

Delft University of Technology

Component-based light-rail modeling in discrete event systems specification (DEVS)

Huang, Y; Verbraeck, A; Seck, MD

DOI
10.1177/0037549715614652
Publication date
2015
Document Version
Accepted author manuscript
Published in
Simulation

Citation (APA)
Huang, Y., Verbraeck, A., & Seck, MD. (2015). Component-based light-rail modeling in discrete event
systems specification (DEVS). Simulation, 91(12), 1027-1051. https://doi.org/10.1177/0037549715614652

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1177/0037549715614652
https://doi.org/10.1177/0037549715614652

Component Based Light-Rail Modeling in DEVS∗

Yilin Huang†1, Mamadou D. Seck2, and Alexander Verbraeck1

1Section Systems Engineering and Simulation, Faculty of Technology, Policy and Management,
Delft University of Technology, {y.huang, a.verbraeck}@tudelft.nl

2Engineering Management and Systems Engineering, Batten College of Engineering and
Technology, Old Dominion University, mseck@odu.edu

Rail modeling and simulation is an effective decision support instrument to plan and design complex rail in-
frastructures and operations. To successfully support these activities on a large scale, the simulation model
should be detailed enough and yet be computationally efficient. This poses a set of challenges pertaining to
the design of the models. In this paper, we propose a component based light-rail modeling and simulation
library in the DEVS formalism. The proposed library is described in detail and is shown to be efficient and
scalable. We conclude the paper by offering a set of good design principles derived from this experience,
which are also relevant to other large scale infrastructure system simulation model design.
Keywords: model component; model design; light-rail transportation; discrete-event modeling

1 Introduction

Complex dynamics in railway systems pose many chal-
lenges in railway Modeling and Simulation (M&S). To suc-
cessfully support detailed design and operation, a micro-
scopic rail network model is often deemed not only suit-
able but also mandatory [2]. A railway model must have
sufficient detail and accuracy to represent the complex
and often large-scale system yet still be computationally
efficient which is often hard to achieve when a micro-
scopic model is large-scale. Apart from these criteria,
considering the life span of railway systems, the number
of M&S studies demanded and the time and cost induced,
reusability and extensibility of railway models is often an
issue that should be addressed during model design. In
this paper, we present the design of a light-rail discrete-
event microscopic model component library that sup-
ports composability and reusability. The study discussed
in this paper showed that with comparable model de-
tail and accuracy, our approach outperforms a classical
model implementation using differential equations from
a computational point of view.

The light-rail model components are defined with Dis-
crete Event Systems Specification (DEVS) [3]. A variety of
modeling formalisms is presented in literature. In tradi-
tional mainstream M&S paradigms, dynamic systems are
delineated such that state changes of systems are spec-
ified on a continuous or discrete time base1. There is a

∗Received Feb 11, 2015, revised Jun 26, 2015, accepted Oct 4, 2015.
∗This article is based on Huang [1].
†Corresponding author: y.huang@tudelft.nl, tel+31 1527 83822, fax

+31 1527 83429, Jaffalaan 5, 2628BX Delft, the Netherlands.
1In M&S, a time base is often defined as a structure (T,<) where T

third class of M&S formalisms based on the discrete event
world view where states (and actions, i.e., state-to-output
mapping) are determined by internal and external events.
Despite the wide use in practice, modeling approaches
based on this world view were not formalized until a few
decades ago [4] – much later than the former two classes
of formalisms. The DEVS formalism [3] represents sys-
tems as piecewise constant state trajectories over a con-
tinuous time base. It is useful for several reasons. First,
DEVS supports hierarchical component-based modeling
[3, 5]. It supports port-based modeling which is proposed
by a number of authors for its modularity [6–8]. Second,
DEVS can embed and represent many other formalisms.
It is a fairly general formalism that can play the role as a
root formalism [5, 9–11]within the class of discrete event
formalisms (known as DEVS embedding [3]), and can be
used to represent or approximate models using continu-
ous and discrete time formalisms (known as DEVS rep-
resentation [10]) by means of discretization (of time) or
quantization (of state variables). Moreover, a basic mo-
tivation of discrete event modeling in general is that it is
intrinsically tuned to the capabilities and limitations of
digital computers [3]. If carefully designed, discrete event
models can have high computational efficiency.

Modeling rail vehicle movement is the base element
in vehicle running time estimation [2, 12]. Other model
parts formulate the boundary conditions (such as curva-
tures, control signals and speed restrictions) that influ-
ence vehicle movement. Different modeling paradigms

is a set and < is a transitive, irreflexive, and antisymmetric ordering re-
lation on elements of T (∀t ∈ T); it is conceived as flowing along inde-
pendently, and all dynamic changes are ordered by this flow [3].

1

mailto:y.huang@tudelft.nl
mailto:a.verbraeck@tudelft.nl
mailto:mseck@odu.edu
mailto:y.huang@tudelft.nl

can be used. Each has pros and cons in model detail, ac-
curacy, modularity, and computational efficiency. A con-
tinuous abstraction of vehicle behavior is obtained by as-
suming a continuous time base and defining the rate of
state changes (e.g., location, speed and acceleration) of
a vehicle using differential equations [2]. A discrete time
abstraction is obtained through the definition of a time-
invariant iterative relation between the current state of a
vehicle and the successive state after a predefined time
interval has elapsed [12, 13]. A discrete event abstrac-
tion is obtained through the definition of events that trig-
ger significant state changes of vehicle movement [14–
16]. The choice of (the length of) the time interval or
integration step for continuous or discrete time models
is basically a trade-off between computational efficiency
and simulation accuracy. Owing to a longer tradition, the
continuous modeling style of vehicle movement appears
to be the most intuitive. Although the discrete event ap-
proach is often the most efficient among the three mod-
eling styles [17–19], it does not per se guarantee efficient
simulation. It requires a careful analysis and design of
the simulation model. A good design of a discrete event
model of a continuous or hybrid system can render sim-
ulation more efficient than using continuous or discrete
time representations.

For the light-rail models (or model components) pre-
sented in this paper, we made a number of design choices
that address the issues we just highlighted. The resulting
model component library is called LIBROS (L

¯
i
¯

b
¯

rary for R
¯

ail
O
¯

peration S
¯

imulation). We next discuss some modeling
concepts and design choices related to high level model
design in Section 2. That section lays down the foun-
dation of more detailed model design descriptions pre-
sented in Section 3. Vehicle and infrastructure dynamics
are highly interdependent. It may thus be hard to explain
one without understanding the other. This has led us to
adopt an incremental approach in describing the mod-
els whereby aspects of each subsystem are presented at
different places with increasing levels of detail across the
paper. In Section 4, we present a study with test mod-
els developed with LIBROS and another continuous model
with similar modeling detail and accuracy. Their compu-
tational performances are compared. Some applications
of LIBROS library are presented in Section 5.

2 Modeling Concept

According to Pachl [20], a railway system consists of three
essential elements: (1) the infrastructure with the track-
work, the signaling equipment, the stations, etc.; (2) the
rolling stock with cars and locomotives; and (3) the sys-
tem of operating rules and procedures for a safe and effi-
cient operation. This provides a guideline in how to de-
compose a railway system. A basic idea in designing the
vehicle model is that movement is represented by a dy-
namic relation of a vehicle model to the infrastructure
models where the vehicle is situated in a rail network. We

also designed a communication mechanism where a ve-
hicle model communicates with its environment (includ-
ing other vehicles and the rail infrastructure such as sen-
sors and control signals) and decides on its own move-
ment accordingly. This allows for modeling drive-on-
sight which is an important feature in tramway and light-
rail operation. Many rail simulation tools exist, e.g., mod-
els of stations or terminals [21–24], train network simula-
tors such as Simon/TTS [25], TOPSim [26], RailSys [27],
UX-SIMU [28], VirtuOS [29], SIMONE [14], Multi-train
simulator [30], OpenTrack [31], SimMETRO [32]. Yet very
few, RailSys [33] to our knowledge, support modeling of
urban railway such as tramway or light-rail. Heavy-rail
vehicles generally operate in block systems that provide
strict safe spacing control by signaling2, whereas light-rail
vehicles also drive-on-sight [34]. In the latter case, mod-
eling vehicle interactions is necessary as the vehicles do
not only drive according to signals [33]. Given the large
number of urban areas with light-rail systems and the in-
creasing acceptance of M&S as a method of inquiry [35,
36], there is a growing need for tools that allow for light-
rail modeling. This is the case of HTM, our project part-
ner, a public transport organization that provides light-
rail transport (and other public transport) services in the
Haaglanden region in the Netherlands.

Since microscopic railway models are complex, often
large-scale and take long to develop, we paid particular
attention to composability, reusability and extensibility
in design. It is not hard to argue that for a certain appli-
cation domain, simulation models can be designed to be
more easily reusable and extensible by means of model
components [37–39]. Functional elements in a complex
model that is aimed for reuse should be loosely coupled
to one another3 [41, 44]. Although components should
support composition [45], it is acknowledged by many
authors that model composability is difficult to apply [46–
48]. Composability requires the adoption of principles of
independence and controlled explicit dependencies [49].
In this regard, the DEVS formalism [3] provides strong
support for composition with coupling constrains.

2.1 Modeling Vehicles

The first modeling choice concerns whether to represent
the vehicles as inputs and outputs of some other models
or represent them as models that have autonomous be-
havior. In the first case, the vehicles are represented as
messages (or events) transmitted from one model (e.g.,
infrastructure) to another [50, 51]. In the second case,
they are models that can act on their own. We choose
the latter for a richer vehicle representation (which eases
modeling driving-on-sight) and for modularity. When ve-

2Non signal-controlled modern railway operation (i.e., the commu-
nication between the dispatcher and the train crew is made via tele-
phone or radio) is quite rare in Europe, and can only be found on branch
lines with a very low density of traffic [20].

3Loose coupling may refer to separate domain from representation
[40, 41], separate modeling from simulation [e.g., 3, 5, 42, 43], etc. In this
paper, we only discuss loose coupling among model components.

2

hicles are represented as messages, vehicle behavior may
be mimicked by modifying the message content, which is
dependent on the behavioral units (i.e., atomic models in
case of DEVS) that hold the messages. This would raise
dependency as opposed to modularity. Furthermore,
when we wish to change or extend the vehicle behavior,
we would have to change the behavioral units instead of
the vehicle “itself” which is counterintuitive. A follow-up
question is whether to model the locomotives and cars
separately. We choose not to, because such a separation
is not required by the intended model use. The vehicle
model in LIBROS thus has “an inseparable body”. Choos-
ing a simple but modular design is a principle we used
often in component design. Some other examples are:
how to choose units and boundaries of infrastructures,
whether and how to separate operating rules and infras-
tructures, some of which we will soon discuss.

2.2 Modeling Infrastructures

It is common practice to model railway (or other trans-
port) networks as directed graphs [2]. A choice here is
whether to represent the rail network as a data structure
or as simulation models. A data structure representation
would be an infrastructure map or graph without behav-
ior, while a simulation model has behavior. In the first
case, a behavioral unit needs to hold the infrastructure
map and perform appropriate actions. We may, e.g., let
each vehicle know the complete network, i.e.:

1. Each vehicle holds an infrastructure map and knows its own
location. It announces itself to other vehicles so that it can
be “seen”.

This option (Figure 1-1) results in strongly connected
(vehicle) components that need broadcast-like commu-
nications. The solution is not scalable with regard to map
size and vehicle number. A direct improvement is to use
a centralized solution:

2. A behavioral unit – let us call it a coordinator – holds the in-
frastructure map and maintains a list of vehicles and their
locations. The coordinator communicates with the vehicles
and informs them about the situation of their environment.

In this option (Figure 1-2) all vehicles are connected to
one coordinator instead of to each other. This reduces the
communication cost (1 : n as opposed to n : n). But the
vehicle models are dependent on the coordinator and the
latter is a singleton component with heavy duty. It needs
to, e.g., maintain the states and positions of the vehicles,
find which vehicles may affect the others, and inform the
potentially affected vehicles so that they may adapt their
movement accordingly.

