
Simulation: Transactions of The Society for Modeling and Simulation International (accepted for publication),
26 pages.

 1 25 January 2005

A Framework for Formalization and
Strictness Analysis of Simulation Event Orderings

Y.M. Teo1,2 and B.S.S. Onggo2
1Singapore-Massachusetts Institute of Technology Alliance, Singapore 117576

2Department of Computer Science, National University of Singapore, Singapore 117543
email: {teoym, bhaktisa}@comp.nus.edu.sg

Abstract

This paper advocates the use of a formal framework for analyzing simulation
performance. Simulation performance is characterized based on the three
simulation development process boundaries: physical system, simulation model, and
simulator implementation. Firstly, we formalize simulation event ordering using
partially ordered set theory. A simulator implements a simulation event ordering,
and incurs implementation overheads when enforcing event ordering at runtime.
Secondly, we apply our formalism to extract and formalize the simulation event
orderings of both sequential and parallel simulations. Thirdly, we propose the
relation stricter and a measure called strictness for comparing and quantifying the
degree of event dependency of simulation event orderings respectively. In contrast
to the event parallelism measure, strictness is independent of time.

1. Introduction

As the size and complexity of simulations grow, the computational demand required is fast becoming

a limited factor in solving large and complex real-world problems. Consequently, understanding

simulation performance becomes increasingly important. Parallel simulation speeds up simulation

execution by distributing the simulation across a number of processors. In parallel simulation, a

physical system is viewed as a number of physical processes that interacts in some fashion [15]. In

the Virtual Time simulation modeling paradigm, each physical process is modeled by a logical

process (LP) [21]. The interactions between physical processes are modeled by exchanging

timestamped events between the corresponding logical processes. Parallelism is exploited by

simulating LPs concurrently.

Research in parallel simulation in the last decade has resulted in a number of synchronization

protocols [15]. These protocols, introduced in an algorithm fashion, are frequently evaluated by

comparing its performance among protocols [15]. Moreover, the performance metrics and

 2

benchmarks used vary among the different studies. A serious drawback is the lack of performance

comparison framework. We proposed a time and space performance evaluation framework based on

the concept of event ordering [28, 35]. Event ordering in simulation refers to a set of rules that is used

to order a set of events. The framework characterizes simulation performance along the three natural

boundaries in simulation modeling and analysis (see Table 1) [28]. The physical system layer

corresponds to real world systems, the simulation model layer corresponds to different simulation

event orderings that can be used to simulate a real world system, and the simulator layer corresponds

to the simulator implemented to enforce a simulation event ordering. The layered approach provides

a framework to study the factors affecting simulation performance from the physical system to its

simulator implementation.

Layer Types of Event Event Ordering
Physical System Real events One
Simulation Model Real events Many
Simulator Real events + Overhead One or more implementations for a

given event ordering

Table 1: Layered Simulation Performance Framework

Event ordering (or message ordering) has been studied in the time management component of High

Level Architecture (HLA) [15]. The simulation of a physical system in HLA is distributed into a

number of federates. Message ordering in HLA time management dictates the ordering of messages

within each federate. Fujimoto introduces five message orderings which form a spectrum of orderings

where at one extreme, messages are not ordered; and at the other extreme, messages are totally

ordered based on their timestamp [12]. To exploit the temporal uncertainty in a simulation model,

Fujimoto proposed Approximate Time (AT) and Approximate Time Causal (ATC) orders [14].

Recently, Zhou et al. investigate the causality issue in distributed simulation and propose the causal

receive ordering [38]. In parallel simulation, event ordering dictates the ordering of events within

each LP and across LPs. To produce correct simulation result, events in an LP are executed in non-

decreasing timestamp order [15]. This constraint is referred to as local causality constraint (lcc).

Different synchronization algorithms impose different ordering rules in executing events. Different

 3

runtime event execution schedules produce the same simulation results but with differing execution

performance [25, 36].

A particularly vexing problem with event ordering happens when an LP receives a number of distinct

events at exactly the same simulation time. Wieland studied this problem, noting that the results of

the simulation are sensitive to the particular ordering assigned to simultaneous events. He proposed

that the problem be handled statistically: a sampling of all possible simultaneous event orderings is

executed, and the resulting distribution would be more meaningful than a single-point estimate

derived from an arbitrary temporal tie-breaking mechanism [37].

This paper discusses the formalization of simulation event orderings based on partially ordered set

(poset). The formalization provides a theoretical foundation for carrying out performance analysis of

simulation. If events with the same timestamp are grouped as an ordered set of simultaneous events,

there will be only one event ordering in a physical system. This paper shows that a simulator

implementation implements a specific event ordering. Two major benefits may be derived from the

separation of simulation event ordering from its implementation. First, this facilitates the

understanding of the relationship of different event orderings. We propose the relation stricter to

compare different event orderings. Second, the performance of different event orderings can be

evaluated independent of implementation overheads [28, 35]. The separation between event ordering

and its implementation is motivated by research in memory operation orderings in memory

consistency model [8, 19] and message ordering in broadcast communication services in distributed

system [2, 20]. Memory consistency model recognizes a number of memory operation orderings such

as sequential consistency model [23]. Sequential consistency model can be implemented in various

ways [1, 18, 24, 33]. Similarly, broadcast communication services recognize a number of message

orderings such as causal order [2, 20]. Many algorithms have been proposed to implement causal

order [3, 16, 29, 31, 32].

 4

Our work is different from Critical Path Analysis (CPA) that is also used to analyze the performance

of parallel simulation [3]. CPA uses an event dependency graph that is based on happened before

event ordering [22]. Hence, CPA is a subset of our event ordering analysis.

