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Abstract
Fast and realistic coupling of blood flow and vessel wall is of great importance to virtual surgery. In this paper, we
propose a novel data-driven coupling method that formulates physics-based blood flow simulation as a regression
problem, using an improved periodic-corrected neural network (PcNet), estimating the acceleration of every particle at
each frame to obtain fast, stable and realistic simulation. We design a particle state feature vector based on smoothed
particle hydrodynamics (SPH), modeling the mixed contribution of neighboring proxy particles on the blood vessel wall
and neighboring blood particles, giving the extrapolation ability to deal with more complex couplings. We present a
semi-supervised training strategy to improve the traditional BP neural network, which corrects the error periodically
to ensure long term stability. Experimental results demonstrate that our method is able to implement stable and vivid
coupling of blood flow and vessel wall while greatly improving computational efficiency.
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Introduction

Virtual surgery is an important application of virtual reality
in the medical field. Through the virtual surgery system,
doctors can carry out clinical diagnosis, surgical training and
surgical planning to assist in the development of rational
surgical programs to improve the success rate of surgery.1

Due to the interaction between blood flow and the vessel
wall, hemodynamic factors profoundly affect the quality of
many surgeries.2,3 On the one hand, the hemodynamics of
blood vessels, especially arterial blood vessels, are closely
related to vascular diseases such as intimal thickening
and atherosclerotic plaque formation.4 On the other hand,
intravascular hemodynamics is strongly sensitive to the
geometry of blood vessels. Small deformations and shearing
of blood vessel walls during surgery lead to significant
differences in hemodynamics. Therefore, the fast and
realistic blood vessel wall coupling is of great significance
to improve the realism and immersion of virtual surgery.
At present, the research of virtual surgery system realizes
the real-time interactive visual haptic model between human
soft tissues and virtual surgical instruments.5 However, the
real-time simulation of realistic blood flow is challenging,
especially large-scale simulation based on the physical size.

This paper aims to introduce a data-driven approach into
SPH-based blood flow simulation to achieve fast and realistic
coupling of blood flow and vessel wall. A first thought is
to input the position and velocity of each particle in the
current frame into the neural network to output the position
and velocity of each particle in the next frame. However,
the relationship of position and velocity of each particle
between frames is unstable, which is easily affected by
factors such as time step and external force. In contrast,
the relationship between the input and output data in the
acceleration calculation step is relatively stable. Thus, we

design a feature vector based on neighbor information of
particles in the current frame to predict the acceleration
of particles in the next frame to speed up the acceleration
calculation step and the entire coupling simulation process.

In the following sections, we first describe the traditional
SPH-based method of blood flow simulation. Then, on the
basis of the SPH method and the hemodynamic model,
we construct a feature vector of the blood flow state to
mimic the mixed contribution of neighborhoods composed
of proxy particles on the vessel wall and blood flow particles,
giving the extrapolation ability to deal with more complex
couplings. Finally, we propose a semi-supervised neural
network training strategy that periodically corrects errors
of the traditional BP neural network to ensure long-term
stability. As shown in Figure 1, the experimental results show
that the proposed data-driven method based on a periodic-
corrected neural network (PcNet) realizes the steady and
realistic coupling of blood flow and vessel wall in virtual
surgery and greatly improves the simulation efficiency.

Related Work
Fluid simulation is a long standing problem in computer
graphics and virtual reality. In recent years, many researchers
have proposed a number of physics-based methods to
simulate the behavior of fluids and the interactions between
fluids and rigid or deformable solids. The major drawback
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Figure 1. The simulation results using our data-driven coupling method for blood flow and vessel wall. The proposed method
achieves almost the same simulation visual effects as the physics-based method, and even better on the details of the blood
splashes, while the computational efficiency is improved by about 5 times.

of grid-based approaches is their computational complexity,
which limits their use in interactive virtual surgery.

