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Abstract 
 

Peer-to-peer (P2P) architectures for Massively 
Multiplayer Online Games (MMOG) provide better 
scalability than Client/Server (C/S); however, they 
increase the possibility of cheating. Recently proposed 
P2P protocols use trusted referees that 
simulate/validate the game to provide security 
equivalent to C/S. When selecting referees from un-
trusted peers, selecting non-colluding referees 
becomes critical. Further, referees should be selected 
such that the range and length of delays to players is 
minimised (maximising game fairness and 
responsiveness). In this paper we formally define the 
referee selection problem and propose two secure 
referee selection algorithms, SRS-1 and SRS-2, to solve 
it. Both algorithms ensure the probability of corrupt 
referees controlling a zone/region is below a pre-
defined limit, while attempting to maximise 
responsiveness and fairness. The trade-off between 
responsiveness and fairness is adjustable for both 
algorithms. Simulations show the effectiveness of our 
algorithms in two different scenarios.  
 
1. Introduction 
 

Network games are computer games played 
amongst multiple players on different hosts across a 
network, often the Internet. Massively Multiplayer 
Online Games (MMOG) differ from traditional 
network games as they present a single universe in 
which thousands or tens of thousands of players 
participate simultaneously. Furthermore, these worlds 
are persistent; hence, the game world evolves even 
when the player is offline. Therefore, in addition to 
addressing game consistency, responsiveness, fairness, 
and cheat-free requirements, one must also address 
game persistency, system scalability, and system 
reliability when developing an MMOG [1], [2], [3]. 

The vast majority of networked games use a 
Client/Server (C/S) architecture, in which the server is 
the game authority. With only one centralised trusted 
server, keeping the game consistent, persistent, and 
cheat free in C/S is straightforward [4]. Unfortunately, 
C/S suffers from the following limitations: bandwidth 
scalability - the server’s incoming and outgoing 
bandwidth is a bottleneck as the publisher must 
provision sufficient bandwidth at one location, which 
is an expensive re-occurring cost [5]; processing 
scalability - the server’s processing power is a 
bottleneck, as it must simulate the entire virtual world 
and perform Area of Interest (AoI) filtering for all 
players [1], [6]; responsiveness - redirecting updates 
through the server increases game delay;  reliability - 
the server is a single point of failure for the system; 
and fairness - players geographically close to the server 
have an unfair advantage, as they will have better 
responsiveness than those situated further away [2]. 

Several peer-to-peer (P2P) architectures [4], [7], [8] 
have been proposed to address the C/S limitations. P2P 
is scalable as the bandwidth and processing 
requirements are entirely handled by the clients; hence, 
there is no central bottleneck. Furthermore, P2P 
systems are resource growing; as the number of clients 
increases so does the overall bandwidth and processing 
power of the system. Unfortunately, keeping the game 
consistent and cheat-free in P2P is significantly harder 
and more costly than in C/S, as the latter utilises 
trusted servers to store the world state and to validate 
and authenticate all player updates [8]. 

Cheating is a major concern in network games as it 
degrades the experience of the majority of players who 
are honest [5]. This is catastrophic for games using 
subscription models to generate revenue [4]. Several 
P2P protocols [7] prevent protocol-level cheats. 
However, as these protocols do not use a trusted third 
party to store secret information and validate player 
actions, these protocols are vulnerable to information 
exposure and invalid command cheats which are 
prevalent in MMOG, while introducing new forms of 
cheating not possible in C/S [4]. In addition, these 
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solutions require costly distributed validation 
algorithms that increase game delay and bandwidth. 
See [9] for a review of possible cheats and their 
solutions for P2P architectures. 

The Referee Anti-Cheat Scheme (RACS) [4] is a 
hybrid C/S and P2P architecture that allows players to 
exchange updates directly, minimising delay. RACS 
uses a trusted referee combined with cryptographic 
techniques to provide cheat prevention equivalent to 
that in C/S. Since the referee sends updates only in the 
event of inconsistencies or when peers cannot 
communicate directly, its outgoing bandwidth is 
minimised. However, the referee in RACS receives, 
simulates, and validates all updates, and therefore its 
incoming bandwidth or processing power may create a 
bottleneck. Furthermore, all of the bandwidth must be 
provisioned at one location. Finally, the referee in 
RACS is a single point of failure. 

