
JigCell Model Connector: Building Large Molecular Network
Models from Components

Thomas Carroll Jones Jr.

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Masters
in

Computer Science and Applications

Clifford A. Shaffer, Chair
John J. Tyson, Co-Chair

Layne T. Watson
Stefan Hoops

April 28, 2017
Blacksburg, Virginia

Keywords: Computational Systems Biology, Hierarchical Model Composition, SBML,
Modeling Tool, Software, JigCell

Copyright c© 2017 by Thomas Carroll Jones Jr.

JigCell Model Connector: Building Large Molecular Network Models from
Components

Thomas Carroll Jones Jr.

(Abstract)

The ever-growing size and complexity of molecular network models makes them difficult
to construct and understand. Modifying a model that consists of tens of reactions is no
easy task. Attempting the same on a model containing hundreds of reactions can seem
nearly impossible. We present the JigCell Model Connector, a software tool that supports
large-scale molecular network modeling. Our approach to developing large models is to
combine together smaller models, making the result easier to comprehend. At the base,
the smaller models (called modules) are defined by small collections of reactions. Modules
connect together to form larger modules through clearly defined interfaces, called ports. In
this work, we enhance the port concept by defining different types of ports. Not all modules
connect together the same way, therefore multiple connection options need to exist.

JigCell Model Connector: Building Large Molecular Network Models from
Components

Thomas Carroll Jones Jr.

(General Audience Abstract)

Genes and proteins interact to control the functions of a living cell. In order to better under-
stand these interactions, mathematical models can be created. A model is a representation
of a cellular function that can be simulated on a computer. Results from the simulations
can be used to gather insight and drive the direction of new laboratory experiments. As
new discoveries are made, mathematical models continue to grow in size and complexity.
We present the JigCell Model Connector, a software tool that supports large-scale molecular
network modeling. Our approach to developing large models is to combine together smaller
models, making the result easier to comprehend. At the base, the smaller models (called
modules) are defined by small collections of reactions. Modules connect together to form
larger modules through clearly defined interfaces, called ports. In this work, we enhance the
port concept by defining different types of ports. Not all modules connect together the same
way, therefore multiple connection options need to exist.

Acknowledgments

I would first like to thank Dr. Clifford A. Shaffer and Dr. John J. Tyson for welcoming
me into their research group. Both Dr. Shaffer and Dr. Tyson provided endless advice and
support that guided me in my research. Their patience and encouragement allowed me to
overcome many obstacles. I would like to thank the members of my committee, Dr. Layne T.
Watson and Dr. Stefan Hoops, for their lively discussions that helped propel this research
forward. I am grateful that each member of my committee, no matter how busy, always
made time to meet, answer questions, and be involved. Their time was invaluable to me and
the progress of this research.

Beside my committee, I would like to thank Dr. Lenwood S. Heath for introducing me to
research at the crossroads of Computer Science and Biology. When I entered his office as
an undergraduate student with interest but no experience in biology or research, Dr. Heath
responded with ”Well, let’s get started.” That kindness is something that has not been
forgotten. I would like to thank Dr. Yang Cao for opening my eyes and helping me realize
that attending Graduate School was a possibility.

I would like to give a big thanks to all the members of Dr. Tyson’s Lab. Dr. Kathy Chen,
Dr. Alida Palmisano, Dr. Kartik Subramanian, Dr. Pavel Kraikivski, and Dr. Dorjsuren
Battogtokh each made the lab a great place. Thank you for welcoming me into such a special
group.

Finally, I would like to thank my family for their everlasting encouragement. Without their
support, I am sure none of this would have been possible. They have always believed in me,
and for this I will be forever grateful.

iv

Contents

1 Introduction 1

2 Background 3

2.1 Hierarchical Model Composition . 3

2.2 The SBML Standard . 5

2.2.1 The SBML comp Package . 6

2.2.2 The SBML layout Package . 6

2.3 Related Tools . 7

3 JigCell Model Connector 9

3.1 Interface . 9

3.1.1 TreeView . 9

3.1.2 DrawingBoard . 9

3.1.3 ModelBuilder . 10

3.2 Components . 11

3.2.1 Container Module . 11

3.2.2 Submodule . 11

4 Technical Contributions 13

4.1 Ports . 13

4.2 Nodes . 14

4.2.1 Visible Variable Node . 15

v

4.2.2 Equivalence Node . 17

4.3 Connections . 17

4.4 Port, Node, and Connection Effects on a Model 19

4.4.1 Input and Output Ports . 19

4.4.2 Equivalence Port . 22

4.5 SBML Syntax . 24

4.5.1 Ports . 25

4.5.2 Nodes . 26

5 Case Study 29

5.1 Biological Model . 29

5.2 The Hierarchical Model . 30

5.2.1 Transcription and Translation Coupling 30

5.2.2 ClbM Regulation . 32

5.2.3 Cdc14 Regulation . 37

5.2.4 SBF Regulation . 46

5.2.5 Last Components . 57

5.2.6 Final Model . 60

5.2.7 Simulation Results . 61

6 Conclusions and Future Work 63

Bibliography 64

vi

List of Figures

2.1 Model fusion [12] . 4

2.2 Model aggregation . 5

2.3 Model flattening . 6

3.1 Three panels and the menubar . 10

3.2 TreeView . 10

3.3 DrawingBoard . 11

3.4 ModelBuilder . 11

3.5 Submodule information preview . 12

4.1 Ports tab . 15

4.2 Visible Variable created with a connection 16

4.3 Synthesis and degradation module RSD . 19

4.4 Phosphorylation and dephosphorylation module SPD 20

4.5 Output port example . 21

4.6 Module reaction information . 22

4.7 Equivalence port example . 24

5.1 Model of cell-cycle control in budding yeast [3] 30

5.2 Modular model of cell-cycle control in budding yeast 31

5.3 Transcription and translation coupling module TTCoupling 32

5.4 Step 1 of the model . 33

5.5 Cdh1 phosphorylation and dephosphorylation module 34

vii

5.6 Cdh1 regulation module . 35

5.7 Step01 module in JCMC . 36

5.8 Step 2 of the model . 37

5.9 Ht1 regulation module . 38

5.10 Cdc14 regulation module . 39

5.11 Net1 regulation module . 40

5.12 Net1 phosphorylation and dephosphorylation module 41

5.13 RENT association and dissociation module 42

5.14 RENT regulation module . 43

5.15 RENT phosphorylation and dephosphorylation module 44

5.16 Step02 module in JCMC . 45

5.17 Step 3 of the model . 46

5.18 Hi5 regulation module . 47

5.19 Hbf regulation module . 48

5.20 SBF regulation module . 49

5.21 SBF posphorylation and dephosphorylation module 50

5.22 Whi5 regulation module . 51

5.23 Whi5 posphorylation and dephosphorylation module 52

5.24 Cmp regulation module . 53

5.25 Cmp posphorylation and dephosphorylation module 54

5.26 Cmp association and dissociation module . 55

5.27 Step03 module in JCMC . 56

5.28 Cln3 regulation module . 57

5.29 ClbS regulation module . 58

5.30 Ga regulation module . 59

5.31 Initial CellCycle model in JCMC . 60

5.32 Final CellCycle model in JCMC . 61

5.33 Time course simulation results . 62

viii

List of Tables

4.1 Rules for Submodule to Submodule connections 17

4.2 Rules for Container Module to Submodule connections 17

4.3 Rules for Submodule to Container Module connections 17

ix

Chapter 1

Introduction

The functions of a living cell are controlled by macromolecular interactions. These complex
interactions between genes and proteins can be mapped as regulatory networks. In an
effort to understand the dynamic properties of the networks, mathematical models of the
biochemical reactions can be constructed [22, 21, 17]. Modelers have the difficult task of
specifying reaction details between species connected in these complex regulatory networks.

Modeling an accurate system is not a one-step task. Modeling is an iterative process that
involves frequent changes [5]. Once a model is drafted, the equations can be analyzed and
simulated to describe the molecular behavior [21]. These computational results can then be
compared to existing experimental data. If inconsistencies arise, the model can be modified.
Once a model has been tested against existing experimental data, it can be used to make
predictions that navigate the direction of future experiments [23]. If further experiments
uncover inconsistencies, the model can again be modified.

As molecular biologists discover more information about how gene and protein interactions
affect cell physiology, the size and complexity of the mathematical models continue to grow.
Attempting to construct these models is becoming more difficult. In order to better com-
prehend increasingly complex models, new modeling approaches need to be explored.

Hierarchical model composition is a modeling technique that allows models to be submodels
inside of another model. Instead of building one large, complex model, smaller models are
combined together to form a larger model. By breaking a complex system into smaller parts,
it can be more easily understood.

