
HAL Id: hal-03538522
https://amu.hal.science/hal-03538522

Submitted on 25 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DEv-PROMELA: modeling, verification, and validation
of a video game by combining model-checking and

simulation
Aznam Yacoub, Maamar El Amine Hamri, Claudia Frydman

To cite this version:
Aznam Yacoub, Maamar El Amine Hamri, Claudia Frydman. DEv-PROMELA: modeling, ver-
ification, and validation of a video game by combining model-checking and simulation. SIMU-
LATION: Transactions of The Society for Modeling and Simulation International, 2020, 96 (11),
�10.1177/0037549720946107�. �hal-03538522�

https://amu.hal.science/hal-03538522
https://hal.archives-ouvertes.fr

DEv-PROMELA : Modelling, Verification
and Validation of a Video Game by
Combining Model-Checking and
Simulation

SIMULATION: Transactions of The Soci-
ety for Modeling and Simulation Interna-
tional
XX(X):1–27
©The Author(s) 2020
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Aznam Yacoub1, Maâmar El-Amine Hamri1 and Claudia Frydman1

Abstract
Modelling, Verifying and Validating are essential steps in order to build systems and software that do what designers
expect. If Formal Verification, and especially Model-Checking, is a popular method for proving correctness of properties,
its efficiency depends on the accuracy of the used models, and the quality of abstractions. As a consequence, applying
verification techniques on large-scale complex software like video games is hard without strong assumptions and
simplifications. Simulation models are generally more accurate than verification models, but it is often like harder to
verify them. Combined formalisms that take benefits of both Model-Checking and Discrete-Event Simulation, represent
a good deal between these both families, althought strong engineering expertise remains necessary to define the
relevant tests and scenarios. This paper proposes an approach to build this kind of formalisms through the example of
DEv-PROMELA, which is built by combining DEVS formalism and PROMELA language. Then, it shows how combined
formalisms can be used for Modelling, Veryfing and Validating complex software like video games by using both formal-
based and simulation-based Verification and Validation.

Keywords
Model Checking, Verification and Validation, Modelling and Simulation, DEVS, PROMELA, DEv-PROMELA

1 Introduction

1.1 Motivation
The need for elaborate techniques for designing and
developing systems has been well recognized in recent years.
Building reliable systems, hardware or software has become
harder, due to the complex behaviours and interactions
between their components. This complexity makes harder
the understanding of the real behaviours compared to the
expected behaviours, and makes harder preventing bugs and
defects. Moreover, it is also harder to perform tests directly
on the target systems, although Verification and Validation
(V&V) techniques have deeeply changed the last decades
[1]. Then, it is well-known that designers must think on
representations of systems and software. However, the size
of models grows up with the complexity of systems. For
this reason, plenty of new V&V concepts, methods and tools
have been proposed over the past 20 years to make safer or
more efficient V&V of models [2, 3]. These techniques can
be classified in two great families.

Formal Verification. On the one hand, Formal Verification
(FV), with Formal Methods (FMs) [4, 5], and especially
Model Checking (MC) [6–8], represents a family of popular
techniques which tend to facilitate a low-level representation
of systems under study with automata, and which generally
provide execution semantics to make the model more
understandable. However, these techniques are generally
based on a single specific formal foundation often suitable
to represent particular aspects of a system under design
[9]. Moreover, a system is generally composed of several

components defined by various specifications given from
several points of view, which makes their design really
tedious. As a consequence, the use of several techniques,
tools, notations and formalisms is required to cover a
good range of requirements. Engineers are thus enforced
to model the same system over and over again, which is
expensive and error-prone. Many attempts have been made
to integrate several FMs inside a same framework [10, 11] in
order to take advantages of their strengths and reduce their
weaknesses. In spite of that, the deep problem related to the
trade off between speed, accuracy and level of abstraction
has not been fully resolved. For example, representing time
in the processes of modelling and checking timed systems is
always a tough task. An untimed model is generally derived
from a timed system [12], but designing a timed system
by an untimed model forces to explore behaviours which
may not have an interpretation in the real world. Conversely,
representing time with accuracy makes the V&V processes
heavier because of the growing size of the model [13, 14],
and even unreachable in some cases [13, 15]. FMs then need
to impose strong constraints to ensure that the models can be
verified in finite time. In fact, Model checking techniques

