
©2008 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

Secure Referee Selection for Fair and Responsive Peer-to-Peer Gaming

Steven Daniel Webb and Sieteng Soh
Department of Computing

Curtin University of Technology
{steven.webb@postgrad.,S.Soh@}curtin.edu.au

Jerry L. Trahan*
Dept. of Electrical & Computer Engineering

Louisiana State University
trahan@ece.lsu.edu

Abstract

Peer-to-peer (P2P) architectures for Massively
Multiplayer Online Games (MMOG) provide better
scalability than Client/Server (C/S); however, they
increase the possibility of cheating. Recently proposed
P2P protocols use trusted referees that
simulate/validate the game to provide security
equivalent to C/S. When selecting referees from un-
trusted peers, selecting non-colluding referees
becomes critical. Further, referees should be selected
such that the range and length of delays to players is
minimised (maximising game fairness and
responsiveness). In this paper we formally define the
referee selection problem and propose two secure
referee selection algorithms, SRS-1 and SRS-2, to solve
it. Both algorithms ensure the probability of corrupt
referees controlling a zone/region is below a pre-
defined limit, while attempting to maximise
responsiveness and fairness. The trade-off between
responsiveness and fairness is adjustable for both
algorithms. Simulations show the effectiveness of our
algorithms in two different scenarios.

1. Introduction

Network games are computer games played
amongst multiple players on different hosts across a
network, often the Internet. Massively Multiplayer
Online Games (MMOG) differ from traditional
network games as they present a single universe in
which thousands or tens of thousands of players
participate simultaneously. Furthermore, these worlds
are persistent; hence, the game world evolves even
when the player is offline. Therefore, in addition to
addressing game consistency, responsiveness, fairness,
and cheat-free requirements, one must also address
game persistency, system scalability, and system
reliability when developing an MMOG [1], [2], [3].

The vast majority of networked games use a
Client/Server (C/S) architecture, in which the server is
the game authority. With only one centralised trusted
server, keeping the game consistent, persistent, and
cheat free in C/S is straightforward [4]. Unfortunately,
C/S suffers from the following limitations: bandwidth
scalability - the server’s incoming and outgoing
bandwidth is a bottleneck as the publisher must
provision sufficient bandwidth at one location, which
is an expensive re-occurring cost [5]; processing
scalability - the server’s processing power is a
bottleneck, as it must simulate the entire virtual world
and perform Area of Interest (AoI) filtering for all
players [1], [6]; responsiveness - redirecting updates
through the server increases game delay; reliability -
the server is a single point of failure for the system;
and fairness - players geographically close to the server
have an unfair advantage, as they will have better
responsiveness than those situated further away [2].

Several peer-to-peer (P2P) architectures [4], [7], [8]
have been proposed to address the C/S limitations. P2P
is scalable as the bandwidth and processing
requirements are entirely handled by the clients; hence,
there is no central bottleneck. Furthermore, P2P
systems are resource growing; as the number of clients
increases so does the overall bandwidth and processing
power of the system. Unfortunately, keeping the game
consistent and cheat-free in P2P is significantly harder
and more costly than in C/S, as the latter utilises
trusted servers to store the world state and to validate
and authenticate all player updates [8].

Cheating is a major concern in network games as it
degrades the experience of the majority of players who
are honest [5]. This is catastrophic for games using
subscription models to generate revenue [4]. Several
P2P protocols [7] prevent protocol-level cheats.
However, as these protocols do not use a trusted third
party to store secret information and validate player
actions, these protocols are vulnerable to information
exposure and invalid command cheats which are
prevalent in MMOG, while introducing new forms of
cheating not possible in C/S [4]. In addition, these

* This work was supported in part by the National Science
Foundation under grant number CCR-0310916.

22nd Workshop on Principles of Advanced and Distributed Simulation

1087-4097/08 $25.00 © 2008 Crown Copyright
DOI 10.1109/PADS.2008.16

63

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on March 25, 2009 at 20:43 from IEEE Xplore. Restrictions apply.

solutions require costly distributed validation
algorithms that increase game delay and bandwidth.
See [9] for a review of possible cheats and their
solutions for P2P architectures.

The Referee Anti-Cheat Scheme (RACS) [4] is a
hybrid C/S and P2P architecture that allows players to
exchange updates directly, minimising delay. RACS
uses a trusted referee combined with cryptographic
techniques to provide cheat prevention equivalent to
that in C/S. Since the referee sends updates only in the
event of inconsistencies or when peers cannot
communicate directly, its outgoing bandwidth is
minimised. However, the referee in RACS receives,
simulates, and validates all updates, and therefore its
incoming bandwidth or processing power may create a
bottleneck. Furthermore, all of the bandwidth must be
provisioned at one location. Finally, the referee in
RACS is a single point of failure.

