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Abstract
Domain-specific simulators often have an edge on general-purpose simulators in terms of performance. Their
intricate knowledge of the domain allows them to aggressively optimize and take shortcuts. In contrast, simulators
for more general formalisms, such as DEVS, need to support a wider set of models. Their inability to use domain
information prevents DEVS simulators from achieving as high performance as their domain-specific variants. To
solve this problem, we introduce a way to enhance simulation performance of DEVS models, through the use of
computational resource usage models, often termed “activity” models. These models augment general-purpose
DEVS models with domain-specific information, which can be used by the simulator. We apply this information
in the context of data structure optimization, load balancing, and model allocation. Activity-awareness is a non-
invasive extension to the DEVS formalism, meaning that activity-augmented models remain perfectly valid for
use in activity-unaware simulators. Similarly, models without activity can still be simulated by an activity-aware
simulator. Our approach is validated by making PythonPDEVS, a Parallel DEVS simulator, activity-aware and
evaluating the performance impact on a set of benchmark models.

Introduction

Domain-specific simulators often have an edge
on more general simulators when it comes to
performance. This is especially prominent in the
simulation of DEVS models, which allows a wide
variety of formalisms to be mapped onto it, often
giving it the status of a simulation assembly
language [29]. Although it is the generality of DEVS
that makes this possible, there is a significant
performance impact. DEVS simulators can not make
the same optimizations as domain-specific simulators.
For example, a discrete time formalism can go

without event list: all models are always scheduled.
Discrete event formalisms, however, need to diligently
maintain an event list. Mapping a discrete time
formalism onto DEVS thus implies a performance
impact, unless the DEVS simulator is made aware of
this potential optimization.

We propose computational resource usage models,
often termed “activity” models, as a way of passing
performance information along with the DEVS
model. Whether they are used or not is up to the
simulator: activity models only address performance,
not correctness. As such, simulators that are not
activity-aware can still be used and yield identical
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Figure 1. Activity as an optional augmentation to the
DEVS model and simulator.

results. Similarly, activity-aware simulators can also
simulate activity-unaware models and yield identical
results. This augmentation is shown in Figure 1.
Activity extends both the simulator and model,
without touching any of the original specifications.
This activity definition might itself be a model of the
same system as the DEVS model, though at a higher
level of abstraction and with different preserved
properties. This is possible due to their distinct focus:
the DEVS model focusses on behaviour, while the
activity model focusses on performance. As a result,
a DEVS model can be simulated using algorithms
optimized for a specific domain.

Three components are presented that can profit
from the addition of activity information: the event
list scheduler (i.e., internal data structure), model
migration (i.e., load balancing), and model allocation
(i.e., initial distribution of the model). For each
component, we first discuss its function without
activity. After activity is introduced, it is applied to
these three components, making them activity-aware.

Different methods for obtaining activity metrics
are presented next. Activity can be measured based
on the past or the present. The future might even
be possible with prediction. Domain knowledge can
be combined with these measurements to further
improve simulation performance.

Claimed performance improvements are made solid
using several benchmarks. For this, we extended
PythonPDEVS [25], a Parallel DEVS [4] simulator,
with activity-awareness [24]. Several synthetic models
are used to indicate the impact of parameters in
the ideal situation. Two realistic benchmarks show
the relevance to real simulation problems, and give
pointers on performance improvements that can be
expected in realistic scenarios.

The remainder of this paper is organized as follows.
Section Performance Components presents the
three simulator components that increase perfor-
mance. Section Activity Definitions gives a brief
summary of the different activity definitions that are
used throughout the paper, and how they relate to
definitions found in the literature. Section Applica-
tions presents different application domains for each
kind of activity. Section Activity Measurement
distinguishes three dimensions of activity measure-
ment that we observed. Section Implementation
and Benchmarks briefly discusses our implementa-
tion in PythonPDEVS and compares simulation per-
formance for several models, both synthetic and real-
istic, with and without activity, and with and with-
out domain-specific information. Section Related
work explores related work and Section Conclu-
sions concludes the paper.

Performance Components

This section briefly reviews three simulator compo-
nents, which will be augmented with activity infor-
mation later: the scheduler, allocator, and migrator.
Each of these components already contributes to
performance gains, but often require detailed model
configuration. One major problem with manual con-
figuration is that even minor changes to the model
can require major changes in configuration. In later
sections, these components are extended with activity
to (semi-)automatically configure them.

Scheduler

One of the most complexity-defining parts of discrete-
event simulation is the event list implementation
(called the scheduler in the remainder of this paper).
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Average case Worst case

List O(n) O(n)
Heap O(k · log(n)) O(n · log(n))

Table 1. Complexity of different scheduler types. k is the
number of reschedules and n is the total number of models
in the simulation.

It keeps track of event/model notices (i.e., time-value
pairs). Nearly every DEVS simulator uses a different
data structure as the basis of the scheduler [28].

The two common types of general purpose
schedulers are:

1. list-based, where complexity is independent of
the number of colliding (un)schedule operations,
but is relatively inefficient if only a single such
operation happens, as the whole list is traversed.

2. heap-based, where complexity is dependent on
the number of colliding (un)schedule operations,
but it is very efficient if only a single such
operation happens.

An overview of their complexities can be seen in
Table 1.

The ideal scheduler is dependent on the model [25].
Specifying a good scheduler, however, proves
challenging to the modeller. This is certainly the case
when the modeller is unfamiliar with data structures
and complexities. Even if the user has this knowledge,
the number of colliding models might be difficult to
estimate. Worse even, this amount can vary during
simulation, and then no single ideal scheduler exists.

Allocation

Many parallel simulators require manual model
allocation during initialization. This clutters the
model and means that the sequential model has to
be altered before it can be distributed. While this is
feasible for simple models, complex models are much
harder to allocate this way.

The ideal model allocation depends on many
parameters, including the used simulation algo-
rithms. With allocation hardcoded in the model,
changing any parameter of the simulator or model,
requires changes to the model to update the allo-
cation logic. Whereas one of the core strengths

of DEVS is its strict separation between model
and solver, model allocation implicitly links them,
breaking this separation. Ideally, the model, which
concerns behaviour, should not be responsible for
allocation, as that is an implementation detail. Sim-
ulating the same model, with the same allocation, in
different simulators might give completely different
performance results.