Particle-based methods are widely used in fluid simulation
with borderline adaptability and good computational
performance.6–10 However, the research on the direction of
blood flow simulation is scarce. Müller et al. simplified the
blood flow to Newtonian fluid for coupling simulation.11

Qin et al. implemented the method of Müller et al. using
PPU parallel acceleration.12 Jing et al. coupled SPH and
particle spring models to simulate blood flow.13 The above
method lacks visual realism due to neglecting the non-
Newtonian fluid characteristics of blood flow, and at the
same time the simulation is small in scale and the real-time
performance is not sufficient. Lai et al. implemented GPU-
assisted blood flow simulation using the Compute Unified
Device Architecture (CUDA), achieving 50 fps simulation
at 9,000 particles, but did not consider the interaction of
blood flow with blood vessels.14 Guo et al. proposed a GPU-
accelerated mixed particle-based coupling method for blood
flow and vessel wall that real-time simulated at 100,000
particle size.15 Although these studies have made some
improvements in computational efficiency, a more efficient
method is urgently needed due to the multi-phase coupling
involved in the virtual surgery scene with flexible organs and
surgical instruments.

In recent years, data-driven methods are increasingly
proposed in the field of fluid simulation. Raveendran
et al. generated a large number of fluid simulations by
interpolating the existing fluid simulation results.16 Yang et
al. used neural network prediction instead of the diffusion
projection in the gridding method to achieve a speed increase
of about 10 times.17 Jeong et al. used regression forests to
simulate fluid particle state changes, which can achieve 10-
1000 times faster operation on the GPU.18 At present, there
are few studies that combine data-driven methods with blood
flow simulation and even virtual surgery.

1 Basic method

1.1 SPH method and boundary sampling

The key idea of the SPH method is that the physical quantity
A(ri) at the position ri in the fluid is obtained by adding
the corresponding physical quantities of the neighboring

particles under the action of the smooth kernel function:

A(ri) =
∑
j

Aj
mj

ρj
W (ri − rj , h) (1)

where j donates the particle within a distance of h from
particle i (namely neighboring particle), A is the physical
quantity of particle, m is the mass, ρ is the density, and W
is a spherically symmetric smooth kernel function. When
dealing with the coupling of blood flow vessel walls, the
proxy particles on the vessel wall surface are sampled and
included in the neighborhood search range for the density
calculation of the border blood flow particle i:

ρi = mi

∑
j

W (rij , h) +
∑
k

$skW (rik, h) (2)

where j and k are the blood flow particles and the proxy
particles in the neighborhood respectively. The contribution
of each proxy particle to the blood flow particle density is
expressed as $si = ρ0Vsi , where the volume of the proxy
particle Vsi can be defined as:

Vsi =
1∑

k

W (r− rk, h)
(3)

1.2 Hemodynamic equation
Blood flow is essentially a non-Newtonian fluid, thus we
describe the blood flow using the Navier-Stokes equation that
includes non-Newtonian terms as follows:15

∂ρ

∂t
+ ∇ · (ρv) = 0 (4)

f = ρa = −∇p+∇ · τ + ρg (5)

Equation (4) describes the mass conservation of blood
flow (SPH naturally satisfies this equation) and Equation
(5) illustrates the momentum conservation. In the above
equations, a is the acceleration of the blood flow particle, and
the physical quantities to be solved are density ρ, pressure
term −∇p, viscous force term ∇ · τ and external force term
ρg. We describe τ through strain rate tensor γ̇:

τ = υγ̇ (6)

γ̇ = (∇v + (∇v)T )/2 (7)
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where v is the velocity, υ is the viscosity, which donates a
function of the second invariant DΠ at the shear rate as an
independent variable and can be described by the constitutive
equation of the Casson model:

υ(DΠ) =
[
√
η
√√

2DΠ +
√
τy1− e−n

√
2DΠ)]

2

√
2DΠ

(8)

η = ρµ (9)

In Equation (8), τy is the shear yield stress, η donates the
Casson viscosity, 1− e−n|γ̇| is introduced by avoiding υ
becoming a singular value as γ approaches zero, n is a finite
constant value(here set n = 7).