1LIS, Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille,
France

Corresponding author:
Dr. Aznam Yacoub - Aix Marseille Université - Campus de Saint Jerome
- Bat. Polytech - 52 Av. Escadrille Normandie Niemen - 13397 Marseille
Cedex 20
Email: aznam.yacoub@lis-lab.fr

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

Ac
cep

ted
for

Pu
bli
cat
ion

2 SIMULATION: Transactions of The Society for Modeling and Simulation International XX(X)

and tools (PROMELA, Symbolic Model Checking, etc.)
deal with finite, explicit or symbolic, states models to
generate and explore all possible paths and to check formally
the system properties and assertions [16, 17]. A system
with timed behavioural constraints may then be interpreted
as refinement of a system without timed constraints. The
reason is that at first glance time may be seen as an
additional variable in the specifications of the model; this
is a misinterpretation. Taking into account the time basis to
describe behaviours leads a fortiori to the appearance of new
behaviours that do not belong to the untimed specifications
(paths to explore from finite state machines).

For instance, consider model checking applied to digital
circuits. It is well known that verifications, such as hold
violation, flip-flop set up, etc., are based on models in which
states are piecewise constant (0 or 1). However, Hamri et
al. [18] proposed timed models to design digital circuits
based on the boolean algebra and Generalized Discrete
Event Specification (GDEVS) [19] formalism showing
the appearance of new behaviours (piecewise continuous
state functions and new outputs at times when different
input signals cross each other) that finite state machines
cannot capture. A second example handled in the model
checking literature is the Pacman game, as in [20] and [21].
Formal verification of Pacman behaviours is done on an
untimed model and on a discretized space. Unfortunately, the
proposed formal model for the Pacman game is so abstracted
that it does not conform to the final game requirements. For
example, the move of entities (pacman and ghosts) depends
strongly on time, as shown in [22]. Consequently such paths
are uncovered by the formal model.

Modelling and Simulation. On the other hand, the
Modelling and Simulation (M&S) theory [23, 24] proposes
an elegant and uniform way to understand and design
systems. This theory is based on two main separated
activities. First, Modelling is the task of making a
representation of a system or a software from the point of
view of an observer. Modelling answers questions that this
observer asks about the system [25]. If this definition meets
the one used in FV, the main difference is in the intended
purpose of this model. Second, Simulation is then the task of
executing the model to generate its behaviour by acting on
inputs and parameters of this model [23]. As a consequence,
a simulation model is made for validating a particular set
of behaviours of a system, while a verification model tries
to expose the entire set of computation paths of this system
(or at least, the set represented by the model). A simulation
model can thus be more complex than a verification model,
meaning it can encompass more computational details. A
simulation model is thus used when [26, 27]:

• it is impossible or extremely expensive to observe
certain processes in the reality, or to interact directly
with them;

• the real system has some level of complexity, interac-
tion or interdependence between various components,
or pure size that makes it difficult to grasp in its
entirety;

• there is no simple analytic model or it is impossible
or extremely expensive to validate the mathematical
model describing the system.

This assumption introduces the main difference with
verification model and simulation model: while a verification
model must be as simple as possible in order to be able to
generate the entire stateset [28] and to perform verification,
a simulation model can deal with the complexity of the
interactions between the components by representing what
the designer knows about the system, what he is seeing
when he stimulates the system, without being constrained by
any computational considerations or restrictions. This have
an impact on the formalisms used for making simulation
models. It is indeed possible to introduce two levels of
models: a conceptual model which is the representation
of the system under study, and the computerized model
(called simulation model) [2] which is the realization of
the conceptual model. This separation gives its power to
simulation formalisms. Indeed, for example, the Discrete
Event System Specifications (DEVS) [23] are an algebraic
formalism to explicitly represent Discrete-Event Systems
(DES), with all considerations about time and data, while
the semantics of the abstract simulator gives a unique
interpretation to a DEVS model. As a consequence, a DEVS
model is then more expressive than an untimed model of
a DES. In other words, some verifications and validations
can be performed on the conceptual model while some other
properties can be verified and validated using the simulation
model.

