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Liquid movement in 3-D fibrous materials is studied in this article by means of Monte Carlo simulation
based on the Ising model with so-called Kawasaki kinetics. Computer simulation algorithms are then
developed in accordance with the standard liquid wicking rate tests from both EDANA and INDA, and
the simulation results provide information of liquid wicked into computer-generated fiber assemblies
as a function of time. The work focuses mainly on the relationship between fiber orientation and the
liquid wicking rate, while other geometrical parameters of the fiber mass remain fixed. Furthermore,
this simulation also presents dynamic data of both liquid mass uptake and energy changes of the
system. The results are in agreement with known experimental evidence.
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1. Introduction

A flow involving more than a single phase is classified as
multiphase or nonhomogeneous, such as liquid flows in
porous fiber media, and we are interested in the dynamics
of the evolving macroscopic interface between the distinct
phases during such nonhomogeneous flows in a fiber mass.
The dynamics of such flow are dominated by surface ten-
sions, porous media anisotropy and nonhomogenity, fiber
volume fraction, and fiber wetting behaviors. The uncer-
tain structural conditions in fibrous media, including the
susceptibility to even small loads, as well as the tortuous
connectivity of their open pores and poorly defined bound-
aries, result in complex local nonhomogeneous flows and
interfacial evolution [1]. This complexity, in many cases,
becomes prohibitive for the development of analytical the-
ories describing these phenomena.

The wetting and wicking of fiber mass constitute a class
of flows that have critical scientific and practical signif-
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icance, on which technologies such as fiber lubricating and
processing, fiber-reinforced composite manufacturing, and
fiber web bonding and dyeing are based. Wetting and wick-
ing behaviors of many consumer products, such as baby
diapers, female hygiene products, and sport and other pro-
tective garments, are critical in determining their commer-
cial success.

The field of nonhomogeneous flows has become an ac-
tive area for systematic research since the mid-19th cen-
tury. The basic theory was the equation of capillarity given
by Young [2] and Laplace [3]. One of the earliest works is
that of Lamb [4], published in 1879, containing the topic
of the motion of solids through liquids. In 1970s, some
pioneering works about the dynamics of liquid spreading
on solids were published; Huh and Scriven [5] suggested
a singularity in the dissipation in such flows. A useful dis-
tinction was revealed between simple fluids: for example,
liquid spreads by a “rolling motion” [6], whereas poly-
meric melts often tend to slip on a solid surface [7]. More
recently, de Gennes [8] published a review on wetting
research.

The first attempt to understand the capillary-driven non-
homogeneous flows for practical applications was made by
Lucas [9] and Washburn [10]. The Lucas–Washburn theory
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has been used in and further developed for the textile area
by a few authors. Chatterjee [11] dealt with these kinds
of flows in dyeing. Pillai and Advani [12] conducted an
experimental study of the capillarity-driven flow of vis-
cous liquids across a bank of aligned fibers. Hsieh [13]
discussed wetting and capillary theories and applications
of these principles to the analysis of liquid wetting and
transport in fibrous materials. Several techniques employ-
ing fluid flow to characterize the structure of fibrous mate-
rials were presented in Hirt et al. [14] as well. Lukas and
Soukupova [15] carried out a data analysis to test the va-
lidity of the Lucas–Washburn approach for some fibrous
materials and obtained a solution for the Lucas–Washburn
equation, including the gravity term.

Nonhomogeneous flows have also been studied using
stochastic simulation. Manna, Herrmann, and Landau [16]
presented a stochastic simulation that generates the shape
of a 2-D liquid drop, subject to gravity, on a wall. The sys-
tem was based on the so-called Ising model with Kawasaki
dynamics. They located a phase transition between a hang-
ing and a sliding droplet. Lukkarinen [17] studied the
mechanisms of a fluid droplet spreading on flat solids and
found that at first, the spreading is of nearly linear behav-
ior with time, and the liquid precursor film spreading is
dominated by the surface flow on the bulk droplet of a
solid; later, however, the dynamics of liquid spreading are
governed by a square root of time. A similar study of fluid
droplet spreading on a porous surface was recently reported
too [18]. The first attempt to simulate liquid wetting dy-
namics in fiber structures using the Ising model was done
by the present authors [19, 20], followed by Zhong, Ding,
and Tang [21, 22], although the simulation was restricted
to 2-D systems only.