In both options, we did not yet mention that the infras-
tructure also has behavioral parts. Sensors, switches and
signals are non static4. They work together in some areas

4Sensors refer to different vehicle detection and track clear detec-
tion devices used in rail operations and controls [20, 52]. Switches (also
known as switchpoints or points) are movable track elements that are

(1)

Vehicle
Map

Vehicle
Map

Vehicle
Map

Coordinator

Map List Vehicle

Vehicle Vehicle Vehicle

Coordinator

Map List Vehicle

Vehicle Vehicle Vehicle

List Infra

Infra InfraInfra

Coordinator

VehicleVehicleVehicle

Infra Infra Infra

Sub-
coordinator

Sub-
coordinator

Sub-
coordinator

Infra Infra Infra

Sub-
coordinator

Sub-
coordinator

Sub-
coordinator

Vehicle Infra Vehicle Infra

Vehicle Infra

Infra

Infra

InfraInfra

Infra

Vehicle

Vehicle Vehicle

(2) (2*)

(3) (4) (5)

Figure 1: Modeling options for infrastructure models

to safeguard vehicle movement. They also need to inter-
act with vehicles. Similar to what is described in option 2,
this interaction can be managed through the coordinator.

2*. A coordinator also holds a list of the behavioral infrastruc-
ture parts and their locations in the map. It manages the
communications among these infrastructure parts and the
vehicles.

This (Figure 1-2*) results in a more complex single-
ton component which has to handle all communications
among vehicles and dynamic infrastructure parts (and to
detect communication relations among them). To reduce
this complexity, we can use the principle of separation of
concerns: divide and distribute the responsibilities, e.g.,
to some sub-coordinators. A natural choice would be
a geographical partition where a sub-coordinator is re-
sponsible for one partitioned area. The communications
may still be handled through a coordinator or only by the
sub-coordinators themselves. As such, we may have the
following two options:

3. Each sub-coordinator holds a sub-map and manages a par-
titioned area. The sub-coordinators communicate with a
higher level coordinator who has a global view of the vehi-
cle locations.

4. Each sub-coordinator holds a sub-map and manages a par-
titioned area. It has a local view of the vehicle locations. The
sub-coordinators communicate with one another.

At first glance, the difference between the two op-
tions may be only in the degree of centralization. In op-
tion 3 (Figure 1-3) vehicles communicate with each other
through a coordinator (as in option 2 or 2*). Communi-
cations with the dynamic infrastructure parts are through
sub-coordinators5. In option 4 (Figure 1-4) the central co-

used to transfer rolling stocks from one track to another [52]. Signals in-
dicate if a movement may enter the section of track behind (i.e., beyond)
the signaling equipment [20].

5Without a central coordinator, we may directly connect each vehi-
cle model to each sub-coordinators. But this setting of connections may
be less desirable.

3

ordinator is left out. Each sub-coordinator shall locally
handle the communications among the vehicles and the
dynamic infrastructure parts within its area. When two
vehicles in two areas need to communicate, the two cor-
responding sub-coordinators shall together handle the
communications. An important difference between the
two options, however, is that option 3 has a static model
structure while option 4 would require dynamic model
structure, which means that the model is designed to
change its structure during simulation. In option 4, when
vehicle models “move” in the infrastructure network, they
need to be dynamically connected to the corresponding
sub-coordinators.

The vehicle models in option 4 are connected to
the sub-coordinators instead of one central coordina-
tor, which is a less centralized solution compared to op-
tion 3. We may take this decentralization one step fur-
ther by leaving out the sub-coordinators: vehicle mod-
els can be directly connected to infrastructure models. In
the aforementioned options, the infrastructure network
is represented by maps or sub-maps (i.e., data structures)
in which only the behavioral parts are represented by in-
frastructure models. In other words, the infrastructure is
represented partly static and partly dynamic (which is in-
deed the case in reality). We can, however, represent the
infrastructure solely with (dynamic) models to achieve
uniformity in infrastructure representation. In this way,
the connectedness of the infrastructure model parts rep-
resents the network structure (Figure 1-5). As in option 4,
the vehicle models can be dynamically connected to the
infrastructure models in order to model their movement.

5. The infrastructure is represented by a network of infrastruc-
ture models. A vehicle model is dynamically connected to
the infrastructure models on its moving trajectory to repre-
sent vehicle movement.

We are in favor of option 5 for four reasons. First,
the uniformity in infrastructure representation increases
cohesion and potentially improves model composability.
Second, coordinators and sub-coordinators are left out,
which reduces artifacts that are constructed solely for the
purpose of modeling. This potentially leads to simpler
and more understandable morphisms. Third, decentral-
ized communications allow for convenient modeling of
autonomous behavior. Fourth, representing the infras-
tructure network as connected models permits flexibil-
ity in the sense that modelers may change model behav-
ior by changing (infrastructure) model structure. Uni-
formity in model representation, model behavior auton-
omy and model structure flexibility allow for automated
model generation discussed in Huang [1].

Infrastructure Elements The granularity of the infras-
tructure model is in accordance with a common sense
decomposition of railway systems [2, 20, 52, 53]. At its
lowest description level, the infrastructure model is a net-
work of Rail Infrastructure Elements (RIEs) such as track
segments, sensors, switches and signals (the last three are

hereinafter abbreviated as 3S). RIEs can be used to recur-
sively compose higher-level infrastructure components.
(In DEVS, the former are specified in atomic models and
the latter in coupled models.) This recursive composi-
tion makes up an infrastructure network that has a (mul-
tilevel) Compositional Containment Hierarchy (CCH). For
example, a tram stop (or halting place) is composed of
track segments and a sensor; an intersection (or crossing)
is composed of track segments and 3S; the two composed
models can further be composed. In controlled areas
such as an intersection, the 3S models need to communi-
cate with one another: the signals (or signaling) need to
be coordinated for safety control, during which the sen-
sors in the area are for vehicle detection, and the switches
change positions if necessary allow vehicles moving from
one track to another. This coordination (or control) is
carried out by a control unit in the area. The use of lo-
cally centralized communications (and control) through
the control unit is a logical outcome of informed model-
ing rather than a deliberate design choice.

2.3 Modeling Vehicle Communications

A vehicle model needs to communicate with its “environ-
ment” to decide upon its actions. Option 5 in Section 2.2
presents the concept of representing the infrastructure
as a network of infrastructure model parts, and connect-
ing vehicle models dynamically to where they are located.
This section addresses two issues in this design:

i How to connect a vehicle with an infrastructure model?

ii How does a vehicle communicate with another model?

Consider a simple scenario: a vehicle V drives along
a rail track composed of four successive track segments
T 1 ∼ T 4 (Figure 2-1). V can be connected to T 1 ∼ T 4 at
four time instances corresponding to the time6 needed by
V to move from one segment to the next. Suppose that T 2
and T 3 together form a composed infrastructure model
T ′. Then V can be connected with T 2 or T 3 in two ways:

T1 T2 T3 T4

V

T1 T2 T3

V

T4 T1 T2 T3

V

T4

(1)

(2) (3)

T '

T ' p

Figure 2: Vehicle and infrastructure model connections –
a simple scenario of a vehicle V drives along a rail track
composed of four successive track segments T 1∼ T 4

6This time is calculated, e.g., based on the length of the track seg-
ment and the vehicle’s speed and acceleration.

4

T1 T2 T3

V

T4 T1 T2 T3

V

T4

(1) (2)

T '

T ' p

V '

V '
q

Figure 3: Vehicle and vehicle/infrastructure model con-
nections – a simple scenario of an extra vehicle V ′

1. place V in T ′ and connect V directly with T 2 or T 3 (Figure 2-
2), or

2. place V outside of T ′, connect V with T ′ at port p , and con-
nect port p with T 2 or T 3 (Figure 2-3).

Which option is better? We cannot yet decide as such.
Let us take a look at, in both cases, how a vehicle can com-
municate with another component. Suppose there is an-
other vehicle V ′ connected to T 1. Corresponding to the
above two options, we can connect the two vehicles in
two ways:

1. connect V with V ′ at port q of T ′, as Figure 3-1, or

2. directly connect V with V ′, as Figure 3-2.

Suppose at the position of T 4 there is a signal S instead.
The connections of V and S will be similar to those of V
and V ′. Neither option is better in terms of ease of con-
nection. Both have direct and indirect connections7 with
model components depending on whether the compo-
nents have the same parent model. As the vehicles can
be anywhere in the network which has a CCH, we often
need to connect (and disconnect) models that belong to
different levels. These connections can be costly.

Vehicle models need to communicate with RIE mod-
els (vehicle-to-infrastructure or V2I) and other vehicles
(vehicle-to-vehicle or V2V). The communications can fo-
cus on the most relevant, meaning that a vehicle model
only needs to communicate with (1) its next closest RIE,
and (2) its closest preceding and following vehicles, if any,
within a certain distance. A vehicle’s location is not static;
neither are its connections to its next closest RIE and its
preceding vehicle (the V2I and V2V connections). Our in-
terest in reducing the cost of dynamic connections natu-
rally brings out the following question: Can we use static
connections for vehicle communications?

Setting up all possible connections aforehand is not
an acceptable option. There is, nonetheless, an option
worth considering. The infrastructure model is a stati-
cally connected network. When a vehicle model is con-
nected to the network, it has in principle connections to
any model that is connected to the network, despite that
the connections are mediated in the sense that there are
RIE models in-between. As such, we can use the infras-
tructure network as the backbone of vehicle communi-

7Two components are indirectly connected when there are more
than one link connecting them. A link (or connection) directly joints
two ports of two components.

cations. Take Figure 3-1 as an example: V ′ is connected
with V through T 1 and T 2. Hence, it is possible to es-
tablish communications between V ′ and V through the
two intermediates without extra dedicated connections
between V ′ and V . When V ′ sends a message to V or vice
versa, T 1 and T 2 can pass on the message. By this prin-
ciple, any vehicle can communicate with other vehicles
and RIEs via the infrastructure network. We only need to
dynamically connect each vehicle to the RIE model where
the vehicle is located. Then it makes sense to directly con-
nect a vehicle with a RIE, i.e., connection option 1 (Fig-
ure 2-2 instead of Figure 2-3). The number of dynamic
connections, therefore, is equal to the number of vehicle
models in the simulation. We call this mediated message
passing mechanism Message Propagation.

2.4 Dedicated Dynamic Connections vs.
Message Propagation

How is Message Propagation (MP) compared to commu-
nications using Dedicated Dynamic Connections (DDCs)?
In the second case, point-to-point V2V and V2I connec-
tions are established when vehicles are to exchange mes-
sages directly with other vehicles or RIEs. This requires
three steps: (1) given a vehicle model, search for its next
closest RIE or preceding vehicle; (2) if found, establish
connections (or couplings) between the two models; (3)
the two models can exchange messages.

In the case of MP, the existing static connections of
the infrastructure network are used, and the message are
exchanged indirectly through the mediated RIE(s). New
connections are not needed (step 2 above) between the
communicating models. We can spare the search func-
tion (step 1 above) since the next closest RIE and preced-
ing vehicle can both be found during MP. The basic con-
cept of MP can be generalized as following: (1) at a cer-
tain instant, when a given vehicle needs to know its next
closest RIE and preceding vehicle, it sends out a (request)
message; (2) the message is forwarded by the RIE(s) along
the vehicle’s route; (3) once the next closest RIE or pre-
ceding vehicle (if any) receives the message, it sends a
(response) message back; (4) the message is forwarded
by the RIE(s) back to the original vehicle. After such a
round of MP, a given vehicle model receives at least one
and at most two response messages. To achieve the same
result, DDCs need to search and set up connections for
two times. The MP, however, introduces the overhead of
message forwarding by the mediated RIEs; each message
forwarding entails one extra model state transition.

In order to make an informed decision, the time and
space complexities [54, 55] of both designs are estimated8

(Table 1). The estimation of communications cost uses
one vehicle movement computation as one unit.

8High level designs can be concretized in many different ways even
with the same modeling concept in mind. Our estimation is theoretical
since no detailed model design is available at a high level design stage.

5

Cost of DDCs In DDCs, step 1 can be solved by a
Breadth-First Search (BFS) in the infrastructure network9

starting from the RIE node where the vehicle is located.
BFS has linear time and space complexities; T (f BFS) =
O
�

n
�

or f BFS∈O
�

n
�

[55]10 where n is the number of nodes
(i.e., RIEs). Since the vehicles drive along predefined
routes, we can improve the search cost11 to O

�

log n
�

.
For step 2, setting up (or removing) a dedicated con-

nection between two models requires knowing their par-
ent. This can be solved by a Lowest Common Ancestor
(LCA) finding algorithm in the CCH of the infrastructure
model. LCA has linear time and space complexities to the
tree height [56]. The number of RIE nodes n in the infras-
tructure network is the leaf number in the tree of CCH
(hereinafter called Model Composite Tree or MCT). The
number of inner nodes in relation to the leaf number n
in a full k -ary tree is (n −1)/(k −1); hence the number of
total nodes in a tree is 2n − 1 in the worst case12, which
has a tree height of log (2n −1). The LCA, therefore, has a
complexity of O

�

log n
�

, i.e., T (f LCA) =O
�

log n
�

.
The connection setup (or removal) basically has the

same time and space complexities as LCA since it uses
the (intermediate and final) result of the latter. To set up
the connection we first need to create ports. The ports
and connection themselves create extra space complex-
ity of O
�

log n
�

for each connection. Because each vehi-
cle always has one or two connections during its (simu-
lation) lifetime, the total space complexity of the connec-
tions at a certain instant is O

�

N log n
�

where N is the ve-
hicle number in a simulation at an instant. Note that N
is smaller than Nv which is the total number of vehicles
(generated) during a simulation run.