To provide security equivalent to C/S, a P2P 
architecture requires selecting peers to act as referees 
[4] or Region Controllers (RCs) [8], which are trusted 
to simulate the game fairly. Note, we assume the game 
world is divided into discrete sections called 
zones/regions. Referees/RCs are responsible for 
ensuring fair game play within the zone to which they 
are assigned. To remove any incentive for cheating, a 
referee should not supervise the zone in which the 
player’s avatar is located [8]. However, this does not 
prevent a group of colluding players from cheating (a 
colluding player selected as a referee biases the 
outcome for another player) or griefers from disrupting 
the game (griefers intentionally damage other’s 
experience for entertainment without gaining an 
advantage). Mutual checking - “you may not trust a 
single client, but you trust the consensus of multiple 
unaffiliated clients” [8] - can prevent these attacks. By 
using the consensus of multiple referees for the game 
state, it becomes far more difficult (but not impossible) 
for a group of colluding cheaters or griefers to 
influence the game unfairly. 

Selecting multiple referees for each zone is the 
focus of this paper.  Multiple, conflicting goals are 
relevant. In RACS [4], the referee’s game state is 
authoritative; therefore, it is beneficial for peers to 
have low delay to the referee, since in many 
multiplayer computer games a player’s delay has a 
significant impact on their performance [10].  Selecting 
referees located close (in terms of delay) to the players 
in a zone would be beneficial. Selecting referees close 
to players, however, increases the likelihood of a 
referee-player collusion, hence weakening security. 
Furthermore, in games where delay has an impact on 
the outcome, fairness is also an issue [3]. To be fair, all 
players should receive all updates from the referee 
simultaneously (to prevent one peer responding to an 

event before others have received the update), and the 
referee should process all received updates 
simultaneously (if two players perform conflicting 
actions simultaneously, they should both have an equal 
chance of getting the action accepted as valid). The 
selected referees should both minimise the delay and 
maximise fairness. 

In this paper we define the Referee Selection 
Problem (RSP) and two secure referee selection 
algorithms, SRS-1 and SRS-2, to solve it. Both 
algorithms ensure the probability of corrupt referees 
controlling a zone is below a pre-defined limit, while 
attempting to maximise responsiveness and fairness. 
The trade-off between responsiveness and fairness is 
adjustable for both algorithms. 

The remainder of the paper is organised as follows. 
In Section 2 we discuss related work. Section 3 
describes the system model and formally defines the 
Referee Selection Problem (RSP). Section 4 presents 
our solutions to the RSP: SRS-1 and SRS-2. Section 5 
uses simulation to evaluate both algorithms, and 
Section 6 concludes our paper. Note, “he” should be 
read as “he or she” throughout this paper.  

 
2. Related Work 
 
2.1. Referee Anti-Cheat Scheme (RACS) 
 

In RACS each pair of interacting peers uses one of 
two communication modes: Peer-Referee-Peer (PRP) 
or Peer-Peer (PP) [4]. In PRP mode, updates are routed 
through the referee, similar to C/S, to prevent cheaters 
dropping updates to their opponents. PRP mode, 
however, increases delay and the referee’s bandwidth. 
In PP mode, updates are sent directly between peers 
with a copy to the referee, which verifies the 
simulation and resolves conflicts between peers. As 
updates are not routed through the referee, 
responsiveness is maximised and the referee’s 
outgoing bandwidth is minimised; therefore, PP mode 
is preferable for both the referee and peers. PRP mode 
should only be used in the event of poor connectivity 
or when cheating is suspected [4]. 

To prevent cheating, RACS divides time into 
rounds. Every peer generates one update per round. 
The game publisher defines QoS requirements between 
peers, and if a pair of peers cannot meet those 
requirements, then they will revert to PRP mode (poor 
connectivity and cheating are indistinguishable). 
Further, every update is digitally signed and includes 
round numbers to prevent traditional security attacks 
such as spoofing and replay attacks. For an in-depth 
discussion of the security features of RACS, see 
reference [4].  
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While RACS reduces the outgoing bandwidth of 
C/S, the referee must still receive all updates and 
simulate the entire virtual world, possibly causing a 
bottleneck. Furthermore, the referee is a single point of 
failure. Webb et al. [1] proposed using multiple 
mirrored referees to reduce the bandwidth bottleneck 
and remove the single point of failure; the referee, 
however, is still responsible for simulating the entire 
virtual world.  