In this article, we apply a 3-D Ising stochastic method
to the simulation of wicking dynamics in a system of fibers
with a given orientation. The benefit of using 3-D simula-
tion is to provide a more realistic model to actual fibrous
systems, where a linear object (a fiber) does not create a
serious hindrance for a liquid transport but can easily be
evaded. Next, there are substantial differences of flows in
2-D and 3-D spaces, even for such an elementary case as
the viscose flow in a straight tube (the Hagen–Poiseuille
flow). In both 2-D and 3-D instances, the velocity field
profile is parabolic, although parameters of such parabolas
are more diverse in the 2-D case than in the 3-D one. There
is no reason to believe that such differences disappear for
the liquid transport phenomena when dealt with by using
stochastic approaches.

The chosen method enables us to investigate wetting
and wicking phenomena as well as to predict system pa-
rameters that are comparable with experimental ones at
the macroscopic level. One of the examples is the wick-
ing rate—the quantity that can be measured, simulated,
and theoretically derived from the Lucas–Washburn the-
ory. The wicking rate in fibrous systems is heavily influ-
enced by several complex geometrical parameters, as men-
tioned previously. Hence we have concentrated the present

work exclusively on one aspect—the effect of a fiber mass
orientation. Other morphological features, such as hetero-
geneity, fiber volume fraction, fiber aspect ratio, fiber curl,
and fiber surface geometry, are kept as constants in the
bulk of modeled specimens. All fibers were represented by
strictly linear geometry. In other words, the main subject in
this article is a detailed study of the relationship between
the wicking rate and fiber orientation.

2. On the Lucas–Washburn Theory

In demonstrating the necessity of, and in comparing with,
our new technique, it is deemed desirable to provide a brief
yet thorough recount of the existing theories.

For both scientific and practical purposes, the so-called
wicking (or absorbency) rate is of great interest. The Euro-
pean Disposables and Nonwovens Association (EDANA)
and the International Nonwovens and Disposables Associ-
ation (INDA) recommended tests to measure the vertical
speed at which the liquid is moving upward in a fabric as
the capillarity of the test material. The vertical rate of ab-
sorption is measured from the edges of the test specimen
strips suspended in a given liquid source. The resultant re-
port of the test contains a record of capillary rising heights
after the time of 10, 30, and 60 sec (and even 300 sec, if
required). Gupta [23] defined the absorbency rate as the
quantity that is characterized based on a modification of
the Lucas–Washburn equation, and he then modified it to
apply to a flat, thin circular fabric on which fluid diffuses
radially outward.

Miller and Friedman [24] introduced a technique for
monitoring absorption rates for materials under compres-
sion. Their Liquid/Air Displacement Analyser (LADA)
measures the rate of absorption by recording changes of
the liquid weight when liquid is sucked into a flat textile
specimen connected to a liquid source.

A more scientific definition of the wicking rate is based
on the Lucas–Washburn theory. This simple theory deals
with the rate at which a liquid is drawn into a circular tube
via capillary action. Such a capillary is a grossly simplified
model of a pore in a real fibrous medium with a highly
complex structure [25]. The theory is actually a special
form of the Hagen–Poiseuille law [26] for laminar viscous
flows.According to this law, the volumedV of a Newtonian
liquid with viscosity µ that wets through a tube of radius
r and length h during time dt is given by the relation

dV

dt
= πr4 (p1 − p2)

8hµ
, (1)

where p1 − p2 is the pressure difference between the tube
ends. The pressure difference here is generated by the cap-
illarity force and the gravitation. The contact angle of the
liquid against the tube wall is denoted as θ, and the param-
eter β is the angle between the tube axis and the vertical
direction shown in Figure 1. The capillary pressure p1 has
the value

p1 = 2γ cos θ

r
, (2)
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Figure 1. A tube (1) of a radius r is suspended in a liquid
source (2). The distance traveled by the liquid along the
capillary axis is h. The angle θ is the contact angle between
the liquid surface and the capillary wall, while β denotes the
angle between the tube and the vertical axis (3).

while the hydrostatic pressure p2 is

p2 = hςg cos β, (3)

where γ denotes the liquid surface tension, ς is liquid den-
sity, g is the gravitational acceleration, and h, in this case,
is the distance traveled by the liquid measured from the
reservoir along the tube axis. This distance obviously is the
function of time, h = h(t), for a given system. When we
substitute the quantities p1, p2, and h(t) into equation (1),
expressing the liquid volume in the capillary V as πr2h,
we obtain the following Lucas–Washburn equation:

dh

dt
= rγ cos θ

4µh
− r2ςg cos β

8µ
. (4)