We designed the JigCell Model Connector, a software tool to support hierarchical model
composition. In our tool, the smaller models (called modules) are defined by small collec-
tions of reactions. Modules connect together to form larger modules through clearly defined
interfaces, called ports. Modelers are able to regulate external access to internal components
of a module by utilizing ports. We implement different port types that allow modules to
connect in different ways. Once a model is created in the JigCell Model Connector, it can

1

CHAPTER 1. INTRODUCTION 2

be exported into a standard file format. The model can then be simulated and analyzed by
other tools. Our goal is to develop large models in a modular way, making the result easier
to comprehend.

In Chapter 2, hierarchical model composition, standards, and tools related to hierarchical
modeling are reviewed. Chapter 3 presents the JigCell Model Connector environment and
its components. In Chapter 4, the different types of ports and their impact on a model are
discussed. Chapter 5 gives an example of hierarchical modeling with a full biological model.
In Chapter 6, the best practices for constructing hierarchical models, conclusions, and future
work are discussed.

Chapter 2

Background

In this chapter, we review several topics that serve as building blocks for this thesis. We
discuss the style of modeling used and a standard format that enables the sharing of models.
We also review previous modeling tools.

2.1 Hierarchical Model Composition

As the scope of research into molecular networks expands, the representative computational
models continue to grow in size and complexity. The increasing complexity makes models
difficult to construct and understand using traditional modeling practices. Below we review
improved modeling approaches.

Randhawa et al. [12, 14, 15] introduce the method of model fusion. Model fusion is a
process where two or more complete models are combined, making one large model as shown
in Figure 2.1. The models are modified in such a way that the process is irreversible. This
means that the original smaller models (submodels) cannot be recognized and recovered once
fused together. The goal of fusion is to create a single unified model containing all of the
information from the submodels, without repetition. Model fusion is accomplished in two
steps, name resolution and automatic merging. Name resolution involves removing repetition
and identifying equivalences across the various components of the submodels. Automatic
merging places the remaining submodel components together into a single model.

Randhawa et al. [12, 14, 15] describe model composition as another approach to create large
models from smaller models. The smaller models become submodels of a larger composed
model. Composition involves describing how components from different submodels interact
with one another, without changing the inner workings of each submodel. The interaction
descriptions are stored in the overarching composed model.

Large models are simply collections of submodels, and can be organized in a hierarchical fash-

3

CHAPTER 2. BACKGROUND 4

(a) Sample models (b) Fused model

Figure 2.1: Model fusion [12]

ion. Unlike fusion, model composition is a reversible process. If the interaction descriptions
are removed, then the original submodels can be recovered.

Randhawa et al. [13, 15] characterize model aggregation as a restricted form of model
composition. Here, they define a module as a collection of model components. A module
also includes a specification for predetermined ports. A port is a link to an internal model
component, such as a species or parameter. Therefore, a module is a submodel with ports.
The ports of a module form an interface, which only allows access to specific components
within the module. The process of grouping model components and assigning ports is referred
to as modularization, as shown in Figure 2.2. In model composition, any component of a
submodel could be referenced in a larger composed model. In model aggregation, only a
component linked to a port can be referenced in a larger composed model. Modules are then
connected together by their interface ports. With model aggregation, modelers can build
larger models in a controlled manner.

Randhawa et al. [12, 13, 15] also presented the concept of model flattening. Model flattening
converts composed or aggregated models to their ”flattened versions”, as shown in Figure 2.3a
and Figure 2.3b. The interaction details of the composed or aggregated models are used as
instructions during the flattening process. The result is a single large (flat) model, which is
equivalent to fusing the submodels. The flat model is in a standard format that can be read
by existing software tools, for the purpose of running simulations and further analysis. The
flattening process loses the hierarchical and other relationships between the various modules,
yielding a set of reaction equations.

CHAPTER 2. BACKGROUND 5

Figure 2.2: Model aggregation

2.2 The SBML Standard

The Systems Biology Markup Language (SBML) is a format that represents systems biology
models electronically. Such a standard allows for the sharing and collaboration of models.
SBML Level 1 [8] was introduced in 2001. A model defined in SBML can consist of many
components, such as compartments, species, reactions, and parameters. The interactions
between components in the model are also defined in SBML. It is important to note that
SBML is not designed to be an easily human-readable format. Modelers are not expected to
write their models by hand in SBML. Instead, software tools are expected to read and write
the format.

As we just explained, a model defined in SBML can consist of many components. Ex-
tra information about a component can be stored in an annotation. Annotations can be
thought of as comments in an SBML file. These comments can be left for any type of SBML
component. Additional details found in an annotation pertain to the component which it
is attached, such as a reaction, species, or parameter. The information in an annotation
is software-generated and not meant to be in an easily human-readable format. Typically,
annotations are used by software developers to include application-specific data.

The latest version, SBML Level 3 Version 1 Core [9], was released in 2010. In Level 3
Version 1, SBML incorporates new sets of related features in a modular form. These feature
extensions are referred to as packages. Multiple packages can be used within a single SBML
model. All packages used within a model must be declared at the beginning of the SBML
document. Each package declaration includes a required attribute. The attribute is listed as
required=‘‘true’’ or required=‘‘false’’. If a package alters the mathematical meaning
of the model, then this attribute must be set to true. A required attribute of true

alerts software applications reading the model that the corresponding package must be taken

CHAPTER 2. BACKGROUND 6

(a) Composed model [14]

(b) Aggregated model [13]

Figure 2.3: Model flattening

into consideration. Otherwise, a required attribute of false indicates that the package
information can be ignored and the mathematical meaning of the model will not change.
Two SBML packages relevant to component-based modeling, comp and layout, are described
next.

2.2.1 The SBML comp Package

The latest version of the SBML comp package [19] was released in 2013. This package allows
instances of models to be incorporated as submodels within a model. The model structure
is extended to include a list of submodels and a list of ports. A submodel is an instance of a
model definition. A model definition is a complete, self-contained model. Model definitions
instantiated as submodels are located in the list of internal model definitions or the list of
external model definitions. An internal model definition is stored within the SBML file.
An external model definition is a placeholder that specifies the location of an external file
containing the model definition. This external file can be on the local machine or available on
the internet. Ports allow models to interact with other models through a designated interface.
A port references some component within the model, such as a species or parameter. These
extended features of comp enable hierarchical model composition in SBML.

2.2.2 The SBML layout Package

The latest version of the SBML layout package [6] was released in 2013. The package
allows components of a model to be represented graphically. Pieces of a model can be
visually organized in an attempt to provide more clarity. The model structure is extended

CHAPTER 2. BACKGROUND 7

to include a list of layouts. A layout can store the information for graphics representing
some or all components of the SBML model. These graphics are referred to as glyphs in
layout. A compartment, species, and reaction can be represented by a CompartmentGlyph,
SpeciesGlyph, and ReactionGlyph, respectfully. There is also a GeneralGlyph that can
represent parts of a model that are not specified in the Level 3 Version 1 Core, such as a
submodel from comp. A glyph stores information pertaining to the location and dimension
of a graphical object. A glyph does not include information describing the shape, color, or
style of a graphical object. It is left up to the software tool reading the layout to display
those details. These extended features of layout enable model visualization in SBML.

2.3 Related Tools

There are numerous software tools available for the modeling and simulation of molecular
networks. For example, Antimony [18] is a model definition language that can be used to
create, import, and combine models in a modular way. However, Antimony is text-based
and only provides limited support for importing/exporting models using SBML comp.

COPASI [7] is a tool used to model, simulate, and analyze biochemical networks. Its graphical
user interface offers many features such as stochastic and deterministic simulation methods,
parameter estimation, and data visualization. COPASI is an excellent tool for creating
a single model. It provides support for importing/exporting standard SBML (Level 3).
However, COPASI lacks features to support hierarchical modeling and SBML comp.

Previous iterations of JigCell [1, 2, 13, 14, 16, 24, 25] have included a Model Builder, Ag-
gregation Connector, Run Manager, Comparator, and Parameter Estimation Toolkit. The
JigCell suite of tools can be used to model, simulate, and analyze biochemical networks.
The Model Builder is used to create and edit reactions, species, and other model properties
in a tabular format. The Aggregation Connector is used to combine models in a modular
way. The Run Manager and Parameter Estimation Toolkit are used to define simulation
properties and determine unknown parameter values within the model. The Comparator is
used to compare the model simulations with experimental results. The JigCell suite provides
support for importing/exporting standard SBML (Level 2).

JigCell Multistate Model Builder (JC-MSMB) [11] is a tool that supports the modeling of
biochemical networks. The graphical user interface builds on the tabular spreadsheet format
used by [24, 25]. JC-MSMB reduces the complexity of model creation by introducing a
new syntax to describe multistate species. The syntax requires fewer reactions to represent
complex molecular systems. The tool has many editing support features such as flexible
autocompletion and consistency checks to assist users during the model creation process.
It provides support for importing/exporting SBML (Level 3). However, JC-MSMB lacks
features to support hierarchical modeling and SBML comp.

iBioSim [10] is a tool for the modeling, analysis, and design of genetic circuits. In syn-

CHAPTER 2. BACKGROUND 8

thetic biology, genetic circuits can be used to design and construct networks to implement
a particular cellular function [4]. Although primarily designed for genetic circuits, it can be
used to study biological networks as well. Its graphical user interface can be used to create,
import, and combine models in a modular way. iBioSim offers multiple simulation methods,
model analysis, and data visualization. It provides support for importing/exporting hier-
archical models using SBML comp. Both JigCell and iBioSim offer support for SBML and
hierarchical modeling, but lack the features of different port types.