Search Connections Communications
BFS LCA Setup Message sending Transitions

DDCs O
�

log n
�

O
�

log n
�

O
�

log n
�

O
�

log (n+N log n)
�

O
�

δc
�

MP – – – O
�

log n
�

O
�

δp log n
�

Table 1: Time complexity of V2I or V2V communications
with DDCs or MP. The complexity denoted is per unit,
which estimates how much total communications cost is
required for one vehicle movement computation at one
instant. The complexity in a whole simulation run raises
over the total number of vehicles generated Nv and the
number of RIEs n , e.g., the total time of BFS in a simula-
tion run is O
�

Nv n log n
�

.

9The infrastructure network model, as how it is connected, is a di-
rected graph with RIEs as nodes. The infrastructure network model, as
how it is composed has a Compositional Containment Hierarchy (CCH).

10In literature, BFS runs in O
�

n +m
�

time where n is the number of
nodes and m is the number of edges in a graph. We consider it to be
O
�

n
�

as the infrastructure network is sparse, i.e., n ∼m .
11To keep the discussion as general as possible, search improvement

with bound constrains is not considered. Bound modifications are not
always applicable and are different from case to case.

12A tree has a maximum node number of 2n−1 when it is binary, i.e.,
k = 2, given a leaf number n .

In step 3, message sending requires searching a list
where the existing vehicle connections (or couplings) are
stored. As just mentioned, the space complexity of con-
nections is O
�

N log n
�

. We hence estimate the time com-
plexity of message sending to be O

�

log (n+N log n)
�

. The
space complexity of one message is constant O

�

1
�

. In
DDCs, a message has only one receiver. Receiving a mes-
sage triggers the state transition (δc ; c stands for connec-
tion) of the receiver. Its cost O

�

δc
�

depends on the design
of the receiver model (see discussions below).

Cost of MP MP relies on indirect communications. A
clear advantage is that extra dynamic connections are
not required. Hence, the related search and connection
costs for (re-)configuration are spared. Message sending
itself is simple since one vehicle is only connected to one
RIE at any instant. The time complexity of MP, however,
grows with the distance, i.e., the number of intermediary
RIE models along the route, between the original sender
and the final receiver; O

�

log n
�

. For message passing, we
have to impose overhead on the intermediary RIE mod-
els. Upon receiving a message, each intermediary RIE
model needs to forward the message. Once the message
reaches its final receiver, be it a RIE or vehicle model, the
receiver responds to the message and, if necessary, com-
putes its state accordingly. In both cases, state transi-
tions are required. We denote the transition function as
δp (where p stands for propagation). An estimate of the
total cost of the transitions is O

�

δp log n
�

as each model
along the route is involved in MP.

Costs of Transitions δc and δp From the perspective
of a sender or receiver, the outcome of DDCs and MP
(through functions δc and δp) should be comparable. In
DDCs, a sender and a receiver communicate directly. In
a modular design, they shall exchange information about
their own states; the situation between the two is not con-
tained in the message per se. When latter information is
needed, extra communications are required. This entails
extra communication cost accounted for δc .

In principle, the state transitions δp performed during
MP shall: (a) fulfill the functionality of transitions δc in
DDCs, and (b) undertake the overhead Λ introduced by
the use of MP. Each model along the propagation route
can also participate as a communicating party rather
than merely a messenger. Hence, δp can be assigned with
tasks beyond simple message forwarding. Modelers may
design rich behaviors that intermediary models can per-
form so long as these behaviors are conceptually consis-
tent with the purpose of the model components. In LI-
BROS, the intermediary RIE models are designed to per-
form search function and to enrich the information con-
tained in a message.

MP can be a good choice when the functionδc in DDCs
can be replaced by simple tasks performed by δ′p of the
models in MP even after taking on the overhead Λ; that is
when O
�

δc
�

¦O
�

δp log n
�

÷O
�

(δ′p +Λ) log n
�

. O
�

δp
�

can

be kept low by low O
�

δ′p
�

and O
�

Λ
�

, meaning that a good

6

decomposition of function δc into δ′p and a good design
of the transition functions that handle the overhead Λ. In
LIBROS, the transition function δp in RIE models have a
constant time complexity, δp ∈ O

�

1
�

, for each message
forwarding. This makes MP an attractive design option.

A Joint Consideration We choose to use MP in LIBROS

not only because it has a reasonable estimated cost in
computation given our modeling context. It has advan-
tages in terms of model design. First, indirect commu-
nications in MP result in a simpler model structure com-
pared to that in DDCs. A direct outcome of this is that less
couplings are needed. Second, simpler functions (with-
out BFS, LCA and connection setup) or the decomposi-
tion of large functions into simpler ones (in case of δc to
δp) means that less model components or smaller com-
ponents are needed. Simpler components are easier to
understand, develop, test and document. They are also
easier to reuse and extend.

3 Model Design

3.1 A Communication Mechanism: Message
Propagation

MP is a mechanism for decentralized indirect communi-
cations in a connected network model. Each RIE is ca-
pable of message propagation, which can be in the direc-
tion of the traffic or in the opposite direction. A vehicle
model’s main task in LIBROS is to correctly compute its
movement based on the information about its next clos-
est RIE and the preceding vehicle it is approaching. If
either type of information is absent before a movement,
a vehicle sends a message forward13 which requests this
information. The vehicle model’s next closest RIE and
preceding vehicle shall respond to the message, which
is then propagated back to the original vehicle. Obtain-
ing the information, the vehicle is able to compute its
movement trajectory to reach the next infrastructure. Af-
ter reaching the RIE, a new iteration of this process starts
and so on until the vehicle reaches its final destination.

MP is also used when vehicles or RIEs change their
states and want to make the changes known to some
other vehicles. In such cases, a model announces its state
change by sending a message backward14. An approach-
ing vehicle model can receive the message and change its
movement accordingly when necessary.

Example 1 Figure 4 illustrates a simple model composed
of four successive track segments (T0 ∼ T3) and two vehi-
cles (V0 and V1). Each segment has a length (L0∼ L3) and
a speed limit (SL0 ∼ SL3). Each vehicle has a length (VL0
and VL1), a position (P0 and P1) on the track segment15

it is coupled with, and its current speed limit (CSL0 and

13A message forward is propagated in the direction of the traffic.
14A message backward is propagated opposite to the traffic.
15A vehicle’s position on a track segment is defined as the distance

between the vehicle’s front end and the start node of the segment.

P0 P1
V0 (VL0, P0, CSL0)

M0
M1

M3M4

M5
M3'

M4' M5'

M6M7M8

T3 (L3, SL3)T2 (L2, SL2)T1 (L1, SL1)T0 (L0, SL0)

V1 (VL1, P1, CSL1)

M9
M2

Figure 4: Message propagation in Example 1

CSL1). Suppose V0 is on T0 and V1 is on T3, i.e., V0 is be-
hind V1 given that the direction of the traffic is from left
to right; V0 does not have the information about its next
infrastructure nor its preceding vehicle.

3.1.1 Request and Response Messages

In Example 1, V 0 shall send a message forward (
−→
M 0)16.

Two message prorogation sequences are generated upon

this action: (1)
−→
M 0,

−→
M 1,

−→
M 2,

←−
M 3,

←−
M 4,

←−
M 5, and (2) (

−→
M 0,

−→
M 1,

−→
M 2,)

−−→
M 3′,

−−→
M 4′,

←−−
M 5′,

←−
M 6,

←−
M 7,

←−
M 8,

←−
M 9. To reduce the

frequency of MP, we defined the following rule: a RIE
model responds to a request message only when the RIE
requires or potentially requires a change in movement of
the requesting vehicle. We call such a RIE the next clos-
est RIE of interest (NCRI) of a vehicle. Some examples of
NCRIs are: (a) the RIE has a defined speed limit which is
different to the current speed limit of the requesting ve-
hicle; (b) the RIE is a signal; (c) the RIE is (or is in) a stop,
a station, a terminal, etc.

For MP sequence (1), we assume that (SL1 = ∞ ∨
CSL0 = SL1) ∧ (SL2 6= ∞∧CSL0 6= SL2). It means that
the speed limit of T 1 is undefined or it is the same as the
current speed limit of V 0, and the speed limit of T 2 is de-
fined and it is not the same as the current speed limit of
V 0. Therefore, T 1 does not respond to the request mes-

sage but propagate it forward (
−→
M 2); T 2 responds to the

request by a backward message
←−
M 3 which is propagated

back to V 0 through T 1 and T 0 (
←−
M 4 and

←−
M 5).

While responding to the request from V 0, T 2 also

propagates the request forward to T 3 (
−−→
M 3′) because V 0’s

preceding vehicle (PV) is not yet found. This generates MP
sequence (2). For MP, there are two other rules defined:
(1) a RIE model forwards a request message to the vehicle
model closest to its start node when there is any vehicle
coupled with it; and (2) when a vehicle model receives a
request message, it responds unconditionally. In Exam-
ple 1, T 3 has V 1 coupled with it, so it forwards the re-

quest to V 1 (
−−→
M 4′). In response, V 1 sends

←−−
M 5′ addressed

to V 0, which is propagated back to V 0 (
←−
M 6 ∼ ←−M 9). By

the time, T 3 stops propagating the message because both
the NCRI and the PV of V 0 are found. This concludes this

16We use an arrow to indicate direction forward (→) in case of a re-
quest message or backward (←) in case of a response message.

7

Sender
Distance
Accumulation

M
es

sa
ge

Distance value (d) in Message

R
ec

ei
ve

r

1. V 1 d ← P1−VL1
←−−
M 5′ P1−VL1 T 3

2. T 3 d ←−
M 6 P1−VL1 T 2

3. T 2 d ← d + L2 ←−
M 7 P1−VL1+ L2 T 1

4. T 1 d ← d + L1 ←−
M 8 P1−VL1+ L2+ L1 T 0

5. T 0 d ← d + L0 ←−
M 9 P1−VL1+ L2+ L1+ L0 V 0

6. V 0 d ← d −P0 – P1−VL1+ L2+ L1+ L0−P0 –

Table 2: Distance accumulation in the response of MP se-
quence (2) in Example 1

round of MP initiated by V 0 sending out a request mes-

sage
−→
M 0 and ended by two responses

←−
M 5 (from T 3, V 0’s

NCRI) and
←−
M 9 (from V 1, V 0’s PV).

3.1.2 Distance Accumulation in Messages

The distance between the original sender and the receiver
is accumulated by the vehicle and RIE models during MP.
Table 2 gives the steps of distance accumulation in Exam-

ple 1. In response to V 0’s request, message
←−−
M 5′ is created

by V 1, addressed to V 0, and sent to T 3. When a vehicle
creates a backward message, the distance d is set to the
value of the vehicle’s position on a RIE model deducted by

the vehicle’s length (
←−−
M 5′ has d = P1−VL1). When a RIE

model receives a backward message, it does not change
the value of the distance if the original sender is a vehi-
cle that is coupled to the RIE; otherwise the RIE increases
the value by its own length. Thus, T 3 does not change d

in
←−
M 6, while T 2, T 1 and T 0 add their own lengths to d in

the three successive messages (
←−
M 7 ∼ ←−M 9). T 0 forwards

←−
M 9 to V 0 that concludes the backward propagation. V 0

holds the response
←−
M 9 with d = P1−VL1+ L2+ L1+ L0,

the distance from the rear end of V 1 till and include T 0.
When V 0 needs to know its distance to V 1, it deducts d
with its own position on T 0.

3.1.3 Update Messages

Suppose that, in Example 1, at a certain instant, V 1 had
a state update. In order to announce this, V 1 creates an
update message, which will be propagated backward to
V 0 that is driving behind. An update message is created,
without an addressed recipient, by a vehicle or RIE model
straight after a state change, and is propagated backward
to a vehicle model closest to the original message sender
within a predefined distance bound.