For a given system as shown in Figure 2a, parameters such
as r, γ, θ, µ, ς, g, and β remain constant. We can then re-
duce the Lucas–Washburn equation (4) by introducing two
constants,

K ′ = rγ cos θ

4µ
and L′ = rςg cos β

8µ
, (5)

into a simplified version,

dh

dt
= K ′

h
− L′. (6)

The above relation is a nonlinear ordinary differential equa-
tion that is solvable only after ignoring the parameter L′;
this has a physical interpretation when either the liquid
penetration is horizontal (β = 90◦), or r is small, or the

W

(a) (b)

Figure 2. Two different experimental arrangements for wicking
(absorbency) rate measurement: (a) liquid source initiates in
the center of a flat specimen and is spread radially outward,
and (b) liquid ascends in a specimen perpendicular to the
reservoir liquid surface

rising liquid height h is low that K ′
h

>> L′ or L′ → 0, and
the effects of the gravitation field are negligible and the ac-
celeration g vanishes. The Lucas–Washburn equation (6)
could thus be solved with ease:

h = √
2K ′t . (7)

The result satisfies the initial condition h = 0 for t = 0.
Now we turn our attention back to Gupta’s approach to

the wicking rate [21], where a fluid from a point source in
the center of a substrate spreads radially outward, instead
of the ascending liquid front in a fibrous substrate partially
dipped into a liquid, as illustrated in Figure 2.

It is useful now to transfer the Lucas–Washburn equa-
tion into a modified version by replacing the distance h
with liquid mass uptake m. Such a transition is described
in detail in Ford [27] and Hsieh [28]. This manipulation
does not influence the fundamental shape of equation (7)
because the relationship between h and m is linear for a cir-
cular tube of fixed cross-section. Furthermore, for the radial
spreading, liquid mass is mR = πh2T ςVL and the ascend-
ing liquid front mA = whT ςVL, where T is the thickness
of the substrate, and VL is the liquid volume fraction inside
the substrate of width w.

For the radial liquid spreading in a flat textile specimen,
we can then write using equation (7)

Q = mR

t
= 2πK ′T ςVL, (8)

where Q is the liquid wicking (absorbency) rate used by
Gupta [23], which is independent of time during the spread-
ing process.

Let us now substitute liquid mass uptake mA into the
original Lucas–Washburn equation (6), with the result as
follows:

dmA

dt
= K

mA

− L. (9)
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The new constants K and L are

K = (wT ςVL)
2
K ′, L = wT ςVLL

′. (10)

It is obvious that the constant K in the modified Lucas–
Washburn equation (9) is proportional to the wicking (ab-
sorbency) rate Q that is defined in (8), and from (8) and
(10), it follows that Q = 2π

w2T ςVL
K . Hence, the parameter

K can be used as a measure of the spreading wicking rate
Q in the experiments when a fabric is hung vertically into a
liquid. The values of K and L can be derived from the slope
and intercept of the dmA/dt versus 1/mA, as mentioned in
Miller and Jansen [29].

On the other hand, equations (6) and (9) can be solved
in terms of functions t (h) or t (mA) without dropping the
gravity term g, as shown in Lukas and Soukupova [15].
For the liquid mass uptake Lucas–Washburn equation (9),
one obtains for the ascending liquid front the relation

t (mA) = −mA

K
− K

L2
ln

(
1 − L

K
mA

)
. (11)

Conversely, however, we are unable to acquire the inverse
solution, mA(t), using the common functions.

The Lucas–Washburn approach presents an approxi-
mate but effective tool to investigate the wicking and wet-
ting behavior of textiles despite their complicated, noncir-
cular, nonuniform, and nonparallel structure of the pore
spaces. It has been shown that equations (6) and (9) hold
for a variety of fibrous media, including paper and textile
materials [25, 30] and 3-D pads. Nevertheless, this theory
is unable to deal with issues such as the influence of struc-
ture (e.g., fiber orientation and deformation on the wetting
and wicking behavior of fibrous media). Therefore, the de-
velopment of more robust techniques is desirable in this
area, and the following is just such an attempt.