The rest of this paper is organized as follows. Section 2 formalizes the concept of simulation event

ordering. We apply this formalism to extract and formalize simulation event orderings in both

sequential and parallel simulation. In section 3, we propose the stricter relation and apply this

concept to analyze a number of event orderings. We show the empirical result in section 4. Our

concluding remark is in section 5.

2. Formalization of Event Orderings

Event ordering is an important concept in discrete-event simulation. In this section, we propose to

formalize simulation event ordering based on partially ordered set (poset). Research in poset theory

was triggered by Dushnik and Miller’s publication in 1941 [10]. They propose the definition of

partial order as given in Definition 1.

Definition 1. An order R over S (where S is a set) is called a partial order if R is anti-reflexive (i.e.

(x, x) ∉ R), anti-symmetric (i.e. either (x, y) ∈ R or (y, x) ∈ R), and transitive.

For example, an order “descendant of” for a given set of people is of partial order. However, an order

“friend of” for a given set of people may not be a partial order depending on the given set of people.

This leads to the concept of partially ordered set [10].

Definition 2. A partially ordered set (poset) is a tuple (S, R) where S is a set and R is a partial order

on the set S.

 5

Definition 3. A simulation event ordering (or event ordering in short) is a tuple (E, SR) where E is a

set of events and SR is a set of comparable events based on event order R. Event order R must be anti-

reflexive, anti-symmetric and transitive.

Based on the definition of poset, we formalize simulation event ordering (referred to as event ordering

in short) in Definition 3. Just as a poset that has two components, an event ordering also comprises

two main components: a set of events E and an event order R. An event order R refers to a set of rules

that is used to order events. A pair of events (x, y) ∈ SR denotes event x is ordered before event y in

event order R. Two events x and y are comparable if either (x, y) ∈ SR or (y, x) ∈ SR, otherwise x and

y are non-comparable (or concurrent).

2.1 Physical System

An event order in the physical system corresponds to how events in the physical system are ordered.

Based on the physical time, there is only one event order for any physical system, i.e. an event with a

smaller physical time is ordered before an event with a larger physical time (Definition 4). The

definitions predecessor and antecedent (Definition 5 and 6) will be used throughput this paper.

Definition 4. Let x be an event in a physical system and x.ts the physical time when event x happens.

The event order in any physical system dictates that for all events x and y (where x ≠ y), x is ordered

before y if and only if x.ts < y.ts.

Figure 1a shows a physical system with four service centers, S1, S2, S3, and S4. Figure 1b shows the

corresponding snapshot of event occurrences. Horizontal axis represents physical time and vertical

axis represents service centers. The physical time in Figure 1b is expressed in timestamp unit. Labels

t
ia and t

id represent an event arrival and departure of job i at time t respectively. A shaded circle

represents an event arrival and unshaded one represents an event departure. The snapshot shows that

at time 0, job 1 arrives at S1. Since, S1 is idle, job 1 is processed until time 4. Job 2 arrives at S1 at

 6

time 2. Since S1 is busy, this job must wait until S1 completes job 1 and so on. A dashed arrow from

x to y shows that x is the predecessor of y; and a solid arrow from x to y shows that x is the antecedent

of y. The definition of predecessor and antecedent are given in Definition 5 and 6 respectively. For

example, in Figure 1b, event 2
2a is the predecessor of event 4

1d and event 4
1d is the antecedent of

event 5
5a .

Figure 1: Snapshot of Event Occurrences in a Physical System

Definition 5. Event x is the predecessor of y (denoted by y.pred = x), if x and y are at the same

service center and there is no other event z that is also at the same service center such that x.ts < z.ts

< y.ts.

Definition 6. Event x is the antecedent of y (denoted by y.ante = x), if x spawns y.

2.2 Simulation Model

Based on the virtual time paradigm, a simulation model emulates a physical system and the

interaction among physical processes in the physical system (see Figure 2). Each physical process in

S1

S2

S3

S4

0
1a

2
2a 4

1d 6
6a 9

2d 12
6d

5
5a 7

3d 8
7a 10

9a 11
11a 13

12a 14
13a

4
4a 7

4d 10
10a 13

10d

8
8a

10
8d

Timestamp

4
3a

0 2 4 6 8 10 12 14

Se
rv

ic
e

C
en

te
r

S1

S2

S3

S4

a)

b)

 7

the physical system is mapped onto a logical process (LP) in the simulation model. Each event in the

simulation model models an event in the physical system. The simulation time of an event in the

simulation model models the physical time of the corresponding event in the physical system. The

event ordering in a physical system can be modeled and simulated using different event orderings to

exploit different degrees of event parallelism.

Figure 2: Mapping between Physical System and Simulation Model

Lamport defined happened before partial order and total order [22], and proved that both orders are

anti-reflexive, anti-symmetric, and transitive which match our definition of simulation event order

(Definition 3). Hence, we refer to these event orders as partial event order and total event order

respectively (see Definition 7 and 8). The priority function in total event order is used to decide

which event should be processed when two or more events have the same timestamp. Based on

interval order in poset [11], we formalize timestamp event order and time-interval event order [28,

35]. Their definitions are given in Definition 9 and 10 respectively.

Definition 7. Partial event order imposes that event x is ordered before event y in if (y.pred = x) or

(y.ante = x).

Definition 8. Total event order imposes that event x is ordered before event y in iff (x.ts < y.ts) or

(x.ts = y.ts and priority(x) < priority(y)).

Definition 9. Timestamp event ordering imposes that event x is ordered before event y in iff x.ts <

y.ts.

Physical Process Logical Process

(Physical) Event (Modeled) Event

Physical time Simulation time

Physical System Simulation Model

 8

Definition 10. Time-interval event ordering imposes that event x is ordered before event y in if:

(y.pred = x) or (y.ante = x) or (x.ts + W < y.ts), where W is a constant window size.