1.3 Numerical solution
We first calculate the velocity gradient ∇vi according to the
SPH formula:

∇vi =
∑
j

mj

ρj
∇W (rij , h)vji

T (10)

Calculate τi according to Equations (6) (7) (8), and then use
the SPH method to get the sum of the viscous force item fi

v

and pressure item fi
p, which is the fluid force fi←j :

fi←j = fi
v + fi

p (11)

fi
v =

∑
j

mj

ρiρj
(τi + τj)∇W (rij , h) (12)

fi
p = −

∑
j

mj(
pi
ρi2

+
pj
ρj2

)∇W (rij , h) (13)

where pi is calculated by Tait equation:

pi =
ρ0cs

2

γ
((
ρi
ρ0

)γ − 1) (14)

where cs is the speed of the sound in the fluid. External
forces, including gravity, act directly on the blood flow
particles, eliminating the need for the SPH method.

In the process of coupling, the coupling force of the proxy
particle to the blood flow particle is as follows:

fi←k = −mi$sk((
pi
ρi2

+
pk
ρk2

+ Π̃ik)∇Wik (15)

where k represents the proxy particle, similar to the Equation
(2) with$si = ρ0Vsi to modify the contribution of the proxy
particle. Viscosity term Π̃ik is defined as:19

Π̃ik=− 16µiµk
ρiρk(µi + µk)

(
vik · rik
rik + εh2

) (16)

where vik and rik donate the relative velocity and the relative
position between particles respectively, including viscosity
coefficient µi = υ(D)hcs/pi, with ε = 0.01h2 to prevent
the generation of singular value |rij |= 0. Depending on the
ideal state of the incompressible fluid, pk, ρk and µk of the
proxy particle k take the same value as the blood flow particle
i.

The resultant fluid force, external force, and coupling
force are summed to obtain the acceleration ai

n+1 of the
next frame. Finally, the velocity and position of particle are

updated according to Equations (17) and (18):

vn+1
i = vni + ai

n+1∆t (17)

xn+1
i = xni +

vni + vn+1
i

2
∆t (18)

In summary, physically SPH-based coupling method for
blood flow and vessel wall as shown in Algorithm 1.

For each blood flow particle i in the current frame n,
first search for its neighboring particles. Then, calculate the
force fi according to the velocity vj

n and position rj
n

of the neighboring blood flow particle j and the velocity
vk

n and position rk
n of the neighboring proxy particle k

to obtain the acceleration ai
n+1. Finally utilize the time

integration equations to solve the velocity vi
n+1, position

ri
n+1 in the next frame and update the blood flow state. In

the second step above, the acceleration calculation based on
the mixed neighborhood information of the particles is very
complicated, and the overall relationship between the input
and output data in the step is relatively stable, without being
affected by factors such as time steps and external forces.

Algorithm 1 Physically SPH-based coupling of blood flow
and vessel wall

1: while animating do
2: for each blood particle i do
3: find neighboring particles j and k;
4: compute fluid forces fi←j , (11);
5: compute coupling forces fi←k, (15);
6: compute acceleration ai

n+1, (5);
7: update velocity vi

n+1, position ri
n+1, (17)(18);

8: end for
9: end while

Therefore, we construct a particle state feature vector
based on the neighborhood information of the current frame
to predict the acceleration of the next frame, accelerating
this step and the entire coupling simulation. It also offers
the extrapolation capability of simulating more complex
couplings.

2 Our method
As shown in Algorithm 2, we propose a data-driven coupling
method for blood flow and vessel wall. After neighborhood
search, the feature vector is extracted from the blood flow
state data of the current frame and is input into the trained
PcNet to predict and obtain the acceleration to update the
blood flow state of the next frame. In the following, the
particle state feature vector based on the mixed neighborhood
and the semi-supervised periodic-corrected training strategy
for PcNet are described in detail.