The allocator resolves this problem. After model
construction, a function is called that performs the
allocation using global knowledge of the constructed
model. Multiple such functions can exist, each
specialized for a specific synchronization protocol
or simulator implementation. The model remains
untouched, so comparing several allocation strategies
becomes much simpler.

Migration

Even when the ideal allocation is chosen at the
start of simulation, computational load might shift
throughout simulation. With migration, the modeller
provides migration rules, which redistribute models
during simulation, thus rebalancing the load.

Note the difference with allocation: allocation
happens once, at the start of simulation, whereas
migrations happen throughout the simulation.
Allocations specify a complete model distribution
from scratch, whereas migrations specify some
specific models to move.

Without support for migration, the initial
distribution will be kept throughout the complete
simulation run. Varying some of the model
parameters can have a significant impact on the
behaviour of the model, and thus on the ideal set
of rules to use.

Activity Definitions

The term “activity” has been used for a variety
of purposes in the literature. Only several of these
definitions are relevant to this paper. An excellent
overview is given by [17], which forms the basis
for this section. In the scope of this paper, we
consider activity for the monitoring and optimization
of computational resource consumption. Although we
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slightly deviate from the definitions in the literature,
and in particular how it is measured, definitions are
conceptually similar.

Qualitative Activity

Qualitative activity distinguishes between active and
inactive models. In this context, there is no numerical
value (quantity) linked to the activity. A model
is qualitatively inactive when no events occur in
the horizon, and qualitatively active otherwise. The
horizon signifies the period in simulated time in
which the (in)active model is consistently (in)active.
In the context of Parallel DEVS, an atomic model is
qualitatively inactive if its time advance does not
schedule an internal transition within the horizon
(e.g., because the time advance is infinite).

Quantitative Activity

Quantitative activity links activity to a numerical
measure. In this context, the horizon implies the
period in simulated time over which the quantity is
accumulated.

In the literature, a model’s quantitative activity is
defined as the sum of it’s quantitative internal activity
and quantitative external activity. Quantitative
internal activity corresponds to the number of
internal discrete events in the horizon. It counts
the number of internal computations within atomic
models. Quantitative external activity corresponds to
the number of external discrete events in the horizon.
It counts the number of events received at atomic
models.

In our definitions, we further emphasize the
distinction between computational resource usage
(internal activity) and connection usage (external
activity). Note that in our definitions, we remain
vague about the activity unit on purpose. For
example, these units can be wall-clock time, state
transitions, or even the number of elements in a
queue, depending on how the value is used later on.

Quantitative Internal Activity In our definition,
quantitative internal activity measures resource
consumption of state transitions. Internal, external
and confluent transitions all cause state transitions,

so all of them are measured. Since internal activity
measures computation, it is only fair to also include
the external and confluent transitions.

Quantitative External Activity In our definition,
quantitative external activity measures resource
consumption of event exchange. Contrary to the
literature, metrics are stored about the connection
itself, instead of only the receiving model. This way,
the source of the event is also stored.

Domain-dependent

Due to our modified definition, domain-dependent
activity measures become possible: its units are left
for the modeller to define. For each type of activity,
we describe how we extended this notion further with
domain-dependent notions. In this context, we define
domain-dependent information as information that is
not applicable in general. For example, the time taken
in transition functions or memory used to store the
state is applicable for each model, as there are no
accesses to details of the model. Domain-dependent
information requires accesses to particular aspects
of the state, such as number of cars on a road or
temperature of a surface. These notions cannot be
ported between domains, and therefore require aid
from the user on how to access and interpret the
values.

Qualitative Activity Qualitative activity, specifying
whether a model is active or not, can be augmented
with domain-dependent notions of what it means for
a model to be active. For example, a model that times
out every so often is considered active by the general-
purpose definition. This is because, in general, it is
unknown whether a transition indicates activity or
not, so the safe option is to assume that a transition
means activity. With domain-specificity, we can also
consider other states as inactive, for example with a
large time advance or an empty internal transition
function.

Quantitative Internal Activity Quantitative internal
activity profits the most from domain-specificity.
Instead of keeping a transition counter, as proposed
in the literature, we extend this to an invocation on
the model in that particular state. This invocation
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can return an arbitrary value, as long as the
simulation kernel knows its meaning. For example the
number of cars on a road or number of events in the
queue. General-purpose activity values can also be
returned, such as the CPU time for the transition or
the number of transitions.

Quantitative External Activity Quantitative external
activity has not been extended with domain-specific
notions in our work. We believe that domain-specific
notions on what is the load of exchanging an event
is difficult to justify: most of the cost is on the
exchange of the event, not on the type of event
being exchanged. Adding in domain-specific notions
increases the overhead of event passing even more due
to bookkeeping. While we don’t think that domain-
specific quantitative external activity has no purpose,
future work is needed to find a convincing use case.

Applications

We now focus on using the measured activity with
the intention of increasing performance. All three
definitions of activity will be used: qualitative,
quantitative internal and quantitative external
activity. In our applications, the first two can be
modified by the user to add a domain-specific notion.
Activity will be used to enhance the components
presented previously.

Scheduler

Using activity, the scheduler can be extended in two
directions. One direction is ignoring inactive models,
thereby reducing the scheduler’s complexity. Another
direction is automatic detection and switching to a
different type of scheduler during simulation.

Activity Scheduler By default, an inactive model
is a model that has a time advance of +∞
(i.e., is passivated). Inactive models never become
imminent, so they can be left out altogether. They
can be activated by an external event, which is
independent of the scheduler. By removing models
from the scheduler, complexity decreases as it
becomes dependent on the number of active models
only. This optimization is easy, and is implemented
in most performance-conscious simulators.

n

n

riro

Figure 2. Application of qualitative activity can reduce
complexity from O(n2) to O(r2o − r2i ); red regions are
burning (active), light blue regions are not yet burning
(inactive), black regions are burned down.

Our approach up until now was perfectly general
and in widespread use. The user might, however,
have additional domain-specific knowledge about the
models.