In this paper, we propose selecting peers to act as 
referees to increase the bandwidth and processing 
scalability of RACS. We assume the bandwidth and 
processing power of peers is below that of the referee 
in RACS; therefore, the virtual world is divided into 
discrete regions called zones, and each referee is only 
responsible for the zone to which it is assigned. Using 
multiple referees running on peer machines increases 
the scalability of RACS, but the assumption that the 
referee is trusted is no longer true. To overcome this, 
we propose using multiple referees per zone, and the 
authoritative game state is agreed among referees. As 
the sole referee in RACS is fixed, no optimisation 
problem arises. In contrast, in this work we attempt to 
optimise the selection of referees to maximise 
responsiveness and fairness while maintaining security. 

 
2.2. Peer Vote Tallying 

 
Referees may vote among themselves to form a 

consensus about the game state and then notify the 
peers (each peer is notified by one referee), but this 
introduces considerable delay that is not acceptable for 
many genres of games. Further, it requires a 
mechanism to prevent a malicious referee returning 
invalid results to peers. Kabus and Buchmann [8] 
proposed a solution for their scheme that uses multiple 
region controllers (RC) per zone. An RC is a peer 
elected to validate the game state for a zone, similar to 
our referee concept. An RC processes all updates for 
each round and sends the resulting game state (a vote) 
to all peers. Each peer receives and tallies the votes, 
and the majority vote is used as the current game state. 
This solution minimises delay at the cost of extra 
bandwidth for both peers and RCs.  

This system also prevents a single RC from 
attacking peers by sending incorrect results, as they 
will be discarded in favour of the majority. If a group 
of colluding griefers were selected to be RCs for a 
zone, then they could potentially disrupt the game.  
Therefore, a secure random RC selection mechanism is 
required to minimise this risk.  Their work does not 
address RC selection, however [8].  

 

2.3. Secure Group Agreement  
 
Corman et al. [11] proposed the Secure Group 

Agreement (SGA) protocol, a distributed protocol to 
securely select a set of peers randomly without 
requiring a trusted central authority. This set forms a 
verification group, and the majority is trusted to 
simulate the game fairly and correctly. This selection 
method is combined with the Secure Event Agreement 
(SEA) protocol [7] to prevent protocol-level cheats. 
The distributed group selection problem is solved by a 
complex cryptographic protocol that relies on a 
distributed hash table [11]. While this scheme is 
secure, the peer selection algorithm ignores the 
underlying network topology.  Therefore, the 
verification group will frequently include peers located 
in distant parts of the network, dramatically reducing 
game QoS (i.e., responsiveness and fairness). Our 
Referee Selection Problem (discussed in Section 3) 
addresses the QoS, in addition to the security issue.  

 
2.4. Fairness 

 
In fast paced games such as first person shooters 

(FPS), player delay has a significant impact on the 
outcome. If one player receives updates earlier than his 
opponents, he can react faster, giving him an 
advantage. For example, consider a game with two 
players A and B having 50ms and 200ms delays from 
the server, respectively. When the server sends out an 
update, player A will receive it and respond before 
player B has even received it. 

Aggarwal et al. [3] measured game state error as the 
difference between the game state on different players 
caused by the server-to-client delay. Their measure of 
fairness is the standard deviation of the game state 
error. Decreasing the standard deviation improves 
fairness and is achieved by either delaying sending 
updates such that all players receive updates 
simultaneously or adjusting the frequency of updates 
sent to each player. Both of these schemes, however, 
ignore the player-to-referee delay. If two players 
perform conflicting events simultaneously, then they 
should each have equal chance of being successful. 
Furthermore, if updates are delayed/reduced to that of 
the slowest player, then the game may become 
unplayable. Finally, a single griefing player may 
artificially inflate their delay to damage the experience 
of others. 

In this paper we use the range of peer delays as the 
measure of fairness. To be completely fair, updates that 
are both sent and received by the referees must be 
delayed to that of the slowest player. Further, our 
algorithms give the developer control to adjust the 
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balance between fairness and responsiveness, 
preventing a single griefer from damaging the game 
state. 
 
3. Optimal Referee Selection Problem 

 
3.1. System Model 
 

We assume the game world is divided into discrete 
regions called zones, either dynamically or statically, 
and that a mechanism exists to transfer players 
between zones. Further, a player perceives only a small 
portion of the virtual world, his area of interest (AoI), 
and AoI filtering is used to reduce the update size for 
each peer; zones are considerably larger than a player’s 
AoI.  