To produce correct simulation result, it is sufficient that each LP executes events in non-decreasing

timestamp order [15]. This constraint, commonly referred to as local causality constraint (lcc) is

formalized in Definition 11.

Definition 11. Local causality constraint imposes that if for any two distinct events x,y ∈ E, and

y.pred = x then x is ordered before y.

2.3 Simulator

A simulator, written as a sequential program or a parallel program, is an implementation of a

simulation model. In parallel simulation, a synchronization algorithm (or simulation protocol) is

required for maintaining correct event ordering across processors. Enforcing event ordering at

runtime incurs implementation overhead such as null messages in CMB protocol and rollback in Time

Warp protocol that results in performance loss.

To show that each simulator implements a certain event order, we extract and formalize the ordering

rules of a number of simulator implementations. These include sequential simulation and parallel

simulation protocols such as CMB [7], Bounded Lag [25], Time Warp [21], and Bounded Time Warp

[36].

2.3.1 Sequential Simulation

The sequential simulation algorithm is presented in Figure 4. Events in sequential simulation are

totally ordered (only one event is executed at any time). To enforce this ordering, sequential

simulation maintains a future event list (FEL) where events are sorted in chronological timestamp

 9

order. In line 3, the function f returns the event with the smallest timestamp in the future event list.

FEL enables sequential simulation to execute an event with the smallest timestamp (line 12). In case

of a tie (i.e. M ≠ ∅ in line 14), an event with the highest priority will be chosen (z in line 15). Issues

and examples on implementing the priority function have been studied in [30, 37]. Lemma 1

formalizes the event ordering in sequential simulation.

SEQUENTIAL SIMULATION
1. initialize
2. while (~stop) {
3. e ← f(FEL)
4. local_clock ← e.timestamp
5. FEL ← FEL – {e}
6. E ← execute (e)
7. FEL ← FEL ∪ E
8. stop ← g()
9. }
10.
11. f(L):event {
12. x ← head(L)
13. M ← {y | ∀y∈L • y.timestamp = x.timestamp}
14. if (M = ∅) return x
15. else return {z | ∀y∈M ∃!z∈M • priority(z)>priority(y)}
16. }

Figure 3: Algorithm of Sequential Simulation

Lemma 1. Sequential simulation implements a total event order.

Proof. Sequential simulation employs a global event list that is sorted by the smallest timestamp first.

This guarantees that event x is ordered before event y if and only if x.ts < y.ts. The use of a priority

function when more than one event have the smallest timestamp guarantees that if x.ts = y.ts event x is

ordered before event y if and only if priority(x) < priority(y).

The algorithm presented in Figure 3 does not use LPs. If LPs are used, the priority function only

provides a total ordering per LP. Therefore, the priority function could return equal priority for two

events from different LPs. In that case, the ordering would depend on the implementation of the event

list and the order that the initial events were generated.

 10

2.3.2 CMB Protocol

The algorithm of CMB protocol [7] is given in Figure 5. Each LP maintains a list of LPs that may

send events to it (for LP x, it is denoted by SENDER(x)). The ordering rule of CMB protocol imposes

that only a safe event can be executed. An event in LP x is safe for execution if no other LP ∈

SENDER(x) will send any event with a smaller timestamp to LP x. Therefore, to maintain this

ordering, LP x must wait for other LP ∈ SENDER(x) to send their events (see line 5). This could lead

to deadlock as all LPs are blocked. To avoid deadlock null messages are introduced. Each null

message is stamped with a timestamp, ts, which is equal to LP’s local simulation clock plus a

lookahead value (line 13) to indicate that the sending LP will never transmit any events with a smaller

timestamp than ts.

CMB PROTOCOL
1. initialization
2. run all LPs

LOGICAL PROCESS
3. while (~stop) {
4. while (∃i IB[i] = ∅) {}
5. L ← EL ∪ {∀i IB[i]}
6. e ← f(L)
7. if (∃i e∈IB[i]) IB[i] ← IB[i]–{e}
 else EL ← EL–{e}
8. local_clock ← e.ts
9. {IE, EE} ← execute (e)
10. EL ← EL ∪ IE
11. ∀i OB[i] ← OB[i] ∪ {z|z∈EE • z.lp=i}
12. nullMsg.ts ← local_clock + lookahead
13. ∀i if (OB[i] = ∅) OB[i] ← OB[i] ∪
 {nullMsg}
14. ∀i send (OB[i])
15. stop ← g()
16.}

Figure 4: Algorithm of CMB Protocol

Each LP maintains an event list (EL), a set of input buffers (IB) and a set of output buffers (OB).

IB[i] of an LP x stores the incoming message from LPi ∈ SENDER(x). OB[i] stores the messages that

will schedule events in LPi. An LP is blocked if at least one of its IBs is empty (line 4). Function f in

 11

line 6 is the same function that is used in the sequential simulation shown in Figure 4. The function

chooses an event with the smallest timestamp from the IBs and EL for execution. Line 7 removes the

chosen event from the corresponding list (one of the IBs or EL). The local clock is updated in line 8.

In line 9, an event execution may schedule a set of internal events (IE) and a set of external events

(EE). The internal events (i.e. scheduled to happen in the same LP) are saved to EL (line 10) and

external events (i.e. scheduled to happen in other LPs) are saved to their respective OB (line 11). Line

12 sets a null message with a timestamp equal to the local clock plus a lookahead value. Line 13 adds

a null message to any empty OB. Line 14 sends all the external events and null messages in OBs.

Finally line 16 checks the stopping condition.

Lemma 2. CMB protocol implements an event order whereby event x is ordered before event y if:

1. y.pred = x, or

2. x.ts + la < y.ts.

Proof. The conditional statement in line 4 (Figure 5) ensures that an LP has to wait until all LPs in its

SENDER list have sent their events. This ensures that an LP always executes events scheduled in it in

timestamp order. Hence, for all events in the same LP, if y.pred = x then x is ordered before y.