A possible use case of this optimization is in
a fire spread model [14]. Figure 2 shows such a
model, where the influence of inactive models on
simulation complexity is made clear. In the example,
cells are either not burning, burning, or burned
out. The burned out regions cannot burn again,
and can be marked as permanently inactive. Not
(yet) burning regions do not currently host any
activity, though they might in the future. They
can be marked as inactive too, further increasing
performance. Complexity is significantly reduced, as
we only check the burning cells. We define n as the
number of cells in one dimensionx, and ro and ri as
the radius of the outer and inner circle, respectively
(refer to Figure 2). Using an activity scheduler, the
complexity is then reduced fromO(n2) toO(r2o − r2i ),
as the burning cells only make up a circle in the figure.

Polymorphic Scheduler Another activity-aware opti-
mizations is the polymorphic scheduler. This is a
scheduler that alters its data structure at run-time,
based on observed access patterns. This idea was also
implemented in tools such as Meijin++ [18].
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A polymorphic scheduler doesn’t use qualitative
activity as defined before, but is similar in idea:
monitor behaviour and optimize for it. Improved
performance is obtained by alternating between
schedulers at run-time, depending on the measured
activity.

The polymorphic scheduler solves both problems
identified when choosing the scheduler manually: (1)
no knowledge about the model or different data
structures is required; and (2) it becomes possible to
alter the data structure during a running simulation.

An example polymorphic scheduler chooses
between two different schedulers: one list-based,
and another heap-based. When many collisions are
detected, the scheduler switches to a list-based
scheduler. Otherwise, a heap-based scheduler is
chosen.

It is also possible to write a domain-specific
polymorphic scheduler. Depending on the domain,
different heuristics can be implemented, or a different
set of schedulers can be selected, possibly even
containing some domain-specific ones.

Migration

The migrator is also extended with activity
information. Instead of using static migration rules,
migrations are based on values measured during
simulation.

Only quantitative internal activity is used in the
migrator. Quantitative external activity is not used
for several reasons:

1. It is difficult to determine the scope of what
should be measured. Is it only the events
exchanged between cores, or also all internal
events? Is this including events that were rolled
back, or not? And what about anti-events, in
the case of a time warp implementation? While
we don’t believe that it is impossible to measure
this kind of activity, we feel that we have to make
many decisions, which are, at this point in our
research, not well-founded.

2. While we have a clear use for internal activity, we
don’t know how useful the number of exchanged
events will be for migrations. Most likely, the

amount of actually exchanged events is unpre-
dictable when combined with optimistic syn-
chronization, as events are sometimes exchanged
multiple times. Even changing model structure
slightly can result in a significantly different
number of exchanged events. We feel that the
value of this measure is unreliable.

3. Technically, adding these measurements
increases simulation overhead. Whereas
computation can be easily measured, invoking
multiple functions for every exchanged event
quickly becomes a performance bottleneck. As
our main motivation for the use of activity is
the potential performance gain, we feel that the
overhead outweighs the benefits.

An example of activity migration is shown in
Figure 3, which shows the influence of a shifting
computational load. In the example, the initial
allocation is first chosen in such a way that there
is a perfect load distribution. After some time,
different models become highly active, whereas
previously highly active models become almost
inactive. Therefore, simulation becomes less efficient
as it progresses. With activity migration, the
distribution of activity is monitored throughout the
simulation. The imbalance is detected and highly
active models are migrated to a dedicated core again.

Activity-based migrations automatically search for
migration rules to apply, very similar to existing work
on load balancing [11]. Rules are no longer specific
to the model configuration, but become general to
all configurations of the model. Modifying simulation
and model parameters no longer requires changes to
the statically defined migration rules, as the migrator
comes up with these rules automatically as long as
its assumptions remain valid. These assumptions are
usually valid for all models in the same domain and
the same formalism. For example, with fire spread
simulation, different configurations of the same fuel
bed can be made and different sources of the fire
can be selected. These configuration choices do not
influence, for example, the fact that a burned out
cell will be permanently inactive. The migrator is
able to cope with changing model configurations,
as it relies on characteristics of the domain and
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Figure 3. Activity-based migration example; (dark) red models are highly active, whereas (light) blue models are nearly
inactive.

formalism, and not on the configuration. Whether
or not it is domain-specific is up to the user: if
it isn’t domain-specific, the migrator only accesses
general performance metrics; otherwise, the migrator
can access the full model state.

Domain information is helpful to:

1. Define the granularity of the migrations.
A general-purpose algorithm has no idea which
two models are closely linked together. While
good design of the model suggests that closely
linked models are in the same coupled model,
this is not necessarily the case. Domain-specific
algorithms can help by suggesting which models
should never be split up.

2. Define a priority on some migrations. A
general-purpose algorithm has no migration cost
metric. Generally, as few possible models should
be migrated, each having a small state and
a high computational load. This is difficult to
determine automatically, as the state size and
its computation fluctuates significantly. Domain-
specific algorithms can help in making these
decisions.

3. Define some known bad distributions,
which should be avoided. A general-purpose
algorithm has no idea which distributions are
good and bad. It can make an educated guess,
based on the observed activity, but it has no
clue whether the new distribution is sane or
not. Domain-specific algorithms can help by

evaluating the new configuration before actually
performing the migration.

Algorithm 1 Activity-aware migration.

while True do
activity ← []
for all i ∈ models do

activity.append(fetchactivity(i))
end for
rules ← find migrations(activity)
for all i ∈ rules do

perform migration(i)
end for
sleep()

end while

Algorithm 1 describes the algorithm used by a
domain-specific migrator in pseudo-code.

Allocation

Contrary to the migrator, the allocator uses
quantitative internal and quantitative external
activity. It has the same function as the static
allocator discussed previously: finding a good
allocation at the start of simulation. There are two
major differences:

1. The allocator has a profiling time, specifying
at what point in simulation time the allocation
should be performed. For the static allocator,
this was always set to zero (i.e., the simulation
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Core 0 Core 1

Figure 4. Activity-based allocation example; (dark) red
means highly active, whereas (light) blue means nearly
inactive.

start time). A static allocator is thus a
degenerate case of the dynamic allocator, where
no activity measurement is done. If the profiling
time is longer, simulation runs sequentially
(i.e., all models are executed on a single core)
in profiling mode until the profiling time is
reached. In profiling mode, quantitative internal
and external activity are monitored. When
simulation progresses past the profiling time, the
allocator is invoked with the gathered activity
values. The horizon is thus equal to the profiling
time. The allocator returns an allocation, just as
was the case with the static allocator, which is
used from then on.