3. A 3-D Ising Model for Liquid–Fiber Mass
Interaction

In this section, we develop the idea of using Monte Carlo
simulation based on the Ising model for a description of
the wetting and wicking phenomena in fibrous media. The
idea was first introduced by us [19], albeit focused on a
2-D Ising model.

We introduce here a 3-D Ising model, incorporated with
the stochastic dynamics and the method of importance
sampling, which enables us to interpret the model outputs
in terms of wicking dynamics. The essential principle of
this model is based on the discretion of the whole system
of a fibrous mass, a liquid source, and a wetting configu-
ration at any given moment. The continuous media in the
system, including the solid, liquid, and gas, are all divided
as assemblies of individual cells occupied by the respec-
tive medium so that such a discrete system of cells can be
manipulated more easily in a computer. The liquid wicking
simulations are then set up from the initial configuration of

i

Figure 3. A cell i in the center to form a supercube with its
neighboring cells. On the front surface, we can see various
kinds of media that occupy the cells: the white color denotes
the air, the grey color denotes the liquid, and fiber cells are
black.

the liquid layer into which the fiber mass with a predefined
fiber orientation is in part vertically dipped, absorbing the
liquid.

Statistical physics in general deals with systems with
many degrees of freedom. These degrees of freedom, in
our case, are represented by the so-called Ising variables.
We assume that we know the Hamiltonian (i.e., the total
internal energy) of the system. The problem is computing
the “average” or equilibrium macroscopic parameters ob-
servable (e.g., energy and liquid mass uptake) for a given
initial system configuration. Moreover, we will monitor
the kinetics/dynamics of the system so as to simulate the
wicking behavior with time.

3.1 The Ising Variables and the System Hamiltonian

The Ising model system used here consists of a rectangular
simulation box of size W × H × L (width × height ×
length) subdivided into numerous lattice cells. Each cell
is occupied by just one type of the media: gas, liquid, or
fiber. The cells interact with their neighbors via the energy
exchange. A neighborhood is formed by 26 cells arranged
into a super-cube that surrounds the cell in the center, as
seen in Figure 3. The exchange energy value depends on
the types of interactions.

To make the description concise and more suitable for
computer processing, we locate the lattice cells using in-
dices i and j and designate a cell entity by the Ising vari-
able or spin Si . Indices i and j may vary in the range
i, j ∈ {1, 2, . . . , N}, where N is the total number of
cells. We set S = 0 when a cell is occupied by gas,

550 SIMULATION Volume 80, Number 11

 at UNIV CALIFORNIA DAVIS on March 12, 2010 http://sim.sagepub.comDownloaded from 

http://sim.sagepub.com


SIMULATION OF 3-D LIQUID TRANSPORT IN FIBROUS MATERIALS

Table 1. Exchange of energy values J(Si, Sj) between two interacting cells

Interacting Gas, Liquid, Fiber,
Cells Sj = 0Sj = 0Sj = 0 Sj = 1Sj = 1Sj = 1 Sj = 2Sj = 2Sj = 2

Gas, Si = 0 J(0,0) = –40 J(0,1) = 5 J(0,2) = 20
Liquid, Si = 1 J(1,0) = 5 J(1,1) = –26 J(1,2) = –30
Fiber, Si = 2 J(2,0) = 20 J(2,1) = –30 J(2,2) = 0

S = 1 by liquid, and S = 2 by fiber. The exchange en-
ergy J is then a symmetrical function of two Ising vari-
ables, J (Si, Sj ) = J (Sj = Si). The possible energy values
between two interacting cells are assigned as shown in
Table 1.

There are nine possible combinations of pairs for the
three kinds of Ising variables. However, the allowable com-
binations reduce to six due to the symmetricity. Further-
more, because fiber structure or fiber cells are not movable
during the simulation, the interaction energy value J (2, 2)
does not play a role in the model and is hence set to 0.

Each isolated system tends to minimize its total internal
energy, which is why we can expect the attraction of cells
with low-exchange energy and the repulsion of ones with
high-exchange energy. Values J (Si, Sj ) have been chosen
to ensure such behavior by encouraging the aggregation of
gas cells and liquid ones, respectively, whereas the liquid
cells will preferably adhere, based on the assigned energy
values reflecting the physics, to fibers instead of gas cells.