To provide security equivalent to C/S, a P2P
architecture requires selecting peers to act as referees
[4] or Region Controllers (RCs) [8], which are trusted
to simulate the game fairly. Note, we assume the game
world is divided into discrete sections called
zones/regions. Referees/RCs are responsible for
ensuring fair game play within the zone to which they
are assigned. To remove any incentive for cheating, a
referee should not supervise the zone in which the
player’s avatar is located [8]. However, this does not
prevent a group of colluding players from cheating (a
colluding player selected as a referee biases the
outcome for another player) or griefers from disrupting
the game (griefers intentionally damage other’s
experience for entertainment without gaining an
advantage). Mutual checking - “you may not trust a
single client, but you trust the consensus of multiple
unaffiliated clients” [8] - can prevent these attacks. By
using the consensus of multiple referees for the game
state, it becomes far more difficult (but not impossible)
for a group of colluding cheaters or griefers to
influence the game unfairly.

Selecting multiple referees for each zone is the
focus of this paper. Multiple, conflicting goals are
relevant. In RACS [4], the referee’s game state is
authoritative; therefore, it is beneficial for peers to
have low delay to the referee, since in many
multiplayer computer games a player’s delay has a
significant impact on their performance [10]. Selecting
referees located close (in terms of delay) to the players
in a zone would be beneficial. Selecting referees close
to players, however, increases the likelihood of a
referee-player collusion, hence weakening security.
Furthermore, in games where delay has an impact on
the outcome, fairness is also an issue [3]. To be fair, all
players should receive all updates from the referee
simultaneously (to prevent one peer responding to an

event before others have received the update), and the
referee should process all received updates
simultaneously (if two players perform conflicting
actions simultaneously, they should both have an equal
chance of getting the action accepted as valid). The
selected referees should both minimise the delay and
maximise fairness.

In this paper we define the Referee Selection
Problem (RSP) and two secure referee selection
algorithms, SRS-1 and SRS-2, to solve it. Both
algorithms ensure the probability of corrupt referees
controlling a zone is below a pre-defined limit, while
attempting to maximise responsiveness and fairness.
The trade-off between responsiveness and fairness is
adjustable for both algorithms.

The remainder of the paper is organised as follows.
In Section 2 we discuss related work. Section 3
describes the system model and formally defines the
Referee Selection Problem (RSP). Section 4 presents
our solutions to the RSP: SRS-1 and SRS-2. Section 5
uses simulation to evaluate both algorithms, and
Section 6 concludes our paper. Note, “he” should be
read as “he or she” throughout this paper.

2. Related Work

2.1. Referee Anti-Cheat Scheme (RACS)

In RACS each pair of interacting peers uses one of
two communication modes: Peer-Referee-Peer (PRP)
or Peer-Peer (PP) [4]. In PRP mode, updates are routed
through the referee, similar to C/S, to prevent cheaters
dropping updates to their opponents. PRP mode,
however, increases delay and the referee’s bandwidth.
In PP mode, updates are sent directly between peers
with a copy to the referee, which verifies the
simulation and resolves conflicts between peers. As
updates are not routed through the referee,
responsiveness is maximised and the referee’s
outgoing bandwidth is minimised; therefore, PP mode
is preferable for both the referee and peers. PRP mode
should only be used in the event of poor connectivity
or when cheating is suspected [4].

To prevent cheating, RACS divides time into
rounds. Every peer generates one update per round.
The game publisher defines QoS requirements between
peers, and if a pair of peers cannot meet those
requirements, then they will revert to PRP mode (poor
connectivity and cheating are indistinguishable).
Further, every update is digitally signed and includes
round numbers to prevent traditional security attacks
such as spoofing and replay attacks. For an in-depth
discussion of the security features of RACS, see
reference [4].

64

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on March 25, 2009 at 20:43 from IEEE Xplore. Restrictions apply.

While RACS reduces the outgoing bandwidth of
C/S, the referee must still receive all updates and
simulate the entire virtual world, possibly causing a
bottleneck. Furthermore, the referee is a single point of
failure. Webb et al. [1] proposed using multiple
mirrored referees to reduce the bandwidth bottleneck
and remove the single point of failure; the referee,
however, is still responsible for simulating the entire
virtual world.