2. Two extra arguments are passed to the
allocator: the measured quantitative internal
and external activity. These are the activity
values measured up to the profiling time.
Decisions are based on the activity of atomic
models (quantitative internal activity), activity
of connections (quantitative external activity),
or both.

An example is shown in Figure 4, which shows that
the activity on connections is important to make a
good allocation. In the example, simulation starts
with all models running locally on a single core, in
profiling mode. When the profiling time has passed,
the allocator is invoked with the measured activity
information. The resulting allocation is shown as well:
both cores have two highly active atomic models

and no connection with high activity is an inter-core
connection.

Algorithm 2 Main simulation algorithm combined
with an initial profiling run.

initialize model()
profiling ← [0 | i ∈ atomic models]
while simulation time < profiling time do

start ← time()
simulate step()
end ← time()
for all i ∈ transitioned models do

profiling[i]← profiling[i] + end - start
end for

end while
allocation ← find allocation(profiling)
allocate(allocation)
while simulation time < termination time do

simulate step() {simulate like usual}
end while

Algorithm 2 shows our activity-aware simulation
algorithm. As soon as profiling finishes, the model
and its measured activity is passed to the allocator.
After allocation, simulation continues where the
profiled simulation stopped.

Normally, the user encodes the initial distribution
either by embedding it in the model or by adding
a static allocator. Static allocators have the same
weakness as manual migrators: they are model-
specific instead of domain-specific. This means that,
if the model changes its behaviour ever so slightly,
all information might become invalid. A dynamic
allocator adapts to a changing model as long as its
assumptions remain valid.

An allocator is completely different from a migra-
tor, despite them having similar goals. Whereas the
allocator returns a complete allocation, starting from
scratch, the migrator returns only a set of mod-
ifications, starting from the previous distribution.
So whereas a migrator can ignore mostly inactive
models, as their migration overhead will be higher
than the achieved performance, the allocator needs
to find an allocation for each and every model. The
migrator searches for slight updates to the current
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Qualitative Internal External

Scheduler X
Migration X X
Allocation X X X

Table 2. Overview of used types of activity.

distribution, whereas the allocator searches for a
completely new distribution.

Overview

Table 2 summarizes the types of activity used by
the different components. The scheduler only has
access to qualitative activity. Migration can be
based on quantitative internal activity, but this can
be generalized to qualitative activity. All forms of
activity can be used during allocation.

For each use of activity, it is possible to use either
a general-purpose or domain-specific version. In the
next section, we describe how activity values are
obtained from the simulation. This shows that apart
from different applications of these values, there are
also different ways of obtaining the values, including
domain-specific ways.

Activity Measurement

While we have already shown several applications
of activity, there was no mention yet on how these
values were measured. For qualitative activity, the
model state is inspected at the moment it needs to be
decided whether it is active or not. For quantitative
external activity, we keep track of the amount of
exchanged events between two different cores, using
a simple counter. These measurements are trivial
and not discussed further. In our approach, the
most versatile kind of activity to measure, is the
quantitative internal activity. The remainder of this
section is devoted entirely to quantitative internal
activity measurement.

Quantitative internal activity measures the com-
putational load of a model. This is done by calling a
pre-transition and post-transition function, invoked
before and after the transition function, respectively.
We have opted to use two separate calls to measure

activity, with the second being passed the result of
the first. This allows a comparison between the pre-
transition and post-transition state without having
two complete states in memory: only relevant values
are retained. Furthermore, two calls are required
anyway to measure specific physical resource con-
sumption, such as CPU time spent or memory con-
sumed: to compare the usage before and after the
transition. Different approaches to the measurement
of computational load are possible, such as the use of
decorators for the transition function.

As this function can be defined by the user,
there are two options: either generic information is
provided (e.g., CPU time, number of transitions),
or domain-specific information is passed (e.g., queue
length, queue load).

We distinguish three dimensions to activity
measurement:

1. Time specifies for which region in time the
activity is measured. If the time is in the future,
this implies that a prediction is made about
values measured in the past. This time is always
relative to the Global Virtual Time (GVT),
which is the minimum of the simulation time in
all solvers of all participating cores.

2. Accumulation specifies if activity values are
accumulated or not. When accumulated, values
can be averaged over the horizon. Without
accumulation, a single consistent view is
constructed for one point in simulated time.

3. Data source specifies where the data comes
from. This can either be a generic function,
such as measuring the time taken, or a domain-
specific function, such as measuring the queue
length.

Other activity-aware DEVS simulators are limited
to general-purpose activity tracking, which accumu-
lates values over the past in a general-purpose way.
We contribute to this ongoing research by introducing
new ways of measuring activity, in combination with
domain-specific hints.

Measured values can be used in four ways: activity
tracking (past, accumulated, general-purpose), activ-
ity prediction (future, accumulated, domain-specific),

Prepared using sagej.cls



10 Journal Title XX(X)

activity in state (now, no accumulation, domain-
specific), and activity in state prediction (future, no
accumulation, domain-specific).

Activity tracking

The simplest method is activity tracking. For each
model, all activity values within the simulation time
interval [GV T − horizon,GV T ] are accumulated
into a single value. These accumulated values are
presented as activity.

When using activity tracking, we optimize for
the average situation in the past horizon. If the
horizon does not offer a significant sample of the
model’s behaviour, results might be skewed. Other
approaches, presented next, alleviate this problem.

Despite optimizing for the past, this method yields
good estimates, on the condition that the horizon is
large enough to be representative, but small enough
to be recent. One of the major advantages is that
it can be used as-is without any domain-specific
knowledge, while still offering fairly accurate results.
Unsurprisingly, this is the approach used by most
algorithms found elsewhere. For example, general
purpose load balancing can be seen as the application
of activity tracking in the migrator.