2.1 Particle state feature vector
Focusing on the acceleration calculation of the physically
SPH-based coupling method, especially the calculation
formulas of physical quantities such as density ρi, fluid force
fi←j and coupling force fi←k, we can easily find out that
it is the information of the position and velocity of each
blood flow particle and its neighboring particles that affect
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Algorithm 2 Data-driven coupling of blood flow and vessel
wall

1: while animating do
2: for each blood particle i do
3: find neighboring particles j, k;
4: extract feature vector F (ani , r

n, vn);
5: predict acceleration ai

n+1 using PcNet;
6: update velocity vi

n+1, position ri
n+1, (17)(18);

7: end for
8: end while

the particle state in next frame, which is the original features
of each blood flow particle.

We note that different particles have different numbers
of neighboring particles and the number of neighboring
particles of a certain particle is also changing in the time
series. To deal with the different dimensions of the original
particle features, we use the basic statistical methods to
measure the distribution of data (mean, variance, skewness
and kurtosis) to extract the features of neighboring particle
position and velocity distribution of blood flow particles.
Noting the difference between computing fluid forces and
coupling forces, we measure features of neighboring blood
flow particles and neighboring proxy particles respectively.
In addtion, we add the number of neighboring blood flow
particles N and the number of neighboring proxy particles
M to the feature vector.

Figure 2. The neighborhood contains blood flow particles and
proxy particles.

Assuming that the velocity of the blood flow particle in
the current frame is vi = (vxi, vyi, vzi), the position is ri =
(rxi, ryi, rzi), j is the neighboring blood flow particle, and k
is the neighboring proxy particle as shown in Figure 2. In the
following, we take the neighboring blood particle position
and velocity distribution feature extraction as an example.

1. Central tendency feature We use the arithmetic mean
of relative values to characterize the central tendency of
the velocity and position of the neighboring particles. The
average of the x-component differences in the positions of
the neighboring blood flow particles is obtained as:

disxavg
b =

1

N

∑
j

(rxj − rxi) (19)

The average of the x-component differences in the
velocities of the neighboring blood flow particles can be
calculated as:

rvxavg
b =

1

N

∑
j

(vxj − vxi) (20)

Then we calculate disyavgb(average of the y-component
in the relative positions), diszavg

b(average of the z-
component in the relative positions), rvyavgb(average of the
y-component in the relative velocities) and rvzavgb(average
of the z-component of the relative velocities).

2. Discrete degree feature We use the variance of relative
values to characterize the discreteness of the velocity and
position of the neighboring particles. The variance of the
relative positions of the neighboring blood flow particles is
obtained as:

Ddis
b =

1

N

∑
j

(|rij | − |rij |)2 (21)

where |rij | denotes the average distance between the
neighboring blood flow particle j and the particle i. The
variance of the relative velocities of the neighboring blood
flow particles can be calculated as:

Drv
b =

1

N

∑
j

(|vij | − |vij |)2 (22)

where |vij | denotes the average value of the relative
velocities of the neighboring blood flow particles.

3. Distribution shape feature We use the skewness
coefficient and kurtosis coefficient of relative values to
characterize the distribution shape of the velocity and
position of the neighboring particles. Note that the
calculation of skewness coefficient and kurtosis coefficient
depends on frequency distribution.

Taking the relative position of neighboring particles as an
example, it should be discretized first. Suppose the smooth
core radius of the particle is h, thus the range of the distance
of the blood flow particle in the neighborhood is [0, h]. We
divide this range into n aliquots (here set n = 6) and the
distance of the particle in the i-th partition is defined as li =
i ∗ h/n.Then we count the frequency Fli of particles in each
partition and apply the moment method to measure skewness
coefficient and kurtosis coefficient. In general, taking the
center point a of data X , the n-th moment of X with respect
to a is defined as

∑
(X − a)

k
/N .

In statistics, the skewness coefficient is used to measure
the direction and degree of inclination of data frequency
distribution, which is generally calculated by the third-
order center moment. The kurtosis coefficient is used to
measure curve sharp or flat top level of data frequency
distribution, which is usually calculated by the fourth-order
center moment. We can formulate the skewness coefficient
of the relative position distribution of the neighboring blood
flow particles as:

αdis
b =

∑
j

(lj − l)
3
Fj

σl3
∑
j

Fj
=

∑
j

(lj − l)
3
Fj

σl3N
(23)
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where σl stands for the standard deviation. The kurtosis
coefficient of the relative position distribution of neighboring
blood flow particles is obtained as:

βdis
b =

∑
j

(lj − l)
4
Fj

σl4
∑
i=1

Fj
=

∑
j

(lj − l)
4
Fj

σl4N
(24)

Then we calculate the skewness coefficient αrvb and the
kurtosis coefficient βrvb of the relative velocity distribution
of the neighboring blood flow particles.

