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Abstract

Given that over 90% of the Internet load is carried by
TCP, most network simulation studies use TCP flows to gen-
erate the background traffic. A basic, but unresolved, ques-
tion however is: how can one decide how many TCP flows
to simulate from one network node to another? Simulat-
ing too many flows on a link can cause an unrealistically
high loss rate on that link, while simulating too few flows
can result in undesirably light load conditions. Similarly, to
simulate realistic network conditions, one has to carefully
control the load distribution on various network links (e.g.,
edge vs. core links), as well as the hop count (path length) of
the simulated TCP flows. Previous simulation studies have
dealt with these issues in a trial-and-error manner, experi-
menting with several traffic configurations until a realistic
distribution of link load and loss rate is achieved. In this pa-
per, we present a methodology that determines the number
of TCP flows that should be simulated between each pair of
nodes in a network, based on the network topology, a speci-
fication of the utilization and loss rate for certain links, and
an average number of hops for the TCP flows. Our method-
ology is based on a linear program formulation that, while
meeting the utilization and loss rate specifications, mini-
mizes the number of required TCP flows. This optimization
criterion minimizes the memory requirement of the simu-
lation. Our evaluations show that the proposed methodol-
ogy can closely approximate the specified link conditions
in terms of utilization and loss rate. We also analyze the
largest approximation errors and reveal their causes.

1 Introduction

Background traffic is a key component of network sim-
ulations, as it shapes the network environment under which
network mechanisms or protocols are evaluated. As such,
network traffic modeling and generation have attracted�
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much attention in the literature [1, 4, 12, 17].
To gain meaningful insights from network simulations,

it is important to have realistic and controlled network con-
ditions [10], in terms of link utilization, queuing delay and
loss rate. The ability to explicitly control link conditions is
useful for studying a subject under a spectrum of controlled
path conditions. For example, it is demonstrated that link
utilization has a significant impact on the performance of
AQM schemes [13]. Explicit control of link conditions also
enables the simulation of important network characteristics
such as diversity, locality and correlation of path conditions,
which can affect applications such as overlay routing [2],
Content Distribution Networks, and reliable multicast [8].
For instance, it is shown in [2] that the locality of congestion
and path conditions in the Internet influences the relative
performance of alternative overlay routing optimizations.

Network conditions are complex functions of both the
offered traffic and the physical configuration of the network,
namely the topology, link capacities and router buffer sizes.
Whereas models for both exist [4, 5] and are used for sim-
ulation, they may lead to unrealistic link conditions if the
offered load is not tailored to the network configuration,
as noted by some previous work[17]. Unfortunately, as we
will discuss shortly, existing traffic generation methods are
in general isolated from the network configuration and lack
considerations for the link conditions that ensue.

In this work, we are concerned with generating traffic
for network simulations such that the resulting conditions
on certain links, which we call target links, are as speci-
fied by the simulation users. We propose a methodology for
the optimal configuration of traffic under the specified link
load constraints. The algorithm takes as input a detailed
network configuration and the target link conditions. It then
configures the traffic intensity between each pair of source
and destination nodes, such that all target link conditions
are achieved at the same time.

There are traditionally two categories of traffic genera-
tion: open-loop [14]and closed-loop [1, 4, 6, 17]. With
both categories of traffic generation methods, the focus
typically has been on the accurate modeling either of the



packet arrival process or of the traffic source behavior, so
as to capture network traffic characteristics such as long
range dependence and self-similarity [9]. None of the ex-
isting schemes sufficiently addresses first-order link char-
acteristics such as average utilization and loss rate, which
as we have mentioned are quite relevant to network studies.
An oft-adopted traffic configuration for large-scale wide-
area network simulation, for example, is to randomly select
source/destination pairs, and add traffic between each pair
based on a traffic source model [17], possibly with an em-
pirical average traffic rate. For a network where links have
limited and diverse capacities, such a configuration could
result in unpredictable and unrealistic link conditions, e.g.,
unusually low utilization or extremely high congestion.

The need to explicitly control link conditions has been
occasionally acknowledged by previous work. For example,
in order to control the utilization of a simulated link, it has
been suggested that one can tune the traffic iteratively until
the desired utilization is reached [17]. Such an approach is
expensive because of the iterative simulations, and it works
only for simple topologies. As to queuing delay and loss
rate, some network simulation and emulation tools provide
a stock of stochastic models for users to control them [3].
Since losses and queuing delays generated by these models
do not result from a TCP workload, however, this approach
defeats the goal of closed-loop simulation.