Further, event y in LPj is executed only if it has the smallest timestamp among the unprocessed events

of all LP ∈ SENDER(LPj). Therefore, event x in any LP ∈ SENDER(LPj) is ordered before event y

only if x.ts + la < y.ts where la is the lookahead value.

Researchers have proposed various optimizations such as demand driven protocol [5], flushing

protocol [34], and carrier null message protocol [6] to reduce the null-message overhead. These

optimizations do not alter the event ordering in the original CMB protocol, but rather, they can be

seen as different implementations of the same event order.

2.3.3 Bounded Lag Protocol

 12

Lubachevsky proposed the Bounded Lag (BL) protocol which combines two main rules: bounded lag

restriction and minimum propagation delay [25]. Bounded lag restriction imposes that events can be

executed concurrently if they are within the same time window. Minimum propagation delay between

LPs is used to determine whether an event is safe to execute. The latter is similar to the rule in CMB

protocol; however in the implementation BL protocol uses a distance matrix instead of using null

messages. To maintain its ordering, BL protocol uses barrier synchronization because the global clock

(for imposing bounded lag restriction) and the minimum propagation delay must be broadcasted to all

LPs. The algorithm is given in Figure 6.

BL PROTOCOL
1. initialization
2. run all LPs

LOGICAL PROCESS
3. while (~stop) {
4. β ← min{∀lp ∈ LP, e=head(lp.EL) • e.timestamp+d(lp, this)}

γ ← min{∀lp∈LP,e=head(EL)•e.timestamp+d(this,lp)+d(lp,this)}
α ← min {β, γ}

5. barrier synchronization
6. E ← {∀e ∈ EL • e.timestamp ≤ min(α, global_clock+W)}
7. EL ← EL - E
8. while (E ≠ ∅) {
9. e ← head(E)
10. E ← E – {e}
11. {IE, EE} ← execute (e)
12. local_clock ← e.timestamp
13. EL ← EL ∪ IE
14. Send(EE)
15. }
16. stop ← g()
17. barrier synchronization
18. global_clock ← min {∀lp ∈ LP • lp.local_clock}
19. barrier synchronization
20.}

Figure 5: Algorithm of Bounded Lag Protocol

There are two main processes: the nomination of safe events (lines 4-7) and the execution of safe

events (lines 8-15). The lookahead between any two LPs is stored in a distance matrix d. Based on

the distance matrix, an LP (denoted by this in Figure 6) determines α, i.e. the earliest time when its

 13

system state can be affected by other LP (line 4). The barrier synchronization (line 5) ensures that all

LPs receive α before continuing to the next line. Each LP identifies its safe events based on this rule:

events with a timestamp less than α and within a time window of W are safe to process (line 6). W is

termed as BL size in [25]. Line 7 removes all safe events from EL for execution. BL protocol

retrieves a safe event with the least timestamp in line 9 and removes it from the list E in line 10. In

line 11, event execution may schedule a set of internal events (IE) and a set of external events (EE).

The internal events will be added to the EL (line 13) and the external events will be sent to their

respective LPs (line 14). The barrier synchronization in line 17 is used to ensure that all LPs have

processed their safe events before the time window is moved. Line 18 computes the global clock as

the minimum of all LPs’ local clock. This process is repeated until the stopping condition is met.

Lemma 3. BL protocol implements an event order whereby event x is ordered before event y if:

1. y.pred = x, or

2. x.ts + la < y.ts, or

3. ⎣x.ts/W⎦ < ⎣y.ts/W⎦.

Proof. In line 7, α returns the smallest timestamp of an unprocessed event x (plus lookahead) that

may be sent to a particular LP (Figure 6). Line 6 shows that if event y in LPi can be executed in

parallel with event x from another LP, then y.ts ≤ α (i.e. x.ts + la) and both x and y must be in the

same time window of size W. Therefore, event x is executed before event y only if x.ts + la < y.ts or

events x and y are in two different time windows of size W is true (of course the time window of x

should be earlier than the time window of y).

2.3.4 Time Warp Protocol

Jefferson proposed Time Warp (TW) protocol which implements a rule that if event x causes event y,

then the execution of event x must be completed before the execution of event y starts [21]. The

definition of “x causes y” follows the relation happened before in [22]. To implement this ordering,

TW protocol uses what is called local control mechanism (rollback and state saving) and global

 14

control mechanism (global clock calculation and fossil collection). The algorithm is given in Figure

7.

TIME WARP PROTOCOL
1. initialize LPs
2. run all LPs

LOGICAL PROCESS
3. while (~stop) {
4. do {
5. m ← head(IB)
6. if (m.ts < local_clock) {
7. if (((m ≠ anti_message) and dual(m)∉ IQ) or
 ((m = anti_message) and dual(m)∈ IQ)) RollBack()
8. }
9. if (dual(m) ∈ IQ) Annihilate(m) else IQ ← IQ ∪ {m}
10. IB ← IB – {m}
11. } while ((m = anti_message) and (IB ≠ ∅))
12. if (m = anti_message) e ← head(EL)
13. else {
14. if (m.ts < head(EL).ts) e ← m
15. else {e ← head(FEL); EL ← EL – (e}; EL ← EL ∪ {m}}
16. }
17. {IE, EE} ← execute (e)
18. local_clock ← e.ts
19. EL ← EL ∪ IE
20. StateSaving()
21. Update(global_clock)
22. FossilCollection()
23. Send(EE)
24. stop ← g()
25.}

Figure 6: Algorithm of Time Warp Protocol

Each LP stores all incoming events in an input buffer (IB) which is sorted based on the timestamp of

the incoming events. Lines 4-11 find the first real event m. Line 5 retrieves an event m with the

smallest timestamp for execution. Line 6 checks if lcc is violated. Line 7 detects whether rollback

has to be done. If m is an anti-message, line 9 will annihilate the associated event that has to be

cancelled; otherwise, it will add m to a list called input queue (IQ). IQ is used to store the history of

all incoming messages (processed and unprocessed). Line 10 removes m from IB. Lines 12-15

retrieve an event e which has the smallest timestamp from the EL and choose the event with a smaller

 15

timestamp, between m and e. Line 17 executes the chosen event. This execution may produce a set

of internal events (IE) and a set of external events (EE). Line 18 updates the local clock and line 19

updates the event list (EL). Line 20 saves the state of an LP. The global clock is updated in line 21.