Activity prediction

Activity prediction builds on top of values found dur-
ing activity tracking. Instead of using the values as-
is, future activity is predicted. Prediction algorithms
are domain-specific. For example, predictions can
use a simplified DEVS model to approximate load
evolution, or it could use closed-form formulas to
approximate the future.

If the prediction is accurate, we can approximate
the near future, and thus optimize for it. When
prediction is inaccurate, we optimize for an
unrealistic situation, which are thus inoptimal for
the actual future. Even with incorrect predictions,
simulation errors never occur, as the model and
simulation algorithms remain unaltered, only the
choice between different components and algorithms
is influenced.

Accurate predictions require domain-specific
knowledge. The main question activity prediction

needs to solve is: “How will activity evolve over the
next horizon?” Activity prediction optimizes
the model for the simulation time interval
[GV T,GV T + horizon] (i.e., the future horizon).
This is quite logical, as the next time at which
measurements happen is around simulation time
GV T + horizon. Migrations should therefore focus
on optimizing the simulation up to that point, after
which new migrations can be performed. The value
of the next horizon is an unknown factor, as it is
based on simulation pace. Predicting simulation
pace requires domain-specific knowledge as there is
no predefined relation between simulation time and
wall-clock time.

The potential performance gain depends on the
domain, prediction accuracy, prediction computation
time, and how much the prediction differs from the
past. Prediction is particularly useful when activity
fluctuations are only temporary and don’t require
any reaction from the activity-aware optimization
components.

Activity in state

The activity in state method differs from activity
tracking, as it uses the activity in a single state,
instead of the accumulated activity throughout
the horizon. This single state is the last state
of the interval that would be used by activity
tracking. Consequently, it is the state of the model
at simulation time GV T . The activity provides
a consistent snapshot at the GV T . This requires
domain-specific information, as otherwise it is
impossible for the simulation kernel to interpret the
state.

For some activity definitions, activity accumulation
is counter-productive. An example is a fire spread
model: activity can be defined as the temperature
at the state. With accumulation, this returns the
sum of all temperatures seen throughout the interval.
Combined with the number of transitions, we obtain
the average temperature in the horizon. With activity
in state, the activity is the temperature at the GVT.
The result is a consistent view on the complete
model, containing the temperature of each cell. For
optimization, the current temperature is more useful
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past future
accumulation tracking prediction
single value in state in state prediction

Table 3. Categories of activity measurement. Only activity
tracking can be used without domain-specific information.

than the average temperature over some period, as
otherwise the temperatures are averaged out, making
burnt-out cells seem active.

Activity values can be anything, as it doesn’t need
to be accumulated. However, the obtained values
should be fairly compact, as they are gathered in a
single core.

Activity in state prediction

The user is free to combine activity in state with
prediction, where prediction is based on the activities
of individual states. This might prove simpler than
activity prediction over a complete simulation time
interval. As it is the dual of activity prediction, all
remarks about making predictions apply as well.

This method has the most potential, as it combines
domain-specific information from both dimensions.
Depending on how advanced the model is, basic
predictions are easy to make this way. For example,
if a queue contains ten elements, each requiring on
average one second to process, we estimate that after
five seconds, five elements will be left in this model,
and five will be present in the next model.

Comparison

All of these different methods consider a different
interval or point in simulation time. Table 3
categorizes these four methods based on the
previously identified dimensions. Each of them uses
domain specificity in its own way.

Activity tracking optimizes for the past,
assuming the near future is similar to the recent past.
Its advantage is that its data is correct if the horizon
is adequate, as it doesn’t involve predictions. Tracked
values can be used as-is and its use for measuring
the time spent in transition functions makes this
the simplest method. It is insufficient when activity
fluctuates drastically, when an adequate horizon is

difficult to determine, or when accumulated values
are unreliable. Domain-specific information can be
used to have more reliable values than CPU time
consumption.

Activity prediction optimizes for the near
future, based on values measured in the recent past.
As it is a prediction, it can take into account
more domain knowledge, resulting in better results.
It is possible, however, that the predicted data
is (partially) incorrect. Domain-specific information
must be used for the prediction of the activity
evolution.

Activity in state optimizes for the current point
in simulated time, using only the activity values of
a single state. While it gives access to a consistent
activity snapshot of the complete model, extracting
meaningful activity values requires significant domain
knowledge. Its usefulness depends on the domain in
which it is used. Domain-specific information must be
used to attach an indication of resource consumption
to the current state.

Activity in state prediction optimizes for the
near future, based on the current state. It gives access
to a consistent activity snapshot, which might be
easier to make predictions on. Predictions are based
on a single point in time, instead of an interval.
Domain-specific information must be used for both
the resource consumption and the prediction.

Example

An example of the different measurements is shown in
Figure 5, which shows the influence of measurement
functions. While this might seem a new application, it
is merely a more concrete version of the application in
Figure 3, which presented a series of models through
which activity migrates during simulation. In the
example, three road segments are shown, two of which
are occupied. Cars determine whether or not they can
progress to the next road segment by sending queries,
which are acknowledged.

Activity in state measurement can use the presence
of a car as an indication of activity, whereas the
absence of a car indicates inactivity. This is domain-
dependent information, which cannot be transferred
to other domains, such as fire spread simulation.
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def preActivity(self):

# Unused

return None

def postActivity(self , preValue ):

# Only return number of cars

return len(self.state.cars)

Listing 1: Code in Python for activity in state.

def preActivity(self):

# Return wall clock time

return time.time()

def postActivity(self , preValue ):

# Compute difference

return time.time() - preValue

Listing 2: Code in Python for activity tracking.

Segment
1 2 3

tracking 0.0s 1.0s 0.5s
prediction 0.0s 0.0s 1.0s
in state 1 car 0 cars 1 car
predict state 0 cars 1 car 1 car

Table 4. Measurements for Figure 5 at the end of horizon
1. Predictions are for horizon 2 based on horizon 1.

Activity tracking measures the wall clock time spent
by the transition functions. These two options are
encoded in Listing 1 and 2, respectively. In Listing 1,
the model state is accessed to obtain domain-specific
information. In contrast, Listing 2 merely logs the
time taken by the transition function, independent
of the value of the state. For prediction, we know
that cars have slightly progressed before the end of
the next horizon. At the end of horizon 1, this yields
results similar to those in Table 4.