Let P = {Pi | i is the unique identifier (ID) of each 
player} be the set of peers/players in the game, R = {Rf 
| f is the unique identifier (ID) of each referee}⊆ P be 
the set of referees in the game, ZP ⊆ P be the set of 
players located within zone Z, and ZR ⊆ R be the set of 
referees controlling zone Z. Multiple referees are used 
to prevent a single griefer (becoming a referee) 
disrupting the game. As in [11], we distinguish 
between corrupt nodes (nodes that wish to disrupt the 
game) from colluding nodes (corrupt nodes that work 
together to disrupt the game). Further, we assume the 
number of corrupt nodes far exceeds the number of 
colluding nodes. Let C = {Ci | Ci is a set of colluding 
players}. We assume there is no method for corrupt 
nodes to identify each other (unless they are already 
colluding) as this same method could be used by the 
publisher to detect them [11]. Thus, all sets of 
colluders are disjoint, i.e., Ci ∩ Cj = ∅ for i≠j.  The 
size of the largest group of colluding peers, max (|Ci|), 
is unknown, however, we assume that the developer 
can estimate maxC ≈ max (|Ci|). Fig. 1 illustrates the 
relationships among players, referees, and cheaters.  

We assume the publisher runs a trusted 
Authentication Server (AS), responsible for 
authenticating and validating joining players 
(subscripting, banning, etc.), and selecting peers to act 
as referees; therefore, the referee selection process is 
trusted. Further, the publisher may provision a small 
number of dedicated trusted referees that can boot-
strap the system when the number of players is low. 
Note, acting as a referee requires additional bandwidth 
and processing requirements; therefore, only peers with 
sufficient resources should be considered for referees. 
The bandwidth and processing resources for each peer 
should be transmitted to the AS as part of the 
authentication process to achieve this. 

Each peer can play and referee at the same time; 
therefore, ZR ⊆ P. A referee should not control the 

zone in which his avatar is located. In other words, 
each Rf in ZR is not in ZP, i.e., ZR ∩ ZP = ∅. If a 
referee’s avatar moves into a zone it is controlling, 
then the AS will select a new referee as a replacement. 
The following additional checks may be performed to 
improve security: (i) a referee must not share the IP 
address of a player whose avatar is located within the 
zone (multiple players sharing one Internet 
connection), and/or (ii) a referee must not control a 
zone containing players where game mechanics 
indicate bias (e.g., if they are both members of the 
same team/guild/clan).  

The number of referees per zone, |ZR|, should be set 
by the developer. Each player in ZP receives the game 
state from all Rf in ZR (three lines joining each Pi to ZR 
in Fig. 1, |ZR|=3) and takes the majority result; 
therefore, it requires at least  colluding referees 
controlling one zone to tamper with the game state.  

Finally, we model game fairness as the range of the 
average delay for each peer in ZP to all referees in ZR. 
If all peers receive updates simultaneously from the 
referees, then the game is completely fair (delay range 
0), whereas, the higher the range of delays, the greater 
the unfairness. Note that a game with very high delay 
may be fair, but unplayable. To be fun a game should 
be both fair and playable. 

 

 
Figure 1. Peer membership  

 
3.2. Problem Statement 
 

Let di,f be the delay from a player Pi to/from a 
referee Rf; we assume symmetric delay, i.e., di,f = df,i. 
Given |ZR| and ZP for zone Z and the publisher’s pre-
defined 0 ≤ Smax ≤ 1 and maxC, the Referee Selection 
Problem (RSP) is to select a referee set ZR such that: 

 
(1) the probability SZ that there are  or more 

colluding referees is not larger than Smax;   
(2) the average peer-to-referee delay, 

, is minimized; 
and  

(3) the difference, Δ, between the maximum and the 
minimum of the player-referee delays (averaged 
across all referees in ZR) for all peers in ZP is 
minimized, i.e., minimize 

, where 

P 
ZP 

 
P2 
 P1 

 P3 
 P4 

 P5 
 

R3 
R1 

ZR 

 

C 
R2 
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 is the average delay from a 
player Pi in ZP to all referees in ZR. 