The presence of gravity is represented by a uniform field
g. We assume that the gravity field interaction is signifi-
cant only for liquid cells; the influence of the mass of both
fiber and gas is smaller enough to be neglected. The grav-
ity potential of a liquid particle of mass m in the cell I ,
located at the hi th level of the lattice along the vertical axis
H , is mghi . With these results, we can write the system
Hamiltonian Ξ (total energy) as

Ξ =
∑
〈i,j〉

J
(
Si, Sj

) +
∑
〈i〉

mghi, (12)

where
∑
〈i,j〉

means that each cell couple is counted one time,

and the sum
∑
〈i〉

applies to the liquid cells only.

3.2 Importance Sampling

The model microscopic dynamics are governed by a
stochastic (Monte Carlo) process. The dynamics are re-
alized through the so-called importance sampling process
proposed by Metropolis et al. [31].These authors suggested
constructing a Markov process in which each state or con-
figuration of the model xl+1 is evolved from the previous
state xl via suitable transition probability W (xl → xl+1).
Here, the vector x in the phase space stands for a set of Ising
variables describing the considered degree of freedom—
for example, x = (S1, S2, . . . , SN)—so the system Hamil-
tonian is a function of the state x (i.e., Ξ = Ξ(x)).Again, in

our case, the initial system configuration is represented by a
thin liquid layer at the bottom of the simulation box that co-
exists with a rigid fiber system. The frequently used choice
for transition probability values is, according to Binder
[32],

W (xl → xl+1) = 1

τ
e

(
−δΞ/kT

)
ifδΞ > 0,

W (xl → xl+1) = 1

τ
otherwise, (13)

and parameters k and T in (13) denote the Bolzmann con-
stant and temperature, while arbitrary factor τ is a unit of
the “Monte Carlo time” when the Monte Carlo process is
interpreted dynamically [33]. The state exchange xl → xl+1

clearly depends on the energy difference after and before
the exchange,

∆Ξ = Ξ (xl+1) − Ξ (xl) . (14)

With this choice of the transition probability, the distribu-
tion function P (xl) of states generated by this Markov pro-
cess (xl → xl+1 → xl+2 → xl+3 → . . . xl+M) approaches,
as M → ∞, the equilibrium distribution Peq (xl+M) for
a canonical ensemble in thermal equilibrium

Peq(xl+M) = 1

Z
exp (−Ξ (xl+M) /kT ) , (15)

where Z is the partition function as defined in Binder [32].
The explanation for this asymptotic convergence of the

Markov chain of states to the equilibrium (steady-state)
distribution Peq is described in Binder and Heermann [34].
The procedure realizing the transition through the phase
space set of points {xl , xl+1, xl+2, . . . } is called the impor-
tance sampling [36].

3.3 The Algorithm of the Computer Simulation

For our simulation, we set up a simple cubic lattice of size
37× 300 × 150 (W × H × L) with a total number of cells
N = 1,665,000 and free boundary conditions. The specifi-
cation of an initial spin cell configuration is the following:
the first 10 bottom layers hi ∈ {0, . . . , 9} are immersed in
a liquid pool, with Ising variables Si = 1, and the rest of
the lattice space is filled by gas spins so that Si = 0.

The direction of the fiber is determined by two angles,
β and α, which contain the unit vector a with the axis H

Volume 80, Number 11 SIMULATION 551
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Figure 4. A fiber system is generated via the location of
its origin o of a fiber containing a unit vector a inside the
simulation box W × H × L. On the right-hand side is a thin
section of the simulation box (one cell thick) with a part of a
fiber with the deflection angle β = 45◦.

and its projection in the horizontal (WL) plane with the
axis W . The orientation of a can be chosen up or down the
line, determined by the couple of angles (α, β). The vertical
cross section of each fiber consists of one fiber cell only.

The fibrous mass is then created by the generation of
individual random lattice cells as the origins of fibers.Then,
a vector a with a given direction β, as well as a uniform
azimuth α of the projection of a via a random-number
generator onto the horizontal W − L plane (see Fig. 4), is
used to generate the fiber directions. Each fiber is defined
as an abscissa with an equal probability up or down along
the vector a with the starting point in the fiber origin. The
fiber length is equal to 50 lattice cell length, and diameter
is equal to 1 lattice cell. The total number of fibers was
chosen (M = 10, 000). Fibers thus generated are arranged
throughout the cubic lattice so that they can be considered
as chains of the cells they occupied (i.e., the fiber cells). The
average fiber volume density Vf hence equals the fraction
of fiber cells with respect to the total number of cells N
[35]. Simulations were carried out for Vf = 0.22. After
creation of the initial spin cell configuration, the simulation
is conducted by repeating the following six steps:

1. Select two lattice cells i and j at which the Ising vari-
ablesSi andSj are considered for exchange (Si → Sj

and Sj → Si). The spin Si has to contain liquid, and
Sj must be filled by gas. Moreover, both spins have
to be located on the interface between liquid and gas.
The liquid interface cell is defined as the one whose
neighborhood consists of at least one gas cell. Corre-
spondingly, the gas interface cell has in its neighbor-
hood at least one liquid cell. This type of Ising vari-
able exchange is called long-range Kawasaki spin
exchange kinetics [36].