In this paper, we propose selecting peers to act as
referees to increase the bandwidth and processing
scalability of RACS. We assume the bandwidth and
processing power of peers is below that of the referee
in RACS; therefore, the virtual world is divided into
discrete regions called zones, and each referee is only
responsible for the zone to which it is assigned. Using
multiple referees running on peer machines increases
the scalability of RACS, but the assumption that the
referee is trusted is no longer true. To overcome this,
we propose using multiple referees per zone, and the
authoritative game state is agreed among referees. As
the sole referee in RACS is fixed, no optimisation
problem arises. In contrast, in this work we attempt to
optimise the selection of referees to maximise
responsiveness and fairness while maintaining security.

2.2. Peer Vote Tallying

Referees may vote among themselves to form a

consensus about the game state and then notify the
peers (each peer is notified by one referee), but this
introduces considerable delay that is not acceptable for
many genres of games. Further, it requires a
mechanism to prevent a malicious referee returning
invalid results to peers. Kabus and Buchmann [8]
proposed a solution for their scheme that uses multiple
region controllers (RC) per zone. An RC is a peer
elected to validate the game state for a zone, similar to
our referee concept. An RC processes all updates for
each round and sends the resulting game state (a vote)
to all peers. Each peer receives and tallies the votes,
and the majority vote is used as the current game state.
This solution minimises delay at the cost of extra
bandwidth for both peers and RCs.

This system also prevents a single RC from
attacking peers by sending incorrect results, as they
will be discarded in favour of the majority. If a group
of colluding griefers were selected to be RCs for a
zone, then they could potentially disrupt the game.
Therefore, a secure random RC selection mechanism is
required to minimise this risk. Their work does not
address RC selection, however [8].

2.3. Secure Group Agreement

Corman et al. [11] proposed the Secure Group

Agreement (SGA) protocol, a distributed protocol to
securely select a set of peers randomly without
requiring a trusted central authority. This set forms a
verification group, and the majority is trusted to
simulate the game fairly and correctly. This selection
method is combined with the Secure Event Agreement
(SEA) protocol [7] to prevent protocol-level cheats.
The distributed group selection problem is solved by a
complex cryptographic protocol that relies on a
distributed hash table [11]. While this scheme is
secure, the peer selection algorithm ignores the
underlying network topology. Therefore, the
verification group will frequently include peers located
in distant parts of the network, dramatically reducing
game QoS (i.e., responsiveness and fairness). Our
Referee Selection Problem (discussed in Section 3)
addresses the QoS, in addition to the security issue.

2.4. Fairness

In fast paced games such as first person shooters

(FPS), player delay has a significant impact on the
outcome. If one player receives updates earlier than his
opponents, he can react faster, giving him an
advantage. For example, consider a game with two
players A and B having 50ms and 200ms delays from
the server, respectively. When the server sends out an
update, player A will receive it and respond before
player B has even received it.

Aggarwal et al. [3] measured game state error as the
difference between the game state on different players
caused by the server-to-client delay. Their measure of
fairness is the standard deviation of the game state
error. Decreasing the standard deviation improves
fairness and is achieved by either delaying sending
updates such that all players receive updates
simultaneously or adjusting the frequency of updates
sent to each player. Both of these schemes, however,
ignore the player-to-referee delay. If two players
perform conflicting events simultaneously, then they
should each have equal chance of being successful.
Furthermore, if updates are delayed/reduced to that of
the slowest player, then the game may become
unplayable. Finally, a single griefing player may
artificially inflate their delay to damage the experience
of others.

In this paper we use the range of peer delays as the
measure of fairness. To be completely fair, updates that
are both sent and received by the referees must be
delayed to that of the slowest player. Further, our
algorithms give the developer control to adjust the

65

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on March 25, 2009 at 20:43 from IEEE Xplore. Restrictions apply.

balance between fairness and responsiveness,
preventing a single griefer from damaging the game
state.

3. Optimal Referee Selection Problem

3.1. System Model

We assume the game world is divided into discrete
regions called zones, either dynamically or statically,
and that a mechanism exists to transfer players
between zones. Further, a player perceives only a small
portion of the virtual world, his area of interest (AoI),
and AoI filtering is used to reduce the update size for
each peer; zones are considerably larger than a player’s
AoI.

Let P = {Pi | i is the unique identifier (ID) of each
player} be the set of peers/players in the game, R = {Rf
| f is the unique identifier (ID) of each referee}⊆ P be
the set of referees in the game, ZP ⊆ P be the set of
players located within zone Z, and ZR ⊆ R be the set of
referees controlling zone Z. Multiple referees are used
to prevent a single griefer (becoming a referee)
disrupting the game. As in [11], we distinguish
between corrupt nodes (nodes that wish to disrupt the
game) from colluding nodes (corrupt nodes that work
together to disrupt the game). Further, we assume the
number of corrupt nodes far exceeds the number of
colluding nodes. Let C = {Ci | Ci is a set of colluding
players}. We assume there is no method for corrupt
nodes to identify each other (unless they are already
colluding) as this same method could be used by the
publisher to detect them [11]. Thus, all sets of
colluders are disjoint, i.e., Ci ∩ Cj = ∅ for i≠j. The
size of the largest group of colluding peers, max (|Ci|),
is unknown, however, we assume that the developer
can estimate maxC ≈ max (|Ci|). Fig. 1 illustrates the
relationships among players, referees, and cheaters.