Events with timestamp less than the global clock will never be rollbacked. These events are called

committed events. Hence, memory allocated to committed events can be reclaimed with the fossil

collection process in line 22. Line 23 sends out the external events. Lastly, line 24 checks the

stopping condition.

Lemma 4. Time Warp protocol implements a partial event order.

Proof. The rollback process ensures that all events in the same LP are executed in timestamp order.

This implies that event x is ordered before event y if y.pred = x. The insertion of internal events to EL

and transmission of external events are done after the event execution in line 17. This ensures that

event x is ordered before event y, if y.ante = x.

2.3.5 Bounded Time Warp Protocol

The Bounded Time Warp (BTW) protocol [36] is proposed to limit the degree of optimism in Time

Warp protocol by setting a bound on how far an LP can advance ahead of other LPs. This is

accomplished by setting a time window (W). All LPs are allowed to optimistically process events

ahead of the global clock (GVT) but bounded by the time window GVT+W. No LP can advance

beyond GVT+W before all LPs have reached this boundary.

Lemma 5. BTW protocol imposes that event x is ordered before event y if:

1. y.pred = x, or

2. y.ante = x, or

3. ⎣x.ts/W⎦ < ⎣y.ts/W⎦

Proof. Without time window, BTW protocol is the same as Time Warp protocol hence the ordering

rules of partial event order hold, i.e. event x is ordered before event y if y.pred = x or y.ante = x. The

 16

additional time window synchronization imposes that the partial event order is applied to a set of

events that occur within the same time window. Consequently, only events within the same time

window can potentially be executed in parallel. Therefore, if event x occurs within a time window that

is earlier than the time window of event y, event x will be executed before event y.

We summarize the formalization of the discussed event orderings in Figure 8. The ordering rules of

each event order are shown in the form of x is ordered before y (denoted by x ⇒ y) if a list of

conditions hold. A simulator implements a certain event order. An arrow from an event ordering R in

simulation model to simulator S denotes that S implements R.

Figure 7: Summary on Simulation Event Ordering Formalization

3. Strictness of Event Orderings

To compare the degree of event dependencies among different event orders, we propose a relation

stricter. The term stricter is borrowed from memory consistency model [19]. In memory consistency,

the stricter relation is used to compare different models by considering the set of possible outcomes

that is allowed by each model for a given set of instructions. In simulation event ordering, we

consider the set of events that have to be executed one after another due to the ordering rules imposed

by an event order for a given set of events.

Simulator

 Sequential

 TW Protocol

 BTW Protocol

 CMB Protocol

 BL Protocol

Simulation Model

• x ⇒ y, iff (x.ts < y.ts) or (x.ts = y.ts and

priority(x) < priority(y)) (Total)
• x ⇒ y, iff x.ts < y.ts (Timestamp)
• x ⇒ y, if (y.pred = x) or (y.ante = x) or (x.ts +

W < y.ts) (Time-interval)
• x ⇒ y, if (y.pred = x) or (y.ante = x) (Partial)
• x ⇒ y, if (y.pred = x) or (y.ante = x) or

(⎣x.ts/W⎦ < ⎣y.ts/W⎦)
• x ⇒ y, if (y.pred = x) or (x.ts + la < y.ts)
• x ⇒ y, if (y.pred = x) or (x.ts + la < y.ts) or

(⎣x.ts/W⎦ < ⎣y.ts/W⎦)

Physical
System

x ⇒ y, iff
x.ts < y.ts

 17

Definition 12. An event order R1 is stricter than event order R2 if for any set of events E, SR2 ⊆ SR1.

An event order R1 is incomparable to event order R2 if we can find two sets of events E1 and E2, such

that SR2 ⊆ SR1 is true for E1 but SR2 ⊆ SR1 is not true for E2.

Lemma 6. Two properties of a stricter relation are:

1. if R1 is stricter than R2 and R2 is stricter than R1, then R1 = R2 (anti-symmetric).

2. if R1 is stricter than R2 and R2 is stricter than R3, then R1 is stricter than R3 (transitive).

Proof. From Definition 12, event order R1 is stricter than event order R2 shows that SR2 ⊆ SR1.

Therefore, if event order R1 is stricter than event order R2, and R2 is stricter than R1, it means SR2 ⊆ SR1

and SR2 ⊆ SR1 are true. Consequently, SR2 = SR1, which implies R1 = R2 (Definition 3). Similarly, if

event order R1 is stricter than event order R2, and R2 is stricter than R3, it means SR2 ⊆ SR1 and SR3 ⊆

SR2 are true. Consequently, SR3 ⊆ SR1 is true for any set of events E, which implies that R1 is stricter

than R3 (Definition 12).

Two events are concurrent in an event order if the event order does not impose any ordering on them.

Definition 12 implies that a stricter event order produces less number of concurrent events than a less

strict event order (or at most the same number of concurrent events). Since concurrent events can be

executed in parallel, a stricter event order produces less event parallelism. To quantify the degree of

event dependency, we propose the measure of strictness. Since relation stricter is built based on set

inclusion, the strictness of event order R is quantified based on the number of elements in SR as shown

in Definition 13.