Remark The design of MP (and distance accumulation)
supports a good level of modularity and composability of
the model components in LIBROS. We deem the design
modular in the sense that each (vehicle or RIE) model
only uses its local information (viz., the state variables of

the model component itself) and the information con-
tained in the messages it receives to determine its own
behavior. The direct dependency among the (vehicle and
RIE) models is limited to the couplings designated for
MP and to the messages being propagated. Simple MP
rules are defined for cohesive model communications so
that messages can be created, understood, manipulated
and routed by the communicating parties. The models
in LIBROS can be composed to work together in a modu-
lar manner without prior knowledge of the infrastructure
model layout because of each model’s observance of the
communication protocol (or rules). Note that MP is per-
formed in LIBROS with zero (simulation) time advance.

3.2 An Overview on Infrastructure Models

The infrastructure models in LIBROS are characterized at
a high level by whether the model is atomic or coupled,
and whether it has only one inflow and outflow of traffic
or more. The former is related to the modeling formalism,
and the latter to the domain specificity. This orthogonal
abstraction is designed as multiple inheritance [57, 58].

3.2.1 High Level Infrastructure Model Classes

The RIE models are defined as InfraElement and the
composed infrastructure models as CoupledInfraModel
(Figure 5) by the respective specialization of the
AtomicModel and CoupledModel classes provided by the
ESDEVS library (Section 4). Both infrastructure classes
also implement InfraInterface which defines a num-
ber of common functions mainly concerning operations
on the model ports and couplings.

CoupledInfraModel is used to define domain meta-
models. It has two specializations. The root infrastruc-
ture model is declared as a (singleton) TopLevelModel
with no parent model17. It serves as a container for
the simulation model to be constructed (manually or
automated) interfacing the simulator. The second spe-
cialization of CoupledInfraModel is InfraComponent.

Figure 5: High level infrastructure model classes in LIBROS

17A parent model is a coupled model that contains a child model as
a sub-component.

8

It is for defining meta-models of infrastructure com-
positions that are meant to be component units for
model construction. By component units, we mean
that the sub-components in an InfraComponent (as an
unit) are strongly related such that their composition
often reoccurs and can be reused as an assembled
whole. An InfraComponent is defined for the conve-
nience of model assemblance and reuse. InfraElement
and InfraComponent each has a specialization that im-
plements SimpleInfraInterface (SimpleInfraElement
and SimpleInfraComponent). The prefix Simple- indi-
cates that the component being addressed has only one
inflow and outflow of traffic. In other words, the compo-
nent is not a switch or has no switch as a sub-component.

3.3 Vehicle Model

In literature, there are two approaches that support mod-
eling of continuous and hybrid systems using the dis-
crete event paradigm and the DEVS formalism in partic-
ular: Quantized DEVS (QDEVS) and Generalized DEVS
(GDEVS) [5, 59]. Quantization discretizes (or quantizes)
the state space rather than the time base as in discretiza-
tion. The principle is similar to that of an analog-to-
digital converter. GDEVS [18], on the other hand, is an
approach that supports discrete event modeling of con-
tinuous and hybrid systems [5]. It is more general than
classic DEVS such that the state trajectory segments can
be polynomial instead of constant. The coefficients of the
polynomial segments are piecewise constant. As such, an
event in GDEVS can be considered as a coefficient-event
that activates or potentially activates a change of at least
one of the coefficients [60]. The choice between QDEVS
and GDEVS is in principle a choice between continuous
and discrete event modeling styles. GDEVS allows mod-
elers to decompose a modeling problem into less com-
plex ones and express them in polynomials which oth-
erwise have to be expressed as a whole in differential
equations. This is an advantage both for modeling and
for model understandability. In order to model in GDVS,
modelers have to know how a system responds to input
events which are deemed significant. This can be seen as
a disadvantage as the information is not always available
or complete [5]. We use GDEVS for vehicle movement
modeling. Vehicle movement can be conveniently or-
ganized through piecewise polynomial segments where
state changes occur when a vehicle changes its accelera-
tion. The events that correspond with such state changes
are well understood and can be rigorously defined.

3.3.1 Modeling Vehicle Movement

Since our model does not require kinematics or tractive
force18 considerations, we apply equations of motion in
polynomials with constant acceleration. Given velocity vi

and its assumed constant acceleration a i at time t i , a ve-
hicle’s velocity v j and movement distance s i after a time

18Relevant formulas can be found, e.g., in [2] pp. 61∼80.

Accomplished by
message propagation

Send request
message

Receive response
message

Compute next
movement
(ai and Δt’)

Move

Zero simulation time

Figure 6: The action steps in one round of movement with
message request

interval 〈t i , t j 〉t i¶t j are: v j = a i ∆t +vi ; s i = (vi +v j)∆t /2;
(∆t = t j − t i), where∆t or t is the variable, and vi and a i

are the coefficients that are constant in each polynomial
segment. When a vehicle completed a certain movement
in 〈t i , t j 〉, the value of its v j or the new vi value for the
next polynomial segment is determined. It still has to de-
cide upon the new a i value for the next segment as well
as the anticipated time (let us call it ∆t ′ or t ′) of the next
segment. In order to do so, a vehicle sends a request mes-
sage as described in Sections 3.1, and it shall receive re-
sponse messages19 by NCRI and PV, if any, in zero simu-
lation time (Figure 6). Then, a vehicle model can its com-
pute a i and t ′ (or its movement) to a position so far forth
as safe driving is assured. Ideally, it successively computes
the movement to each NCRI that it approaches.

Example 2 At time t i position p i , vehicle V has velocity
vi , acceleration a i (Figure 7). After MP, V knows its NCRI
is at distance d NCRI position p j with speed limit l NCRI.

dNCRI V(vi, ai) at ti, pi

NCRINCRI

dNCRI V(vj, aj) at tj, pj

NCRI

Vehicle position p

S
pe

ed
 v

pi pj

lNCRI

lNCRI

pk

vi

vj

a=0

a=0

a>
0

a>
0

vj

a<0
a=0

lNCRI

Figure 7: Movement computation with NCRI

V can therefore compute its movement until the NCRI
at position p j , say at time t j . Because the value of vi ,
the current speed limit l (i.e., the previous l NCRI) and the
current l NCRI are not necessarily the same, the movement
until the NCRI (from p i to p j) can consist of more than
one polynomial segment where acceleration a changes.
In Figure 7, two movement trajectories from p i to p j are
shown for two different cases:

1. Suppose vi < l < l NCRI, the movement would consist of two
polynomial segments, viz., (1) a > 0, (2) a = 0.

19The information includes a vehicle’s distance to its NCRI d NCRI, the
speed limit or restriction l NCRI required by the NCRI, and if applicable,
a vehicle’s distance to its PV d PV, and the velocity vPV and acceleration
a PV of the PV.

9

2. Suppose vi < l > l NCRI, the movement would consist of three
polynomial segments, viz., (1) a > 0, (2) a = 0, (3) a < 0.

In the first case, a changes one time from a positive
value to zero so that v remains constant afterwards un-
til p j . In the second case (shown in gray), a changes once
more and becomes negative so that v reduces to l NCRI at
the moment when V reaches p j . Once V is at p j time t j ,
the vehicle is dynamically coupled to the current NCRI
instead of the previous NCRI to represent its changing of
position. This starts a next round of MP and movement.

Example 3 Suppose V in Example 2 has a PV at distance
d PV at time t i (Figure 8). PV is not moving (vPVi = a PVi =
0), and is closer than NCRI (d PV < d NCRI).

dNCRI V(vi, ai) at ti, pi

NCRINCRI

dPV PV(vPVi, aPVi) at ti, pPVi

NCRI

Vehicle position p

Ti
m

e
 t

pi p’PVi

ti

aPV>0

S
pe

ed
 v

vi

a=0 a<0

pj

lNCRI

a=0a>0

tk

tj

ta

pkpPVip’j

v P
V
=a

PV
=0

v=a=0

tb

t’j

tc

pa pc

Figure 8: Movement computation with NCRI and PV

In this case, the computable movement to NCRI needs
to be shortened. The distance d NCRI has to be divided
into parts. Each is to be computed separately. How V
can move towards its NCRI depends on how PV moves if
the latter is close enough. In Example 3, V has to stop be-
hind the PV: at time t i , V can only compute its movement
no further than the PV’s rear end position p ′PVi . The stop
position is with some safety distance to p ′PVi , shown as
p ′j . During the movement, V must stop in time: it starts
to brake at pa time ta , and after a time interval 〈ta , t ′j 〉 it
stops at p ′j . Hence, the movement has two segments:

(1) in interval 〈t i , ta 〉, V moves with a constant speed vi (a = 0)
from p i to pa ;

(2) in interval 〈ta , t ′j 〉, V moves with a decreasing speed (a < 0)
from pa to p ′j where its end speed reaches zero.

When V can drive again, it still needs to compute its
movement to the NCRI according to the new situation.
Suppose that at tb , PV starts driving and it drives fast
enough so that V can drive freely without considering PV.
In principle, V can accelerate (a > 0) until the speed re-
striction l NCRI. If so, the acceleration would last for a time
interval 〈tb , tc 〉, starting at position p ′j ending at pc . Sup-
pose that the position of NCRI p j is closer than the accel-
eration distance. The movement can only be computed

until p j where V has to be coupled to the NCRI at the time
when V reaches it. This movement therefore has one seg-
ment: in interval 〈tb , t j 〉, V moves with a increasing speed
(a > 0) from p ′j to p j . Once V arrives p j , it is dynamically
coupled to the NCRI. Next round of MP starts.

Remark The above two simple examples elaborate how
a vehicle model can successively compute its movement
(which can consist of a number of piecewise polynomial
segments) to its NCRIs in a discrete event manner taking
into account the movement of its PV. In essence, a vehicle
computes the (internal) events of two groups of actions:
(i) when it shall move from one NCRI to the next, and (ii)
when it shall change its acceleration rate.

A vehicle model decides locally its actions according
to the information at hand. As explained in Section 3.1,
when a vehicle model changes acceleration, it sends out
an update message (backward) so that a following vehi-
cle, if any, can be informed of this change. Consequently,
the (external) events of (the arrival of) update messages
can be expected at any simulation time. This means that
the execution of an anticipated movement may be inter-
rupted by an update message from a PV, say at time text.
If so, the movement after text has to be computed anew
(Figure 9). In this context, “movement” or “move” is used
in a general sense: it not only refers to a vehicle’s moving
actions but also non-moving actions such as scheduled
or unscheduled waiting20.

Referring back to the waiting between 〈t ′j , tb 〉 in Exam-
ple 3, from time t ′j onwards, V is in an unscheduled wait-
ing because its PV is on halt. In this case, V is in passiv-
ity (or a passive state). When the PV starts driving some
time after t ′j , V receives an update message from the PV
of this event, which activates V to compute its movement
according to the new situation. Time tb is V ’s decision
when it restarts driving. It can, e.g., wait until the PV has
driven some distance.

When an external event arrives, it interrupts and can
diverge the anticipated state variable trajectories. Such
interrupts often occur in the simulation of discrete event
models and need to be treated with particular care when
using piecewise polynomial abstractions.

(ai Δt’)

interrupts

Figure 9: The action steps in one round of movement with
an update message

20An unscheduled waiting has an undefined waiting time which can
be interrupted, while a scheduled waiting has a minimum waiting time
which can not be interrupted.

10

3.3.2 Handling External Events

A state variable expressed by polynomial segments is not
meant to be constant. Its values are only computed for
chosen (external and internal) events. When an external
event (or interrupt) arrives, a state variable still holds an
old value that was updated at the past event. Thus, the
value must be updated for the present time.

Example 4 Figure 10 depicts an example of state variable
update in the vehicle model. The two state variables being
updated are the speed v and the position p .

Vehicle position p

Ti
m

e
 t

pi

ti

S
pe

ed
 v

vi

a=0

pj

a=0
a>
0

tk

tj

pkpext p’j

t’j

v’j

a<0

t’k

text

vext

vj

P1

P1

P2

P2

P3

P3

P4

P4

P5

P5 P6

P6

Figure 10: State variable update of speed v and position
p in the vehicle model with an update message at text

An anticipated movement is computed from position p i

to pk . It supposedly takes place in time 〈t i , t ′k 〉 and is con-
sisted of two segments shown with black lines: (1) in inter-
val 〈t i , t ′j 〉, V moves with an increasing speed (a > 0) from
p i to p ′j in which the initial speed is vi and the final speed
is v ′j ; (2) in interval 〈t ′j , t ′k 〉, V moves with a constant speed
v ′j (a = 0) from p ′j to pk . Suppose that, during the first an-
ticipated segment of 〈t i , t ′j 〉, an update message arrives at
time text. It diverges the movement trajectory away, shown
with gray lines, from the anticipated movement.