The traffic generation methodology we propose in this
work is for closed-loop network simulations. In particu-
lar, it uses a mixture of persistent TCP flows and ON/OFF
UDP flows, which is the traffic model many network stud-
ies use [7, 8]. The UDP flows generate a small fraction of
the traffic (typically less than 10%) and they are intended
to simulate applications such as DNS and streaming au-
dio/video. Our goal is then to configure the number of
TCP flows between each pair of nodes, such that the user-
specified conditions on all target links are attained. We
model the traffic generation problem as a linear program,
where each variable represents the number of TCP flows
from a particular source to a particular destination, with
constraints on the target link conditions. While obtaining
the target link conditions, the algorithm generates traffic in
such a way that the average flow hop count is as specified,
and the memory requirement of the simulation, determined
mostly by the number of TCP flows, is minimized. Our al-
gorithm exploits two basic facts: (1) the throughput of a
TCP flow can be derived based on the load and loss rate of
the links on its path [15];(2) the load on a link, in turn, is
the sum of the throughput of all flows traversing it.

The problem stated above is related to the traffic matrix
estimation algorithm in network research [18]. The chal-
lenge, objectives and context are nonetheless very differ-
ent. Our methodology can also be conceived as inferring
TCP flow configurations based on the specified link condi-

tions. In that respect, it is also related to the work reported
in RAMP [12]. That work recovers path and flow infor-
mation from packet traces and obtains a full traffic profile
including the traffic mix, flow size distribution and arrival
rate, which can then be used to populate network simula-
tions. Clearly, the goal of RAMP is not to configure traffic
to match user-specified link conditions, far less to do so for
a network of links.

The contributions of this paper can be summarized as
follows:� We develop a model to configure traffic for closed-loop

network simulations such that specific link conditions
are attained on certain links. In doing that, we also
maintain an average hop count in the generated traffic,
and minimize the number of required TCP flows so as
to reduce the memory requirement of the simulation.� We evaluate and analyze the accuracy of the algorithm
and provide insight on the causes of the major errors.

The rest of the paper is organized as follows. In Section
2, we specify the traffic generation problem we address in
this paper. Section 3 presents a linear program formulation
of the problem. Section 4 evaluates the accuracy of the pro-
posed traffic generation scheme. We discuss future work
and conclude the paper in Section 5.

2 Problem Statement

In this section, we describe in detail the traffic generation
problem that we consider in this work.

Traffic Profile
Simulation 

Performance

Traffic Matrix

Traffic Generation 
Algorithm

(linear program)
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Figure 1. Traffic Generation Context

2.1 Overview of the Traffic Generation Context

To formally define the traffic generation problem, we
need to precisely state its context with all the relevant com-
ponents. The context we propose in this work is outlined
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in Figure 1. At the heart of this context is a traffic gener-
ation algorithm that we will elaborate on in Section 3. We
distinguish two types of inputs to this algorithm:

(1) User inputs are parameters that concern the simula-
tion user and, in general, they are independent of the traffic
generation process. One of the user inputs is the network
configuration, and the other is a list of target links in the
network with specified link conditions.

(2) Model inputs are parameters that we add to influence
certain aspects of the traffic generation process. First, a traf-
fic profile is introduced to add some realism in the generated
traffic, and it could reflect characteristics such as the mix-
ture of different types of traffic. Second, we specify a par-
ticular aspect of the simulation performance to optimize. If
simulation speed is the primary concern, e.g., we can mini-
mize the total packet hop count, hence the number of events
per simulated unit of time.

Collectively, the model inputs and the traffic generation
algorithm comprise our traffic generation scheme. The out-
put of the traffic generation algorithm specifies how many
TCP flows to configure between each pair of nodes so as to
obtain the user specified link conditions.