Chapter 3

JigCell Model Connector

This thesis is primarily about the JigCell Model Connector (JCMC). In order to better
understand the purpose and key features of JCMC, it helps to first have an overview of
the system’s user interface. At this point, the reader need not worry too much about the
underlying meaning of the various components that are presented here. This will be discussed
in the following chapters.

3.1 Interface

The JCMC interface consists of three panels. These panels are shown in Figure 3.1 and
described below.

3.1.1 TreeView

The left panel is the TreeView. It displays the hierarchical relationships between components
of the model. An example is shown in Figure 3.2. A module can be selected using the left
mouse button and it will be highlighted. Double clicks (using the left mouse button) will
expand/collapse the selected module. After selecting a module, the user can add or remove
submodules (using the Module menu).

3.1.2 DrawingBoard

The right panel is the DrawingBoard. It displays the graphical view of a module, its submod-
ules, and any connections among them. An example is shown in Figure 3.3. The currently
loaded module is called the container module. In Figure 3.3 the container module is named
Model. Submodules can be moved inside of the container module. In Figure 3.3, Cdh1

9

CHAPTER 3. JIGCELL MODEL CONNECTOR 10

Figure 3.1: Three panels and the menubar

Figure 3.2: TreeView

and CycB are submodules. If ports exist, they are displayed on the container module and
submodules. Connections between ports, visible variable nodes, and equivalence nodes are
also shown. We will show examples of these components in later sections.

3.1.3 ModelBuilder

The bottom panel is the ModelBuilder, shown in Figure 3.4. It is similar to the JigCell
Multistate Model Builder (JC-MSMB) [11], which was previously implemented by our group.
The ModelBuilder in JCMC is different from JC-MSMB because the ModelBuilder does not
support multistate species. It is a tabular spreadsheet interface where the details of a module

CHAPTER 3. JIGCELL MODEL CONNECTOR 11

Figure 3.3: DrawingBoard

are displayed. Attributes such as reactions, species, parameters, and events can be modified.

Figure 3.4: ModelBuilder

3.2 Components

3.2.1 Container Module

The container module is the current loaded module. The TreeView panel shows the container
module’s name in bold font. The ModelBuilder panel displays the module definition of the
container module. A module definition contains a module’s detailed information, such as
reactions, species, parameters, and events. The DrawingBoard displays the container module
and any submodules, ports, or connections in the module. There can only be one container
module loaded at a time.

3.2.2 Submodule

A submodule is simply a module contained within another module. The TreeView panel lists
a submodule under the container module to which it belongs. In the DrawingBoard, a sub-

CHAPTER 3. JIGCELL MODEL CONNECTOR 12

module can be moved and resized within the bounds of its container module. A submodule’s
information is listed as:

<Definition Name>

“<Submodule Name>”

Definition Name corresponds to the name of the module definition. A module definition
contains detailed information, such as reactions, species, parameters, and events. Submodule
Name corresponds to the name of a specific instantiation of the module definition. In
Figure 3.3, submodule Cdh1 is an instantiation of module definition PhosDephos. Similarly,
submodule CycB is an instantiation of module definition SynDeg. A single module definition
can be instantiated multiple times. We see examples of this in later sections.

A submodule’s detailed information (reactions, species, parameters, events, etc) is not listed
in the ModelBuilder panel because the container module’s information is displayed. However,
a submodule’s information can be previewed in the ModelBuilder panel. Each submodule has
a button in the top left-hand corner. When this button is pressed, the information for that
submodule will be displayed in the ModelBuilder. An example is shown in Figure 3.5. After
the button for Cdh1 is pressed, the template information for Cdh1 will be displayed in the
ModelBuilder. This is shown in Figure 3.5b. Notice the tables are grayed-out. This is because
the information is a preview only, and cannot be modified. To modify the information, load
the submodule as the container module. Figure 3.5c shows when the button for CycB has
been pressed.

(a) (b) (c)

Figure 3.5: Submodule information preview

Submodules can be added and removed using the Module Menu. Removing a submodule
will remove the selected module, all of its submodules, and any connections associated with
other modules.

Chapter 4

Technical Contributions

As discussed in Chapter 2, Randhawa et al. [13, 15] define model aggregation as a restricted
form of model composition. With aggregation, modelers can regulate external access to
internal components of a module by defining ports. A port allows an internal component
to be referenced in a larger composed model. Modules can then be connected together
by their interface ports to build larger models in a controlled manner. However, not all
modules are the same. Internal components linked to ports do not necessarily serve the
same purpose for every module. Not all modules connect together in the same way, therefore
multiple connection options need to exist. In this chapter, we present different port and
node constructs to enable multiple connection options. We also discuss how connections can
impact a model.

4.1 Ports

Ports allow internal components of a module to be referenced outside of that module. A
port can be linked to either a species or module quantity. Once created, the ports combine
to form an interface. External access to a module’s internal components is regulated by the
interface. Modules can be connected together by their interfaces to build larger models.

Previous software tools [10, 13, 14, 16] support ports and ports are included in the SBML
comp package [19]. However, these treat all ports the same. Internal components linked to
ports do not necessarily serve the same purpose for every module. Currently, a port gives
no information as to how an internal component is used. Based on the port, modelers have
no way to discern a component’s purpose within a module. There exists a need for different
port types, where the type of port is dependent upon how the linked internal component
is used within a module. Using port types, modelers are able to convey their intent for a
component. The port types are described below.

13

CHAPTER 4. TECHNICAL CONTRIBUTIONS 14

An output port is linked to an internal component that will send a value to an external
reference. The component linked to the port may be modified inside the module but the
component is not meant to be modified outside the module. Consider the scenario where
a species is synthesized in a module and then used as a transcription factor outside of the
module. An output port is appropriate because the species is not modified outside of the
module. A detailed example is explained in Section 4.4.1. Output ports are represented
as triangles on the edge of modules. They are oriented so the arrowhead points out of the
module.

An input port is linked to an internal component that will receive a value from an external
reference. The component linked to the port is not meant to be modified within the module.
Consider the scenario where a rate constant for a reaction within a module has a value
determined outside of the module. An input port is appropriate because the rate constant
is only used in calculations for the reaction and not modified inside the module. A detailed
example is explained in Section 4.4.1. Input ports are represented as triangles on the edge
of modules. They are oriented so the arrowhead points into the module.

An equivalence port is linked to an internal component that will both receive and send values
from an external reference. The component linked to the port may be modified inside and
outside the module. Consider the scenario where a species is synthesized in one module and
phosphorylated in another module. An equivalence port is appropriate because the species
is modified in both modules. A detailed example is explained in Section 4.4.2. Equivalence
ports are represented as diamonds on the edge of modules.

In the DrawingBoard panel, the ports are displayed on the module boundaries. In the
ModelBuilder panel, ports are listed under the Ports tab (shown in Figure 4.1). The list
is populated with ports from the container module and ports from any submodules in the
container module. When a port is selected in the DrawingBoard panel, the Ports tab is
displayed and the corresponding port is highlighted in the ModelBuilder panel. Each port
has three properties:

• Ref Name: the species or module quantity referenced by the port
• Port Type: the type of port
• Port Name: the name of the port

Port additions or removals can only happen to the container module. To modify the ports of a
submodule, load the submodule as the container module then proceed with the modification.

4.2 Nodes

A node allows connections to occur between the ports of modules. The type of node used
depends on the type of ports connected.

CHAPTER 4. TECHNICAL CONTRIBUTIONS 15

Figure 4.1: Ports tab

4.2.1 Visible Variable Node

A visible variable node is automatically created when a connection is made between input
or output ports of two modules. Figure 4.2 shows two submodules after a connection is
made, a visible variable is created, and the new variable is added in the ModelBuilder panel.
Another way to create a visible variable node is to right click the active module and select
“Show Variable”. Once selected, a pop-up window will appear with a drop down box that
contains a list of all the species and module quantities in the module. Select a variable, click
Add, and a visible variable node will be created in the DrawingBoard panel.

A visible variable node can have at most one incoming connection. A single incoming con-
nection lets the node receive values. A visible variable node can have multiple outgoing
connections. The outgoing connections are used to send values.