Definition 13. The strictness of an event order R (ςR) is defined as || SR || / || Stot || where || SR || and

|| Stot || is the size of the set of comparable (or non-concurrent) events ordered by R and the total event

order respectively.

 18

Since total event order is the strictest event order, we normalize the number of elements in SR with the

number of comparable elements in total event order (Stot). Hence, the strictness of an event order

ranges from zero when SR = ∅ and one when R is the total event order. To measure || SR || for a given

set of events E, we have to determine for any two events x and y ∈ E whether (x, y) ∈ SR based on the

ordering rules of the event order. This process is computationally expensive especially for a large

number of events. Since (x, y) ∈ SR implies that event y cannot be executed before the execution of

event x completes, in our experiments we measure the number of events that are ready for execution

but cannot be executed because of the ordering rules imposed by the event order.

3.1 Strictness Analysis

Event order R2 is stricter than event order R1 implies that for any two distinct events x and y, if x is

ordered before y in R1 then x is also ordered before y in R2, but not vice versa. Therefore, to prove

whether an event order is stricter than another event order, we show that the ordering rule of one event

order is a subset of the other event order. If the ordering rule of event order R1 is a subset of event

order R2, then definitely if x is ordered before y in R1 then x is also ordered before y in R2. Using this

approach, in the following theorems, we establish the relationships of various simulation event

orderings. The spectrum of various simulation event orderings and its strictness is summarized in

Figure 9.

Theorem 1.

a) Total event order is stricter than TS event order.

b) The event order of BL protocol is stricter than the event order of CMB protocol

c) The event order of BTW protocol is stricter than partial event order.

Proof. The proofs are derived by comparing their properties in Figure 8. If the property of an event

order R1 is a subset of the property of event order R2, then R2 is stricter than R1.

Theorem 2. TS event order is stricter than BL event order.

 19

Proof. In TS event order, x ⇒ y, iff x.ts < y.ts. On the other hand, in BL protocol, x ⇒ y, if (y.pred =

x) or (x.ts + la < y.ts) or (⎣x.ts/W⎦ < ⎣y.ts/W⎦). These rules can only be true if x.ts < y.ts. Therefore,

if x ⇒ y in BL protocol, then x ⇒ y is true in TS event order, but not the converse. Hence, timestamp

event order is stricter than the event order of BL protocol.

Lemma 7. ∀ x, y ∈ E, {y.ante = x} ⊆ {x.ts + la ≤ y.ts and x.lp ∈ SENDER(y.lp)}.

Proof. From the definition of SENDER list and lookahead, if y.ante = x then x.lp must be in the

SENDER list (i.e. x.lp ∈ SENDER(y.lp)) and the timestamp difference between x and y must be

greater than the lookahead la (i.e. x.ts + la < y.ts). However, it is possible that x.lp ∈ SENDER(y.lp)

and x.ts + la < y.ts is true but y.ante ≠ x.

Theorem 3. The event order of CMB protocol is stricter than partial event order.

Proof. Both have two ordering rules (Figure 8). The first rule is the same, i.e. x ⇒ y if y.pred = x. In

the second rule, partial event order imposes x ⇒ y if y.ante = x whereas CMB protocol imposes that x

⇒ y if x.ts + la < y.ts. Lemma 7 shows that the second rule of partial event order is a subset of the

second rule of CMB protocol, therefore, the event order of CMB protocol is stricter than partial event

order.

Theorem 4. The event order of BL protocol is stricter than the event order of BTW protocol.

Proof. Both have three ordering rules (Figure 8) and two of them are the same, i.e. x ⇒ y if y.pred =

x or ⎣x.ts/W⎦ < ⎣y.ts/W⎦. The other rule is different, BTW protocol imposes x ⇒ y if y.ante = x

whereas BL protocol imposes that x ⇒ y if x.ts + la < y.ts. Based on Lemma 7, BL protocol imposes

a stricter event order than BTW protocol for the same window size W.

 20

Figure 8: Spectrum of Simulation Event Orders and its Strictness

Figure 9 shows the spectrum of event orders based on our proposed stricter relation. BL, BTW and

CMB refers to the event ordering of BL protocol, BTW protocol and CMB protocol respectively. An

arrow from event order R1 to event order R2 denotes that R1 is stricter than R2. Stricter relation is

transitive and the arrows can be traversed transitively as well. Sequential simulation implements total

event order and the remaining event orders belong mainly to parallel and distributed simulation.

Depending on its window size, the relative position of TI event order can be anywhere between

timestamp event order and partial event order. If TI event ordering uses a window size of zero, then it

becomes a timestamp event ordering. Similarly, there is a constant c such that 0 < c < W where time-

interval event ordering becomes partial event ordering (W is the window size) as shown in Theorem 5

This property is useful in strictness analysis because we can create different points (representing

different event orderings) between timestamp event ordering and partial event ordering by changing

the value of W.

Theorem 5. For a given set of events E, there is a constant c such that 0 < c < W, where a TI event

order will become a partial event order.

Proof. To prove this, we show that if 0 < c < W, the third rule of time-interval event order (i.e. x.ts +

W < y.ts) is redundant. Let a and b be two distinct events in E where b.pred ≠ a and b.ante ≠ a and

b.ts – a.ts = c is the largest. If W > c, then the rule x.ts + W < y.ts will produce an empty set. Hence,

Total

BL

Timestamp

Time-interval

BTW

CMB

Partial

Sequential
Simulation

Parallel Simulation

 21

only the first two rules (y.pred = x and y.ante = x) determines the ordering, resulting in TI event order

with W > c and partial event order producing exactly the same event ordering.

