsparticipating. An effec-
tive meanto exchangeinformationis mandatory.
Furthermore,asfor all developments,astructured
approachis required. Galileo’s project life cy-
cle is following a spiralapproachbasedon a core
simulatorincrementallyenhanced.The analysis
anddesignrely heavily on diagramsasa univer-
salcommunicationmedium.Thediagramsfollow
theUML standardandinternalguidelines.

Thefirst stageof theprojectconsistedin writ-
ing in plain text what were the objectives of
Galileo and ordering them by priority. Then
the interactionsbetweenthe user and Galileo
were roughly described(using interaction dia-

gramsfrom UML [8]). Usingthesediagramsasa
startingpointaswell asourpreviousexperiences,
the systemwasdescribedin termsof collaborat-
ing objects(i.e. objectsexchangingmessages).
Then,theseobjectsweregroupedin classes.The
classdescriptionsconsistedin Java stubsdocu-
mentedusingthejavadocutility from theJDK.At
thispoint,Galileowasalreadyaprogramcompil-
ing successfully, althoughwithoutany processing
done. This approachmadeit possibleto gradu-
ally fill thegaps(i.e. replacingstubswith method
bodies)while beingable to testalmostimmedi-
atelytheresultingcode.

All deliverablesareavailablein HTML from a
Webserver. Similarly, thesourcecodeis storedin
aWebCVSrepository. TheCVSrepositorytakes
careof theversioningandis ausefultool to deter-
minethechangesmadeby differentpartiesacross
successiveversions.Currently, theprimarydevel-
opmentandanalysisplatformis Linux. All appli-
cationsthatwereusedduringthedesign(tgif) and
the development(JDK, CVS,cvsweb) are avail-
ablefreeof charge.

7 Project status

Galileo wasinitiated in September1998. Un-
til June2000,six ShortTermScientificMissions
were organisedand funded under the Cost253
action budget. Two additional missionswere
fundedby the CNUCE-CNR.Galileo progresses
mostly during these missions since the peo-
ple involved (approximatively 2.5 personsfrom
CNUCE-CNR(IT), ENST (FR) andPublic Uni-
versityof Navarra(ES))have their regularactivi-
tiesto carryon.

Currently, aninitial versionof Galileois avail-
able with simple but operationalcomponents.
Among them, a shortestpath ISL routing algo-
rithm,aresourcesmanagementschemeusingfirm
allocation,a call generatorusingPoissonarrivals
and a handover resolutionpolicy implementing
completererouting. Thesecomponentshelp to
validate the Galileo architectureand, although



they implementsimpletasks,they provide some
insighton thewholenetwork behaviour. Theef-
fort is now putonproviding Galileowith realistic
componentsaswell assettingupa testbed.

8 Conclusions

Consideringthequestionsstill openin thefield
of LEO constellations,there is an urgent need
for asimulationtool thatwouldprovidemeansto
studythesequestions.Galileois meantto bethis
tool andwill, asa first step,beaimedat thestudy
of constellationaccesstechniques,routing algo-
rithms,andfault management.Galileo is anam-
bitious projectwith many challengeswhich will
provide in theenda valuabletool for theorgani-
sationsinvolvedin LEO research.

References

[1] M. Annoni, S. Bizzarri, and F. Faggi. Per-
formance evaluation of satellite constellations.
the CONSIM(TM) simulatorconceptand archi-
tecture. In Springer-Verlag, editor, Third Eu-
ropean Workshop on mobile/personal Satcoms
(EMPS’98), Venezia(IT), Sept.1998.

[2] R. Brown. Calendarqueues:A fastO(1) priority
queueimplementationfor thesimulationeventset
problem. CommunicationsACM, 31:1220–1227,
1988.

[3] N. Celandroni,E. Ferro,andF. Potort̀ı. A simula-
tion tool to validateandcomparesatelliteTDMA
accessschemes. TelecommunicationsSystems,
12(1):21–37,1999.

[4] K. B. Erickson,R. E. Ladner, and A. LaMarca.
Optimizingstaticcalendarqueues.In 35th IEEE
AnnualSymposiumon Foundationsof Computer
Science, pages732–743,SantaFe(US-NM),Nov.
1994.

[5] E. Ferro. Proposalfor a simulatorarchitecture.
Cost253TemporaryDocument10,CNUCE-CNR
(IT), 1998.

[6] L. Franck. Leosim: a routing simulatorfor leos.
Cost253TemporaryDocument15,BrusselsUni-
versity(BE), 1998.

[7] R. M. Fujimoto. Parallel andDistributedSimula-
tion Systems. Wiley, 2000.

[8] A. Muller. InstantUML. Wrox, 1997.
[9] J.Pitt andJ.Schormans.Introductionto ATM de-

signandPerformance. Wiley, 1996.