However, if this ability to separate conceptual model and
simulation model is a strength, it is also a weakness. The
power of the simulation-based verification comes from the
fact that a simulation is like an empirical experiment. We
mean that the simulation is efficient because the played
scenarios are well targeted, forcing designers to get more
knowledge about the system under study. While the goal of
FV techniques is to systematically explore all the behaviours
of a system, simulation-based techniques focus on interesting
cases. Nevertheless, this also means that simulation-based
verification strongly depends on the played scenarios,
meaning there is no guarantee that the verification is fully
done, like in formal-based verification. In the same manner,
simulation is done under a specific set of conditions called
the Experimental Frame (EF) [23]. This set of constraints is
the same than those under the real system is observed. This
adds two difficulties:

• If the hypothesis are incorrect, there is no guarantee
about the simulation model, meaning the simulation
model could only behave well under the EF, and not
under all the non-observed conditions;

• The validation strongly depends on the quality of the
implementation; this means the simulation model must
be verified and validated against the conceptual model,
whose the knowledge depend on the known EF.

Understanding and specifying the context and the EF
becomes therefore another challenge [29] in the application
of M&S theory. This does not mean the entire state space
cannot be checked as with formal verification, but it would be
probably more costly; and, efficiency of a simulation model
can only be evaluated by comparing its outputs with those
of the real system for specific inputs. Note that because
simulation is evaluated under specific EF, this enforces the
notion of determinism; in other words, for the same set

Prepared using sagej.cls

Ac
cep

ted
for

Pu
bli
cat
ion

Yacoub et al. 3

of inputs, the model must generate the same behaviour
and the same outputs. This determinism is both a strength
and a weakness: from the M&S point of view, this forces
again modeller to have precise knowledges about the system;
from the FV point of view, this forces the modeller to
complexify the model, meaning the model will not focus
only on interesting aspects and will encompass irrelevant
computational details. Table 1 summarizes the advantages
and drawbacks of both formal-based and simulation-based
techniques.

1.2 Related work
In order to improve these existing methodologies, some
works have been intensively done the last decades on new
model-checking algorithms for verification of timed and
hybrid models [30, 31], stochastic models [32], improving
verification and validation of simulation models [33–35].
Many methodologies combining formal-based verification
and simulation like assertion-based approaches [36] have
also been proposed. Godefroid [37] says that ”model
checking can be combined with testing to define a dynamic
form of software model checking based on systematic
testing”, confirming that static and dynamic approaches
can be both used for Verification and Validation. Goldberg
[38] admits that simulation and formal verification are
complementary. The author states that if formal verification
proves that a model holds property for all points of a
space, the main problem is its unscability. He states also
that simulation probes the search space at a subset of
points, and ”works surprisingly well even though the set
of test points (further referred to as the test set) comprises
a negligible part of the search space”. In fact, combining
simulation and verification is an aspect which is included in
the definition of model checking [16]. The MC community
proposes ”testing”, ”emulation” and ”simulation” as a way
for analyzing generated counterexamples. In this context,
”simulation” (or more precisely execution, or animation of
specifications [39]) is similar to run a path of the reachability
graph. However, by definition, simulation is ”executing a
model to generate its behaviour over the time” [24], by
acting on inputs and parameters of the model. Errors are
determined by finding differences between the simulator
output and the output described in the specifications over
the time. Then, executing a graph of an untimed model is
not really a simulation (in the meaning of the M&S theory)
while execution misses two important aspects: the time and
the experimental frame.

That is why many other techniques that combines
Simulation and Formal Methods have been proposed.
Among them, we find methodologies based on morphisms
and transformations of models, and techniques that build
new formalisms from several other formalisms used in
different disciplines. For instance, Abdulhameed et al. [40]
propose a methodology to verify and validate SysML
specifications by successively translating them into SystemC
and UPPAAL models, using a Model-Driven Engineering
(MDE) approach. The SystemC model is then simulated
for validation purposes, while the UPPAAL model is used
for verification purposes. The described methodology was
applied on a model of controls of traffic lights. This type
of approach is very interesting because they can reach

the strength of formal verification and simulation from
a common high level specification language. However,
the limits of this approach come from the limits of
the transformations from SystemC to UPPAAL. Timed
Automata (TA) impose some restrictions on time relations
and data types. This means that there is no proof that any
SysML models can be translated into a SystemC model and
an UPPAAL model. In the same manner, Zeigler et al. [41–
43] propose to use system morphisms to transform DEVS
(resp. model-checking) models into model-checking (resp.
DEVS) models.