 
The game developer should set the probability Smax 

based on the security requirements of the game; lower 
Smax improves security, as it reduces the chance that the 
majority of referees in ZR are colluding. Further, since 
colluders in one group cannot locate members of 
another group (see Section 3.1), the RSP considers 
security only against groups of up to maxC colluders, 
not the union of all groups of colluders. Note that if 
max (|Ci|) > maxC, then we may not be able to select 
ZR that meets SZ ≤ Smax. Corman et al. [11] proposed a 
distributed solution to solve criterion (1) but, as 
discussed in Section 2.3, the solution does not address 
criteria (2) and (3).  

Criteria (2) and (3) are used to improve the game’s 
QoS; criterion (2) deals with improving game 
responsiveness, while criterion (3) addresses game 
fairness. Since a valid game state is decided by the 
majority of referees (not the consensus of all referees), 
using the average value (not the maximum delay) in 
criterion (3) is sufficient to achieve fairness. To 
illustrate the criteria, consider Fig. 2 that includes 
ZP={P1,P2,P3,P4} and assume we want to select one 
referee from two candidate referees, RA and RB. 
Consider the following player-to-referee delays (in 
ms): d1,A=10, d1,B=40,  d2,A=20, d2,B=60, d3,A=10, 
d3,B=40, d4,A=100, d4,B=60. If RA is selected, 

! 

di ,f = 35 
and Δ= 90. However, selecting RB will give 

! 

di ,f = 50 
and Δ = 20, which is better in terms of criterion (3) but 
worse for criterion (2). Note that selecting the peers 
closest to the players in ZP as referees will obviously 
optimise criterion (2), but could compromise criterion 
(1) as it is probable that colluding peers will be located 
within the same part of the network. In general, as all 
three criteria are conflicting it is not possible to 
simultaneously optimise all of them.  

One may use a solution to the matching problem to 
solve criterion (2) or (3), although existing algorithms 
[12] do not address the security issues typical to 
MMOG. Our proposed secure referee selection 
algorithms, SRS-1 and SRS-2, attempt to address 
criteria (2) and (3) to the extent possible while meeting 
criterion (1).  

 

 
Figure 2. Referee selection example 

 

4. Secure Referee Selection Algorithms 
 

The Authentication Server (AS) holds responsibility 
for selecting referees.  It will run one of the referee 
selection algorithms for each zone of the game world. 
 
4.1. Estimating Delay between Peers 
 

To address criteria (2) and (3), a solution to the RSP 
requires knowing all peer-to-peer delays.  Each di,j can 
be measured using echo packets between peers i and j. 
One could keep the delays in a |P|×|P| delay matrix 
since any peer may potentially act as a referee.  
Creating this matrix requires O(|P|2) measurements and 
space, which becomes  infeasible for large |P|; the time 
cost is even worse if we consider maintaining the 
matrix given the dynamic nature of players and the 
Internet.  

In this paper, we propose the use of network 
coordinates [13] to estimate peer-to-peer delay. 
Network coordinates provide a good estimation of the 
delay between any two peers i and j, even if no direct 
measurements between i and j have been made. In 
contrast to using a delay matrix, in this approach we 
estimate delay only when it is needed.  Therefore, it is 
much more bandwidth- and space-efficient. Note that 
one can use other methods (e.g., landmarks [13] or 
geographic location [14]) to estimate peer delays. We 
assume that each peer calculates its own network 
coordinates and transmits them to the AS. 

 
4.2. Size of the Candidate Referee Set 

 
Let ZRP = P − ZP be the referee pool from which 

each Rf in ZR is selected. As shown in Fig. 3, ZRP may 
include players from more than one Ci.  

 

 
Figure 3. Colluding peer membership 

 
The probability SZ of selecting at least  

colluding referees is given by  
 

      
 

RA RB 
P1 

P2 
P3 

P4 

P ZRP 
C3 C2 

C4 C5 C1 

C7 

C6 
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where Ψ is the size of the candidate referee set, ZCR ⊆ 
ZRP.  We want to find the minimum value of Ψ such 
that randomly selecting |ZR| peers from ZCR will limit 
SZ to no more than Smax. A simple brute force approach 
suffices to find this minimum value, since the values of 
all other variables in Eq (1) are known.  