We assume the publisher runs a trusted
Authentication Server (AS), responsible for
authenticating and validating joining players
(subscripting, banning, etc.), and selecting peers to act
as referees; therefore, the referee selection process is
trusted. Further, the publisher may provision a small
number of dedicated trusted referees that can boot-
strap the system when the number of players is low.
Note, acting as a referee requires additional bandwidth
and processing requirements; therefore, only peers with
sufficient resources should be considered for referees.
The bandwidth and processing resources for each peer
should be transmitted to the AS as part of the
authentication process to achieve this.

Each peer can play and referee at the same time;
therefore, ZR ⊆ P. A referee should not control the

zone in which his avatar is located. In other words,
each Rf in ZR is not in ZP, i.e., ZR ∩ ZP = ∅. If a
referee’s avatar moves into a zone it is controlling,
then the AS will select a new referee as a replacement.
The following additional checks may be performed to
improve security: (i) a referee must not share the IP
address of a player whose avatar is located within the
zone (multiple players sharing one Internet
connection), and/or (ii) a referee must not control a
zone containing players where game mechanics
indicate bias (e.g., if they are both members of the
same team/guild/clan).

The number of referees per zone, |ZR|, should be set
by the developer. Each player in ZP receives the game
state from all Rf in ZR (three lines joining each Pi to ZR
in Fig. 1, |ZR|=3) and takes the majority result;
therefore, it requires at least colluding referees
controlling one zone to tamper with the game state.

Finally, we model game fairness as the range of the
average delay for each peer in ZP to all referees in ZR.
If all peers receive updates simultaneously from the
referees, then the game is completely fair (delay range
0), whereas, the higher the range of delays, the greater
the unfairness. Note that a game with very high delay
may be fair, but unplayable. To be fun a game should
be both fair and playable.

Figure 1. Peer membership

3.2. Problem Statement

Let di,f be the delay from a player Pi to/from a
referee Rf; we assume symmetric delay, i.e., di,f = df,i.
Given |ZR| and ZP for zone Z and the publisher’s pre-
defined 0 ≤ Smax ≤ 1 and maxC, the Referee Selection
Problem (RSP) is to select a referee set ZR such that:

(1) the probability SZ that there are or more

colluding referees is not larger than Smax;
(2) the average peer-to-referee delay,

, is minimized;
and

(3) the difference, Δ, between the maximum and the
minimum of the player-referee delays (averaged
across all referees in ZR) for all peers in ZP is
minimized, i.e., minimize

, where

P
ZP

P2
 P1

 P3
 P4

 P5

R3
R1

ZR

C
R2

66

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on March 25, 2009 at 20:43 from IEEE Xplore. Restrictions apply.

 is the average delay from a
player Pi in ZP to all referees in ZR.

The game developer should set the probability Smax

based on the security requirements of the game; lower
Smax improves security, as it reduces the chance that the
majority of referees in ZR are colluding. Further, since
colluders in one group cannot locate members of
another group (see Section 3.1), the RSP considers
security only against groups of up to maxC colluders,
not the union of all groups of colluders. Note that if
max (|Ci|) > maxC, then we may not be able to select
ZR that meets SZ ≤ Smax. Corman et al. [11] proposed a
distributed solution to solve criterion (1) but, as
discussed in Section 2.3, the solution does not address
criteria (2) and (3).

Criteria (2) and (3) are used to improve the game’s
QoS; criterion (2) deals with improving game
responsiveness, while criterion (3) addresses game
fairness. Since a valid game state is decided by the
majority of referees (not the consensus of all referees),
using the average value (not the maximum delay) in
criterion (3) is sufficient to achieve fairness. To
illustrate the criteria, consider Fig. 2 that includes
ZP={P1,P2,P3,P4} and assume we want to select one
referee from two candidate referees, RA and RB.
Consider the following player-to-referee delays (in
ms): d1,A=10, d1,B=40, d2,A=20, d2,B=60, d3,A=10,
d3,B=40, d4,A=100, d4,B=60. If RA is selected,

!

di ,f = 35
and Δ= 90. However, selecting RB will give

!

di ,f = 50
and Δ = 20, which is better in terms of criterion (3) but
worse for criterion (2). Note that selecting the peers
closest to the players in ZP as referees will obviously
optimise criterion (2), but could compromise criterion
(1) as it is probable that colluding peers will be located
within the same part of the network. In general, as all
three criteria are conflicting it is not possible to
simultaneously optimise all of them.