As in the previous examples, only a number of cho-
sen points (or values) on the polynomial trajectories are
computed. They are at the start21 and the end of a tra-
jectory, and where the segments change coefficients (i.e.,
only the dots not the lines). The values of the three black
dots (•) are first computed. They are P1 = (t i , vi , p i),
P2 = (t ′j , v ′j , p ′j), and P3 = (t ′k , v ′j , pk) that pinpoint the an-

ticipated movement trajectory P1
a > 0−−→ P2

a = 0−−→ P3. If no ex-

21The start point is computed by the previous computation.

ternal event arrives during time 〈t i , t ′k 〉, the vehicle would
move according to the plan. In this case, two internal
transitions are scheduled successively at time t ′j and time
t ′k . If an external event arrives during 〈t i , t ′k 〉, say at text,
the (anticipated) movement is interrupted and the vehi-
cle’s state variables must be first updated for the present
time text using the corresponding known polynomials for
the time between 〈t i , text〉. If the event contains an update
message for the vehicle, further movement shall be com-
puted anew; if the event contains a request message for
the vehicle, it only needs to reply to the message.

In Example 4, when the external event arrives, the state
variables still hold the values of P1 which have to be up-
dated to those of P4. These values are subsequently used
as the initial values for the new movement computation.
Suppose that given the content of the update message,
further movement is computed and we obtain discrete
state variable points P5 = (t j , v j , p j) and P6 = (tk , v j , pk).

The new movement P4
a < 0−−→ P5

a = 0−−→ P6 would take place
in time 〈text, tk 〉. It is as well an anticipated movement
which may be interrupted by an external event. If no ex-
ternal event arrives during this time, the total movement

trajectory from position p i to pk would be P1
a > 0−−→ P4

a < 0−−→
P5

a = 0−−→ P6 where the transition of P4 is activated by an ex-
ternal event and the other three by internal events.

3.3.3 Rail Vehicle Model

A RailVehicle model has three ports (Figure 11): (1)
I/RIE – an i

¯
nput port that receives messages from a R

¯
I
¯
E
¯

;
(2) O/F/RIE – an o

¯
utput port that sends messages f

¯
orward

to a R
¯

I
¯
E
¯

, and (3) O/B/RIE – an o
¯

utput port that sends mes-
sages b

¯
ackward to a R

¯
I
¯
E
¯

. All three ports are coupled to the
RIE model where the vehicle is located. A vehicle model’s
state is composed of its own state and the information it
has at hand about its NCRI and PV.

3.4 Rail Infrastructure Element Models

There are mainly four types of atomic RIE models in LI-
BROS: (1) tracks are of type TrackSegment, (2) sensors are
of type Sensor, (3) signals are of type LinesideSignal,
and (4) switches22 are of type Point. They all participate

RailVehicle

O/F/RIE

speed, acceleration
speed limit
distance to NCRI
distance to PV
position, length
movement
...

I/RIE

O/B/RIE

Figure 11: Rail vehicle model

22Switches are often called points in North American.

11

in MP. Because MP can be in forward and backward di-
rections, for the convenience of model construction (and
generation), we created type Node.

3.4.1 Nodes of Infrastructure Models

A Node is a bundle of one input port and one output port
dedicated for MP. It has a direction that indicates the in-
flow/outflow of traffic at an (atomic or coupled) infras-
tructure model (Figure 12): (1) a StartNode is a Node com-
posed of one input port for message forward and one out-
put port for message backward, and (2) an EndNode is a
Node composed of one output port for message forward
and one input port for message backward.

The port design of the RIE models is illustrated in Fig-
ure 13. The labels of the ports have the following mean-
ing: (1) O/V – an o

¯
utput port that sends messages to a

v
¯

ehicle model, (2) O/C – an o
¯

utput port that sends mes-
sages to a c

¯
ontrol unit model, (3) I/C – an i

¯
nput port

that receives messages from a c
¯
ontrol unit model, (4) S

– a s
¯
tart node (at inflow of traffic) for MP at both direc-

tions, and (5) E – an e
¯

nd node (at outflow of traffic) for
MP at both directions. An O/V port is on each RIE model
(A)∼(F). An O/C is on the 3S (sensor, signal and switch)
models (B)∼(F). In addition, a signal (C) or a facing point
(D) has an I/C port because they are instructed by a con-
trol unit (Section 3.4.4). Each RIE model has at least one
start node S and one end node E. The node-to-node cou-
pling is a 1-to-1 relation. Note that the RIE-to-vehicle
couplings allow 1-to-n relations. Thus, when a RIE sends
a message to a vehicle, the recipient is addressed. The
same applies to the control-to-RIE couplings.

A RIE model has, among others, a length and a speed
limit (3S models are of length zero). 3S models have simi-
lar roles as TrackSegments in MP, but they always respond
to request messages (except when the requester is already
coupled to it). Besides MP, 3S models can be triggered
and released by a vehicle model.

3.4.2 Vehicle Detection

The detection of occupation and clearance of tracks is
fundamental to railway operation and control [20]. In real
life, different technologies are used for many types of de-
tection devices [52]. 3S models23 are designed to have

ES

O/F
I/B

I/F
O/B

Figure 12: Start and end nodes of infrastructure models

23In real operation, the latter two types do not have detection capac-
ity per se, but there are detection devices placed around them.

TrackSegment

length
speed limit
curvature
...

Sensor

length := 0
speed limit
...

O/V

FacingPoint

length := 0
speed limit
...

O/CO/V

(A)

(C) (D)

(B)

LinesideSignal

length := 0
speed limit
...

O/CO/V I/C

S S

SS

E2

E1

E E

E

O/CO/V I/C

CrossingPoint

length := 0
speed limit
...

(F)

S1

S2 E2

E1

O/CO/V

(E)

TrailingPoint

length := 0
speed limit
...

S1

S2

E

O/CO/V

Figure 13: RIE models. With a facing point, the inflow
traffic at S exits at E1 or E2 depending on the position of
the point which can be toggled by a control unit. With a
crossing point, the inflow traffic at S1 only exits at E2, and
the inflow traffic at S2 only exits at E1. A crossing point
models a location where two rail tracks cross each other.

detection capacity: (1) the Sensor for detection, (2) the
LinesideSignal for detection and signaling, and (3) the
Point(s) for detection and switching (if applicable).

Three important detection purposes are: (i) detect a
vehicle reaching a certain point with its front end, (ii) de-
tect a vehicle passing a certain point with its rear end, and
(iii) detect track occupancy [52]. With the 3S models, pur-
pose (i) is fulfilled by triggering a detector, purpose (ii) by
releasing a detector, and purpose (iii) by two detectors at
the two ends of a track. The 3S models can be coupled
with the track segment models in different combinations
to form different rail infrastructure layouts.

3.4.3 Trigger and Release of Detectors

When a vehicle model is approaching a detector, the lat-
ter responds to the former’s request message. The vehicle
then computes its movement until the detector (which
is its NCRI). After the movement, the vehicle couples to
the detector and initiates another request to find the next
NCRI. When the detector receives the message, it prop-
agates it. The message also triggers the detector which
computes the release time (based on the vehicle’s length,
speed and acceleration) that schedules the detector’s next
internal transition. Before the release time expires, if the
vehicle changes its acceleration, it would send an update

12

ControlUnit

I/S ... O/LS/FP

Figure 14: Control unit model

message. When the detector receives the message, it re-
computes the release time with the new information. If
the detector receives other external events, it responds
accordingly and then resume the release event. A detec-
tor’s subsequent action upon trigger or release is typically
to send out a message to inform a control unit.

3.4.4 Control Unit

A Control Unit (CU) models the control logic of an area
where the entrances are guarded by signals. When de-
tectors obtain information about vehicle positions, they
send the information to CUs, which evaluates the infor-
mation and permits vehicle movement via signals [52].
ControlUnits in LIBROS receive input events only from
detectors and send messages to LinesideSignals and
FacingPoints. A ControlUnit model has two ports (Fig-
ure 14): (1) I/S – an i

¯
nput port that receives (sensor)

messages from a s
¯
ensor (i.e., detector), (2) O/LS/FP – an

o
¯

utput port that sends (control) messages to a l
¯
ineside

s
¯
ignal or a f

¯
acing p

¯
oint.

A Crossing with Control Unit Suppose we need to
model a simple tram crossing; Figure 15 (A).

3

1
TP

FP CP

A

B

F

C D

E

LS1

LS2

LS3

(A) Layout

TP

FP CP

A

B

F

C D

LS1

LS2

LS3

tr
ig

g
er

/r
el

ea
sesw

itch
 p

o
sitio

n

grant access

grant access

request access

re
qu

es
t a

cc
es

s
gr

an
t

ac
ce

ss

Control Unit

tr
ig

ge
r/

re
le

as
etrigger/release

tri
gger/

re
lea

se

tri
gger/r

elease

request
access

(B) Coupling with control unit

Figure 15: A Y-crossing

Example 5 A Y-crossing is guarded by three lineside sig-
nals (LS1 ∼ LS3). The crossing has three switches: a trail-
ing point (TP), a facing point (FP), and a crossing point
(CP). Four directions (or routes) of traffic are possible: (1)
A → F , (2) B → F , (3) C → D, and (4) C → E . The con-
trol logic is common sense, i.e., when a track or switch is
occupied, it can not be accessed by others.

The couplings of 3S and CU at the Y-crossing are shown
in Figure 15 (B). Note that the inputs or outputs to a CU
are coupled with only one input or output port of the CU.
An input event from a 3S model to a CU contains infor-
mation about sensor trigger or release. In addition, a sig-
nal can send a request to a CU on behalf of an approach-
ing vehicle for accessing the crossing. An output event
from a CU to a signal takes place when a requested ac-
cess is granted. In addition, a CU can ask a facing point
to change position (viz., left or right) when necessary.

Example 6 Suppose that a vehicle V is approaching the Y-
crossing at some distance and wants to drive from C to D,
i.e., route 3; Figure 16.

At some instant, V sends a request message (to look for
its NCRI) which is received by the signal LS3. Knowing
V is approaching, LS3 sends a message on behalf of V to
request for the access of route 3. Upon the request, the
CU checks if the route is accessible. The CU does so by
consulting a “check table”.

Check Table in Control Unit A check table in a CU
maintains the notes or records about the situation in an
area the CU is supervising. The table has the information
about the routes in the area, the required points (and po-
sitions if applicable) by the routes, the states (whether re-
served and/or occupied) of the points, whether the routes
are active or have queuing requests, etc. An example of
the table is shown in Table 3. A route in a crossing is ac-
tive when a request of the route is granted to a vehicle and
when the vehicle has entered or is about to enter the route
but has not yet left the route (i.e., the requesting vehicle is
at the crossing). If so, when another vehicle requests the
same route, the request will be granted by the CU (by the
default setting).

In Example 6, when the CU receives a request to access
route 3, it processes the request by first checking whether

tr
ig

ge
r/

re
le

as
e

TP

FP CP

A

B

F

C D

LS1

LS2

LS3

sw
itch

 p
o

sitio
n

grant access

request access

Control Unit

tr
ig

ge
r/

re
le

as
etrigger/release

E

3

Figure 16: Route access in a Y- crossing

13

Route Entrance Signal Points required Active Queuing requests

1 LS1 TP

2 LS2 CP, TP

3 LS3 FP/L, CP

4 LS3 FP/R

Table 3: A check table in a control unit – Example 5, 6

the route is active or has queuing requests. Suppose both
are negative, the CU then checks whether the points re-
quired by the route (i.e., FP and CP) are reserved or occu-
pied. If they are, then the request will not be granted but
is appended into the queuing requests of route 3. When a
route has queuing request(s), a new request for the route
will also be queued. If the points are not reserved nor oc-
cupied, then the request will be granted. In the latter case,
the CU marks route 3 as active and the required points as
reserved in its check table, and sends out a message to
announce this decision. Note that the CU has one out-
put port O/LS/FP that is coupled to LS1 ∼ LS3 and the FP.
Two recipients are addressed in this message: (1) the FP
whose position-to-be is noticed, and (2) the LS3 (i.e., the
entrance signal of route 3) who will give the requesting
vehicle a green signal (i.e., a message).