CHAPTER 4. TECHNICAL CONTRIBUTIONS 16

Figure 4.2: Visible Variable created with a connection

CHAPTER 4. TECHNICAL CONTRIBUTIONS 17

4.2.2 Equivalence Node

An equivalence node is created automatically when a connection is made between an equiva-
lence port and any other port in the DrawingBoard panel. When created, the new variable is
added in the ModelBuilder panel. An equivalence node can have multiple connections. Since
values are both sent and received, there is no distinction between incoming and outgoing
connections.

4.3 Connections

A set of connections can link modules together. Connections can occur between the ports of
different modules, visible variable nodes, and equivalence nodes. The rules for connections
are listed in Tables 4.1, 4.2, and 4.3.

Table 4.1: Rules for Submodule to Submodule connections

Target Submodule Port
Input Output Equivalence

Source Submodule Port
Input Invalid Invalid Invalid

Output Valid Invalid Invalid
Equivalence Valid Invalid Valid

Table 4.2: Rules for Container Module to Submodule connections

Target Submodule Port
Input Output Equivalence

Source Container Module Port
Input Valid Invalid Invalid

Output Invalid Invalid Invalid
Equivalence Valid Invalid Valid

Table 4.3: Rules for Submodule to Container Module connections

Target Container Module Port
Input Output Equivalence

Source Submodule Port
Input Invalid Invalid Invalid

Output Invalid Valid Invalid
Equivalence Invalid Invalid Valid

CHAPTER 4. TECHNICAL CONTRIBUTIONS 18

A connection can be created by dragging a line from a valid source to a valid target. At-
tempting to create an invalid connection will result in a warning message and no connection
created.

CHAPTER 4. TECHNICAL CONTRIBUTIONS 19

4.4 Port, Node, and Connection Effects on a Model

In this section we will explore the effect that different ports, nodes, and connections have
on a model. In the equation notation used below, variables are represented by strings,
multiplication is denoted by ×, and differentiation by d

dt
[name].

4.4.1 Input and Output Ports

We will begin with a simple synthesis and degradation module.

Figure 4.3: Synthesis and degradation module RSD

Figure 4.3 shows the synthesis and degradation module RSD in JCMC. The reactions are
displayed in the ModelBuilder panel at the bottom. The rate of synthesis is determined by
rate constant k0 and transcription factor F . The rate of degradation is determined by mass
action kinetics with rate constant k1. The dynamics of species R in module RSD are shown

CHAPTER 4. TECHNICAL CONTRIBUTIONS 20

in
d

dt
[R] = (k1 × [F]) − (k0 × [R]). (4.1)

Figure 4.3 also shows that module quantities k0 and k1 are connected to input ports. Because
k0 and k1 are connected to input ports, they can receive values from external connections.
Note that k0 and k1 are not modified within the module RSD. They are only used for the
computations of other variables.

Figure 4.4: Phosphorylation and dephosphorylation module SPD

Figure 4.4 shows the phosphorylation and dephosphorylation module SPD in JCMC. The
rate of phosphorylation is determined by mass action kinetics with rate constant kp. The
rate of dephosphorylation is determined by mass action kinetics with rate constant kh. The
species dynamics of module SPD are described by

d

dt
[S] = −(kp× [S]) + (kh× [SP]), (4.2)

d

dt
[SP] = (kp× [S]) − (kh× [SP]). (4.3)

CHAPTER 4. TECHNICAL CONTRIBUTIONS 21

Figure 4.5: Output port example

Figure 4.5 displays Model01, where SPD and RSD are submodules. Species TF , module
quantity ks, and module quantity gd are displayed as visible variable nodes. SPD has an
output port linked to species SP and RSD has input ports linked to species F , module
quantity k0, and module quantity k1. Node ks is connected to the k0 port on submodule
RSD. This means k0 will receive the value of ks. To accomplish this, k0 will be replaced
by ks in submodule RSD. The same will happen with k1 and gd. The replacement is not
immediate but will occur when the entire model is flattened. There is one connection from
module SPD’s SP port to node TF and another from node TF to module RSD’s F port.
SPD’s SP port will send its internal value to node TF . Node TF will then send the value
to RSD’s F port. Finally, the internal species F in RSD will receive the value. When the
model is flattened, TF will replace SP in SPD and F in RSD. The species dynamics after

CHAPTER 4. TECHNICAL CONTRIBUTIONS 22

flattening are

d

dt
[S] = −(kp× [S]) + (kh× [TF]), (4.4)

d

dt
[TF] = (kp× [S]) − (kh× [TF]), (4.5)

d

dt
[R] = (ks× [TF]) − (gd× [R]). (4.6)

(4.3) has been replaced by (4.5) and TF has replaced SP in (4.2) to form updated (4.4).
Similarly, TF replaced F in (4.1) to form updated (4.6).

4.4.2 Equivalence Port

Figure 4.6 displays the ModelBuilder panel for three different modules.

(a) XSD

(b) YPD

(c) CompAD

Figure 4.6: Module reaction information

Figure 4.6a shows the reaction details for the synthesis and degradation of species X in
module XSD. The rate of synthesis is determined by ks and the rate of degradation is

CHAPTER 4. TECHNICAL CONTRIBUTIONS 23

determined by mass action kinetics with rate constant gd. The dynamics of species X in
module XSD are shown in

d

dt
[X] = ks− (gd× [X]). (4.7)

Figure 4.6b shows the reaction details for the phosphorylation and dephosphorylation of
species Y in module YPD. The rate of phosphorylation is determined by mass action kinetics
with rate constant kp. The rate of dephosphorylation is determined by mass action kinetics
with rate constant kh. The species dynamics of module YPD are

d

dt
[Y] = −(kp× [Y]) + (kh× [Y P]), (4.8)

d

dt
[Y P] = (kp× [Y]) − (kh× [Y P]). (4.9)

Figure 4.6c shows the reaction details for the association and dissociation of species Comp
in module CompAD. The rate of association is determined by mass action kinetics with
rate constant ka. The rate of dissociation is determined by mass action kinetics with rate
constant kd. The species dynamics of module CompAD are

d

dt
[Z] = −(ka× [W]) + (kd× [Comp]), (4.10)

d

dt
[W] = −(ka× [Z]) + (kd× [Comp]), (4.11)

d

dt
[Comp] = (ka× [Z] × [W]) − (kd× [Comp]). (4.12)

Figure 4.7 displays Model02, where XSD, YPD, and CompAD are submodules. Species A
is displayed as an equivalence node. XSD has an equivalence port linked to species X, YPD
has an equivalence port linked to species Y , and CompAD has an equivalence port linked to
species Z. Each of these equivalence ports are connected to node A in Model02. When the
model is flattened, A will replace X in XSD, Y in YPD, and Z in CompAD. The species
dynamics after flattening are

d

dt
[Y P] = (kp× [A]) − (kh× [Y P]), (4.13)

d

dt
[W] = −(ka× [A]) + (kd× [Comp]), (4.14)

d

dt
[Comp] = (ka× [A] × [W]) − (kd× [Comp]), (4.15)

d

dt
[A] =

from X in XSD︷ ︸︸ ︷
ks− (gd× [A])−

from Y in YPD︷ ︸︸ ︷
(kp× [A]) + (kh× [Y P])−

from Z in CompAD︷ ︸︸ ︷
(ka× [W]) + (kd× [Comp]) .

(4.16)

CHAPTER 4. TECHNICAL CONTRIBUTIONS 24

Figure 4.7: Equivalence port example

(4.13) is an updated version of (4.9), where A has replaced Y . Similarly, A has replaced Z
in (4.11) and (4.12) to form updated (4.14) and (4.15). Notice that (4.16) is an aggregate of
(4.7),(4.8), and (4.10). Since node A is connected to equivalence ports, values are both sent
and received, therefore information from each connection is kept.

4.5 SBML Syntax

We discussed the SBML standard in Section 2.2. JCMC is able to store the information
that describes a hierarchical model by using the SBML comp package. The submodules in
JCMC can be stored as Model Definitions within the SBML file. In this section we explain
how the port and node constructs are stored in SBML.

CHAPTER 4. TECHNICAL CONTRIBUTIONS 25

4.5.1 Ports

Ports are included in the comp package. However, the different port types introduced in
section 4.1 are not. In order to store this extra information in SBML, we decided to use
annotations. Below is an example of two ports using the comp package.

<comp:listOfPorts>

<comp:port comp:idRef="ksx" comp:id="ksx" comp:name="ksx">

<annotation>

<jcmc:portInfo

xmlns:jcmc="http://www.copasi.org/Projects/JigCell_Model_Connector"

jcmc:refName="ksx"

jcmc:pType="Input"

jcmc:vType="Module Quantity"/>

</annotation>

</comp:port>

<comp:port comp:idRef="Metabolite_67" comp:id="X" comp:name="X">

<annotation>

<jcmc:portInfo

xmlns:jcmc="http://www.copasi.org/Projects/JigCell_Model_Connector"

jcmc:refName="X"

jcmc:pType="Equivalence"

jcmc:vType="Species"/>

</annotation>

</comp:port>

</comp:listOfPorts>

The annotation stores the port type, variable type, and variable name.