One may use a solution to the matching problem to
solve criterion (2) or (3), although existing algorithms
[12] do not address the security issues typical to
MMOG. Our proposed secure referee selection
algorithms, SRS-1 and SRS-2, attempt to address
criteria (2) and (3) to the extent possible while meeting
criterion (1).

Figure 2. Referee selection example

4. Secure Referee Selection Algorithms

The Authentication Server (AS) holds responsibility
for selecting referees. It will run one of the referee
selection algorithms for each zone of the game world.

4.1. Estimating Delay between Peers

To address criteria (2) and (3), a solution to the RSP
requires knowing all peer-to-peer delays. Each di,j can
be measured using echo packets between peers i and j.
One could keep the delays in a |P|×|P| delay matrix
since any peer may potentially act as a referee.
Creating this matrix requires O(|P|2) measurements and
space, which becomes infeasible for large |P|; the time
cost is even worse if we consider maintaining the
matrix given the dynamic nature of players and the
Internet.

In this paper, we propose the use of network
coordinates [13] to estimate peer-to-peer delay.
Network coordinates provide a good estimation of the
delay between any two peers i and j, even if no direct
measurements between i and j have been made. In
contrast to using a delay matrix, in this approach we
estimate delay only when it is needed. Therefore, it is
much more bandwidth- and space-efficient. Note that
one can use other methods (e.g., landmarks [13] or
geographic location [14]) to estimate peer delays. We
assume that each peer calculates its own network
coordinates and transmits them to the AS.

4.2. Size of the Candidate Referee Set

Let ZRP = P − ZP be the referee pool from which

each Rf in ZR is selected. As shown in Fig. 3, ZRP may
include players from more than one Ci.

Figure 3. Colluding peer membership

The probability SZ of selecting at least

colluding referees is given by

RA RB
P1

P2
P3

P4

P ZRP
C3 C2

C4 C5 C1

C7

C6

67

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on March 25, 2009 at 20:43 from IEEE Xplore. Restrictions apply.

where Ψ is the size of the candidate referee set, ZCR ⊆
ZRP. We want to find the minimum value of Ψ such
that randomly selecting |ZR| peers from ZCR will limit
SZ to no more than Smax. A simple brute force approach
suffices to find this minimum value, since the values of
all other variables in Eq (1) are known.

Randomly selecting ZCR from ZRP, as in [11], will
likely result in obtaining ZR with large peer-to-referee
delays and a large range of delays, which fails to
satisfy criteria (2) and (3). In the following
subsections, we propose two algorithms, SRS-1 and
SRS-2, that meet criterion (1) and balance criteria (2)
and (3).

4.3. SRS-1

Algorithm SRS-1 emphasizes responsiveness
(criterion (2)) while satisfying security (criterion (1)).
Given the pre-computed minimum size Ψ = |ZCR| from
Eq. (1), SRS-1 performs three steps: (i) select the
candidate referee set ZCR ⊆ ZRP, such that selecting any
subset ZR ⊆ ZCR will give a small value of ; (ii)
select |ZR| referees randomly from ZCR; and (iii)
artificially inflate peer delays to dF% (defined later)
such that F% of peers have equal delay.

For Step (i), SRS-1 selects referees close to the
majority of players. Let (xi,yi) be the coordinates of Pi.
Informally, we define the major as the point in the
coordinate space that is closest to the majority of
players in ZP. As an illustration, consider Fig. 4 that
shows an example ZP in 2D coordinate space. The total
distance, TD(x,y), from a coordinate (x, y) to all
players is:

where dist(A,B) is the Euclidean distance between
points A and B. Formally, the major is the point that
minimises Eq. (2). SRS-1 will form ZCR in Step (i) by
selecting the Ψ peers not in ZP that are closest to the
major coordinate. Thus, selecting referees close to the
major addresses criterion (2). The random referee
selection in Step (ii) addresses criterion (1).