In the same way, the position and velocity distribution
features of proxy particles on the blood vessel wall can be
extracted. In this paper, the blood vessel model is fixed,
which means the velocity of proxy particles is zero and its
velocity distribution features does not need to be extracted.
The extracted features are as follows:

{ disxavgp, disyavgp, diszavgp, Ddis
pαdis

p, βdis
p } (25)

Considering the dynamic frame correlation of blood flow
simulation, we add the acceleration in the current frame ani =
{ax, ay, az} to the feature vector. In summary, the particle
state feature vector based on the mixed neighborhood of
proxy particles on the blood vessel wall and blood particles
is constructed as a 23-dimensional vector:

F ={ ax, ay, az,
N, disxavg

b, disyavg
b, diszavg

b,

rvxavg
b, rvyavg

brvzavg
b,

Ddis
b, Drv

b, αdis
b, αrv

b, βdis
b, βrv

b

M,disxavg
p, disyavg

p, diszavg
p,

Ddis
pαdis

p, βdis
p }

(26)

2.2 Traditional neural network
The classic BP (Back Propagation) neural network is a
computational network structure composed of many neurons.
Figure 3 shows a classic three-layer BP neural network,
including the input layer, hidden layer and output layer.
A neuron is a basic data processing unit in the network.
The working mechanism contains two phases: forward
propagation (right black arrow) and backward propagation
(left yellow arrow). In the forward propagation phase, the
values of the upper nodes are weighted according to the
weights of the corresponding directed arcs. After the bias
is added, the output value is obtained through the activation
function to be transmitted to the lower nodes. In the reverse
propagation phase, according to the gradient descent method
constantly update weights and bias to minimize errors
between output and target values.20

The basic neural network in this paper takes the 23-
dimensional particle state feature vector F of the current
frame as the input layer and the 3-dimensional particle
acceleration T = {an+1

i } in the next frame as the output
layer. The input layer contains 24 neurons (including the
biased neuron) and the output layer contains 3 neurons. The
rest of the network structure settings (the number of hidden
layers and the number of neurons per layer) need to be
experimentally adjusted, which is not discussed here.

Figure 3. An example of a three-layer BP neural network

2.3 Periodic-corrected training strategy
The entire blood flow simulation process consists of a
continuous sequence of frames; the frame sequence has a
dynamic continuous correlation. We find that training with
classic BP neural networks can achieve a sufficiently low
error in a single time step; however, the error will continue
to accumulate over successive frame-by-frame predictions
leading to instabilities. This is precisely because the training
strategy of classic BP neural network only focuses on the
prediction errors of adjacent frames, making it impossible
to give consideration to the continuous physical meaning
of blood flow simulation. Therefore, the traditional neural
networks architecture has to be improved in order to enhance
its applicability based on time-series blood flow simulation.

Algorithm 3 Periodic-corrected training strategy

Input: feature vectors F , target vectors T .
Output: trained periodic-corrected network PcNet.

1: for each training epoch do
2: for each training sample i do
3: PcNet.trian(Fi,Ti);
4: if i mod a == 0 then
5: PcNet.predict:(F1,T1)→ (Fi,Ti);
6: PcNet.train(F̂1,T1);
7: end if
8: end for
9: end for

As shown in Algorithm 3, we propose a semi-supervised
neural network training strategy that periodically corrects
errors to train our PcNet model. Suppose a frame (F,T)
is a training sample. The training samples are extracted
from the physical flow simulation to form a continuous
sequence (physical sequence), and the sequence is continued
for iterative training. Given a period length a (here set a =
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5), the iterative algorithm for improved periodic-corrected
training is as follows:

(1) Train a− 1 training samples, adjust and update the
weights and biases of the network to get PcNet1.