Dacharry et al. [44] propose another design methodology
for control systems by linking simulation using DEVS and
formal verification using TA. The high-level specifications
are expressed using TA, while the design of the control
implementation is described using DEVS formalism. By
finding a refinement between the implementation and the
specification (i.e. by proving the DEVS model conforms with
the TA model), simulation can then be used for validating
the implementation. Moreover, a DEVS model is more
expressive and enforces fewer constraints about data and
time relations. A DEVS model is thus closer to the real
system than a verification model. Neverthless, this approach
supposes that it is possible to translate any DEVS models
into equivalent TA models, and as the authors stated, this is
not possible. Second, because a fully automatic translation
from TA to DEVS is not possible, this means that designers
must have knowledge of two formalisms to achieve the best
of combined simulation and model checking.

He [9] proposes to build a new formalism integrating two
other formalisms. On the one hand, PZNets can be seen as
an extension of Petri Nets, by adding function definition
capabilities; one the other hand, it can be also seen as
an extension of Z notations, by adding a new operational
semantics with explicit control flow structures. The main
advantage of such an approach is that the various aspects
of a system can be modelled using a unified formal model
which can benefit from a rich set of analysis techniques.
Indeed, a PZNet model remains a Petri Net model, meaning
that it can be simulated. Moreover, a PZNet model can be
analyzed using the Z proof techniques thanks to the defined
transformation rules. Thus, a PZNet is suitable for both data
and process reasoning.

We proposed [45, 46] to go further in this way and to
explore how combining Model-Checking and Simulation for
improving V&V by introducing the semantics of simulation
formalisms into verification formalisms (at the difference
with PZNets which adds Z notations to Petri Nets). In this
way, we achieve different goals:

1. Building a unique formalism that allows designing
accurate representations of software which before
were not fully representable with only one formalism;

2. Keep a model with a clear syntax that focuses on the
properties which one wants to verify, without losing
the timed semantics;

3. Keep a separation between the conceptual model
(which is the verification model) and the simulation
model (which is the computerized model);

Many advantages arise from such a methodology:

Prepared using sagej.cls

Ac
cep

ted
for

Pu
bli
cat
ion

4 SIMULATION: Transactions of The Society for Modeling and Simulation International XX(X)

Table 1. Advantages and Drawbacks of Formal- and Simulation-based V&V

Advantages Drawbacks

Formal-based V&V

Explore the full statespace
Non-deterministic model
Simple analytic model: model is focused on
what to be verified/validated

Related to statespace explosion problem
(timed models are hard)
Related to decidability problem : models
must be finite or symbolically finite

Simulation-based V&V

Separation between conceptual and imple-
mented model
Interoperability between simulation for-
malisms, and between simulators is easier
(thanks to the separation between the mod-
els)
Exsisting universal formalism and frame-
work for modelling a large set of systems
Deterministic model (well-known specifica-
tions)
Non-related to complexity (time, infinite
data, computations, etc.)

Strongly depends on EF and scenarios
No guarantee that the V&V is fully done
V&V depends on the quality of the comput-
erized model (the computerized model must
also be verified and validated against the
conceptual model)

Combined V&V

Separation between conceptual and imple-
mented model
Structural static properties can be formally
checking exploring the entire statespace
Behavioural dynamic properties can be
checked using simulation
Hierarchical and modular constructions of
the models make easier the analysis
Makes easier the interoperability between
existing tools

Cannot represent all existing systems (the
model remains symbollically finite)
Remains strongly dependant on experts,
requirements, scenarios (parameter space
can be fully explored, but it would take huge
amount of time)

• A robust V&V of models and systems can be
achieved through a method based on the strengths of
formal verification and simulation. In this approach,
simulation and formal verification complete each
other in the V&V processes. Model-Checking is used
for verifying and validating some static properties
like bounding values, structural deadlocks etc. in an
untimed mode, while simulation is used for checking
dynamic properties, behavioural deadlocks etc. in a
timed mode;

• Simulation formalisms can benefit from a clear syntax
that makes easier the implementation of computerized
models;

• Unlike timed formal verification, the size of the
statespace is subdued, and the expressiveness of the
timed model is still preserved;

• What which is checked, verified and validated is more
clear: conceptual model, computerized model and real
software are clearly separated in this approach.

• The hierarchical construction reduces the complexity
of the formal model, and the relevant parameter space
is better targeted (analysis of the relevent properties
makes easier the choice of the subspace in which the
model is tested).

As a result of our work is born the Discrete-Event
PROMELA (DEv-PROMELA) formalism [47] which can
be seen as a new specification formalism thanks to
the combination of DEVS and Process MEta LAnguage
(PROMELA) [48] formalisms presented in section 1.3 and
section 1.4.