Since this selection does not consider the range of
delays, a large range may result, so Step (iii) addresses
criterion (3). The mechanism to decrease the range of
delays is that a referee can send updates late to a peer
with small delay so that it receives updates at the same
time as a peer with large delay, artificially giving these
peers the same delay. We define the fairness weight 0
≤ F ≤ 100% in Step (iii) as the minimum percentage of
peers who must have equal average delay to the
referees. Specifically, for each peer we calculate the

average delay to all referees, find dF% (the maximum
delay among the fastest F% of players), and inflate the
delay of the fastest F% of peers to dF%. The developer
may set the weight of F between 0 and 100% to
balance responsiveness and fairness (criteria (2) and
(3)). If SRS-1 inflated delay for all peers (F = 100%),
as proposed in [3], it would inflate all peer delays to
that of the slowest peer, possibly undermining the
purpose of Step (i). Using SRS-1 with F=0% is
analogous to current commercial games [10] which
attempt to provide the fastest service possible to each
individual player, ignoring fairness. As an alternative
to setting a fixed weight for F in Step (iii), one may use
outlier detection (e.g., the box-plot method [15]) to
ignore peers with very high delay when calculating the
inflation value.

Figure 4. Example 2D network coordinates

Figure 5. SRS-1 Algorithm

The referee selection algorithm SRS-1 is shown in

Fig. 5. The major(ZP) function returns the major for the
set of peers ZP, calculated as the median x and median
y value of all players in ZP. The find_CR((x, y), Ψ, P -
ZP) function returns Ψ peers Pi∉ZP closest to the major
coordinates (x,y). Function slowest_peer(ZP, ZR, F)
returns the average peer-to-referee delay of the F*|ZP|th
slowest peer. Finally, function inflate_peers(ZR, ZP,
dF%) notifies all referees in ZR to artificially inflate the
delay to peers in ZP to dF%. Note that if ZR is already
partially populated the algorithm will select only the
number of referees required to fill the region. For
example, the algorithm can select a replacement
referee when one leaves the game.

Algorithm: SRS-1
Imports: Ψ: |ZCR|
 r: The required size of ZR
 F: The fairness weight
(x,y) = major(ZP) //centro(ZP) for SRS-2
ZCR = find_CR((x, y), Ψ, P - ZP)
while |ZR| < r do
 Ri = random(ZCR)
 ZR = ZR ∪ Ri

 ZCR = ZCR - Ri
end
dF% = slowest_peer(ZP, ZR, F)
inflate_peers(ZR, ZP, dF%)

Peer Centro Major

ZP

68

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on March 25, 2009 at 20:43 from IEEE Xplore. Restrictions apply.

4.4. SRS-2

Algorithm SRS-2 emphasizes fairness (criterion (3))

while satisfying security (criterion (1)). As for SRS-1,
SRS-2 comprises three main steps: (i) select the
candidate referee set ZCR ⊆ ZRP such that selecting any
subset ZR ⊆ ZCR, will incur a small inflation value dF%;
(ii) select |ZR| referees randomly from ZCR; and (iii)
artificially inflate peer delays to dF% such that the
closest F% of peers have equal delay. Note that Steps
(ii) and (iii) of SRS-1 and SRS-2 are identical.

We can directly address criterion (3) by selecting
referees that minimise the range of peer delays.
However, this approach would unlikely be able to
optimise criterion (2), resulting in a larger dF%.
Therefore, SRS-2 selects referees close to the center of
ZP, selecting referees such that the average delay from
all referees to the furthest player is minimised. Let the
centro be the point in the coordinate space such that
the maximum distance to all players in ZP is
minimised. Let the maximum distance, MD(x,y), from
a coordinate (x, y) to all players be:

The centro (illustrated in Fig. 4) is the point that
minimises Eq. (3). However, if there are some outlying
peers located in distant parts of the network they will
have a significant impact on the centro. To prevent this
SRS-2 may use outlier detection to ignore distant peers
when calculating the centro. For each peer the delay to
all other peers is calculated, and boxplot outlier
detection [15] is used to identify distant peers. Similar
to SRS-1, SRS-2 populates ZCR with the closest Ψ
peers, Pi ∉ ZP, to the centro.

As some players may be located very close to the
centro, there may still be a significant delay range. As
in SRS-1, to achieve criterion (3), in Step (iii) the
referees artificially inflate peer delays to dF%. Note that
SRS-2 with outlier detection is not effective when
F=100% as it results in generating a large inflated
delay, and hence reduces responsiveness. Therefore,
we suggest using SRS-2 with outlier detection only for
F<100%.

SRS-2 is shown in Fig. 5 by replacing function
major(ZP) with centro(ZP). In this paper, we use
gradient descent [16] in function centro to find the
coordinates.

5. Simulation and Discussion

We use simulation to compare the effectiveness of
SRS-1 and SRS-2 in addressing criteria (2) and (3)
against random referee selection, which is equivalent

to SGA [11]. The simulation requires knowing the
peer-to-peer delays, di,j, and their avatar locations. As
no trace data from a real MMOG is available, we
synthesized two representative topologies, one from a
popular MMOG [17] and Internet delays [14], and the
other is a simple topology, and used them in
Simulations 1 and 2, respectively.