The layout package does not have a specific glyph to represent ports. It does have a Graph-
icalObject, which can be used to store general information about an object. We decided to
use GraphicalObjects combined with annotations to describe the port layout. Below is an
example of the graphical information for two ports using the layout package.

<layout:listOfSubGlyphs>

<layout:graphicalObject layout:id="ksx_PortGlyph">

<annotation>

<jcmc:portInfo

xmlns:jcmc="http://www.copasi.org/Projects/JigCell_Model_Connector"

jcmc:refName="ksx"

jcmc:id="ksx"

jcmc:pType="Input"

CHAPTER 4. TECHNICAL CONTRIBUTIONS 26

jcmc:vType="Module Quantity"

jcmc:parentMod="Cdh1TT"/>

</annotation>

<layout:boundingBox>

<layout:position layout:x="0.7898753894081" layout:y="1"/>

<layout:dimensions layout:width="0" layout:height="0"/>

</layout:boundingBox>

</layout:graphicalObject>

<layout:graphicalObject layout:id="X_PortGlyph">

<annotation>

<jcmc:portInfo

xmlns:jcmc="http://www.copasi.org/Projects/JigCell_Model_Connector"

jcmc:refName="X"

jcmc:id="X"

jcmc:pType="Equivalence"

jcmc:vType="Species"

jcmc:parentMod="Cdh1TT"/>

</annotation>

<layout:boundingBox>

<layout:position layout:x="0.291666666666667" layout:y="0"/>

<layout:dimensions layout:width="0" layout:height="0"/>

</layout:boundingBox>

</layout:graphicalObject>

</layout:listOfSubGlyphs>

The GraphicalObject stores the position of each port. The additional annotation stores the
port type, variable type, variable name, variable id, and the name of the module where the
port is located.

4.5.2 Nodes

Visible variable nodes and equivalence nodes are not defined in the comp package. However,
a node always represents either a species or a module quantity. Since both species and
module quantities are present in SBML, we include node information with an annotation.
Below is an example of a visible variable node ClbS and an equivalence node ClbM .

<listOfSpecies>

<species id="Metabolite_21" name="ClbS" compartment="cell"

initialConcentration="0" substanceUnits="mole"

hasOnlySubstanceUnits="false"

boundaryCondition="false" constant="false">

CHAPTER 4. TECHNICAL CONTRIBUTIONS 27

<annotation>

<jcmc:speciesInfo

xmlns:jcmc="http://www.copasi.org/Projects/JigCell_Model_Connector"

jcmc:refName="ClbS"

jcmc:type="VisibleVariable"/>

</annotation>

</species>

<species id="Metabolite_23" name="ClbM" compartment="cell"

initialConcentration="0" substanceUnits="mole"

hasOnlySubstanceUnits="false"

boundaryCondition="false" constant="false">

<annotation>

<jcmc:speciesInfo

xmlns:jcmc="http://www.copasi.org/Projects/JigCell_Model_Connector"

jcmc:refName="ClbM"

jcmc:type="Equivalence"/>

</annotation>

</species>

</listOfSpecies>

The annotation stores the variable name and node type.

The layout package does have a SpeciesGlyph to represent species but it does not have a
specific glyph to represent module quantities. Since a node can be a species or a module
quantity, we decided to use GraphicalObjects combined with annotations to describe their
layout. Below is an example of the graphical information for visible variable node ClbS and
equivalence node ClbM using the layout package.

<layout:listOfSubGlyphs>

<layout:graphicalObject layout:id="ClbS_VisibleVariableNodeGlyph">

<annotation>

<jcmc:VisibleVariableNodeInfo

xmlns:jcmc="http://www.copasi.org/Projects/JigCell_Model_Connector"

jcmc:name="ClbS"

jcmc:vType="Species"/>

</annotation>

<layout:boundingBox>

<layout:position layout:x="475" layout:y="75"/>

<layout:dimensions layout:width="0" layout:height="0"/>

</layout:boundingBox>

</layout:graphicalObject>

<layout:graphicalObject layout:id="ClbM_EquivalenceNodeGlyph">

CHAPTER 4. TECHNICAL CONTRIBUTIONS 28

<annotation>

<jcmc:EquivalenceNodeInfo

xmlns:jcmc="http://www.copasi.org/Projects/JigCell_Model_Connector"

jcmc:name="ClbM"

jcmc:vType="Species"/>

</annotation>

<layout:boundingBox>

<layout:position layout:x="315" layout:y="175"/>

<layout:dimensions layout:width="0" layout:height="0"/>

</layout:boundingBox>

</layout:graphicalObject>

</layout:listOfSubGlyphs>

Similar to ports, the GraphicalObject stores the position of each node. The annotation
stores the variable name and variable type.

Chapter 5

Case Study

In this chapter, we will demonstrate the features of JCMC by building a complex biological
model. Barik et al. [3] published a model of yeast cell-cycle regulation, consisting of 58
species and 220 reactions. We will reconstruct this model with a more efficient approach by
utilizing modules. We will show how submodules connect together and the role that ports
play in the process.

5.1 Biological Model

Figure 5.1 shows a wiring diagram of the biological model from [3]. Species are represented
by the various labeled shapes. Chemical reactions are represented by solid arrows, enzymatic
activities are represented by dotted arrows, and multisite phosphorylation chains are repre-
sented by dashed arrows. Reversible binding reactions are represented by T-shaped arrows
with balls on the cross bars. For clarification purposes, Figure 5.1 only displays the major
regulatory interactions contained in the model. For example, the synthesis and degradation
reactions for Whi5, SBF, Cdh1, Net1, Hbf, Hi5, and Ht1 are not shown.

The model by Barik et al. [3] captures the molecular controls of cell-cycle events, including
the initiation of DNA synthesis (by ClbS) and of mitosis (by ClbM), and ’exit’ from mitosis,
including cell division (by Cdc14). When a mother cell divides, the volume of the cell and
the concentration of each species within are evenly split between the two resulting daughter
cells. In the model, the event of cell division is triggered by ClbM. When the concentration
of ClbM drops below 12 nM, the cell will divide evenly.

29

CHAPTER 5. CASE STUDY 30

Figure 5.1: Model of cell-cycle control in budding yeast [3]

5.2 The Hierarchical Model

First, we will introduce a transcription and translation module that will appear multiple
times in our model. Next, we will modularize the model (Figure 5.2) and build up each
module individually. Then, we will connect the modules together to form the final hier-
archical model. Finally, we will validate the hierarchical model by comparing simulation
results with the original model. In the following descriptions, variables refer to the number
of molecules.

5.2.1 Transcription and Translation Coupling

From Figure 5.1 we can see that some of the regulatory functions in the model are similar.
The mechanisms regulating ClbM , ClbS, and Cln3 appear to follow the same pattern.
The synthesis of the protein is dependent upon the synthesis of its mRNA. This is called
transcription and translation coupling. Since it occurs multiple times in the model, we can

CHAPTER 5. CASE STUDY 31

Figure 5.2: Modular model of cell-cycle control in budding yeast

build it as a reusable, generic module.

Figure 5.3 shows module TTCoupling, short for transcription and translation coupling. The
ModelBuilder panel at the bottom displays the four reactions in the module that describe
the synthesis and degradation of mRNA and protein X. Module quantities ksm, gdm, ksx,
and gdx are the constants that determine the rates of the four reactions. Protein X is linked
to an output port and the rate constants are linked to input ports. The ports allow external
proteins and rate constants to connect to the module and utilize the interior transcription
and translation reaction structure. We will see how this is done in later sections.

There are also two more input ports for species V and ClbM . These species are used to
calculate when the concentration of ClbM falls below 12.5 nM, which is when cell division
occurs. Since V is the volume of the cell and ClbM is the number of ClbM molecules,
they both must be included to calculate the concentration of ClbM . When the cell divides,
most species are divided in half. To accomplish this, an event is used. The event calculates
the concentration of ClbM and determines if the cell needs to divide. If the cell needs to
divide then the species numbers within the module are reassigned appropriately. An event

CHAPTER 5. CASE STUDY 32

Figure 5.3: Transcription and translation coupling module TTCoupling

like this occurs in most modules, which is why most modules require V and ClbM . In the
TTCoupling module, species X and mRNA are reassigned half of their current values.

5.2.2 ClbM Regulation

Step 1 of the model will consist of the interactions shown in Figure 5.4.

The regulation of Cdh1 and ClbM play big roles in step 1. Cdh1 has an unphosphorylated
state as well as ten phosphorylated states, for a total of eleven phosphorylation states. In
this model, only the unphosphorylated state of Cdh1 is active. ClbM affects many parts
of this model. In step 1, ClbM and the active form of Cdh1 down-regulate each other. To
better understand these interactions, let’s start with Cdh1.