1.3 PROMELA Concepts
PROMELA [48] is a formal verifiable language which allows
the specification of concurrent systems and concurrent
protocols. The model-checker SPIN makes possible of the
validation of properties expressed in Linear Temporal Logic
(LTL). We briefly introduces there the main concepts behind
PROMELA.

PROMELA primitives. A PROMELA system [28] relies
on three main types of objects: processes, data objects and
messages.

The components of the system are modelled by a finite
set of instances of processes. The latter can communicate
with each other thanks to different mechanisms such as
buffered messages, shared global variables or rendez-vous
handshakes. Each process is a finite set of guarded or
labelled commands called instructions. Each instruction
is sequentially executed by each process in an either
synchronous or interleaved asynchronous manner. In other
words, at any time ti, only one instruction is performed
by one of the processes, without any assumptions about
duration of the execution or timed events. Note that a set
of instructions can be labelled as an atomic instruction:
in this case, these instructions are considered as a unique
instruction. Processes can also be prioritized, meaning
that a process with a higher priority will always execute
its instructions before other processes (it is interesting
to note that the semantics of priority has changed: old
PROMELA specifications provided a way to define a ratio
between processes, meaning that, for instance, a 10-priority
process was 10 times more likely to execute before others).

Prepared using sagej.cls

Ac
cep

ted
for

Pu
bli
cat
ion

Yacoub et al. 5

ALGORITHM 1: A simple example of PROMELA
program.

1: int z = 1;
2:
3: active proctype A {
4: int x = 2, y = 2;
5: if
6: :: (x == 2)→ x = 3;
7: :: (y == 2)→ y = 4;
8: :: (y == 4)→ z = 0;
9: fi;

10: }
11:
12: active proctype B {
13: int x = 2, y;
14: do
15: :: (z == 1)→ x = 2;
16: :: (x == 2)→ y = 4;
17: :: (y == 4)→ z = 0;
18: od;
19: }
20:
21: ltl {[](z == 1); }

Syntactically, a process is defined by a proctype block of
instructions, as given in Program 1.

Instructions are divided into two categories:

• Statements that modify the state of the model by
acting on variables: assignments and communication
statements. Assignments are always enabled, meaning
there can always be executed, while communication
statements can be blocking, depending on the size of
the involved buffers;

• Statements that act on the flow: selection statements
which choose the next state among different branches
regarding a guard. If many guards are satisfied, one
of them is randomly selected. For instance, in 1, if
x == 2 and y == 2, both l.6 and l.7 are enabled.
This corresponds to two active paths in the verification
graph. If no statement can be satisfied, the control-
flow is blocked, meaning there is no next state in the
reachability graph.

PROMELA data are represented by classic variables, with
a type and an identifier. The type gives the finite size
of the variable (Table 2). It can be either scalar values,
combinations of scalar values (structs), or finite arrays of
scalar and/or structs. Variables can be local, meaning there
are defined only in the scope of the process that declares
them, or global, meaning they are shared by all the processes.

Table 2. A list of PROMELA basic datatypes.

Type Size (bits) Value Range
bit, bool 1 [0; 1]
byte 8 [0; 255]

mtype (constants) 8 [0; 255]
short 16 [−215; 215 − 1]
int 32 [−231; 231 − 1]

Semantics of PROMELA. The semantics of a PRO-
MELA model is given by the verification engine [28, 49].
Each proctype defines a finite state automaton A =
(S, T, L, s0, FA) where:

• S is the set of states that correspond to the possible
control points inside the proctype block;

• T is the transition system that defines the control flow;
• L is the transition label function that links each

transition to a statement that defines the executability
and the effect;

• F is the set of final states which are defined for end-
state, accept-state and progress-state.

More operationally, a PROMELA process is a tuple

P =< pid, lvars, lstates, initial, curstate, trans >

where:

• pid is a positive value which identify the process;
• lvars is a finite set of local variables
{(name, scope, domain, inival, curval)};

• lstates ⊆ INT , which defines the identifiers of
the local states of the process; lstates hold no
information;

• initial is the initial state of the process such that

curstate = initial =⇒
∀v ∈ lvars, v.curval = v.inival;

• curstate is the current state of the process.
• trans is a the finite set of transitions
{(tr id, source, target, cond, effect, prty, rv)}
where (source, target) ∈ lstates× lstates.