5.1. Simulation 1

Table 1 shows the percentage of World of Warcraft
(WoW) players located in each geographical region
[17]; WoW is one of the most popular MMOG to-date,
with over 9 million subscribers globally. We assume
the Other players are located in Australia as it has
significant delay to other regions [14], and a significant
WoW player base [18].

As shown in the table, for Simulation 1, we
generated a network game topology with 5000 peers
distributed following the WoW player distribution. We
used reference [14] to approximate the delay between
these regions, and as most game players have
broadband access [19], we added a last hop delay of
20ms [20] to all peers. We used the Vivaldi [13]
simulator in matrix mode for 3x106 rounds to construct
2D network coordinates for all peers from the
topology.

Table 1. Player distribution for Simulation 1

Region Peers Region Peers
 China: 44% 2200 Europe: 19%
 USA: 25% UK: 46% 437
 Boston: 25% 313 Germany: 35% 333
 Dallas: 33% 413 France: 16% 152
 LA: 28% 350 Spain: 3% 28
 Seattle: 14% 175 Other: 12% 599

Following WoW that allows groups of up to 40

players [18], our simulation populates ZP with 40 peers
and selects |ZR|=3 referees using random referee
selection (SGA), SRS-1, and SRS-2. To show the
impact of the distribution of players in ZP on each
algorithm, we generated 41 different player
distributions for 0≤W≤40, where W is the minimum
number of players located in the US. For each W
value, we selected the other 40-W players randomly
from around the world (including the US). We
assumed maxC = 10 and SZ = 0.1; therefore, Ψ = 291.
The experiment is repeated 100 times for each of the
41 player distributions and the results are averaged, for
inflated values d100%, d80%, and d60%. To evaluate the
performance of our solutions when delay is not
inflated, the figure includes the average peer-to-referee
delay. Note that the current industry standard attempts

69

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on March 25, 2009 at 20:43 from IEEE Xplore. Restrictions apply.

to maximize responsiveness for every player
individually, ignoring fairness, and therefore the
average delay measure reflects the current standard.

As shown in Fig. 6, the average delay for SRS-1
outperforms random selection, even when only 25% of
players are in the US (W=10). As interacting players
for a MMOG are often located in the same region of
the network [21] (e.g., above 50% in the US), SRS-1
should be very effective in practice.

The figure also shows the performances of the
algorithms when the publisher sets the weight of F. As
shown in the figure, for F=100%, SRS-1 is better than
random selection only when W∈[40,37] (i.e., at least
92.5% of the players are in the US). This result shows
that it is not possible to achieve fairness and
responsiveness to all players when even a small
number of peers are located in distant parts of the
network. Decreasing F trades fairness for
responsiveness. The figure shows that when F=80%,
the maximum delay remains the same even when
8/40=20% of the players are not in the US. Reducing F
to 60% further reduces the effects of distant players
(i.e., tolerating almost 20/40=50% of peers outside the
US) on the maximum response time, shifting the curve
in the figure to the right. The results for SRS-2 for this
topology are comparable to SRS-1, and therefore are
excluded from the figure.

Figure 6. Simulation 1 results.

5.2. Simulation 2

The difference between SRS-1 and SRS-2 is not
apparent from Simulation 1 due to the structure of the
topology. For Simulation 2 we generated a topology
with three locations, East Coast (East), Central, and
West Coast (West) of the US, with delays between
East/West to Central of 50ms, and East to West of
100ms. From Table 1, 25% of players are located in
the US, and therefore we generated |P|=25% * 5000
=1250 players. We distributed them evenly among the

three locations, and generated network coordinates
similar to Simulation 1. We assumed 20≤E≤40 players
are located in the East, and the remaining 40 – E
players were located in West; the referees are selected
from any of the three regions.

As shown in Fig. 7, when 100% fairness is
guaranteed, SRS-2 is significantly better than SRS-1.
In contrast, when fairness is not guaranteed, the
average delay for SRS-1 is significantly better than
SRS-2. Note that the average and d100% delays are
identical for SRS-2. Provided P is distributed across
many centres in the network, and not confined to a
small number of locations as in Simulation 1, we
believe the results will be comparable to Fig. 7.

Simulation 2 indicates that SRS-1 succeeds in its
emphasis on responsiveness and SRS-2 succeeds in its
emphasis on fairness. Consequently, a developer can
choose either algorithm depending on which criterion
is more important.

Figure 7. Simulation 2 results.

6. Conclusion

In this paper we have formally defined the Referee
Selection Problem (RSP), the solution being critical for
improving the performance of P2P network games that
use referees to identify cheaters. The RSP raises three
criteria in selecting an optimal referee set: security,
responsiveness, and fairness. We have argued that the
three requirements are conflicting, and therefore
proposed two heuristic algorithms, SRS-1 and SRS-2
to solve the RSP.