2.2 Traffic Generation Context Specification

The specific traffic generation context we use in this
work can be described as follows:� Input 1: Network configuration. The following pa-

rameters of a network are provided as inputs:

(a) Topology and routing. The network consists of
�

nodes and � links. Network routing is fully specified
by the following function ( ���	��

��� � 
���������� ):������� �����  � if link � is in the path from node � to node �!

otherwise

(b) Detailed configuration of the links. Each link "$#
( �%�&�	�&� ) is described by a 5-tuple ( '(# , )*# , +$# ,, # , - # ), representing source node, destination node,
link capacity, router buffer size (in packets) and prop-
agation delay, respectively. Notice that the links are
directional.� Input 2: Target link specifications. This input spec-
ifies a list of �/. ( �0� ) target links. The target link
conditions we consider include the utilization, and av-
erage loss rate.

Each target link has two additional characteristics: tar-
get utilization 1 (in 2 ! 
3�34 ) and target loss rate 5 (in2 ! 
3�34 ). We assume that 1768� prescribes 5�� !

, and
that 579 ! prescribes 1:�;� , i.e., lossy links are fully
utilized and underutilized links are lossless. These are

legitimate assumptions when the router buffers are suf-
ficiently configured [7] 1. There are no specific link
conditions for the rest of the links, which we call non-
target links, but we make it an implicit specification
that the load on each of them is lower than its capacity.
This prevents non-target links from limiting the traffic
passing through target links.� Input 3: Traffic profile. The traffic profile character-
izes the traffic from the following aspects:

(a) Traffic mix. The traffic on any link consists of a
number of persistent TCP flows and Pareto ON/OFF
UDP streams. UDP traffic accounts for a small frac-
tion < (typically less than 10%) of the total load on
every link. In addition, the presence of UDP traffic
eliminates the synchronization among persistent TCP
flows, usually an artifact of TCP simulations [10].

(b) TCP flow characteristics. A flow from node � to �
is characterized by the 2-tuple

�>= �?� 
�@ ��� � , where
= �?�

is the path hop count determined by routing A � ��� � ����B .@ �?� is the maximum TCP congestion window config-
ured on a per source/destination pair basis. When the
path from � to � is lossless, @ ��� follows a given dis-
tribution; when the path is lossy, @ �?� is large enough
for the flow to be congestion-limited on it. This lat-
ter assumption about the configuration needs more ex-
planations, which we defer to the end of Section 3.3.
Finally, we assume that TCP data segments and UDP
packets of all flows have the same size ' .

(c) Traffic between any pair of nodes is allowed, sub-
ject to the constraint that the average hop count among
all TCP flows is

=DC
.� Input 4: Simulation performance objective. In this

work, we minimize the simulation memory require-
ment. This is motivated by the fact that the large mem-
ory requirement often preempts the execution of even
medium-scale network simulations.� Output: a traffic matrix AFEGBIHKJ�H where E ��� repre-
sents the number of TCP flows from node � to � . The
user will be able to attain the link conditions he/she
specifies for the target links, as long as he/she config-
ures E ��� TCP flows from node � to node � , for all pairs
of � and � .

Problem Statement. With all the components defined
above, the traffic generation problem we aim to solve can
be stated as follows:

1A common rule is to configure a router buffer at least twice as large as
the bandwidth delay product of the flows with the largest RTT.

3



Given a network with
�

nodes, � edges and specified
routing A � ��� � �L�MB , and a set of �/. target links with speci-
fied link utilization and loss rate, generate a matrix of TCP
flows ANEGBIH�JOH such that 1) the link conditions on all target
links are obtained, 2) the average hop count across all flows
is as specified by

= C
, and that 3) the simulation memory re-

quirement is minimized.
For quick reference, Table 1 lists some notations that we

use in the rest of the paper.P
: number of nodes Q : number of linksR
: link capacity S : propagation delay of a linkT
: router buffer (in packets) US : RTT of a flowV : loss rate of a target link S�W : queuing delay on a lossy linkX
: TCP data segment size Y : utilization of a target linkZ�[

: average flow hop count \ : segments per ACK in TCP](^ _a`cbFd
: whether link

b
is in the path from e to fgL^ _

: throughput of a TCP flow from e to fh ^ _
: number of TCP flows from e to f to be solved forZ�^ _
: hop count of the path from e to fi : fraction of UDP traffic on each linkj

: TCP maximum congestion window (in packets)

Table 1. Terms and Notations

3 Traffic Generation Algorithm

In this section, we develop algorithms to solve the traffic
generation problem stated in Section 2.