Then, to define a whole PROMELA program, the concept
of System state is introduced. A system state is a tuple

SS =< gvars, procs, chans, exclusive,

handshake, timeout, else, slutter >

where, in particularly,

• gvars is a finite set of global variables
{(name, scope, domain, inival, curval)};

• procs is the finite set of processes;
• chans is the finite set of channels.

The semantics engine (Algorithm 2) gives then the
meaning of a PROMELA program. Given a current system
state s, the semantics engine takes randomly one executable
transition from any executable transitions among all the
processes. Given a selected couple (p, t), the engine
computes the effect of the transition on the current state. If
the statement is not a synchronization statement, the engine
modifies the current system state and the current state of the
selected process. Otherwise, the algorithm tries to find the
process that must fulfill the synchronization. If one is found,
both processes are updated and the current global state is
changed. Otherwise, the system is blocked.

Then, we can consider a PROMELA program also as
a finite state automaton in which the set of states is the
cartesian product of each process’ set of states, and the

Prepared using sagej.cls

Ac
cep

ted
for

Pu
bli
cat
ion

6 SIMULATION: Transactions of The Society for Modeling and Simulation International XX(X)

ALGORITHM 2: PROMELA Semantics Engine [48]
1: while there is at least one executable transition from the

current global state s
2:
3: for one (p, t) ∈ procs× p.trans {
4: s′ = apply(t.effect, s)
5: if handshake == 0
6: {
7: s = s′

8: p.currstate = t.target
9: }

10: else
11: {
12: E′ = executable(s′)
13: for one (p′, t′) ∈ E′ {
14: s = apply(t′.effect, s′)
15: p.currstate = t.target
16: p′.currstate = t′.target
17: }
18: handshake = 0
19: }
20: }

transition system is a composition of each transition system
of each process. We mean that, for two global state s and
s′, it exists a transition between them only if it exists a local
transition that affects one of the local states that composes s
and gives its equivalent component in s′.

1.4 DEVS Concepts
As introduced previously, DEVS is an algebraic formalism
which allows discrete-event representations of system. In this
section, we recall important concepts about Classic DEVS
[24].

DEVS primitives. Discrete-Event Systems (DES) are a
specific class of timed systems, whose state changes at
various time instants, depending on instant occurrences of
events. Thus, a DES evolves along the events that it emits or
consumes. To model such systems and their analysis, Zeigler
et al. [23] introduced the DEVS formalism, which can be
seen as a generalization of the Moore Machine formalism
by associating each state with a lifespan. The Classic DEVS
thus relies on the following notions:

• Each state is associated with a real number called
lifespan. This real number can take its value on
[0; +∞]. When the lifetime of a state has expired, the
system emits an output and changes its current state
according to the transition table;

• When an input is consumed, the state of the system
changes according to the transition table, regardless of
the current lifetime of the current state;

• As a result of the previous point, transitions can
be characterized as internal or external transitions.
Internal transitions model autonomous behaviours
while external transitions correspond to reactions to
any external events;

• Events are well-dated and can be ordered;

• There is no non-deterministic behaviour. If two events
occur at the same time, thus either they are equivalent
events (e1 = e2) or they are prioritized;

• The states, input and output trajectories are piecewise
segments; the distribution of events can follow any
non-linear function, unlike for discrete-time systems
in which the time is determined by a linear function of
periods;

A DEVS model is divided into small pieces called DEVS
atomic model, and more complex models called DEVS
coupled model. A coupled model is a coupling of DEVS
atomic or coupled model. Each atomic model deals with
events that it receives from the environment, or from other
models, in order to change its current state. An atomic
model thus encompasses the computational properties of the
system. When a transition is enabled, an atomic model can
emit an event to the other models which it is coupled with. If
it is the case, the target models change their respective state
according to the emitted event. A coupled model is thus a
way to hierarchically compose complex systems.

To each model, the DEVS framework associates either an
abstract simulator, or an abstract coordinator in order to
build the simulation model. The simulator gives the meaning
of an atomic model, while the coordinator sets how the events
are exchanged between coupled models. The computerized
model is then the concrete implementation of simulators and
coordinators using a programming language.

Semantics of DEVS. More formally, a DEVS model is
thus a coupling of DEVS models. A DEVS atomic model is
the smallest simulable unit defined by

A = (X,Y, S, δint, δext, λ, ta)

where:

• X is the set of input values;
• Y is the set of output values;
• S is the set of states;
• δint : S → S is the internal transition function;
• δext : Q×X → S is the external transition function;
• λ : S → Y is the output function;
• ta : S → R+ is the time advance function;
• Q = {(s, e) | s ∈ S, e ∈ [0, ta(s)]} is the total state

set; e is the time elapsed since the last transition.