A vehicle permitted to enter a requested route will trig-
ger and release the detectors along the route. The CU
then marks the detectors as being occupied and unoc-
cupied respectively in its check table. Releasing a signal
turns the signal back to red (which is its default state).
When all detectors along the route are released, the CU
marks the route as inactive. Once a point is released, the
CU will also process the queuing requests (if any) that re-
quire this point. They are processed with vehicle priori-
ties (if any) and on a first-come first-served basis.

3.5 Coupled Infrastructure Models

The RIE (InfraElement) models in Section 3.4 are atomic.
They can be used to incrementally compose Coupled In-
frastructure Models (CIMs), i.e., CoupledInfraModel. The
CIMs can be used for composition as well. They are de-
fined to represent domain meta-models that allow for a
set of model compositions.

3.5.1 Node Couplings and Operations of Infrastruc-
ture Models

A CIM can be seen as a placeholder or a container for a set
of infrastructure models. It holds a list of coupling rela-
tions of its infrastructure sub-components. The coupling
relations are specified by nodes. A node-coupling is com-
prised of two port-couplings. Figure 17 shows an example
of a CIM M with two (infrastructure) sub-components M1
and M2. The rules for the External Input Coupling (EIC),
External Output Coupling (EOC) and Internal Coupling
(IC) in DEVS models also apply to node couplings.

M1

ES

M2

ES

M

S E

O/F

I/B

O/F

I/B

eoc
eic

I/F

O/B

I/F

O/B

eic
eoc

O/F

I/B

I/F

O/B

ic
ic

Figure 17: Couplings of nodes of infrastructure models

A node-to-node coupling relation is strictly 1-to-1. For
example, the outflow node of an infrastructure model can
only connect to one inflow node of another infrastruc-
ture model (which is not the former’s parent model). An
infrastructure layout that has only one inflow and one
outflow of traffic is hence represented by a chain of suc-
cessively connected infrastructure models each of which
has only one inflow node and one outflow node. We call
this type of (atomic or coupled) infrastructure models
SimpleInfra- (Section 3.2.1).

Note that the layout of “a sensor or a signal on or
along a track” has to be represented by a chain of succes-
sive connections, similar to Figure 18 (A) and (B). Con-
necting, e.g., M1 through one outflow node with Sensor
(or LinesideSignal) and with M2 at the same time will
cause a non-deterministic execution sequence of the ex-
ternal transition functions δext in the two latter models
when there is an output event at M1. Both δext shall be
and will be executed at the same simulation time, but
which one is executed first depends on the implementa-
tion of the simulator. Uncontrolled non-determinism is
in general undesirable in M&S. A non-deterministic exe-

M1 M2Sensor

Facing
Point

Trailing
Point

Crossing
Point

M1 M2
Lineside

Signal

M2

M1

M3

M1

M2

M3

M1

M2

M3

M4

(A) Senor (1-to-1)

(B) Signal (1-to-1)

(C) Facing point
(1-to-2)

(D) Trailing point
(2-to-1)

(E) Crossing point
(2-to-2)

Figure 18: 3S model couplings

14

cution sequence of different external transition functions
(which are supposedly to be executed at the same simu-
lation time) may cause non-deterministic simulation re-
sults. Because non-determinism would have a negative
effect on our simulation, a non 1-to-1 node-to-node cou-
pling is defined as impermissible in LIBROS. A sequential
connection is a measure that forces a sequential activa-
tion of the aforementioned external transition functions.

An infrastructure layout with non 1-to-1 traffic is repre-
sented through the use of Points, which may have 1-to-2,
2-to-1, or 2-to-2 inflow and outflow of traffic (Figure 18,
C∼E). Combinations of them can represent an n-to-n in-
frastructure layout.

A CoupledInfraModel needs a number of functions
that can operate on model nodes, couplings and on its
sub-components. For the convenience of model con-
struction, we defined operations to allow for, e.g., adding
and removing sub-components, adding, removing and
managing nodes and the couplings of nodes dynami-
cally. Since node operations are also needed by the
RIE models (InfraElement), both classes implements the
InfraInterface, in order to reuse the definition of these
operations among the infrastructure models. These oper-
ations are indispensable for automated model generation
discussed in Huang [1].

3.5.2 Infrastructure Components

An InfraComponent model defines a specific layout or
setting which is meant to be reusable as a whole. It can
be seen as a component unit, whose sub-components are
strongly related in the sense that they have common op-
erations and/or need common control logic for the well
functioning of the component unit. The Y-crossing dis-
cussed in Example 5 is defined as an InfraComponent
because it is a common infrastructure layout (pattern),
and the 3S models in the crossing need to be super-
vised by a control unit. Each InfraComponent defines
a meta-model of a certain infrastructure composition
whose compositional feature is described by a corre-
sponding graph pattern.

3.5.3 Vehicle Coupling

A vehicle model is generated in a source model (Sec-
tion 3.5.4) during simulation, and then dynamically con-
nected to a sequence of NCRIs one at a time representing
where the vehicle is located. When it reaches its destina-
tion, it is removed from the simulation by a sink model.
Dynamic structure DEVS (DSDEVS) implemented in ES-
DEVS allows for the change of model structure at sim-
ulation run time. Figure 19 gives an example of vehi-
cle couplings. A vehicle model V is successively coupled
with the RIE models at time intervals corresponding to
the time that is needed by V moving from one NCRI to
the next. It always has three couplings with a RIE: (1)
one coupling for input messages – from RIE output port
O/V to V input port I/RIE, (2) one coupling for output
messages forward – from V output port O/F/RIE to RIE

Rail
Vehicle

O/F/RIE

I/RIE

O/B/RIE

Sensor Track
Segment

O/VO/V O/C

Track
Segment

O/V

Track
Segment

O/V

S:I/F E:I/B
... ...

Figure 19: Rail vehicle model coupling with RIE models

start node S input port I/F, and (3) one coupling for out-
put messages backward – from V output port O/B/RIE to
RIE end node E input port I/B. Since all V -RIE are cou-
pled in this manner24, the configuration function for dy-
namic V -RIE coupling has cohesive operations. When a
vehicle model reaches its NCRI, it invokes the configura-
tion function COUPLETONCRI where the couplings with
the previous NCRI are removed and new couplings with
the current NCRI are established. As discussed in Sec-
tion 3.3.1, a vehicle model always reaches its NCRI at an
internal event. The COUPLETONCRI function is then in-
voked after which a new round of MP is initiated.

3.5.4 Source and Sink

A LIBROS model contains at least one source and one sink
models (Figure 20). They are of a special type of infras-
tructure such that no traffic flows through: only one of
the two nodes of a source or sink is connected.

A Source is a coupled model that contains one vir-
tual track and at lease one (atomic) vehicle generator. A
VehicleGenerator generates vehicles according to one
timetable or one time interval distribution. Once gen-
erated, a vehicle is coupled to the TrackSegment in the
source and assigned with a position closest possible to
the end of the track. The vehicle model then sends a re-
quest message at initialization25 after which it decides on
its movement. We use a track in a source model for two
reasons: (1) when there are more than one vehicle in the
source, the track is a means to queue the vehicles; (2) the
track is also a means that allows a vehicle to send out a

Source

E

Track
Segment

Vehicle
Generator

Rail
Vehicle

Sink

O/V

S
...

ES

Figure 20: Source and sink models

24When a RIE model has more than one start or end node, a coupling
with either will give correct results. The default setting is to connect with
the first start or end node.

25The initialization refers to the very first internal event of the DEVS
atomic model.

15

request message and to drive out from inside the source,
which is cohesive with the other infrastructure models.
To couple a newly generated vehicle directly with a track
outside of a source would break the modularity of the
source model. A track inside a source model is virtual as
it does not model any part of the real infrastructure.

A Sink responds to a request message in the same
manner as RIE models. But once a vehicle reaches a Sink,
it is removed from the simulation: the vehicle’s couplings
are removed and the vehicle model is removed from the
component list of the parent model. Because the vehi-
cle’s succeeding vehicle (if any) still holds the information
about its PV, which would cause false movement compu-
tation of the latter, the Sink sends a backward message to
inform the latter who then clears its PV information.

4 A Study on LIBROS Performance

This section presents a study that compares a LIBROS

model with a model that uses continuous abstractions
[61]. The work reported by [62–64] developed a rail sim-
ulation library where vehicle movement is represented
by differential equations. We hereinafter call this library
LIBODE. We deem LIBODE and LIBROS comparable be-
cause they are developed with the same modeling as-
sumptions and purposes, and both present light-rail sys-
tems at the same abstraction level. LIBROS and LIBODE

can both model light-rail geolocation and shape based
on light-rail CAD design. Model components such as ve-
hicles, track segments, switches and signals in LIBODE

can also be found in LIBROS. Both libraries model vehicle
movement with segmented constant acceleration. The
real-world events modeled in one library are also mod-
eled in the other. In addition, both libraries have the same
underlying (event scheduling based) simulator which is
called DSOL [65]. As depicted in Figure 21, LIBODE uses
DSOL directly while LIBROS uses DSOL indirectly through
ESDEVS, an event-scheduling based DEVS simulator [66].

4.1 Experimental Setup

Using the LIBODE and LIBROS libraries respectively, we
created two models representing the light-rail operation
in The Hague city center tunnel in the Netherlands. This
location is chosen for its simplicity but suffices to show
examples of LIBODE and LIBROS models, and to compare

IB DE IBROS

DEVS Simulator

Event‐Scheduling Simulator

Figure 21: LIBODE and LIBROS

them in performance.

4.1.1 LIBROS Model

The LIBROS model of the light-rail operation in the tun-
nel is shown in Figure 22. Only one direction (from left to
right) of traffic is illustrated; the other direction is mod-
eled similarly. In the tunnel, there is a stop with two halt-
ing places (T3 and T4). The stop is guarded by a signal
(LS) which signals vehicles to wait (i.e., red) when either
T2 or the second halting place (T3) is occupied by a ve-
hicle. When the first halting place (T4) is occupied and
both T2 and T3 are not, the signal shows amber. The signal
turns green when the block section is completely cleared.
The speed limit in this tunnel is 45 kmph and it is reduced
to 35 kmph when the signal is amber.

The MCT of the LIBROS tunnel model is illustrated in
Figure 23. The four nodes in the MCT are Coupled-
InfraModels, among which the root is a TopLevelModel.
The Tunnel Model is compose of a Block Section, two track
segments T1 and T5, a Source and a Sink. The Block Sec-
tion is composed of a lineside signal LS, a Control Unit,
and other components as shown. Besides vehicle detec-
tion, the sensor S1 in the Stop is also used by a vehicle
to identify the position of the stop. Another sensor S2 is
placed at the end of the block section to detect clearance.

4.1.2 LIBODE Model

The same infrastructure and control logic are modeled
with LIBODE. The LIBODE tunnel model has one track T
that comprises the total length of T1 ∼ T5 in the LIBROS

model. The block section or the stop is defined with a po-
sition associated with the track; e.g., the block section is
on T , offset 85 meters, length 163 meters. The positions
of the signal and sensors are defined in the same manner.

In LIBODE, communications are mainly accomplished
through publish-subscribe 26 which is implemented by

T5 (482 m)

Stop

Block Section with Stop

S1 S2

Control Unit

trigger/release

T4 (46 m)T3 (41 m)T2 (76 m)T1 (85 m)

LSSource Sink

grant access

request access

trigger/release

trigger/release

Figure 22: Light-rail operation in The Hague city center
tunnel modeled with LIBROS

26The publish-subscribe (or event notification) interaction mecha-
nism defines an asynchronous non static one-to-many dependency be-
tween objects so that when one object changes state, all of its depen-
dents are notified and updated [57]. More specifically, subscribers reg-
ister their interests in an event (or an event pattern) with publishers, and
are subsequently notified each time when such an event is generated by
the publishers [67].

16

Source SinkT1 Block Section T5

LS T2 Stop S2

S1 T3 T4

Vehicle Generator Control UnitT0

Tunnel Model

Figure 23: Composite tree of the LIBROS tunnel model

DSOL. For example, when a vehicle is approaching a sig-
nal, the state changes of the signal would be of the inter-
est to the vehicle. The vehicle model thus registers itself
to the signal’s subscribers list and becomes a listener of its
state changes. Once the vehicle passes the signal, it un-
registers itself from the list.