Randomly selecting ZCR from ZRP, as in [11], will 
likely result in obtaining ZR with large peer-to-referee 
delays and a large range of delays, which fails to 
satisfy criteria (2) and (3). In the following 
subsections, we propose two algorithms, SRS-1 and 
SRS-2, that meet criterion (1) and balance criteria (2) 
and (3).  

 
4.3. SRS-1 
 

Algorithm SRS-1 emphasizes responsiveness 
(criterion (2)) while satisfying security (criterion (1)). 
Given the pre-computed minimum size Ψ = |ZCR| from 
Eq. (1), SRS-1 performs three steps:  (i) select the 
candidate referee set ZCR ⊆ ZRP, such that selecting any 
subset ZR ⊆ ZCR will give a small value of ; (ii) 
select |ZR| referees randomly from ZCR; and (iii) 
artificially inflate peer delays to dF% (defined later) 
such that F% of peers have equal delay.  

For Step (i), SRS-1 selects referees close to the 
majority of players. Let (xi,yi) be the coordinates of Pi. 
Informally, we define the major as the point in the 
coordinate space that is closest to the majority of 
players in ZP. As an illustration, consider Fig. 4 that 
shows an example ZP in 2D coordinate space. The total 
distance, TD(x,y), from a coordinate (x, y) to all 
players is: 

 

     
 
where dist(A,B) is the Euclidean distance between 
points A and B. Formally, the major is the point that 
minimises Eq. (2). SRS-1 will form ZCR in Step (i) by 
selecting the Ψ peers not in ZP that are closest to the 
major coordinate. Thus, selecting referees close to the 
major addresses criterion (2). The random referee 
selection in Step (ii) addresses criterion (1).  

Since this selection does not consider the range of 
delays, a large range may result, so Step (iii) addresses 
criterion (3).  The mechanism to decrease the range of 
delays is that a referee can send updates late to a peer 
with small delay so that it receives updates at the same 
time as a peer with large delay, artificially giving these 
peers the same delay.  We define the fairness weight 0 
≤ F ≤ 100% in Step (iii) as the minimum percentage of 
peers who must have equal average delay to the 
referees. Specifically, for each peer we calculate the 

average delay to all referees, find dF% (the maximum 
delay among the fastest F% of players), and inflate the 
delay of the fastest F% of peers to dF%.  The developer 
may set the weight of F between 0 and 100% to 
balance responsiveness and fairness (criteria (2) and 
(3)).  If SRS-1 inflated delay for all peers (F = 100%), 
as proposed in [3], it would inflate all peer delays to 
that of the slowest peer, possibly undermining the 
purpose of Step (i). Using SRS-1 with F=0% is 
analogous to current commercial games [10] which 
attempt to provide the fastest service possible to each 
individual player, ignoring fairness. As an alternative 
to setting a fixed weight for F in Step (iii), one may use 
outlier detection (e.g., the box-plot method [15]) to 
ignore peers with very high delay when calculating the 
inflation value. 

 

 
Figure 4. Example 2D network coordinates 

 

 
Figure 5. SRS-1 Algorithm 

 
The referee selection algorithm SRS-1 is shown in 

Fig. 5. The major(ZP) function returns the major for the 
set of peers ZP, calculated as the median x and median 
y value of all players in ZP. The find_CR((x, y), Ψ, P - 
ZP) function returns Ψ peers Pi∉ZP closest to the major 
coordinates (x,y). Function slowest_peer(ZP, ZR, F) 
returns the average peer-to-referee delay of the F*|ZP|th 
slowest peer. Finally, function inflate_peers(ZR, ZP, 
dF%) notifies all referees in ZR to artificially inflate the 
delay to peers in ZP to dF%. Note that if ZR is already 
partially populated the algorithm will select only the 
number of referees required to fill the region. For 
example, the algorithm can select a replacement 
referee when one leaves the game. 

 

Algorithm: SRS-1 
Imports: Ψ: |ZCR| 
 r: The required size of ZR 
 F: The fairness weight 
(x,y) = major(ZP)      //centro(ZP) for SRS-2 
ZCR = find_CR((x, y), Ψ, P - ZP) 
while |ZR| < r do 
 Ri = random(ZCR) 
 ZR = ZR ∪ Ri 

 ZCR = ZCR - Ri 
end  
dF% = slowest_peer(ZP, ZR, F) 
inflate_peers(ZR, ZP, dF%) 

Peer        Centro        Major 

ZP 
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4.4. SRS-2 
 
Algorithm SRS-2 emphasizes fairness (criterion (3)) 

while satisfying security (criterion (1)). As for SRS-1, 
SRS-2 comprises three main steps:  (i) select the 
candidate referee set ZCR ⊆ ZRP such that selecting any 
subset ZR ⊆ ZCR, will incur a small inflation value dF%; 
(ii) select |ZR| referees randomly from ZCR; and (iii) 
artificially inflate peer delays to dF% such that the 
closest F% of peers have equal delay. Note that Steps 
(ii) and (iii) of SRS-1 and SRS-2 are identical.  