Figure 5.5 displays module Cdh1PD, short for Cdh1 Phosphorylation/Dephosphorylation.
In the ModelBuilder panel, the phosphorlation and dephosphorylation reactions are shown.
Degradation reactions for the phosphorylated states are also present. The rate constants

CHAPTER 5. CASE STUDY 33

Figure 5.4: Step 1 of the model

for the reactions (kp, kd, and gd) are linked to input ports. The species XPlo and XPhi
are both linked to output ports. XPhi is a summation from XP1 to XP10 and XPlo is
equivalent to the remaining state, XP0. The two remaining input ports link to species V
and ClbM , which are used to calculate when the cell divides.

CHAPTER 5. CASE STUDY 34

Figure 5.5: Cdh1 phosphorylation and dephosphorylation module

CHAPTER 5. CASE STUDY 35

Figure 5.6: Cdh1 regulation module

Figure 5.6 displays module Cdh1Reg, short for Cdh1 Regulation. Cdh1Reg contains sub-
modules Cdh1PD and Cdh1TT. Visible variable nodes kph1t, kdh1t, and gdh1 connect the
module quantities to Cdh1PD’s input ports kp, kd, and gd. Those ports link to Cdh1PD’s
phosphoryation, dephosphorylation, and degradation reaction rates. Cdh1TT, short for
Cdh1 Transcription and Translation Coupling, is similar to module TTCoupling in Fig-
ure 5.3. The only difference is that Cdh1TT has an equivalence port linked to internal
species X. In Cdh1Reg, equivalence node Cdh1 connects the species to equivalence port X
on submodule Cdh1TT and XP0 on submodule Cdh1PD. Cdh1 is synthesized in Cdh1TT
and phosphorylated in Cdh1PD. Since Cdh1 is modified in both submodules, an equivalence
node is necessary. Species Cdh1a and Cdh1i represent the active and inactive forms of Cdh1.
They receive incoming connections from output ports on submodule Cdh1PD and have out-
going connections to output ports on module Cdh1Reg. Input ports ClbS and Cdc14 link
to species used to calculate rate constants kph1t and kdh1t.

CHAPTER 5. CASE STUDY 36

Figure 5.7: Step01 module in JCMC

Figure 5.7 displays module Step01. Step01 contains submodules Cdh1Reg and ClbMTT.
Visible variable nodes Cdh1 and Cdh1Pt receive connections from Cdh1Reg’s output ports
Cdh1a and Cdh1i. Cdh1 and Cdh1Pt are used to calculate module quantity gdbmt. Vis-
ible variable nodes ksmbm, gdmbm, ksbmt, and gdbmt connect the module quantities to
ClbMTT’s input ports ksm, gdm, ksx, and gdx. Visible variable node ClbM connects the
species to ports on both submodules as well as module Step01. Node ClbM receives its
value from submodule ClbMTT, where ClbM is regulated. Node ClbM then sends its value
to submodule Cdh1Reg, where ClbM influences the phosphorylation of Cdh1. Node ClbM
is also connected to Step01’s output port ClbM , so it can be referenced by other parts of
the model. Step 01 has three input ports connected to visible variable nodes. These nodes
are then connected to submodules, where their values can be used for calculations. This
concludes building module Step01.

CHAPTER 5. CASE STUDY 37

5.2.3 Cdc14 Regulation

Step 2 of the model will consist of the interactions shown in Figure 5.8. In step 2, the
active phosphorylation states of Net1 combine with Cdc14 to form the RENT complex.
Ht1 causes dephosphorylation of both Net1 and RENT phosphorylated states.

Figure 5.8: Step 2 of the model

CHAPTER 5. CASE STUDY 38

Figure 5.9: Ht1 regulation module

Figure 5.9 displays module Ht1Reg. Ht1Reg contains the submodule Ht1TT. Ht1TT is
similar to module TTCoupling in Figure 5.3. Visible variable node Ht1 connects an output
port on submodule Ht1TT to an output port on module Ht1Reg, so it can be referenced
outside of the module.

CHAPTER 5. CASE STUDY 39

Figure 5.10: Cdc14 regulation module

Figure 5.10 displays module Cdc14Reg, which follows the same pattern as Ht1Reg. Cdc14Reg
contains the submodule Cdc14TT. Cdc14TT is slightly different than module TTCoupling
in Figure 5.3 because Cdc14TT has an equivalence port. Equivalence node Cdc14 connects
the equivalence port on submodule Cdc14TT to the equivalence port on module Cdc14Reg,
so it can be modified outside of the module.

CHAPTER 5. CASE STUDY 40

Figure 5.11: Net1 regulation module

Figure 5.11 displays module Net1Reg. Net1Reg contains submodules Net1TT and Net1PD.
Net1TT is similar to module TTCoupling in Figure 5.3. Net1PD has phosphorylation and
dephosphorylation reactions for the different Net1 states. Details are shown in Figure 5.12.
In Net1Reg, equivalence node Net1 connects the species to both submodules. Net1 is trans-
lated in Net1TT and phosphorylated in Net1PD. Nodes Net1, Net1P1, Net1P2, Net1P3,
Net1P4, and Net1P5 are all connected to equivalence ports on module Net1Reg, so they
can be modified outside of the module.

CHAPTER 5. CASE STUDY 41

Figure 5.12: Net1 phosphorylation and dephosphorylation module

CHAPTER 5. CASE STUDY 42

Figure 5.13: RENT association and dissociation module

CHAPTER 5. CASE STUDY 43

Figure 5.13 displays module RENTAD, short for RENT Association/Dissociation. Different
phosphorylation states of Net1 combine with Cdc14 to form different phosphorylation states
of RENT . Cdc14, each Net1 state, and each RENT state are linked to equivalence ports,
so they can be modified inside and outside the module.

Figure 5.14: RENT regulation module

Figure 5.14 displays module RENTReg. RENTReg contains submodules RENTPD and
RENTAD. RENTPD has the phosphorylation and dephosphorylation reactions for the dif-
ferent RENT states. Details are shown in Figure 5.15. In RENTReg, equivalence nodes for
each of the RENT phosphorylation states connect to both submodules. This is necessary
because the RENT states are modified in both submodules. Equivalence nodes for Cdc14
and each of the Net1 states connect ports on RENTAD to equivalence ports on RENTReg,
so they can be modified outside of the module.

CHAPTER 5. CASE STUDY 44

Figure 5.15: RENT phosphorylation and dephosphorylation module

CHAPTER 5. CASE STUDY 45

Figure 5.16: Step02 module in JCMC

Figure 5.16 displays module Step02. Step02 contains submodules Ht1Reg, Cdc14Reg,
Net1Reg, and RENTReg. Visible variable node Ht1 connects the species to three different
submodules. Node Ht1 receives a value from submodule Ht1Reg, where it is regulated.
Node Ht1 sends its value to submodules Net1Reg and RENTReg, where it promotes de-
phosphorylation. Equivalence nodes for each of the Net1 phosphorylation states connect to
Net1Reg and RENTReg because the species are modified in both submodules. Equivalence
node Cdc14 connects to submodules Cdc14Reg and RENTReg. Node Cdc14 also connects
to an output port on module Step02, so it can be referenced by other parts of the model.
This concludes building module Step02.

CHAPTER 5. CASE STUDY 46

5.2.4 SBF Regulation

Step 3 of the model will consist of the interactions shown in Figure 5.17. In step 3, the
active phosphorylation states of SBF and Whi5 combine to form the Cmp complex. Hi5
is involved with the dephosphorylation of Whi5 and Cmp, while Hbf is involved with the
dephosphorylation of SBF .

Figure 5.17: Step 3 of the model

Modules Hi5Reg and HbfReg both have structures similar to Ht1Reg from step 2. Each
module contains a transcription and translation submodule that has input ports for its
reaction rates. Visible variable nodes connect module quantities to the input ports on the
submodule. Details for Hi5Reg and HbfReg are shown in Figures 5.18 and 5.19.

CHAPTER 5. CASE STUDY 47

Figure 5.18: Hi5 regulation module

CHAPTER 5. CASE STUDY 48

Figure 5.19: Hbf regulation module

CHAPTER 5. CASE STUDY 49

Figure 5.20: SBF regulation module

Figure 5.20 displays module SBFReg. SBFReg contains submodules HbfReg and SBFPD.
Visible variable node Hbf connects to HbfReg’s output port. Hbf receives a value from the
port and is used to calculate module quantity kdbft. SBFPD holds the synthesis, degra-
dation, phosphoryation, and dephosphorylation reactions for SBF . Details are shown in
Figure 5.21. SBFPD has input ports that link to its reaction rates. In SBFReg, visible
variables nodes ksbft, kpbft, kdbft, and gdbf connect the module quantities to those input
ports. Equivalence node SBF connects the species to submodule SBFPD. Node SBF also
connects to an equivalence port on module SBFReg, so it can be modified outside of the
module.