3.1 Single Link Example

The traffic generation algorithm we propose in this work
is based on two insights: (i) the throughput of a TCP flow
can be derived based on the load conditions of its path, in
addition to some characteristics, such as the maximum con-
gestion window, of the flow itself [15]; (ii) the load of a link,
in turn, is the sum of the throughput of all flows travers-
ing the link. We call the second property traffic balance.
In this subsection, we use a single-link example to demon-
strate how we can use these insights to establish the relation
between the utilization/loss rate of a link and the number of
TCP flows traversing it.

The sample target link is
� 'lk�
m)Dkn
�+�
 , 
m-o
p1q
>5r� . All

flows traversing it are from 'sk to )tk and have the same
maximum congestion window @ . The traffic generation
problem in this context is simply to obtain the number of
flows needed to reach the target 1 or 5 .

TCP Throughput Model: When the path taken by a flow
is lossless, the throughput u of the flow is limited by its
maximum congestion window @ as in: uv�xw�yz{ , where '
is the TCP segment size and |- is the RTT of the flow.

For lossy paths, we use the model by Padhye et al. [15],
which describes TCP throughput as:

uv�~}*���(A '|-G� ������;� - k }*��� � ��
�� � ���� ��5 � � �	��� 5 � � 
 @�'|- B�

(1)

where -rk is the TCP retransmission timeout period and � is
the number of new segments released per new ACK.

Target Utilization: We first consider the flow configura-
tion problem when the target link is lossless and has a target
utilization 1�6�� . In this case, the TCP flows that constitute
its load are window-limited. Notice that the RTT of a flow
in this uncongested link case is simply twice the one way
link propagation delay - . Therefore, the throughput u of
each flow can be derived as: uv�xw�y� { .

The number of TCP flows, E , that are needed to reach
the target utilization 1 should satisfy traffic balance (2):

E�u���E @�'� - ��+�1 (2)

We can then solve (2) for E .

Target Loss Rate: If the target link is lossy, the through-
put of a flow traversing it is expressed by (1). The RTT
in this case, includes the queuing delay -(� on the con-
gested link, which can be approximated by � y� , because
congestion-limited TCP flows tend to fill the buffer of their
bottleneck links [7]. The RTT |- is then modeled as:����7���:��� W �7��� �¢¡�£¤ (3)

As long as the buffer is sufficiently provisioned, a lossy
link can be assumed to be fully utilized [7]. Therefore, the
traffic balance equation for a lossy link is as follows:¥$¦ � ¤

(4)

From (1), (3) and (4), we can solve for the number of flowsE to obtain the target loss rate 5 .

3.2 Problem Formulation

Based on the above discussions, we now formulate the
problem stated in Section 2 as a linear program consisting
of the following elements:

Traffic Balance Constraints: A traffic balance constraint
is needed for each link to relate its load to the throughput
of the flows traversing it. The traffic constraints for differ-
ent links comprise a system of �t. equations (each corre-
sponding to a target link) and

� �¨§7�t.F� inequalities (each
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corresponding to a non-target link) in the following form
( ���©���~� 
3�G����
ª��� � ):«¬¬¬­ ¬¬¬®�¯

^�° _ ¥ ^ _ ¦ ^ _�±²^ _a³�´�µ � ³
¶¸·�¹Lµ»º�¼ ¤¸½ if
´

is a target link

¯
^�° _ ¥ ^ _ ¦ ^ _ ± ^ _ ³�´�µ¸¾	³
¶¸·�¹Lµl¼ ¤¸½ if

´
is a non-target link¥ ^ _3¿ ^�Àn_ �ÂÁ¥ ^ _3¿ ^»ÃÀn_ÅÄ Á

(5)

Note that u ��� is the throughput of a TCP flow from node� to � . In principle, the variables E �?� , representing numbers
of TCP flows, should be integers. Modeling the problem
as an integer program, however, could make the problem
computationally expensive or infeasible to solve for large-
scale networks. Therefore we use a linear program as an
approximation. We will show in Section 4 that the resulting
errors are noticeable only to certain links and that they are
mostly acceptable.