4. Empirical Result

We measure the strictness of five event orders (i.e. total, timestamp, time-interval, CMB and partial)

using four benchmarks:

a) Linear Pipeline (LPIPE) represents a simple open system. It is parameterized by the number of

service centers (n), and traffic intensity (ρ) which is the ratio between arrival rate (λ) and service

rate (µ).

b) Circular Pipeline (CPIPE) represents a simple closed system. It is parameterized by the number

of service centers (n) and job density (m) which is the average number of jobs in a service center.

c) Multistage Interconnected Network (MIN) represents a more complex open system with multiple

fork and merge structures [34]. The jobs in any service center (except at the last column) will be

sent to one of the two neighbors with equal probability. It is parameterized by the number of

service centers (n×p), and traffic intensity (ρ).

d) Parallel Hold (PHOLD) represents a closed system with multiple feedbacks [12]. A job in any

server can move to one of the four neighbors with an equal probability. Initially, jobs are

distributed equally among the service centers. It is parameterized by the number of service centers

(n×p) and job density (m).

 22

Figure 9: Benchmarks

We measure the strictness of the event orderings using a Time and Space Analyzer (TSA) that we

have developed [28]. The simulation duration is set at 100,000 timestamp units. Figure 10 shows the

strictness of event orderings as problem size increases. First, the result shows that the strictness value

is between 0 and 1, where total event order is the strictest event order. Second, the figure reveals that

partial event order, the event order of CMB protocol, timestamp event order and total event order are

in the order of increasing strictness. This confirms their positions on the spectrum of event orders in

Figure 9. The time-interval event order with time windows of 1 and 2 are used to represent two event

orderings with different degrees of strictness. As we reduce the window size, the curve for time-

interval event order moves towards timestamp event order and conversely, when we increase the

window size, it moves towards the partial event order.

LPIPE (n, 0.8)

0.0

0.2

0.4

0.6

0.8

1.0

n=8 n=16 n=24 n=32

Problem Size

S
tri

ct
ne

ss

Total
TS
TI(1)
TI(2)
CMB
Partial

CPIPE (n, 4)

0.0

0.2

0.4

0.6

0.8

1.0

n=8 n=16 n=24 n=32

Problem Size

S
tri

ct
ne

ss

Total
TS
TI(1)
TI(2)
CMB
Partial

a) LPIPE (3, ρ) b) CPIPE (3, m)

c) MIN (3×3, ρ)
d) PHOLD (3×3, m)

 23

MIN (nxp, 0.8)

0.0

0.2

0.4

0.6

0.8

1.0

2x4 4x4 6x4 8x4

Problem Size

S
tri

ct
ne

ss
Total
TS
TI(1)
TI(2)
CMB
Partial

PHOLD (nxp, 4)

0.0

0.2

0.4

0.6

0.8

1.0

2x4 4x4 6x4 8x4

Problem Size

S
tri

ct
ne

ss

Total
TS
TI(1)
TI(2)
CMB
Partial

Figure 10: Strictness of Event Orderings

As problem size increases and consequently the number of events, strictness reduces. This is due to

the higher probability of concurrent (non-comparable) events in the benchmarks. The strictness

measure shown also reflects that the degree of event dependency in closed system is higher than in

open system. Misra reported that CMB protocol can achieve optimum performance for a tandem

topology and any acyclic topology [26]. Our result confirms this, i.e., strictness of the CMB (and

partial) protocols for the open MIN(n×p, 0.8) system is lower than in the closed PHOLD(n×p, 4)

system with multiple feedbacks.

5. Conclusions

The main contribution of this paper is the formalization of simulation event ordering based on

partially ordered set theory, and the strictness analysis of various simulation event orderings. First,

we characterized simulation performance along the three natural boundaries in simulation modeling

and analysis namely: physical system, simulation model and simulator; and formalized the event

orderings in each of the layers. Events in a physical system are ordered based on their time of

occurrences. In simulation, different event orderings can be used to simulate the physical system. In

the implementation, simulator ensures that the chosen event ordering is maintained throughout a

simulation run. We extract and formalize the event orderings of both sequential and parallel

simulation. To compare the event dependency among different event ordering, we propose the stricter

relation and to quantify the degree of event dependency a new strictness measure is proposed.

 24

References

1. Afek, Y., Brown, J. and Merritt, M. A Lazy Cache Algorithm. Proceedings of the Symposium on
Parallel Algorithms and Architectures, pp. 209-222, 1989.

2. Attiya, H. and Welch, J. Distributed Computing: Fundamentals, Simulations and Advanced

Topics. McGraw-Hill, 1998.

3. Berry O. and Jefferson D. Critical Path Analysis of Distributed Simulation. Proceedings of SCS

Multiconference on Distributed Simulation, pp. 57-60, 1985.

4. Birman, K.P. and Joseph, T.A. Reliable Communication in the Presence of Failure. ACM Trans.

on Computer Systems, 5 (1), pp. 47-76, 1987.

5. Bain, W.L. and Scott, D.S. An Algorithm for Time Synchronization in Distributed Discrete-Event

Simulation. Proceedings of SCS Multiconference on Distributed Simulation, 19, 3 (Feb), pp. 30-
33, 1988.

6. Cai, W. and Turner, S.J., An Algorithm for Distributed Discrete-Event Simulation – The Carrier

Null Message Approach. Proceedings of the SCS Multiconference on Distributed Simulation, pp.
3-8, 1990.

7. Chandy, K.M. and Misra J. Distributed Simulation: a Case Study in Design and Verification of

Distributed Programs. IEEE Transactions on Software Engineering, 5, 5 (Sep), pp. 440-452,
1979.

8. Culler, D.E., Singh, J.P. and Gupta, A. Parallel Computer Architecture: A Hardware/Software

Approach. Morgan Kaufmann, 1999.

9. Dubois, M., Scheurich, S. and Briggs F. Memory Access Buffering in Multiprocessors.

Proceedings 13th Annual International Symposium on Computer Architecture, pp. 434-442, 1986.