CHAPTER 5. CASE STUDY 50

Figure 5.21: SBF posphorylation and dephosphorylation module

CHAPTER 5. CASE STUDY 51

Figure 5.22: Whi5 regulation module

Module Whi5Reg has a structure similar to Net1Reg from step 2. Whi5Reg contains submod-
ules Whi5TT and Whi5PD. It has input ports linked to species that are used to calculate
module quantities. These module quantities connect to ports on Whi5TT and Whi5PD,
which control their internal reaction rates. Details are shown in Figures 5.22 and 5.23. In
Whi5Reg, equivalence nodes Whi5, Whi5P1, and Whi5P2 are all connected to equivalence
ports on submodule Whi5PD. The nodes are also connected to equivalence ports on module
Whi5Reg, so they can be modified outside of the module.

CHAPTER 5. CASE STUDY 52

Figure 5.23: Whi5 posphorylation and dephosphorylation module

CHAPTER 5. CASE STUDY 53

Figure 5.24: Cmp regulation module

Figure 5.24 displays module CmpReg, which has a structure similar to RENTReg from step
2. CmpReg contains submodules CmpPD and CmpAD. CmpPD holds the phosphorylation
and dephosphorylation reactions for the different Cmp states. Details are shown in Fig-
ure 5.25. CmpAD holds the association and dissociation reactions for the different Cmp
states. Different phosphorylation states of Whi5 combine with SBF to form different phos-
phorylation states of Cmp. Details are shown in Figure 5.26. Since the states of Cmp are
modified in both CmpPD and CmpAD, equivalence nodes for each state connect the sub-
module ports in CmpReg. Equivalence nodes for SBF and each of the Whi5 states connect
ports on CmpAD to equivalence ports on CmpReg, so they can be modified outside of the
module.

CHAPTER 5. CASE STUDY 54

Figure 5.25: Cmp posphorylation and dephosphorylation module

CHAPTER 5. CASE STUDY 55

Figure 5.26: Cmp association and dissociation module

CHAPTER 5. CASE STUDY 56

Figure 5.27: Step03 module in JCMC

Figure 5.27 displays module Step03. Step03 contains submodules Hi5Reg, SBFReg, Whi5Reg,
and CmpReg. Visible variable node Hi5 connects the species to three different submodules.
Node Hi5 receives a value from submodule Hi5Reg, where it is regulated. Node Hi5 sends its
value to submodules Whi5Reg and CmpReg, where it promotes dephosphorylation. Equiva-
lence nodes for each of the Whi5 phosphorylation states connect to Whi5Reg and CmpReg
because the species are modified in both submodules. Equivalence node SBF connects to
submodules SBFReg and CmpReg. Node SBF also connects to an output port on module
Step03, so it can be referenced by other parts of the model. Step 03 has five input ports
connected to visible variable nodes. These nodes are then connected to different submodules,
where their values can be used for calculations. This concludes building module Step03.

CHAPTER 5. CASE STUDY 57

5.2.5 Last Components

Only a few more modules are required to complete the model. Module Cln3Reg has a
structure similar to HT1Reg from step 2. Cln3Reg contains submodule Cln3TT. Visible
variable node Cln3 connects the output port on Cln3TT to an output port on module
Cln3Reg, so it can be referenced outside of the module. Details are shown in Figure 5.28.

Figure 5.28: Cln3 regulation module

Figure 5.29 displays module ClbSReg. ClbSReg contains submodules ClbTT and GaReg.
ClbTT has the same structure as TTCoupling in Figure 5.3. GaReg holds simple synthesis
and degradation reactions with rates determined by quantities linked to its input ports.
Details are shown in Figure 5.30. In ClbSReg, species SBF is linked to an input port
and used to calculate module quantity kagt. A visible variable node connects the module
quantity kagt to submodule GaReg’s input port ka. GaReg’s output port connects to visible
variable node Ga, which is used to calculate module quantity ksmbmt. Visible variable node
ClbS connects the output port on ClbSTT to an output port on module ClbSReg, so it can
be referenced outside of the module.

CHAPTER 5. CASE STUDY 58

Figure 5.29: ClbS regulation module

CHAPTER 5. CASE STUDY 59

Figure 5.30: Ga regulation module

CHAPTER 5. CASE STUDY 60

5.2.6 Final Model

We have created all of the modules necessary for our model, so now it is time to put them
together. A JCMC user would start by importing all of the modules we have discussed.
After the modules are imported, the CellCycle model contains submodules Step01, Step02,
Step03, ClbSReg, and Cln3Reg. Initally, there are no connections, as shown in Figure 5.31.

Figure 5.31: Initial CellCycle model in JCMC

Figure 5.32 displays the completed CellCycle model. Visible variable node ClbS connects the
species to three submodules. Node ClbS receives a value from submodule ClbSReg, where it
is regulated. Node ClbS sends its value to submodules Step01 and Step03, where it promotes
phosphorylation. Visible variable node Cdc14 connects the species to three submodules as
well. Node Cdc14 receives a value from submodule Step02, where it is regulated and part
of the RENT complex. Node Cdc14 sends its value to submodules Step01 and Step03,
where it promotes dephosphorylation. Visible variable node Cln3 connects the species to
two submodules. Node Cln3 receives a value from submodule Cln3Reg, where it is regulated.
Node Cln3 sends its value to submodule Step03, where it promotes phosphorylation. Visible
variable node SBF connects the species to two submodules. Node SBF receives a value from
submodule Step03, where it is regulated and part of the Cmp complex. Node SBF sends its
value to submodule ClbSReg, where it promotes ClbS transcription. Visible variables nodes
ClbM and V are connected to each of the submodules through either input or output ports.
ClbM and V are present in every submodule because their values are used to calculate when

CHAPTER 5. CASE STUDY 61

Figure 5.32: Final CellCycle model in JCMC

cell division occurs.

5.2.7 Simulation Results

To validate the hierarchical model, we compared its simulation results with results from the
original model. The hierarchical model cannot be simulated in its current format because
the interaction details of the modules must be used as instructions to flatten the model, as
described in Chapter 2.

CHAPTER 5. CASE STUDY 62

(a) Original model [3]

(b) Flattened hierarchical model

Figure 5.33: Time course simulation results

Figure 5.33 displays the two model simulations. We exported the hierarchical model into
SBML format with the comp package using JCMC. We used the software tool COPASI [7]
to flatten and simulate the hierarchical model. COPASI was able to flatten the model by
following the module interaction details stored with SBML comp. Parameter values and
initial concentrations were set as described in the paper by Barik et al.[3]. The simulation
results from the flattened hierarchical model in Figure 5.33b match the results from the
original model in Figure 5.33a. This was verified by confirming the time series simulation
data from both models were identical.

Chapter 6

Conclusions and Future Work

Attempting to comprehend at once all the interactions in a complex molecular control net-
work can be an overwhelming task. When building a new mathematical model, try to split
the wiring diagram into small, manageable pieces. We did this in the case study in Chapter 5.
We broke down the model displayed in Figure 5.1 into smaller sections shown in Figures 5.4,
5.8, and 5.17. Working on smaller parts of the model can make it easier to understand.

Once the smaller modules are complete, they can be used to build up the final model.

When building a mathematical model, utilizing templates can also be beneficial. A template
is characterized as a generic module definition. Templates do not hold information related to
one specific species. Instead, they contain general molecular mechanisms that are common
in the regulatory network. A good example is the transcription and translation coupling
module from the case study, shown in Figure 5.3. Species X is linked to an output port
and the rate constants for the reactions are all linked to input ports. The ports let external
entities utilize the interior transcription and translation reaction structure of the module. A
template can be instantiated multiple times to describe the molecular behavior of different
species without needing to be modified. The desired species and rate constants can be
connected to the appropriate ports. This is done with ClbM , ClbS, and Cln3 in the case
study. Alternatively, we could have created individual module definitions for ClbM , ClbS,
and Cln3. In this case, each module definition would have contained the same reaction
structure and we would have needed to write twelve repetitive reactions. Using a template
allowed us to avoid such inefficiencies.

The ability to test a model is important, and frequent testing should occur during the
model building process. In software engineering, development testing ensures components
are correct as they are developed [20]. Each component is tested individually before it is
added to the system. This allows errors to be discovered, and hopefully fixed, early in
development. A similar approach should be taken when building a model. As modules are
created, their inner reaction structures can be verified using simulation tools such as COPASI
[7]. As modules are connected together, their connections can be verified by checking the

63

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 64

resulting equations. These tests should be done throughout the model building process.
Waiting until the end to test can make it extremely difficult to find the cause of an error.

As molecular network models continue to grow in size and complexity, traditional modeling
practices are becoming obsolete. Building complex models in a controlled, organized manner
is important. Without proper organization, complex models become difficult to understand.
In order to construct and comprehend such models, we must evolve our modeling approach.
In this thesis, we have reviewed the improved modeling approaches involved with hierarchi-
cal model composition. We have reviewed software standards that support this modeling
approach. We presented previous software tools that attempt to support hierarchical mod-
eling.