Simulation Performance Optimization Objective:
With a given network topology, the memory cost of a
simulation using tools such as Æ(Ç � [3] depends mostly on
the number TCP flow objects. Therefore, our objective
to minimize simulation memory requirement is translated
into minimizing the total number of TCP flows. With the
addition of the following optimization objective:ÈÂÉ�Ê�É�ËtÉ»ÌNÍ Î ^�° _ ¥ ^ _IÏ (6)

we now have a linear optimization program that could ren-
der a unique solution:

Additional Constraint on the Average Flow Hop Count:
We also add an average flow hop count constraint to the
existing linear program (see explanations in Section 2.2).
This is expressed as follows:

¯
^�° _ ¥ ^ _�Ð�^ _
¯
^�° _ ¥ ^ _ � Ð [ Ï ÉÒÑ ÍFÑ Ï Î ^�° _ ¥ ^ _ ³�Ð ^ _ ·%Ð [ µ �ÂÁ (7)

Along with (5) and (6), Equation (7) defines a linear pro-
gram, (5) and (7) as the constraints and (6) as the objective,
for the traffic generation problem described in Section 2.

3.3 Populating the Linear Program

In this subsection, we discuss some issues related to
obtaining accurate estimates of the required parameters,
mainly Aau �?� B , to populate the linear program defined above.

Throughput Matrix AIu �?� B : To calculate u �?� , we need to
have accurate estimates of the loss rate and RTT experi-

enced by a flow from � to � . This, however, is not as straight-
forward as in the single link configuration.� RTT. The RTT of a TCP flow should include the queu-

ing delays both in the forward direction and in the re-
verse direction (incurred by ACKs). Consider a con-
gested link " ( ' k , ) k , C, B, T, 1ÔÓ =1, 5�9 0), and sup-
pose the utilization in its reverse direction is 1LÕ . We
found that - � can be modeled as follows:

- � � ��ÖÔ� ' � 's×FØ�ÕN� � � �o§ Ö �m'sÙ�Ú # �ÜÛ , Û�Ý+ (8)Ö � 1 Ó1ÞÓ �àß�á� (9)

where 's×FØ�Õ and 'sÙ�Ú # are the sizes of the TCP/IP
header and of the TCP ACKs, respectively. The rea-
son to use (8) instead of - � �â� y� is that there are a
significant fraction of packets in the queue of " that
do not have a size of ' and thus do not contribute a
queuing delay of y� . Those are the ACKs for the TCP
data traffic in the reverse direction. Given that every� data packets result in one ACK, and that the ratio of
TCP packet count on " vs. that on its reverse link is ap-
proximated by ß�ãß á ,

Ö
in (9) approximates the fraction of

TCP data packets among all packets on " . Therefore,ÖÔ� ' � 's×FØ�Õ3� � � �o§ Ö �p'sÙ�Ú # approximates the average
packet size on " The term Ý in (8) accounts for the fact
that the queue is not always full. We use Ýä� !Lå æ in the
rest of the paper, while any other value between 0.75
and 1 works similarly well. For the model with a frac-
tion < of UDP traffic, we can simply replace (9) by the
following: Ö � 1ÔÓ1 Ó � ß�á�çcèMéqêFë� 

assuming that the UDP packet size is also ' .� Loss rate. Since TCP is much less sensitive to ACK
losses than to data packet losses [11], we only con-
sider the data packet losses in the forward direction.
We use an optimistic calculation of the loss rate when
multiple bottlenecks exist on its path [16], i.e., we take
the largest loss rate among the bottlenecks as the loss
rate for a flow.

Average Hop Count
=*C

: Occasionally, we need to adjust
the parameters in the traffic profile based on the user inputs.
One such parameter is the target average hop count

= C
, for

which an improper value could make the linear program in
Section 3.2 infeasible. For instance, if

= C
is larger than the

length of the longest path in the network, there is no way
we can configure the flows such that the average flow hop
count is

=DC
.
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Maximum Congestion Window for Flows on Lossy
Paths: The second such parameter is the maximum TCP
congestion window. A solution may consist exclusively of
window-limited flows, which do not cause losses yet the ag-
gregate throughput does reach the capacity of a target lossy
link. To ensure that the link is in fact lossy, we impose
additional constraints on the maximum congestion window
configuration such that @ 9 � �� ��� (flow is congestion-
limited) [15] is satisfied for flows on lossy paths.