We can directly address criterion (3) by selecting 
referees that minimise the range of peer delays. 
However, this approach would unlikely be able to 
optimise criterion (2), resulting in a larger dF%. 
Therefore, SRS-2 selects referees close to the center of 
ZP, selecting referees such that the average delay from 
all referees to the furthest player is minimised. Let the 
centro be the point in the coordinate space such that 
the maximum distance to all players in ZP is 
minimised. Let the maximum distance, MD(x,y), from 
a coordinate (x, y) to all players be:  

 
    
 
The centro (illustrated in Fig. 4) is the point that 
minimises Eq. (3). However, if there are some outlying 
peers located in distant parts of the network they will 
have a significant impact on the centro. To prevent this 
SRS-2 may use outlier detection to ignore distant peers 
when calculating the centro. For each peer the delay to 
all other peers is calculated, and boxplot outlier 
detection [15] is used to identify distant peers. Similar 
to SRS-1, SRS-2 populates ZCR with the closest Ψ 
peers, Pi ∉ ZP, to the centro. 

As some players may be located very close to the 
centro, there may still be a significant delay range. As 
in SRS-1, to achieve criterion (3), in Step (iii) the 
referees artificially inflate peer delays to dF%. Note that 
SRS-2 with outlier detection is not effective when 
F=100% as it results in generating a large inflated 
delay, and hence reduces responsiveness. Therefore, 
we suggest using SRS-2 with outlier detection only for 
F<100%. 

SRS-2 is shown in Fig. 5 by replacing function 
major(ZP) with centro(ZP). In this paper, we use 
gradient descent [16] in function centro to find the 
coordinates.  
 
5. Simulation and Discussion 
 
We use simulation to compare the effectiveness of 
SRS-1 and SRS-2 in addressing criteria (2) and (3) 
against random referee selection, which is equivalent 

to SGA [11]. The simulation requires knowing the 
peer-to-peer delays, di,j, and their avatar locations. As 
no trace data from a real MMOG is available, we 
synthesized two representative topologies, one from a 
popular MMOG [17] and Internet delays [14], and the 
other is a simple topology, and used them in 
Simulations 1 and 2, respectively.  
 
5.1. Simulation 1 
 

Table 1 shows the percentage of World of Warcraft 
(WoW) players located in each geographical region 
[17]; WoW is one of the most popular MMOG to-date, 
with over 9 million subscribers globally. We assume 
the Other players are located in Australia as it has 
significant delay to other regions [14], and a significant 
WoW player base [18].  

As shown in the table, for Simulation 1, we 
generated a network game topology with 5000 peers 
distributed following the WoW player distribution. We 
used reference [14] to approximate the delay between 
these regions, and as most game players have 
broadband access [19], we added a last hop delay of 
20ms [20] to all peers. We used the Vivaldi [13] 
simulator in matrix mode for 3x106 rounds to construct 
2D network coordinates for all peers from the 
topology. 

 
Table 1. Player distribution for Simulation 1 

Region Peers Region Peers 
  China: 44% 2200   Europe: 19%  
  USA: 25%        UK: 46% 437 
      Boston: 25% 313       Germany: 35% 333 
      Dallas: 33% 413       France: 16% 152 
      LA: 28% 350       Spain: 3% 28 
      Seattle: 14% 175   Other: 12% 599 

 
Following WoW that allows groups of up to 40 

players [18], our simulation populates ZP with 40 peers 
and selects |ZR|=3 referees using random referee 
selection (SGA), SRS-1, and SRS-2. To show the 
impact of the distribution of players in ZP on each 
algorithm, we generated 41 different player 
distributions for 0≤W≤40, where W is the minimum 
number of players located in the US. For each W 
value, we selected the other 40-W players randomly 
from around the world (including the US). We 
assumed maxC = 10 and SZ = 0.1; therefore, Ψ = 291. 
The experiment is repeated 100 times for each of the 
41 player distributions and the results are averaged, for 
inflated values d100%, d80%, and d60%. To evaluate the 
performance of our solutions when delay is not 
inflated, the figure includes the average peer-to-referee 
delay. Note that the current industry standard attempts 

69

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on March 25, 2009 at 20:43 from IEEE Xplore.  Restrictions apply.



to maximize responsiveness for every player 
individually, ignoring fairness, and therefore the 
average delay measure reflects the current standard.  