Due to the insignificant horizon, only the
transitions of segment 2 and some of segment 3
are taken into account. Even though there are no
transitions taking place in segment 1, it could still
be considered active since it is processing a car.
Activity tracking and activity prediction go wrong
as the horizon is not representative. This problem is

Query

Ack

Car

Query

Ack

Car

Figure 5. Measurement example

not present with activity in state measurement, as
they are independent of the horizon.

Implementation and Benchmarks

We implemented the use of activity in Python-
PDEVS [27], a modular Parallel DEVS [4] simulator,
to validate our approach. PythonPDEVS supports
both sequential [25] and distributed [26] simulation,
using the previously presented performance com-
ponents. The latter uses Time Warp [8] for opti-
mistic synchronization, though some changes were
made, similar to [9]. Whereas the name of the
Parallel DEVS formalism might imply that it is
always parallel, this is not necessarily the case [5].
Examples on the basic use of PythonPDEVS can
be found online at http://msdl.cs.mcgill.ca/

projects/DEVS/PythonPDEVS. More information on
the implementation of activity in a Parallel DEVS
simulator can be found in [24].

Next, we present several benchmark models:
several synthetic benchmarks to evaluate specific
aspects of the activity algorithms, and two realistic
models, taken from the literature, to evaluate the
impact of activity-aware simulation for realistic
scenarios. Two realistic models, taken from the
literature, show what activity-aware simulation still
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has its benefits in realistic models, though the impact
is not as high as in synthetic models. This proves the
applicability of our approach to realistic models.

We did not benchmark the use of the allocator. As
the added value of an allocator strongly depends on
the initial allocation, we did not have a baseline to
compare with, as we would need to explicitly choose
a bad allocation.

Methodology

All simulations were performed on a 30-node shared
cluster of Intel Core2 6700 dual-core @ 2.66GHz
machines with 8GB main memory, running Fedora
Core 13, Linux kernel 2.6.34. The number of CPU
cores used is always indicated where appropriate.
These machines have CPython 2.7.5 and use MPICH
3.0.4 as MPI implementation with the MPI4py 1.3
wrapper. Local simulations only use a single core.

Results are averages of five simulation runs.
Variability was low and therefore only the average
is shown.

The PythonPDEVS formalism offers a lot of
additional (not activity-based) hints that can be
added to the model, such as state saving hints and
message passing hints. These hints are always used
in our benchmarks, both with and without activity.

Activity scheduler

The use of qualitative activity in the scheduler is the
simplest form of activity in terms of implementation
and use. Therefore, it is considered first.

Synthetic Our first benchmark consists of a model
containing 1000 atomic models. Of these, only a
fixed number of models is active (i.e., has a time
advance different from infinity). No connections exist
between the different models, so an inactive model
stays inactive indefinitely. Simulations are ran with
an increasing number of active models, starting from
no active models and going to all models being
active. Results were obtained by using a heap-based
scheduler using invalidation for reschedules. The
activity heap is identical to the normal heap, but
implements the check for +∞.

Results are shown in Figure 7. It shows the relative
difference in total simulation execution time, which

is the sum of the simulation overhead and the
theoretical simulation time (i.e., the time it takes to
execute the transitions only) [31]. Using an activity-
based scheduler is more efficient, unless almost all
models are continuously active. While the overhead
is insignificant, it shows that the use of activity is
not guaranteed to speed up simulation. Even when
only 50% of the models are active, total simulation
execution time is only decreased to 95% of its
original value. This is due to the fact that simulation
overhead is relatively low already: improving the
scheduler only decreases the simulation overhead, and
of course does not influence the theoretical simulation
time. Nevertheless, simulation overhead is reduced in
almost all cases.

Realistic For a more realistic model, we use the
fire spread model given in [14]. Recall that this is
the same model that was used as our rationale in
Figure 2.

Quantized DEVS [33] was used to make sure that
the fire (and thus computation) doesn’t spread too
fast. In normal DEVS simulation, temperature is
broadcast from the cell immediately, starting a chain
reaction. There is no threshold on when values
need to be passed, meaning that even negligible
temperature differences are communicated. These
temperature differences have no significant impact on
simulation results, but drastically increase simulation
execution time. Quantized DEVS, on the other hand,
only propagates events when the difference reaches
a certain threshold. For example, in fire spread
simulation, if the threshold is x degree Celcius and
the last output event contained y, a new event
is only sent when its value goes outside of the
boundary [y − x, y + x]. After the event is sent, y
is updated with the output event and the boundary
thus moves. Simulation results get less accurate, since
even these minor variations can have an impact. The
threshold is therefore configured for an acceptable
trade-off between simulation accuracy and efficient
simulation [13, 30, 32].

In our model, the use of Quantized DEVS means
that only some models become active, as the
spreading of the values is mitigated. Were it not for
this quantization, all models would become active
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Figure 6. Time taken for simulation of the fire spread
model using the activity heap, normalized with the time
taken for simulation with the normal heap.

almost instantly, as even temperature changes of a
fraction of a degree would be communicated.

Figure 6 shows how the different schedulers behave.
Adding more and more cells, the size of the model
increases significantly. These extra cells, however,
only become active very late in the simulation, or
even never, thanks to quantization. This makes the
activity heap faster than the normal heap.

Polymorphic scheduler

For the polymorphic scheduler, we provide bench-
marks for both parts of our rationale:

• The user does not need to have knowledge about
data structures or the access patterns of the
model. For this benchmark, we use a model with
a parameter configuring the number of collisions.
• If the ideal scheduler varies throughout the sim-

ulation, the polymorphic scheduler changes its
configuration at run-time. For this benchmark, a
model is constructed which has different phases
during its simulation, with each phase having
distinct access patterns.

Different model configurations The synthetic model
from before is used: a model containing several
atomic models, none of them inter-connected. The
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percentage of collisions is configured by altering the
ratio of both types. But instead of having a mix of
active and inactive models, we now have a mix of
models with a random or fixed time advance, thus
preventing or causing collisions, respectively.