2. Compute the energy change ∆Ξ, defined in equation
(14), associated with the Ising variable exchange.We
have used the values of the liquid cell mass, m = 1,
and gravity acceleration, g = 10.

3. Calculate the transition probability W (xl → xl+1)
according to equation (13). We have set the “Monte
Carlo time” value at τ= 1, and in our simulation, the
product of the Bolzmann constant with the temper-
ature has the value kT = 50.

4. The probabilistic nature of the spin exchange is re-
alized via drawing a random number R that is uni-
formly distributed between zero and unity.

5. If R > W (xl → xl+1), then exchange the spin cells.
When a liquid particle is moved from the initial liq-
uid layer (i.e., hi ∈ {0, . . . , 9}), its position should
always be refilled by liquid. This simulates the liquid
absorbing from a nonexhaustive liquid reservoir.

6. The spin configuration obtained in this way at the
end of step 5 is counted as a new configuration, and
we then return to step 1.

After an adequate number of repeats, we can analyze the
resulting configurations saved to obtain actual numerical
data and the graphs of the system such as the total liquid
absorbed and the sum of the total energy changes.

3.4 The Dynamic Interpretation of the Model

Apparently, the evolving configurations xl → xl+1 in the al-
gorithm differ only by an exchange of a couple spins. That
is why the physical properties of these neighboring states
of the system are very strongly correlated. This correlation
is the theoretical basis for the application of the Monte
Carlo methods with importance sampling to the simula-
tion of dynamic processes [16, 17, 34, 37]. The dynamic
interpretation of the method is based on the association of
a time t with the subsequent configuration xl → (x, t). The
time scale is often normalized into a relative unit, during
which N spin exchange trials are performed. The time unit
is called 1 MCS (Monte Carlo step per particle) [34].

For the probability distribution function in equation
(15),P(x, t) at time t , a configuration x occurs in the Monte
Carlo process that satisfies the Markovian master equation
[38]:

dP (x, t)

dt
= −

∑
x′

W
(
x → x′)P (x, t)

+
∑

x′
W

(
x′ → x

)
P

(
x′, t

)
. (16)

In this equation, the first sum on the right-hand side repre-
sents all the processes that move the system away from the
state x. The second sum contains all the reverse events and
leads to an increase of the probability P(x, t) of finding
the system in the configuration x. In the case of thermal
equilibrium, these two sums cancel each other, and we
have dPeq (x, t) /dt = 0, where Peq(x) is the steady-state
distribution of the master equation (16).
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In general, the time associated with the importance sam-
pling procedure cannot be related to the physical time by
which a real system evolves. The reason is that the time
evolution in a real system is governed by the deterministic
equations, not the stochastic master equation (16). But for
the Ising Hamiltonian (12), the stochastic kinetics provided
by (16) could be interpreted physically in terms of a very
weak coupling of the spins to a heat bath, which induces
random spin exchanges in the system [34].

4. Predictions by the Ising Model

4.1 Influences of the Fiber Orientation

In the simulation, we first investigated the influence of fiber
orientation on the dynamics of liquid wetting and wicking
into a fibrous mass. We varied the fiber declination β from
the vertical axis H with the step of 10◦, so the simula-
tion was carried out for 11 different fibrous systems with
β = 0◦, 10◦, 20◦, . . . , 90◦, plus β = 45◦. After each Monte
Carlo step per cell (MCS), the following outputs were col-
lected, such as the number or the mass mA of wicked liquid
particles, the liquid particles above the original liquid sur-
face, and the changes of the total system energy ∆Ξ. The
simulation was terminated after 600 MCS, and information
of each new configuration was saved for further analysis.

Results of this process are provided in Figure 5; each
picture is a paired wetting pattern of a cross section with
a side view and a top view of the fibrous mass at a given
β value. The horizontal cross sections are all cut at the
distance of 100 cells from the liquid surface.