(2) Utilize PcNet1 to perform continuous frame-by-
frame prediction from the first frame (F1,T1) to form
a prediction sequence and obtain the predicted value
of the a-th frame (F̂i, T̂i).

(3) Taking the feature vector of the a-th frame F̂i as input
and the acceleration of the corresponding frame in
the physical sequence T as output, construct a new
training sample (F̂i,T) and include it in the training
sample set to adjust and update the weights and biased
of the network, completing an iteration.

(4) Continue the iterative process until the sequence is
terminated, resulting in a trained PcNet.

3 Experimental results
The environment for the experiments is as follows: Windows
7 Ultimate 64bits SP1, Intel Xeon E 3-1230 V2@ 3.30-GHz
quad-core processor, 8 GB internal storage, and graphics
card of NVIDIA GeForces GTX 650 Ti (1 GB).

We choose the GPU accelerated blood vessel wall
coupling method proposed by Guo et al.15 as a physical
simulation method for acquiring training samples and as a
contrast method for the proposed method. The simulation
scenario where we get the input data (the particle state
feature vector of the current frame) and the target data (the
particle acceleration of the next frame of blood flow) is as
follows: Initialize a columnar blood flow of a certain height
and let it flow into the fixed blood vessel model under gravity.
The time step is 0.005 seconds.

Figure 4. Two blood vessel models in experimental setting

As shown in Figure 4, we use two blood vessel models
to simulate in the above scenario respectively and collect
the data to train PcNet with the semi-supervised periodic-
corrected training strategy. Taking Model A as an example,
five sets of data were obtained from five groups with different
initial height simulations. Each set of data collected 800
frames with 16000 particles per frame, for a total of 64
million samples.

Our basic neural network has 24 neurons in the input
layer and 3 neurons in the output layer. In the initial testing
and verification process, the neural network can describe
the nonlinear relationship between input layer and output
layer relatively accurately when the number of hidden layers
reaches 3 and the number of hidden layer neurons reaches 5.
As the number of hidden layers and the number of hidden
layer neurons continue to increase, the performance of the
network has not significantly improved, consuming a large
amount of computing resources at the same time. In this
paper, the basic neural network has 3 hidden layers and 5
neurons per hidden layer.

We initialize a new height of columnar blood flow
to simulate a test scenario, using the trained PcNet to
continuously predict the state of the blood flow. As
shown in Figure 5, our method achieves a realistic and
stable dynamic simulation of blood flow and vessel wall
coupling and achieves almost the same visual effects as the
physical method. Figure 6 shows comparison of the coupling
simulation results of two methods in a certain frame from
different perspectives. Our method even gives more realistic
details of blood splashes based on the visual similarity
of physics-based method. In addition, the computational
efficiency of the proposed method in this paper is about
5 times increase than that of the physics-based complex
computations (As shown in Table 1).

4 Conclusions

In this paper, we propose an efficient data-driven method
to realize fast, stable and visually realistic coupling of
blood flow and vessel wall by using periodic-corrected
neural network (PcNet) to avoid the complex acceleration
computation in physics-based blood flow simulation. Based
on the SPH method and the hemodynamic equation, we
first construct a particle state feature vector which models
the mixed neighboring contribution of proxy particles on
the blood vessel wall and blood particles. Then in order to
strengthen the physical meaning of the frame sequence to
ensure the long-term stability of the simulation, we present
a semi-supervised periodic-corrected training strategy to
improve the traditional BP neural network. Finally, we train
the proposed PcNet and conduct simulation experiments.

The experimental results show that the proposed method
achieves almost the same simulation visual effects as the
physics-based method, and even better on the details of
the blood splashes, while the computational efficiency
is improved by about 5 times. In the future, we will
improve feature selection and blood flow incompressibility
constraints to support larger scale simulation stability.In
addition, we will apply parallel computing such as GPU
acceleration to our data-driven method to be more time-
saving in training samples and computing coupling results.
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