4 Evaluation

In this section, we will evaluate the proposed traffic gen-
eration algorithm. We refer to the proximity between the
conditions that result from the generated traffic and the tar-
get link conditions as the accuracy of the traffic generation
algorithm for a particular set of inputs. Of primary concern
is to evaluate the accuracy and to examine the factors that
cause significant inaccuracies.

For each set of user inputs, we instantiate and solve a
linear program for the traffic matrix. We then configure and
run ns2 [3] simulations based on the user inputs and the
traffic matrix solution. For each target link, we compare
the observed utilization and/or loss rate against the target
values. Suppose ìîí and ì C are, respectively, the observed
and target values of a link condition, we derive the relative
error E for the link condition as follows:ï��vð�ñ · ð [ð [

In addition, we use the relative error due to rounding to
assess the error incurred when rounding the solution to inte-
gers. Suppose that the load on a target link calculated from
the original solution is " C , and that the load calculated after
rounding is " � , then the relative error ò Õ due to rounding
is: ò Õ �;óLô é óLõó�õ .

4.1 Experimental Setup

Unless otherwise noted, the test inputs for our evaluation
are described as follows:
(a) We present results here based on two topologies. The
first one is a GT-ITM transit-stub [5] backbone network
with 200 nodes and 698 links, and the link capacities are
uniformly distributed between 10Mbps and 100Mbps. The
other topology has 55 nodes and 120 links, and it represents
a network with both backbone and access links. The capaci-
ties of the backbone links are uniformly distributed between
10Mbps and 80Mbps. The access link capacity follows a
discrete distribution, and takes on one of the following val-
ues: 1.5Mbps (30%), 10Mbps (50%), 100Mbps (20%).
(b) We select target links randomly with a certain probabil-
ity, which varies across experiments. The target utilization

for a non-lossy link follows a uniform distribution ranging
from 0.2 to 0.8. The target loss rates on lossy links are uni-
formly distributed between 0.001 and 0.03.
(c) The maximum TCP congestion window size follows a
uniform distribution between 15 and 45 packets. The TCP
data segment size ' is set to 1448 bytes.
(d) We use <¢� !Lå � , ö÷�ø� å�ù and úà�û� throughout the
experiments, where ö and ú define the Pareto distribution
of the UDP ON/OFF intervals. We use

=*C � � å?ü unless
otherwise noted.

4.2 Utilization Approximation

In this subsection, we demonstrate some of the factors
that affect utilization approximation.

Impact of Network Topology: We did not observe a no-
ticeable relationship between the accuracy of our algorithm
and the scale and type of the input network topology. Due to
space limitations, we do not show results for multiple net-
work topologies. For Figure 2, we use the backbone topol-
ogy as described in the experimental setup. Figure 2 shows
the CDFs of the magnitude of ò for three inputs with differ-
ent numbers of target links and lossy links. For about 90%
of the target links, the relative error is smaller than 0.1 in
these experiments.

In the rest of this subsection, we use the backbone and
access network topology described above to explore the im-
pact of other factors.

Impact of Integer Rounding: We first examine how
much of the error in a typical setting is due to rounding.

Figure 3 shows the relative error for utilization con-
straints in experiments involving 70 target links, among
which 5 are lossy. It reveals that the largest errors mostly
occur on links with a small target load ( +�1�6 æ�ý �
5rÇ in
this case). The tendency of decreasing relative error with
larger target load is consistent with the impact of rounding.
In fact, we found that the distributions of ò and of ò�Õ are
almost the same, indicating that rounding is almost solely
responsible for the errors in this configuration.

Figure 4 compares the magnitude of ò and ò�Õ for a con-
figuration with 14 lossy links and 70 target links. On av-
erage, the error in this case is larger than what can be ex-
plained by rounding, especially for errors up to 0.3. This
indicates that there are other factors contributing to the er-
rors. In terms of the overall distribution, about 80% of the
target links incur an error below 0.2. The slightly worse ap-
proximation, as compared to Figure 2, is explained by the
fact there are access links in this topology with very low
target loads (and hence very few flows traversing them), for
which the impact of rounding could be significant.
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Impact of the Number of Target Links and Lossy Links:
We found that the accuracy of our algorithm is not notice-
ably affected by the number of target links, provided that
the number of lossy links does not vary significantly. This
is demonstrated by Figure 5, which shows the CDFs of þ
for four configurations that have different numbers of target
links but a similar number of lossy links. Clearly, the CDFs
are very close among the four configurations. Note that in
Figures 5 and 6, we report results only for links with a rel-
atively high target load ( ��� Mbps), on which the errors are
not dominated by þÅÿ .