The vehicle movement is represented by differential
equations solved by the Runge-Kutta integrator con-
tained in DSOL. In principle, at each integration step, a
vehicle model decides if it shall accelerate, cruise or brake
based on the states of the objects (i.e., vehicles, signals,
sensors, etc.) associated with the track(s) ahead of it. If a
new object is in sight, the vehicle subscribes to the model
so that it can be notified when the model changes states.

4.1.3 Simulation Experiments

For each model, we ran simulation experiments with dif-
ferent vehicle generation frequencies (VGFs), viz., 15, 22,
30, 40, 50, 60 vehicles per hour (vph). Two measures are
taken to ensure that some vehicles do interact with an-
other. First, the vehicle generation interval is not uni-
formly distributed but with time variations. When, e.g.,
the VGF is 15 vph, generating one vehicle every four min-
utes would likely yield no interactions as the total driving
time through the tunnel is short (∼1 min in the best case
without halting) and there exists only one stop that can
delay this time. Second, the halting time at the stop is
configured such that it is long enough (i.e., more than the
average vehicle generation interval) to yield vehicle inter-
actions. When, e.g., the VGF is 30 vph, the halting time
would be more than two minutes.

Each pair of experiments is set with the same configu-
rations for both models so that the results are compara-
ble. The LIBODE model is simulated with an integration
step of 1/20 second which in the worst case has a vehicle
position accuracy of 0.625 meter, considering the speed
limit of 45 kmph. The vehicle position in the LIBROS mode
is computed as described in Section 3.3.1 (with floating
point precision). The simulation run length of each ex-
periment is two hours. Each simulation run is profiled
with the TPTP tool (Eclipse Test & Performance Tools
Platform www.eclipse.org/tptp). It is expected that the

VGF and the computational cost of the simulation have
a positive correlation, since more vehicles create more
communications in both models: more need for integra-
tion in case of the LIBODE model, and more state tran-
sitions in case of the LIBROS model. The degree of differ-
ence is what we want to find out through the experiments.

4.2 Experiment Results and Discussion

The execution time measurement of the LIBODE and LI-
BROS tunnel models is presented in Figure 24. In both
cases, the results show that the model execution time
increases nearly linearly with the increase of VGF. How-
ever, the execution time of the latter is consistently lower
and increases slower compared to that of the former.
Although the model execution time in the experiments
is not large, performance becomes important for large-
scale microscopic M&S. We profiled the experiments with
the VGFs of 15, 30 and 60 vph, and then categorized the
execution base time 27 by the major functionality (with the
highest base time) used by the two models. The results
are shown in Figure 25.

As mentioned earlier, both LIBODE and LIBROS libraries
are based on DSOL. LIBODE uses DSOL for integra-
tion and model communications (i.e., publish-subscribe)
which in turn use the event-scheduler in DSOL. LIBROS

uses ESDEVS for model state transitions and communi-
cations (i.e., port-based message passing). The events are
scheduled by ESDEVS using the event-scheduler in DSOL
as well. Because the base time is taken as the time mea-
sure for the experiments, the time spent for integration
by the LIBODE model is “pushed” from the DSOL integra-

VGF (vph) 15 22 30 40 50 60

LIBODE model 1094 1563 1953 2797 3782 4266
LIBROS model 344 469 563 688 828 953

0

1000

2000

3000

4000

5000

10 20 30 40 50 60

Vehicle generation frequency (vph)

Ex
ec
u
ti
o
n
 t
im

e
(m

s)

LibOde model

Libros model

Figure 24: Execution time of the LIBODE and LIBROS tun-
nel models in milliseconds

27According to the Eclipse TPTP Glossary, base time is the time spent
executing a particular method, not including the time spent in other
methods that this method calls.

17

http://www.eclipse.org/tptp

LIBODE model

VGF (vph) 15 30 60

DSOL event-scheduling 140 237 505
DSOL integrator 175 256 444
LIBODE vehicle 539 1048 2383
Others 188 285 544
LIBODE track 53 126 389
Others 188 285 544

LIBROS model

VGF (vph) 15 30 60

DSOL event-scheduling 172 275 442
ESDEVS 16 43 88
LIBROS vehicle/track 6 15 31
Others 149 230 392

0

500

1000

1500

2000

2500

3000

3500

4000

4500

LibOde Libros LibOde Libros LibOde Libros

15 vph 30 vph 60 vph

Ex
ec
u
ti
o
n
 b
as
e
ti
m
e
(m

s)

DSOL event DSOL integrator

ESDEVS LibOde vehicle

Libros veh/track LibOde track

Others

Figure 25: Execution base time per category of the LIBODE

and LIBROS tunnel models

tor category to the LIBODE vehicle where the demand for
integration is located. The data shows the high computa-
tional demand of the integration as expected. The inte-
gration (or the vehicle model as the primary component
in the LIBODE library) needs a large portion of the total
execution time.

Compared with the LIBODE vehicle and LIBODE track cat-
egories, the LIBROS vehicle/track category is light-weight.
But the DSOL event-scheduling in the LIBROS model is
relatively heavy and the most demanding because all
DEVS model transitions and communications managed
by the ESDEVS library eventually use the event-scheduler
in DSOL. Nevertheless, the data shows that the compu-
tational cost of this part is comparable to the cost of
DSOL event-scheduling in LIBODE. Note that model com-
munications in both libraries are handled on the cost
of DSOL event-scheduling. The communication mech-
anism in LIBODE is based on publish-subscribe. In LI-
BROS it is MP. This means that, for the simulation exper-
iments, despite extra (number of) message sending and
state transitions, the design of MP in LIBROS does not yield
significantly more computational cost than the publish-

subscribe communications in LIBODE. (In the case of
60 vph in the DSOL event-scheduling category, the total
cost of transitions and communications in LIBROS is even
lower than the cost of communications alone in LIBODE.)
This result is consistent with the cost estimation of MP
presented in Section 2.3.

In general, the integrator and the use of it comprise the
primary component for the continuous model. The event
handler (e.g., ESDEVS in combination with DSOL event-
scheduler in case of LIBROS) and its use have compara-
ble roles for a discrete-event model. Given the same inte-
grator, the design choices of a continuous model, how-
ever, often have little influence on the efficiency of the
numerical solution, since the integrator solves the differ-
ential equations with a defined time step. On the con-
trary, with a discrete-event model, the design choices
(i.a., the choice of events and the state transitions on
the events) often have strong influence on the time ad-
vances and hence affect model performance. This opens
up possibilities for, but does not guarantee, improvement
of model performance, and requires modelers to make
careful choices of model design. The results of the exper-
iments show that, with comparable modeling details and
accuracy, the LIBROS model yields higher performance
than the LIBODE. This is an example that careful design of
discrete-event models can yield high performance with-
out loosing model accuracy.

5 Applications

There are a number practical uses of the LIBROS simula-
tion models. For example, key performance indicators
such as deadhead kilometers and average delays were
evaluated using LIBROS models to inform the choice of
depot capacity and vehicle schedules [68]. To reduce
waiting times at the entrance of the tram tunnel Grote
Markt in The Hague (where the setup is similar to that
discussed in Section 4), simulation experiments were run
with the models using different timetables and safety
control measures. The models were also used to study
the impact of, e.g., merging two stations and the new in-
frastructure construction at Station HS in the light-rail
network of The Hague. An automated model generation
method is developed using different light-rail infrastruc-
ture (CAD) data as input and the LIBROS model compo-
nents as building blocks [1]. Figure 26 shows the gener-
ated light-rail network simulation model of The Hague.
For a whole day operation (from around 6 a.m. to 1 a.m.)
of the network, the model’s simulation run time is about 8
minutes on an ordinary laptop. HTM is interested in fur-
ther uses of the model generator and the model compo-
nent library developed. A preliminary version of a graph-
ical user interface was developed [69] to help end users
changing model parameter settings. The organization is
also in the process of developing a web application to ac-
cess the simulation models. The use of the model com-
ponents in these cases showed their composability and

18

“Time of day” of the simulation

“Simulation time”: count from 0 each time when the simulation starts

“Scale” of the map “Background map”: not a part of the simulation

“Terminal” of service with “line number”

A “service line”

Figure 26: Animation window of The Hague light-rail net-
work simulation model with legend

reusability.

6 Conclusions

We have presented a scalable component based light-
rail simulation model library developed in the DEVS for-
malism. The proposed library enables a detailed micro-
scopic modeling of the vehicle and infrastructure dynam-
ics and offers an innovative scheme for message prop-
agation and vehicle to vehicle/infrastructure communi-
cation. This paper has given a detailed account of the
design choices adopted in developing the library. The
experimental study has demonstrated that with a simi-
lar level of model detail and accuracy, the modeling ap-
proach that we propose results in a significantly lower
computational cost than a differential equation model.
Furthermore, the library has been applied to different
cases, thereby giving an indication of its composability
and reusability.

From this experience, a number of good design prac-
tices were derived, which may be applicable to the de-
velopment of large-scale transport infrastructure models
beyond the particular case of light-rail systems. First, one
of the main design guidelines is to use sparsely model
artifacts which are constructed purely for the purpose
of modeling. By this we mean that artifacts that do
not represent an aspect of the real system should be
used with parsimony. Using a formal model specifica-
tion that separates abstraction from simulation execu-
tion is helpful in this respect. Second, when presented
with a choice among competing modeling alternatives,
the alternative that offers most modularity and simplic-
ity should be favored. Third, when modeling communi-
cations, if a decentralized design leads to strongly con-

nected model components and a broadcast-like commu-
nication, centralization can be a beneficial alternative in
terms of communication cost. The latter, however, can
be less convenient in modeling the autonomy of afore-
mentioned components. Fourth, configuration (and re-
configuration) cost is an important criterion in choos-
ing a communication mechanism between model com-
ponents that have dynamic structures. Finally, vehicle
movement can be represented without loss in accuracy
with piecewise polynomial segments, each of which has
a constant acceleration rate as a coefficient.

Future directions of this research include expanding
the library to enable modeling disturbances, rerouting,
depots, and passenger origin and destination. Some of
these components can be linked with real data such as
that from electronic ticketing systems and automatic pas-
senger counting systems.

Acknowledgement

This work was partly supported by HTM, a public trans-
port company in The Hague, Netherlands. The authors
thank Martijn Warnier from TU Delft for his feedback.

Author Bios

Yilin Huang is a researcher at the Department of Multi-
Actor Systems, Faculty of Technology Policy and Manage-
ment, Delft University of Technology, the Netherlands.
Mamadou D. Seck is an assistant professor of engineer-
ing management and systems engineering at Old Domin-
ion University in Norfolk, VA, USA.
Alexander Verbraeck is a full professor at the Depart-
ment of Multi-Actor Systems, Faculty of Technology, Pol-
icy and Management, Delft University of Technology, the
Netherlands.

References

[1] Yilin Huang. “Automated Simulation Model Generation”. PhD
thesis. Delft Univeristy of Technology, 2013.

[2] I. A. Hansen and J. Pachl, eds. Railway Timetable & Traffic:
Analysis-Modelling-Simulation. Eurailpress, 2008.

[3] B. P. Zeigler, H. Praehofer, and T. G Kim. Theory of Modeling and
Simulation: Integrating Discrete Event and Continuous Complex
Dynamic Systems. 2nd. Elsevier/Academic Press, 2000.

[4] Yu-Chi Ho, ed. Discrete Event Dynamic Systems: Analyzing Com-
plexity and Performance in the Modern World. IEEE, 1994.

[5] Gabriel A. Wainer. Discrete-Event Modeling and Simulation: A
Practitioner’s Approach. Computational Analysis, Synthesis, and
Design of Dynamic Systems. CRC Press, 2009.

[6] C.J.J. Paredis et al. “Composable models for simulation-based
design”. In: Engineering with Computers 17.2 (2001), pp. 112–
128.

[7] V.-C. Liang and C.J.J. Paredis. “A port ontology for conceptual
design of systems”. In: Journal of Computing and Information
Science in Engineering 4.3 (2004), pp. 206–217.

19

[8] P.C Breedveld. “Modeling and Control of Complex Physical Sys-
tems - The Port-Hamiltonian Approach”. In: ed. by V. Duindam
et al. Springer Verlag, 2009. Chap. Port-Based Modeling of Dy-
namic Systems, pp. 1–52.

[9] Juan de Lara, Hans Vangheluwe, and Manuel Alfonseca. “Meta-
modelling and graph grammars for multi-paradigm modelling
in AToM3”. In: Software and Systems Modeling 3.3 (2004), pp. 194
–209.