We find two extremes from the pictures. The first is
the one vertical to the W − L plane or β = 0◦, where
the ascending liquid moves at a highest rate but is most
scattered. The other one is in parallel with the W −L plane
or β = 90◦, with the lowest wetting rate, but the liquid
pattern is most heavily aggregated (also see Fig. 6a).

From Figure 5, one can intuitively evaluate the volume
of the liquid wicked into a fiber mass. Yet from Figure 6a,
it is clear that after a short time (i.e., MCS < 200), the
absorbed liquid body in general is more voluminous for a
smaller angle β because, apparently, the fiber assemblies
with smaller β values start with greater wicking rates, and
therefore the liquid climbs faster. Nevertheless, this trend
remains true in our calculation only for those with β ≥ 20◦,
whereas when β < 20◦, the climbing of the liquid will
stagnate and become independent of the time; the smaller
the β value, the earlier the climbing stops.

The discussions above reveal that there will be one or
a range of optimal combinations of β and MCS at which
the fiber mass will absorb a maximum amount of liquid, a
result of the optimal wicking rate and wicking duration, as
illustrated in Figure 6b; when β = 20◦, the greater the MCS
value and the more liquid absorbed into the specimen.

4.2 The Wicking Rate K

To evaluate the wicking rate K , we have plotted the time
derivation of the wicked liquid mass, dmA/dt , against the

o o o o

o oo

Figure 5. Wetting patterns from both vertical and horizontal
cross sections of a fiber mass at different orientation angles
β after 600 MCS (Monte Carlo step per particle). The fibers
in the individual samples have strictly identical declination β.
From the left- to the right-hand side, the β values are 0◦, 10◦,
20◦, 30◦, 70◦, 80◦, and 90◦, as denoted in each sample. Only
those fibers that lie in the cross-section plane are depicted
in full length with the corresponding declination angle β. The
fiber system is uniformly random.

reciprocal value of the mass 1
mA

with different β values in
Figure 7. We mentioned earlier that the value of K could
be determined from the slope of the plot, as indicated in
equation (9). In general, a wicking rate can be defined as
K = tgα, where α is the slope of the plot.

It is clear from Figure 7a-c that a fibrous mass with
a smaller β value does yield a higher slope or a greater
wicking rate K . However, according to equation (9), when
other parameters are given, this dmA/dt against 1

mA
should

be a straight line. The results of the simulation in Figure 7,
which is consistent with experimental practice, demon-
strate otherwise. In reality, the wicking rate dmA/dt cannot
maintain a constant because, among other factors, the liq-
uid weight will slow down and eventually stop the wicking
process (i.e., the wicking rate dmA/dt decreases mono-
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Figure 6. (a) The dependency of liquid mass wicked into
a specimen on MCS (Monte Carlo step per particle) at a
different fiber orientation angle β. (b) The dependency of liquid
mass wicked into a specimen on orientation angle β after
different MCS values.

tonically with time until zero). This, on the other hand,
provides strong evidence for validating our computer sim-
ulation method.

A more complete analysis of the relationship between
wicking rate K and the fiber mass orientation angle β based
on the simulated data is summarized in Figure 8. We see
that the connection between the two is also nonlinear, with
a rapid decrease of wicking rate K in the interval β ∈
〈0◦, 30◦〉, while the rest of the graph, β > 30◦, shows a
constant or even slight increase of K.

4.3 Total System Energy Exchange ∆Ξ

Figure 9a is a plot of the total system energy changes
∆Ξ, along with the time MCS at different angles β. These
curves do not reach their asymptotic behavior of the steady
states that would be parallel with the MCS axis, with few
changes in ∆Ξ. ∆Ξ < 0 indicates that the wicking pro-
cess is an exothermal process. The magnitude of |∆Ξ| in-
creases monotonically with the MCS value as more spin

1/m [m.u
-1

]

dm/dt [m.u./MCS]

b=20¯

(a)

1/m [m.u
-1

]

dm/dt [m.u./MCS]

b=45¯

(b)

dm/dt [m.u./MCS] 

b=90¯

1/m [m.u
-1

]

(c)

Figure 7. Time derivation of wicked liquid mass dmA/dt
against the reciprocal mass 1/mA: (a) fiber orientation β = 20◦,
(b) fiber orientation β = 45◦, and (c) fiber orientation β = 90◦
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K.10
8

Figure 8. The generalized wicking rate K versus fiber orienta-
tion angle β

exchanges are conducted or more liquid is absorbed into the
fiber mass. Similar to the case in Figure 6, a dependency
of |∆Ξ| on β is revealed. Likewise, the optimal combi-
nation of β and MCS for extreme values of |∆Ξ| can be
determined in Figure 9b.