SRS-1 solves the RSP by selecting referees such
that the average peer-to-referee delay is minimised
(emphasizing responsiveness), while SRS-2 selects
referees such that the maximum distance to all players
is minimised (emphasizing fairness). We have
evaluated our algorithms using simulation, and
discussed the merits of the solutions. We suggest game
developers, first, use Eq. (1) to calculate the minimum
size of the candidate referee selection pool to meet

70

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on March 25, 2009 at 20:43 from IEEE Xplore. Restrictions apply.

their required level of security. Then, use either SRS-1
or SRS-2 to select referees, depending on the game
requirements for responsiveness and fairness.

For future work, since the game round length may
be dynamic (e.g., for RACS [4]), we wish to study the
interaction of the round length adjustment algorithm,
with that of the secure referee selection algorithm, in
terms of responsiveness and fairness.

7. References

[1] S.D. Webb, S. Soh, and W. Lau, “Enhanced Mirrored

Servers for Network Games,” in Proc. Netgames, pp.
117-122, 2007.

[2] E.Cronin, A.R. Kurc, B. Filstrup, and S. Jamin, “An
efficient synchronization mechanism for mirrored
game architectures,” Multimedia Tools and App., vol
23, 7–30, May 2004.

[3] S. Aggarwal, H. Banavar, S. Mukherjee, and S.
Rangarajan, “Fairness in dead-reckoning based
distributed multi-player games,” in Proc. Netgames,
pp. 1-10, 2005.

[4] S.D. Webb, S. Soh, and W. Lau, “RACS: a Referee
Anti-Cheat Scheme for P2P gaming,” in Proc.
NOSSDAV, pp. 37–42, 2007.

[5] J. Mulligan, and B. Patrovsky, “Developing Online
Games: An Insider’s Guide,” New Riders Publishing,
2003, Ch. 7.

[6] D. Ta, S. Zhou, and H. Shen, “Greedy algorithms for
client assignment in large-scale distributed virtual
environments,” in Proc. PADS, pp. 103-110, 2006.

[7] A.B. Corman, S. Douglas, P. Schachte, and V. Teague,
“A Secure Event Agreement (SEA) protocol for peer-
to-peer games,” in Proc. ARES, pp. 34–41, 2006.

[8] P. Kabus, and A.P. Buchmann, “Design of a cheat-
resistant P2P online gaming system,” in Proc. Dimea,
pp. 113–120, 2007.

[9] S.D. Webb, and S. Soh, “Cheating in networked
computer games - A review,” in Proc. DIMEA, pp.
105–112, 2007.

[10] Valve, “Source Multiplayer Networking,”
http://developer.valvesoftware.com/wiki/Source_Multi
player_Networking, Dec. 2006.

[11] A.B. Corman, P. Schachte, and V. Teague, “A Secure
Group Agreement (SGA) protocol for peer-to-peer
applications,” in Proc. AINAW, pp. 24–29, 2007.

[12] S.D. Webb, and S. Soh, “Adaptive Client to Mirrored-
Server Assignment for Massively Multiplayer Online
Games,” in Proc. MMCN, (to appear), 2008.

[13] F. Dabek, R. Cox, F. Kaashoek, and R. Morris,
“Vivaldi: a decentralized network coordinate system,”
in Proc. SIGCOMM, pp. 15-26, 2004.

[14] W. Matthews, and L. Cottrell, “The PingER project:
active Internet performance monitoring for the HENP
community,” IEEE Comm. Mag., vol 38, May 2000.

[15] J.W. Tukey, “Exploratory data analysis”, Addison-
Wesley, 1977.

[16] G. Arfken, “Mathematical Methods for Physicists,” 3rd
ed., Orlando, FL: Academic Press, 1985, pp 428-436.

[17] Blizzard, “World of Warcraft Surpasses 9 million
subscribers worldwide,” http://www.blizzard.com/
press/070724.shtml, Jan 2008.

[18] WoWWiki, http://www.wowwiki.com/, Jan 2008.
[19] Valve, “Survey Summary Data,” http://

www.steampowered.com/status/survey.html, Jan 2008.
[20] K. Lakshminarayanan and V.N. Padmanabhan, “Some

findings on the network performance of broadband
hosts,” in Proc SIGCOMM, pp. 45-50, 2003.

[21] K.T. Chen, and C.L. Lei, “Network game design: hints
and implications of player interaction,” in Proc.
Netgames, no. 17, 2006.

71

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on March 25, 2009 at 20:43 from IEEE Xplore. Restrictions apply.