Figure 8 shows the results near the tipping point.
A heap-based scheduler is better when nearly no
collisions happen, so the polymorphic scheduler uses
this scheduler internally. By default, the polymorphic
scheduler is calibrated to switch when 30% of models
collide. We see three regions of interest in Figure 8:

1. With less than 30% of the models colliding, the
heap-based scheduler is much faster than the
list-based scheduler. Thanks to its heuristics,
the polymorphic scheduler uses a heap-based
scheduler.

2. With more than 30%, but less than 40% of
models colliding, the heap-based scheduler is
still slightly faster than the list-based scheduler.
We notice that the internal scheduler has
already switched to the list-based scheduler.
This indicates that the heuristic is not perfect in
this situation. Nonetheless, simulation remains
correct, but only takes longer to finish.

3. With more than 40% of models colliding, a list-
based scheduler becomes better. The heuristic of

the scheduler becomes the right decision at this
point.

In conclusion, the polymorphic scheduler often
makes a correct guess about the ideal scheduler.
If the user is oblivious about the ideal scheduler,
the polymorphic scheduler adequately manages this
situation. A small overhead is unavoidable due to
the need for monitoring and potentially changing the
internal data structures.

Phases in simulation For this benchmark, we use a
model that cycles through two different modes: one
where many collisions happen, and another where no
collisions happen. At the start of the simulation, all
models collide. Every 2 phases, the behavior switches
between many collisions and few collisions. Using a
single, statically defined scheduler is insufficient: no
single scheduler is ideal in both situations.

Figure 9 shows the results of this benchmark,
where the time taken in each phase is visualized. The
polymorphic scheduler is never the fastest, though
it is consistently fast by switching multiple times
during the simulation. Summed over the complete
simulation, the polymorphic scheduler is faster than
either static schedulers.

Activity-based migrations

Activity-based migrations are achieved solely by
using internal quantitative activity. We start with a
synthetic model, closely resembling our motivating
example in Figure 3. This example, however, is very
similar to ordinary load balancing methods, though
some information is taken into account about the
model structure. Afterwards, we simulate traffic in
a city during rush hour.

Synthetic This synthetic benchmark uses the model
shown in Figure 3, though with a higher number
of models. A ring of atomic models is constructed,
of which 10% have a high computational load, and
the others a neglible computational load. Activity
migrates through the model, so a good initial
allocation is only useful at the start of the simulation.

Figure 10 shows that activity migration helps to
achieve a decent speedup. This benchmark was done
using a dynamic allocator to find a good allocation
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at the start of the simulation. Models that are
highly active at the start are placed on separate
cores, whereas mildly active models are combined.
Speedup increases slightly when no migrations are
performed, though this is only due to the favorable
situation created by the dynamic allocator. With
migrations, speedup increases almost linearly up
to about 20 cores. This comes as no surprise, as
the migrator balances the load, achieving as much
speedup as possible. With more than 20 cores, the
model becomes too small to distribute over this many
cores: each active model already has a dedicated core.
This explains the sudden drops in performance for
some configurations.

Apart from showing that activity can indeed
increase performance, we also collected activity
measurements per core from a simulation run on
three cores. With activity tracking (Figure 11), the
measured activity of all cores stays approximately
equal, though with the occasional peaks that are
quickly resolved. These peaks happen for only a brief
period of time, which is the reaction time for the
migrator. The average activity seems to be about
0.13s per core. Without activity tracking (Figure 12),
the activity of all cores is always different. At first
only core 2 and 3 are active, with activity shifting
towards core 2. Node 2 quickly becomes the only
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core with any computation whatsoever, with an
activity of 0.45s. All other cores have an activity of
(almost) 0s. Near the end of the simulation, activity
starts to shift towards core 1. This causes core 2 to
become almost inactive, and core 1 to become highly
active. With a bad distribution, simulation is similar
to sequential simulation, but with the additional
overhead of optimistic synchronization.

City Layout The city layout model is a realistic
model, presented in [20]. A small example is shown
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in Figure 14, which contains 2 example routes.
A Manhattan-style city layout is constructed with
unidirectional roads between intersections. These
intersections contain traffic lights, which toggle after
a fixed delay. Every road segment contains either a
residential building (source) or a commercial building
(sink). Each road segment is part of a district, which
is the atomic entity used in migrations. A district
can be either residential or commercial, determining
which type of buildings is constructed on its road
segments. The route is pre-computed, and thus not
part of simulation execution time.

The communication between different road seg-
ments is shown in Figure 13 and is part of the
specification [20]. Residential buildings are genera-
tors and commercial buildings are collectors. At an
intersection, queries are forwarded to the destination
if the traffic light is green, or are immediately rejected
if the traffic light is red. As soon as the traffic light
becomes green again, all previously rejected queries
are forwarded immediately.

While this is a realistic model, there are some
disadvantages to distributed simulation:

1. Atomic models have almost no computation, as
they only compute the new velocity. This is a
simple formula, not warranting distribution or
parallelization. Code is therefore added to make
the computational load in the transition function
configurable.

2. The state of the models is relatively complex,
as it contains cars, queued queries, processing
queries, acknowledgments, and so on. State
saving thus imposes a significant simulation
overhead. State saving overhead takes even
longer than the transition functions in many
cases.

3. Queries are answered almost instantly, thus
lookahead is very small. This makes this a bad
model for distribution, and certainly for time
warp, as each message likely causes a rollback.

Distributed simulation now proves slower than
sequential simulation, so our results only show
absolute execution times. This observation does
not invalidate the results observed concerning
activity, as we merely compare different activity

measurement approaches. Some models require
distributed simulation, as they are simply too
large to store in the memory of a single core. In
that case, distributed simulation can become slower
than sequential simulation without losing its value.
Nonetheless, we still want to do the distributed
simulation as fast as possible.

Activity is used to migrate districts between
different cores during simulation. Intuitively, activity
can have an impact here as the cars (and thus the
activity) move through the model. At the start of
simulation, residential districts are active, whereas
the commercial districts are inactive. Near the end of
simulation, the commercial districts become active,
whereas the residential districts become inactive, as
all traffic has shifted from the residential to the
commercial districts.