On the other hand, increasing the number of lossy links
noticeably affects the overall accuracy. Figure 6 shows the
CDFs of errors for four configurations with different num-
bers of lossy links and the same number of target links.
Clearly, the average error increases with the number of lossy
links. The impact of lossy links on other links is discussed
at the end of the next subsection. We also found that the Av-
erage Flow Hop Count ��� bears on the accuracy, but only
when there is a relatively large fraction of lossy target links.

4.3 Loss Rate Approximation

We did not find the average loss rate approximation to
be obviously input-dependent. Also, errors for the loss rate
approximation span a larger range than utilization approxi-
mation. Figure 7 is a scatter-plot of the target loss rate vs.
observed loss rate on different links, in the set of experi-
ments presented in Section 4.2. For most of the samples,
the ratio between the observed and the target loss rates is
within the range [0.5,3].

One may think that the loss rate approximation error, at
this level, would significantly affect the TCP throughput es-
timation, thus the utilization approximation of a lossy link.
Fortunately, we find that the average loss rate of TCP flows
is much closer to the target value than is the average loss
rate. UDP flows, which are not adaptive to congestion, are

responsible for the larger-than-target average loss rate.

4.4 Explaining the Impact of Lossy Links

Section 4.2 identifies lossy target links as one major fac-
tor that affects the accuracy of the utilization optimization.
Lossy links affect the algorithm accuracy primarily because
they might cause losses that are not presumed by the algo-
rithm, as explained below.

Our analysis of packet-level traces reveals that the largest
errors take place exclusively on links of which the reverse
direction is congested. In addition, the congestion in the
reverse direction causes data packet losses in the forward
direction of each of these links, which is not congested by
its own TCP data load. This causes a significant error in
the throughput estimate of a TCP data flow traversing the
forward direction of the link. The cause of packet losses
on such an uncongested link is the queuing of ACKs in the
reverse direction, which leads to a phenomenon known as
ACK compression [11]. It is, however, not easy to model the
loss probability that will result from this phenomenon [11].

4.5 Summary of the Evaluation Results

In this section, we have evaluated the accuracy of the
proposed traffic generation algorithm in attaining the target
link conditions. There are two major factors that affect the
utilization approximation. First, rounding to integer num-
bers of flows can cause errors. Second, lossy target links
could cause ACK compression, which eventually affects
the estimate of loss rate for flows in the reverse direction;
the impact of lossy links is more pronounced when there is
more dependence, in terms of traffic, among links. In most
of our experiments, the utilization error is smaller than 20%
for as many as 80% of the target links, and rounding only
affects links with a very small number (between 1 and 3) of
flows. Loss rate accuracy is in general not as good, and the
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Figure 7. Loss Rate Approxi-
mation (scatter plot)

ratio between the observed and the target values is mostly
within the range [0.5,3]. However, we believe that loss rate
approximations in this range are acceptable to most target
applications of the proposed traffic generation method.

5 Concluding Remarks

In this paper, we developed and evaluated a traffic gener-
ation algorithm for TCP simulations that matches the gen-
erated traffic to the network configuration such that the re-
sulting link conditions are as specified by the user. The al-
gorithm enables users to obtain realistic and explicitly con-
trolled link conditions through background traffic simula-
tion. This was achieved in a trial-and-error manner in pre-
vious work and it was possible only for very simple net-
works. While attaining target link conditions, our algo-
rithm also minimizes the simulation memory requirement
and conforms to certain realism considerations, such as the
traffic mix and the average flow hop count. Our evaluations
show that link conditions realized by the generated traffic
are very close to the target conditions, and that the algo-
rithm scales well with the size of the network topology and
the number of target links. For future work, we intend to
use the traffic generation algorithm to study in depth how
sensitive different simulation studies are to certain charac-
teristics of the background traffic. In addition, we will ex-
plore the application of this methodology with alternative
traffic models or optimization objectives.
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