[10] Hans Vangheluwe. “DEVS as a common denominator for multi-
formalism hybrid systems modelling”. In: IEEE International
Symposium on Computer-Aided Control System Design. 2000,
pp. 129 –134.

[11] Hans Vangheluwe. “Foundations of Modelling and Simulation
of Complex Systems”. In: Electronic Communications of the
EASST - Proceedings of the 7th International Workshop on Graph
Transformation and Visual Modeling Techniques. 10. 2008.

[12] K.-P. Li and Z.-Y. Gao. “An improved equation model for the train
movement”. In: Simulation Modelling Practice and Theory 15.9
(2007), pp. 1156 –1162. ISSN: 1569-190X.

[13] K.-P. Li, Z.-Y. Gao, and B. Ning. “Cellular automaton model
for railway traffic”. In: Journal of Computational Physics 209.1
(2005), pp. 179 –192. ISSN: 0021-9991.

[14] D. Middelkoop and M. Bouwman. “Simone: Large Scale Train
Network Simulations”. In: Proceedings of the 2001 Winter Simu-
lation Conference. IEEE, 2001, pp. 1042–1047.

[15] Q. Lu, M. Dessouky, and R. C. Leachman. “Modeling train move-
ments through complex rail networks”. In: ACM Transactions on
Modeling and Computer Simulation 14.1 (2004), pp. 48–75.

[16] K.-P. Li, B.-H. Mao, and Z.-Y. Gao. “An improved walk model
for train movement on railway network”. In: Communications
in Theoretical Physics 51.6 (2009), pp. 979–984.

[17] B. P. Zeigler and J. S. Lee. “Theory of quantized systems: For-
mal basis for DEVS/HLA distributed simulation environment”.
In: Proceedings of SPIE - The International Society for Optical En-
gineering. Vol. 3369. 1998, pp. 49–58.

[18] N. Giambiasi, B. Escude, and S. Ghosh. “GDEVS: A generalized
discrete event specification for accurate modeling of dynamic
systems”. In: Transactions of the SCS 17.3 (2000), pp. 120 –134.

[19] Ernesto Kofman. “Quantization-Based Simulation of Differen-
tial Algebraic Equation Systems”. In: Simulation 79.7 (2003),
pp. 363–376.

[20] J. Pachl. Railway Operation and Control. VTD Rail Publishing,
2002.

[21] M. Carey and D. Lockwood. “A Model, Algorithms and Strategy
for Train Pathing”. In: The Journal of the Operational Research
Society 46.8 (1995), pp. 988–1005.

[22] Andrea E. Rizzoli, Nicoletta Fornara, and Luca Maria Gam-
bardella. “A simulation tool for combined rail/road transport in
intermodal terminals”. In: Journal of Mathematics and Comput-
ers in Simulation 59.1-3 (2002), pp. 57–71.

[23] M. Carey and S. Carville. “Testing schedule performance and
reliability for train stations”. In: Journal of the Operational Re-
search Society 51.6 (2002), pp. 666–682.

[24] M. Carey and S. Carville. “Scheduling and platforming trains at
busy complex stations”. In: Transportation Research Part A: Pol-
icy and Practice 37.3 (2003), pp. 195–224.

[25] M. Wahlborg. “Simulation models: Important aids for Banver-
ket’s planning process”. In: Computers in Railways. Vol. V. 1. WIT
Press, 1996, pp. 175–181.

[26] Bengt Sandblad et al. “A train traffic operation and planning
Simulator”. In: Advances in Transport 7 (2000), pp. 241–248.

[27] J.-P. Bendfeldt, U. Mohr, and L. Muller. “RailSys, a system to
plan future railway needs”. In: Advances in Transport 7 (2000),
pp. 249–255.

[28] A.H. Kaas. “Punctuality model for railways”. In: Advances in
Transport 7 (2000), pp. 853–860.

[29] A. Kavicka and V. Klima. “Simulation support for railway infras-
tructure design and planning processes”. In: Advances in Trans-
port 7 (2000), pp. 447–456.

[30] T.K. Ho et al. “Computer simulation and modeling in railway ap-
plications”. In: Computer Physics Communications 143.1 (2002),
pp. 1–10.

[31] A. Nash and D. Huerlimann. “Railroad simulation using Open-
Track”. In: Advances in Transport 15 (2004), pp. 45–54.

[32] H.N. Koutsopoulos and Z. Wang. “Simulation of Urban Rail
Operations: Application Framework”. In: Transportation Re-
search Record: Journal of the Transportation Research Board
2006 (2007), pp. 84–91.

[33] R. Rudolph. “Operational simulation of light rail systems”. In:
Proceedings of the European Transport Conference. 167-178.
2000.

[34] D.T. Overton. “Traffic signal control of LRVs”. In: IEE Colloquium
on Light Rapid Transit On-Street. 1989, pp. 9/1–9/3.

[35] H. G. Sol. “Simulation in Information Systems Development”.
PhD thesis. The Netherlands: University of Groningen, 1982.

[36] P.G. Keen and H.G. Sol. Decision Enhancement Services: Rehears-
ing the Future for Decisions that Matter. IOS Press, 2008.

[37] Marko Hofmann. “Criteria for decomposing systems into com-
ponents in modeling and simulation: Lessons learned with mil-
itary simulations”. In: Simulation 80.7-8 (2004), pp. 357–365.

[38] M. D. Petty and E. W. Weisel. “A formal basis for a theory of se-
mantic composability”. In: Proceedings of the Spring 2003 Sim-
ulation Interoperability Workshop. Simulation Interoperability
Standards Organization. 2003.

[39] A. Verbraeck et al. “Building blocks for Effective Telematics Ap-
plication Development and Evaluation”. In: ed. by A. Verbraeck
and A.N.W. Dahanayak. TU Delft, 2002. Chap. What are building
blocks?, pp. 8–21.

[40] Martin Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[41] Eric J. Braude and Michael E. Bernstein. Software Engineering:
Modern Approaches. 2nd. John Wiley & Sons, 2010.

[42] J. Banks. Handbook of Simulation: Principles, Methodology, Ad-
vances, Applications, and Practice. Ed. by J. Banks. Wiley Inter-
science, 1998.

[43] Richard M. Fujimoto. Parallel and Distributed Simulation Sys-
tems. Ed. by Albert Y. Zomaya. Wiley Series On Parallel and Dis-
tributed Computing. John Wiley & Sons, 2000.

[44] Ian Sommerville. Software Engineering. 5th. Addison-Wesley,
1996.

[45] Ivica Crnkovic, Judith Stafford, and Clemens Szyperski. “Soft-
ware Components beyond Programming: From Routines to Ser-
vices”. In: IEEE Software 28.3 (2011), pp. 22 –26.

[46] Levent Yilmaz. “On the Need for Contextualized Introspective
Models to Improve Reuse and Composability of Defense Sim-
ulations”. In: The Journal of Defense Modeling and Simulation:
Applications, Methodology, Technology 1.3 (2004), pp. 141–151.

[47] Claudia Szabo and Yong Meng Teo. “On Syntactic Composabil-
ity and Model Reuse”. In: Proceedings of the International Con-
ference on Modeling and Simulation. IEEE Computer Society
Press, 2007, pp. 230–237.

[48] Andreas Tolk et al. “Conceptual Modeling for Composition of
Model-based Complex Systems”. In: Conceptual Modeling for
Discrete-Event Simulation. Ed. by Stewart Robinson et al. CRC
Press, 2010. Chap. 14, pp. 355–381.

[49] Clemens Szyperski. Component Software: Beyond Object-
oriented Programming. 2nd. Addison-Wesley component soft-
ware series. Addison-Wesley, 2011.

[50] Jong-Keun Lee, Ye-Hwan Lim, and Sung-Do Chi. “Hierarchi-
cal Modeling and Simulation Environment for Intelligent Trans-
portation Systems”. In: Simulation 80.2 (2004), pp. 61–76.

20

[51] Gabriel Wainer. “ATLAS: A language to specify traffic models us-
ing Cell-DEVS”. In: Simulation Modelling Practice and Theory
14.3 (2006), pp. 313–337.

[52] Gregor Theeg and Sergei Vlasenko, eds. Railway Signalling & In-
terlocking: International Compendium. Eurailpress, 2009.

[53] Vukan R. Vuchic. Urban Transit: Operations, Planning, and Eco-
nomics. John Wiley & Sons, Inc, 2005.

[54] Donald E. Knuth. The Art of Computer Programming, Volum 1:
Fundamental Algorithms. Addison-Wesley Professional, 1997.

[55] Thomas H. Cormen et al. Introduction to Algorithms. 3rd. MIT
Press and McGraw-Hill, 2001.

[56] Stephen Alstrup et al. “Nearest Common Ancestors: A Survey
and a New Algorithm for a Distributed Environment”. In: Theory
of Computing Systems 37 (3 2004), pp. 441–456. ISSN: 1432-4350.

[57] E. Gamma et al. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1994.

[58] John Viega, Bill Tutt, and Reimer Behrends. Automated Dele-
gation is a Viable Alternative to Multiple Inheritance in Class
Based Languages. Tech. rep. Charlottesville, VA, USA: Cs-98-03,
Microsoft Corporation, 1998.

[59] Ernesto Kofman, J.S. Lee, and B.P. Zeigler. “DEVS Representation
of Differential Equation Systems: Review of Recent Advances”.
In: Proceedings of the 2001 European Simulation Symposium.
2001.

[60] N. Giambiasi and J. C. Carmona. “Generalized discrete event ab-
straction of continuous systems: GDEVS formalism”. In: Simu-
lation Modelling Practice and Theory 14.1 (2006), pp. 47–70.

[61] Y. Huang, M. D. Seck, and A. Verbraeck. “LIBROS-II: Railway
Modelling with DEVS”. In: Proceedings of The 2010 Winter Simu-
lation Conference. Ed. by B. Johansson et al. Baltimore, MD, USA:
IEEE, 2010.

[62] E. M. Kanacilo and A. Verbraeck. “A distributed multi-formalism
simulation to support rail infrastructure control design”. In: Pro-
ceedings of the 2005 Winter Simulation Conference. IEEE, 2005,
pp. 2546–2553.

[63] E. M. Kanacilo and A. Verbraeck. “Simulation services to support
the control design of rail infrastructures”. In: Proceedings of the
2006 Winter Simulation Conference. IEEE, 2006, pp. 1372–1379.

[64] E. M. Kanacilo and A. Verbraeck. “Assessing tram schedules us-
ing a library of simulation components”. In: Proceedings of the
2007 Winter Simulation Conference. IEEE, 2007, pp. 1878–1886.

[65] P. H. M. Jacobs. “The DSOL simulation suite - Enabling multi-
formalism simulation in a distributed context”. PhD thesis. the
Netherlands: Delft University of Technology, 2005.

[66] Mamadou D. Seck and Alexander Verbraeck. “DEVS in DSOL:
Adding DEVS operational semantics to a generic Event-
Scheduling Simulation Environment”. In: Proceedings of the
2009 Summer Computer Simulation Conference. 2009.

[67] Patrick Th. Eugster et al. “The many faces of publish/subscribe”.
In: ACM Computing Surveys 35.2 (2003), pp. 114–131. ISSN: 0360-
0300.

[68] Jing Cai. “Assessing The Impact of Capacity of Depots and Vehi-
cle Schedule in Transportation Systems”. MA thesis. Delft Uni-
versity Of Technology, Faculty Of Technology, Policy And Man-
agement, 2011.

[69] Hendrik van Antwerpen. Rail Simulation Suite Development. BA
Thesis, De Haagse Hogeschool. 2011.

21

	Introduction
	Modeling Concept
	Modeling Vehicles
	Modeling Infrastructures
	Modeling Vehicle Communications
	Dedicated Dynamic Connections vs. Message Propagation

	Model Design
	A Communication Mechanism: Message Propagation
	Request and Response Messages
	Distance Accumulation in Messages
	Update Messages

	An Overview on Infrastructure Models
	High Level Infrastructure Model Classes

	Vehicle Model
	Modeling Vehicle Movement
	Handling External Events
	Rail Vehicle Model

	Rail Infrastructure Element Models
	Nodes of Infrastructure Models
	Vehicle Detection
	Trigger and Release of Detectors
	Control Unit

	Coupled Infrastructure Models
	Node Couplings and Operations of Infrastructure Models
	Infrastructure Components
	Vehicle Coupling
	Source and Sink

	A Study on Libros Performance
	Experimental Setup
	Libros Model
	LibOde Model
	Simulation Experiments

	Experiment Results and Discussion

	Applications
	Conclusions