Figure 15 shows the results for a distributed
simulation using 5 cores. Four measurement methods
are compared:

1. No migration. The basic case without any
activity information, and thus no load balancing
at all.

2. Activity Tracking. The wall clock time spent
in the transition functions is used for activity.
Migrations balance the time spent, by migrating
districts between cores. Apart from the domain-
specific migration (i.e., migrating at district-
granularity), this is identical to normal load
balancing.

3. Activity in state. The number of cars in a
district is used as activity metric. Migrations
balance out the number of cars, which is a
domain-specific measure.

4. Activity in state prediction. The number of
cars in a district is used as activity metric. But
instead of using this value as-is, we predict that
20%∗ of the cars exits the district and enters the
next district. In commercial sections, we further
assume that there is a chance that the car has
arrived at its destination and is subsequently
removed from the simulation. This prediction

∗This value was obtained empirically and requires some tuning
depending on the horizon.
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Figure 14. Example city layout model for 2 cars.

is at a much higher level of abstraction than
the DEVS model, and much faster to compute.
Nonetheless, results offer a fair indication of the
future.

From these results, it is clear that both activity in
state methods are always faster than no migration.
Both perform nearly identical and their difference
is negligible. Prediction is unable to exploit any
information that can really make a difference: activity
moves too slow throughout the model, making the
prediction almost identical to the measured values.
Only for low computational load can we see that
prediction is marginally faster, though this is neglible.

The difference between activity tracking and
activity in state is an important observation. As
computational load is increased, the horizon becomes
smaller. The horizon might become so small that a
model only transitions a few times, if at all, making
the measured activity statistically insignificant. This
is the problem mentioned as a disadvantage of
activity tracking. While increasing the horizon
alleviates this problem, it causes slower reaction
times. Activity in state methods are invulnerable to
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this problem. If the horizon is sufficiently large, such
as for up to 300 microseconds load, activity tracking
performance is similar to the other activity methods.
On average, the performance improvement due to the
use of (domain-specific) activity is around 5-10% for
this model.

Related work

We have used the PythonPDEVS [25, 27] simulator
as an example implementation of our approach.

PythonPDEVS supports the simulation of the
Classic DEVS [33], Parallel DEVS [4], and Dynamic
Structure DEVS [1] formalisms, each of which
can benefit from activity-awareness. Several other
simulators for these formalisms, or a subset thereof,
exist, such as adevs [19], vle [22], DEVS-Suite [10],
PowerDEVS [2], and X-S-Y [7]. Out of these
simulators, none support distributed Parallel DEVS
simulation [28]. While adevs offers parallel simulation
using conservative synchronization, migration and
allocation are not supported. Consequently, there
is no opportunity to use activity for migration or
allocation either.
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Nonetheless, their schedulers can still be optimized
to use activity information. For example, adevs
and vle already filter out inactive models. This is
equivalent to our simple activity scheduler presented
in Section Activity Scheduler. They do not,
however, support a polymorphic scheduler, nor
can they import user-defined schedulers (potentially
using activity). Neither supports domain-specific
extensions to activity.

A polymorphic scheduler is implemented in the
Meijin++ [18] tool. However, this tool does not
offer (Parallel) DEVS simulation, nor does it explicitly
allow the user to chose the underlying data structures
and the threshold parameters.

DEVSimPy [3], based on a modified version
of PythonPDEVS, also has an activity tracking
plugin [12, 23]. This plugin only visualizes measured
activity, and is not used for load balancing or
performance optimization. Modellers must manually
use this information to optimize their model.

A frequently used example of activity is for the
simulation of fire spread models, as used by [15, 16,
21]. In our case, this only exploits qualitative activity,
as a cell is either burning (active) or not (inactive).
Use cases for quantitative activity are more complex,
such as the asynchronous electrical machine used
in [12].

We have mainly touched the computational
resource usage-aspect of activity, as our intention was
to reduce simulation execution time. This was also
the main focus of [12, 23]. Other directions could be
memory resource usage, energy consumption [6], or
even completely different notions [17].

A comparison between the terms seen in the
literature and ours was previously made in Section .

Conclusions

We have shown that activity can give significant
speedups for a wide variety of models. Three
simulator components were extended with the notion
of activity.

For the scheduler, it becomes possible to achieve
a lower complexity than even the most efficient
(static, activity-unaware) scheduler. These scheduler

optimizations are compatible with all other features,
in sequential and distributed simulation.

In distributed simulation, activity can be used to
find a good initial allocation (with the allocator), or
for optimizing this allocation at runtime using load
balancing (with the migrator).

While these components are also usable without
activity, activity makes them more flexible and
dynamic. The components also require less user
intervention, as soon as the domain-specific code is
written. Activity is therefore not inherently linked
to the possibilities for improved performance, though
makes it easier to exploit.

Our approach enables users to increase simulation
performance by providing (optional) domain-specific
hints about the model being simulated.

This user information, however, can be wrong,
depending on the skills of the user. Luckily,
simulation can cope with wrong information, at the
cost of lower performance.

It would be ideal to include such activity-based
components in domain-specific tools or translators,
which automatically generate DEVS models. Tool
builders can then include activity hints in their
generated models, as they have the necessary
domain knowledge. As soon as the model and its
activity-based extensions are created, no further user
intervention is required. The end-user thus gets
improved performance without any additional effort.

Future work is possible in several directions. First,
other aspects of the simulator might also be able to
profit from the use of activity. Further analysis of the
algorithms might yield additional opportunities for
activity-awareness. Second, determining statistical
relevance of the measured activity values can
potentially limit or event prevent operations based
on unreliable activity measurements caused by a
too small horizon. Third, our approach still has
the problem that no information is known about
activity at the start of the simulation. We tried to
overcome this problem by using a small profiling run
in the allocator. Static analysis of the model, such
as in [12], might be possible to help in analyzing
the statistical significance of the obtained horizon,
and to aid in obtaining a decent initial allocation
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without the need for a profiling run. Fourth, domain-
specific extensions for quantitative external activity
are to be considered. Fifth, a more detailed analysis
of the trade-offs between increasing performance
and requiring more domain knowledge can help
determine the ideal level of domain knowledge
required. This trade-off is highly domain-dependent
and also depends on the users and how they have
encoded the solution.
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