We proposed enhancements to the way modules interact in model aggregation. We intro-
duced new port and node constructs that enable multiple connection options for modules.
We also described how different connections can impact a model.

We implemented a new tool that supports hierarchical modeling, the JigCell Model Con-
nector (JCMC). We described the JCMC interface and explained how the components of
a hierarchical model are represented. We detailed how the new port and node constructs
are utilized in JCMC. Finally, we demonstrated the benefits of hierarchical modeling with
JCMC by reconstructing a complex biological model in a modular fashion.

A possible enhancement to the JigCell Model Connector would be to incorporate multistate
modeling. Currently, JCMC only builds models with single state species. Multistate mod-
eling can drastically reduce the size of models containing species that have multiple states.
Adding this enhancement to JCMC would give modelers the opportunity to create complex
multistate models by connecting smaller submodules together.

Another possible enhancement to the JigCell Model Connector would be to let any model
component link to a port. Currently, JCMC only links species and module quantities to
ports. SBML comp allows any model component to link to a port. Adding this feature
to JCMC would allow for the import and export of reactions, events, and other model
components between modules.

Bibliography

[1] N. A. Allen, L. Calzone, K. C. Chen, A. Ciliberto, N. Ramakrishnan, C. A. Shaffer, J. C.
Sible, J. J. Tyson, M. T. Vass, L. T. Watson, and J. W. Zwolak. Modeling regulatory
networks at Virginia Tech. OMICS : A Journal of Integrative Biology, 7(3):285–299,
2003.

[2] N. A. Allen, C. A. Shaffer, N. Ramakrishnan, M. T. Vass, and L. T. Watson. Improv-
ing the development process for eukaryotic cell cycle models with a modeling support
environment. Simulation, 79(12):674–688, 2003.

[3] D. Barik, W. T. Baumann, M. R. Paul, B. Novák, and J. J. Tyson. A model of yeast
cell-cycle regulation based on multisite phosphorylation. Molecular Systems Biology,
6(405):405, 2010.

[4] M. B. Elowitz and S. Leibler. A synthetic oscillatory network of transcriptional regula-
tors. Nature, 403(6767):335–338, 2000.

[5] C. P. Fall and J. E. Keizer. Dynamic Phenomena in Cells. In Computational Cell
Biology, chapter 1, pages 1–20. Springer-Verlag, New York, 2002.

[6] R. Gauges, U. Rost, S. Sahle, K. Wengler, and F. T. Bergmann. Layout, Ver-
sion 1 Release 1. Available from COMBINE http://identifiers.org/combine.

specifications/sbml.level-3.version-1.layout.version-1.release-1, 2013.

[7] S. Hoops, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu, P. Mendes, and
U. Kummer. COPASI - A COmplex PAthway SImulator. Bioinformatics, 22(24):3067–
3074, 2006.

[8] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, A. P. Arkin,
B. J. Bornstein, D. Bray, A. Cornish-Bowden, A. A. Cuellar, S. Dronov, E. D. Gilles,
M. Ginkel, V. Gor, I. I. Goryanin, W. J. Hedley, T. C. Hodgman, J. H. Hofmeyr, P. J.
Hunter, N. S. Juty, J. L. Kasberger, A. Kremling, U. Kummer, N. Le Novère, L. M.
Loew, D. Lucio, P. Mendes, E. Minch, E. D. Mjolsness, Y. Nakayama, M. R. Nelson,
P. F. Nielsen, T. Sakurada, J. C. Schaff, B. E. Shapiro, T. S. Shimizu, H. D. Spence,
J. Stelling, K. Takahashi, M. Tomita, J. Wagner, and J. Wang. The systems biology

65

http://identifiers.org/combine.specifications/sbml.level-3.version-1.layout.version-1.release-1
http://identifiers.org/combine.specifications/sbml.level-3.version-1.layout.version-1.release-1

BIBLIOGRAPHY 66

markup language (SBML): A medium for representation and exchange of biochemical
network models. Bioinformatics, 19(4):524–531, 2003.

[9] M. Hucka, M. Hucka, F. Bergmann, S. Hoops, S. Keating, S. Sahle, J. Schaff, L. Smith,
and D. Wilkinson. The Systems Biology Markup Language (SBML): Language Speci-
fication for Level 3 Version 1 Core. Nature Precedings, Oct 2010.

[10] C. J. Myers, N. Barker, K. Jones, H. Kuwahara, C. Madsen, and N. P. D. Nguyen.
iBioSim: A tool for the analysis and design of genetic circuits. Bioinformatics,
25(21):2848–2849, Nov 2009.

[11] A. Palmisano, S. Hoops, L. T. Watson, T. C. Jones Jr., J. J. Tyson, and C. A. Shaffer.
Multistate Model Builder (MSMB): a flexible editor for compact biochemical models.
BMC Systems Biology, 8(1):42, 2014.

[12] R. Randhawa, C. A. Shaffer, and J. J. Tyson. Fusing and composing macromolecular
regulatory network models. In Proceedings of the 2007 High Performance Computing
Symposium, volume 1, pages 337–344, 2007.

[13] R. Randhawa, C. A. Shaffer, and J. J. Tyson. Model aggregation: A building-
block approach to creating large macromolecular regulatory networks. Bioinformatics,
25(24):3289–3295, Dec 2009.

[14] R. Randhawa, C. A. Shaffer, and J. J. Tyson. Model composition for macromolecular
regulatory networks. IEEE/ACM Transactions on Computational Biology and Bioin-
formatics, 7(2):278–287, 2010.

[15] C. A. Shaffer, R. Randhawa, and J. J. Tyson. The role of composition and aggregation
in modeling macromolecular regulatory networks. In Proceedings - Winter Simulation
Conference, pages 1628–1635, Monterey, CA, 2006.

[16] C. A. Shaffer, J. W. Zwolak, R. Randhawa, and J. J. Tyson. Modeling molecular
regulatory networks with JigCell and PET. In Methods in Molecular Biology, volume
500, pages 81–111. 2009.

[17] J. C. Sible and J. J. Tyson. Mathematical modeling as a tool for investigating cell cycle
control networks. Methods, 41(2):238–47, Feb 2007.

[18] L. P. Smith, F. T. Bergmann, D. Chandran, and H. M. Sauro. Antimony: A modular
model definition language. Bioinformatics, 25(18):2452–2454, Sep 2009.

[19] L. P. Smith, M. Hucka, S. Hoops, A. Finney, M. Ginkel, C. J. Myers, I. Moraru,
and W. Liebermeister. Hierarchical Model Composition, Version 1 Release 3. Avail-
able from COMBINE http://identifiers.org/combine.specifications/sbml.

level-3.version-1.comp.version-1.release-3, 2013.

http://identifiers.org/combine.specifications/sbml.level-3.version-1.comp.version-1.release-3
http://identifiers.org/combine.specifications/sbml.level-3.version-1.comp.version-1.release-3

BIBLIOGRAPHY 67

[20] I. Sommerville. Software engineering, volume 9th Ed. Pearson, 2011.

[21] J. J. Tyson. Bringing cartoons to life. Nature, 445(7130):823, Feb 2007.

[22] J. J. Tyson, K. C. Chen, and B. Novák. Sniffers, buzzers, toggles and blinkers: dynamics
of regulatory and signaling pathways in the cell. Current Opinion in Cell Biology,
15(2):221–231, Apr 2003.

[23] J. J. Tyson and B. Novák. Models in biology: lessons from modeling regulation of the
eukaryotic cell cycle. BMC Biology, 13(1):46, Dec 2015.

[24] M. Vass, N. Allen, C. A. Shaffer, N. Ramakrishnan, L. T. Watson, and J. J. Tyson. The
JigCell model builder and run manager. Bioinformatics, 20(18):3680–3681, Dec 2004.

[25] M. T. Vass, C. A. Shaffer, N. Ramakrishnan, L. T. Watson, and J. J. Tyson. The
JigCell Model Builder: A spreadsheet interface for creating biochemical reaction net-
work models. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
3(2):155–163, 2006.

	Introduction
	Background
	Hierarchical Model Composition
	The SBML Standard
	The SBML comp Package
	The SBML layout Package

	Related Tools

	JigCell Model Connector
	Interface
	TreeView
	DrawingBoard
	ModelBuilder

	Components
	Container Module
	Submodule

	Technical Contributions
	Ports
	Nodes
	Visible Variable Node
	Equivalence Node

	Connections
	Port, Node, and Connection Effects on a Model
	Input and Output Ports
	Equivalence Port

	SBML Syntax
	Ports
	Nodes

	Case Study
	Biological Model
	The Hierarchical Model
	Transcription and Translation Coupling
	ClbM Regulation
	Cdc14 Regulation
	SBF Regulation
	Last Components
	Final Model
	Simulation Results

	Conclusions and Future Work
	Bibliography