10. Dushnik B. and Miller, E.W. Partially Ordered Sets. American Journal of Mathematics, 63, pp.

600-610, 1941.

11. Fishburn, P.C. Interval Orders and Circle Orders. Order 5, pp. 225-234, 1988.

12. Fujimoto, R.M. Performance of Time Warp under Synthetic Workloads. Proceedings of SCS

Multiconference on Distributed Simulation, 22(1), pp. 23-28, 1990.

13. Fujimoto, R.M. and Weatherly, R.M. Time Management in the DoD High Level Architecture.

Proceedings of the 10th Workshop on Parallel and Distributed Simulation, pp. 60-67, 1996.

14. Fujimoto, R.M. Exploiting Temporal Uncertainty in Parallel and Distributed Simulations.

Proceedings of the 13th Workshop on Parallel and Distributed Simulation, pp. 46-53, 1999.

15. Fujimoto, R.M. Parallel and Distributed Simulation Systems. John Wiley & Sons, Inc., 2000.

16. Gambhire, P. and Kshemkalyani, A.D. Evaluation of the Optimal Causal Message Ordering

Algorithm. Proceedings of the High Performance Computing, LNCS no. 1970, Springler-Verlag,
pp. 83-95, 2000.

 25

17. Gharachorloo, K., Lenoski, D., Laudon, J., Gibbons, P., Gupta, A. and Henessy J. Memory
Consistency and Event Ordering in Scalable Shared-Memory Multiprocessors. Proceedings of
the 17th Annual International Symposium on Computer Architecture, pp. 15-26, 1990.

18. Gharachorloo, K., Gupta, A. and Hennesy, J. Two Techniques to Enhance the Performance of

Memory Consistency Model. Proceedings of the International Conference on Parallel
Processing, pp. 355-364, 1991.

19. Gharachorloo, K. Memory Consistency Models for Shared-Memory Multiprocessors. Research

Report 95/9, Western Research Laboratory, 1995.

20. Hadzilacos, V. and Toueg S. Fault-Tolerant Broadcasts and Related Problems. A chapter in

Distributed Systems, Mullender, S. (ed), Addison-Wesley, 2nd edition, 1993.

21. Jefferson, D.A. Virtual Time. ACM Trans. on Programming Language System, 7, 3 (July), pp.

404-425, 1985.

22. Lamport, L. Time, Clocks, and the Ordering of Events in a Distributed System. Communication

ACM, 21, 7 (July), pp. 558-565, 1978.

23. Lamport, L. How to Make a Multiprocessor that Correctly Executes Multiprocess Program. IEEE

Transactions on Computers, 28 (9), pp.690-691, 1979.

24. Landin, A., Hagerstein, E. and Haridi, S. Race-free Interconnection Networks and Multiprocessor

Consistency. Proceedings of the 18th Annual International Symposium on Computer
Architecture, pp. 27-30, 1991.

25. Lubachesky, B.D. Efficient Distributed Event-driven Simulations of Multiple-loop Networks.

Communications of the ACM, 32(1), pp. 111-123, 1989.

26. Misra, J. Distributed Discrete-event Simulation. ACM Computing Surveys, 18 (1), pp. 39-65,

1986.

27. Neggers, J. and Kim, H.S. Basic Posets. World Scientific Publishing, 1998.

28. Onggo, B.S.S. and Teo Y.M. Performance Trade-off in Distributed Simulation. Proc. 6th IEEE

International Workshop on Distributed Simulation and Real Time Applications, IEEE Computer
Society Press, pp. 77-84, 2002.

29. Raynal, M., Schiper, A. and Toueg, S. The Causal Ordering Abstraction and a Simple Way to

Implement It. Information Processing Letter, 39 (6), pp. 343-350, 1991.

30. Ronngren, R. and Liljenstam, M. On Event Ordering in Parallel Discrete-Event Simulation.

Proceedings 13th Workshop on Parallel and Distributed Simulation, pp. 38-45, 1999.

31. Schiper, A., Eggli, J. and Sandoz, A. A New Algorithm to Implement Causal Ordering.

Proceedings of the 3rd International Workshop on Distributed Algorithms, LNCS no. 392,
Springer-Verlag, pp. 219-232, 1989.

32. Schwarz, R. and Mattern, F. Detecting Causal Relationships in Distributed Computations: In

Search of the Holy Grail. Distributed Computing, 7 (3), pp. 149-174, 1994.

33. Shasha, D. and Snir, M. Efficient and Correct Execution of Parallel Programs that Share

Memory. ACM Trans. on Programming Languages and Operating Systems, 10 (2), pp. 282-312,
1988.

 26

34. Teo Y.M. and Tay, S.C. Efficient Algorithms for Conservative Parallel Simulation of

Interconnection Networks. Proceedings of the International Symposium on Parallel
Architectures, Algorithms and Networks, IEEE Computer Society Press, pp. 286-293, 1994.

35. Teo, Y.M., Onggo, B.S.S. and Tay, S.C. Effect of Event Orderings on Memory Requirement in

Parallel Simulation. Proceedings 9th International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems, IEEE Computer Society Press, pp. 41-
48, 2001.

36. Turner, S. and Xu, M. Performance Evaluation of the Bounded Time Warp Algorithm.

Proceedings 6th Workshop on Parallel and Distributed Simulation, pp. 117-126, 1992.

37. Wieland, F. The Threshold of Event Simultaneity. Proceedings 11th Workshop on Parallel and

Distributed Simulation, pp. 56-59, 1997.

38. Zhou S.P., Cai W.T., Turner, S.J. and Lee, B.S. Critical Causality in Distributed Environment.

Proceedings of the 16th Workshop on Parallel and Distributed Simulation, pp. 53-59, 2002.