As shown in Fig. 6, the average delay for SRS-1 
outperforms random selection, even when only 25% of 
players are in the US (W=10). As interacting players 
for a MMOG are often located in the same region of 
the network [21] (e.g., above 50% in the US), SRS-1 
should be very effective in practice.  

The figure also shows the performances of the 
algorithms when the publisher sets the weight of F. As 
shown in the figure, for F=100%, SRS-1 is better than 
random selection only when W∈[40,37] (i.e., at least 
92.5% of the players are in the US). This result shows 
that it is not possible to achieve fairness and 
responsiveness to all players when even a small 
number of peers are located in distant parts of the 
network. Decreasing F trades fairness for 
responsiveness. The figure shows that when F=80%, 
the maximum delay remains the same even when 
8/40=20% of the players are not in the US. Reducing F 
to 60% further reduces the effects of distant players 
(i.e., tolerating almost 20/40=50% of peers outside the 
US) on the maximum response time, shifting the curve 
in the figure to the right. The results for SRS-2 for this 
topology are comparable to SRS-1, and therefore are 
excluded from the figure.  

 

 
Figure 6. Simulation 1 results. 

 
5.2. Simulation 2 
 

The difference between SRS-1 and SRS-2 is not 
apparent from Simulation 1 due to the structure of the 
topology. For Simulation 2 we generated a topology 
with three locations, East Coast (East), Central, and 
West Coast (West) of the US, with delays between 
East/West to Central of 50ms, and East to West of 
100ms. From Table 1, 25% of players are located in 
the US, and therefore we generated |P|=25% * 5000 
=1250 players. We distributed them evenly among the 

three locations, and generated network coordinates 
similar to Simulation 1. We assumed 20≤E≤40 players 
are located in the East, and the remaining 40 – E 
players were located in West; the referees are selected 
from any of the three regions.  

As shown in Fig. 7, when 100% fairness is 
guaranteed, SRS-2 is significantly better than SRS-1. 
In contrast, when fairness is not guaranteed, the 
average delay for SRS-1 is significantly better than 
SRS-2. Note that the average and d100% delays are 
identical for SRS-2. Provided P is distributed across 
many centres in the network, and not confined to a 
small number of locations as in Simulation 1, we 
believe the results will be comparable to Fig. 7. 

Simulation 2 indicates that SRS-1 succeeds in its 
emphasis on responsiveness and SRS-2 succeeds in its 
emphasis on fairness.  Consequently, a developer can 
choose either algorithm depending on which criterion 
is more important.  

 

 
Figure 7. Simulation 2 results. 

 
6. Conclusion 
 

In this paper we have formally defined the Referee 
Selection Problem (RSP), the solution being critical for 
improving the performance of P2P network games that 
use referees to identify cheaters. The RSP raises three 
criteria in selecting an optimal referee set: security,  
responsiveness, and fairness. We have argued that the 
three requirements are conflicting, and therefore 
proposed two heuristic algorithms, SRS-1 and SRS-2 
to solve the RSP.  

SRS-1 solves the RSP by selecting referees such 
that the average peer-to-referee delay is minimised 
(emphasizing responsiveness), while SRS-2 selects 
referees such that the maximum distance to all players 
is minimised (emphasizing fairness). We have 
evaluated our algorithms using simulation, and 
discussed the merits of the solutions. We suggest game 
developers, first, use Eq. (1) to calculate the minimum 
size of the candidate referee selection pool to meet 
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their required level of security. Then, use either SRS-1 
or SRS-2 to select referees, depending on the game 
requirements for responsiveness and fairness.  

For future work, since the game round length may 
be dynamic (e.g., for RACS [4]), we wish to study the 
interaction of the round length adjustment algorithm, 
with that of the secure referee selection algorithm, in 
terms of responsiveness and fairness. 
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