Finally, it should be noted that a major problem in our
method is the presence of the anisotropy generated due to
the underlying cubic lattice, but this effect is minimized
by a relatively high value of kT . Furthermore, up to now,
the Lucas–Washburn theory is still the most widely ac-
cepted method for evaluating the wicking rate in textile
materials. Nonetheless, there are a few discrepancies be-
tween the theory and the experimental data. It seems that
the major problem lies in the dissimilarity between the ge-
ometry of liquid bodies in the “Lucas–Washburn tube” and
in the actual fibrous mass. The area filled by the liquid on
a cross section of a “Lucas–Washburn tube” is constant
with a clear-cut fluid surface in the vicinity of the summit
of the liquid body, while the liquid body in a capillary of
the fibrous mass has a complex pyramidal shape. So once
again, the Lucas–Washburn theory is applicable only at an
infinitesimal height of liquid ascending.

5. Conclusions

By replacing the wicking height with liquid mass uptake,
the original Lucas–Washburn equation governing the as-
cension of a liquid wicking in a hanged fibrous sample
dipped into the liquid reservoir is extended into the case
of the radial expansion of the wicking liquid originating at
the center of a flat sample. Also, it is shown that by using
the liquid mass uptake mA, the Lucas–Washburn equation
can be transformed into a new form,

dmA

dt
= K

mA

− L,
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Figure 9. (a) Total system energy change ∆Ξ versus MCS
(Monte Carlo step per particle) at different fiber orientation
angle β and (b) total system energy change ∆Ξ versus fiber
orientation angle β after different MCS

with clearer physical meaning and more ease for
discussion.

However, there are problems with Lucas–Washburn-
type theories. First, the assumed cylindrical capillary tubes
are far from the real cases. Also, because of the increas-
ing mass of the ascending liquid in a vertical sample, the
wicking rate is in fact a variable, not a constant, as assumed
in the theories. Furthermore, this kind theory is unable to
deal with the influences of several key system parameters,
including the fiber orientation and fiber volume fraction.

We have hence presented a 3-D stochastic method based
on the Ising model with Kawasaki dynamics on a cubic
lattice to obtain the shape of a liquid body wicked into a
fibrous material with known fiber orientations. Computer
simulations based on this method realistically and quanti-
tatively depict the dynamic liquid ascending wicking pro-
cess. Moreover, a parametric study has been conducted in
this article to examine the influences of the important fac-
tors involved in the simulation.
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The results simulated, for instance, indicate that the rela-
tionship between the fiber orientation β and the generalized
wicking rate K is nonlinear, and a greater wicking rate K
can be achieved for the structures with fiber orientation β
smaller than 30◦ from the axis perpendicular to the original
liquid surface.

The effects of β on the total liquid absorption are not
monotonic; a smaller β leads to a greater wicking rate K
as stated above or a quicker liquid wicking process. The
wicking process, however, will stagnate as time increases,
whereas a greater β results in a slower wicking rate, but the
wicking process can proceed longer. An optimal condition
can be explored.

It is obviously necessary to validate our simulations
with experimental data carried out with real fibrous mate-
rials. The experimental study, in fact, has been completed
and will be reported in another paper. The study of the in-
fluence of mixed fiber orientations in a fiber mass, as well
as the relationship between the generalized wicking rate
and the fiber volume fraction, is the next logical goal of
this research.

An anisotropy of liquid transport in fibrous layers is
of high interest for producers of disposable products such
as diapers and feminine hygiene. The liquid distribution
in such commodities has to be selective so as to pro-
tect consumers against side outpour, which is achieved
by the so-called acquisition layers, whose function could
be controlled by using the wicking rate–fiber orientation
relationship.

As the last concluding remark, we highlight the effect
of individual fiber morphology. A proper shape of the fiber
cross section can effectively improve the liquid transport
and the liquid film stability along isolated fibers. The well-
known example of this phenomenon is the Rayleigh insta-
bility of liquid films on cylindrical fibers.
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