Then, a DEVS coupled model is defined by

M = (X,Y,M,EIC,EOC, IC, Select)

where:

• X is the set of input values;
• Y is the set of output values;
• M is the set of components (atomic or coupled

models);
• EIC is the external input coupling that connects

external inputs to component inputs;
• EOC is the external output coupling that connects

component outputs to external outputs;
• IC is the internal coupling that connects component

outputs to component inputs (without direct feedback
loops);

Prepared using sagej.cls

Ac
cep

ted
for

Pu
bli
cat
ion

Yacoub et al. 7

• Select is the tie-breaking function that chooses the next
event from the set of simultaneous events.

The meaning of an atomic DEVS, given by the abstract
simulator, can easily be depicted as follows. At any time
t, the system is in a state s. If no external event occurs,
the system stays in s for time ta(s). If the lifetime expires,
meaning the elapsed time e from the last event is equal
to ta(s), the system outputs the value λ(s) and changes
to the state δint(s). If an external event x occurs before
the expiration time, meaning that the system is in a state
q = (s, e) with e ≤ ta(s), then the system changes its state
to δext(q, x).

Given a queue of events sorted by date, the simulation
algorithm works as follow:

1. When a coordinator associated to a coupled model
processes an internal event, it dispatches it to its
imminent child, ie. the one responsible of this event.
The simulator associated to this model executes its
transition. If it is a coordinator, the event is processed
recursively. Otherwise, if it is a simulator, an output
event is emitted to the parent coordinator before
changing the state of the corresponding atomic model.
When the internal event is consummed and all external
events caused by this output processed, the time of the
next event is computed by choosing the minimum of
the next events of all the children;

2. If a coordinator receives an external input event from
its parent coordinator, it generates a message to its
internal components according to the internal coupling
function. Time event are updated.

3. If a coordinator receives an external output event from
its imminent child, it may generates an external output
event to its parent coordinator according to the external
couplung function or internal coupling function;

4. The algorithm is repeated until the event queue is
empty.

Based on these two formalisms, we developped DEv-
PROMELA presented in this paper as new formalism, and
as an illustration of our proposed methodology. The question
about the exact position of DEv-PROMELA as an extension
of PROMELA or a subclass of DEVS is not raised in
this paper. Section 2 reintroduces DEv-PROMELA and the
mandatory key concepts to build a combined formalism
based both on formal method and simulation in the context of
Software Verification and Validation. Unlike previous work,
this section shows also that the resulting formalism is usable
both by the former checker and the former simulator because
of the existance of morphisms that generate equivalent
PROMELA specifications and DEVS models from a DEv-
PROMELA specification. Through a double bi-simulation
relationships, we ensure that DEv-PROMELA models,
resulting PROMELA models and resulting DEVS models are
equivalent. Then, Section 3 introduces a new unpublished
proposed V&V workflow and Software Development Life
Cycle (SDLC) using DEv-PROMELA. Indeed, simulation is
generally used to develop systems, but we show that it can
be combined with formal checking to discover flaws early
in a software development. We applied our methodology to
develop a video game using DEv-PROMELA and we show

how each step of the SDLC is impacted in our proposed
workflow in Section 4. Finally, we discuss about the benefits
and drawbacks of our approach and its applicability on more
complex software and systems.

2 Discrete-Event PROMELA

2.1 Overview
Discrete-Event PROMELA (DEv-PROMELA) [47] is an
example of formalism that illustrates our methodology. DEv-
PROMELA can be seen as an extension of PROMELA for
describing discrete-event models, while it adds new abstract
primitives [50, 51] to PROMELA, or as a new discrete-event
simulation formalism. More than that, DEv-PROMELA is
also a sublclass of DEVS [23]. Proof of the exact position
of DEv-PROMELA is outside of the scope of this paper. As
previously said, DEv-PROMELA is built upon a verification
language (with an operational semantics) in which we add
the operational semantics [52, 53] of a simulation language.
In other words, the structure of a DEv-PROMELA model
can be fully described/abstracted by a PROMELA model
(the state-transition graph generated by the semantics of
the PROMELA verification engine), while its discrete-event
behaviour is described by a DEVS model (the way of going
from a state to another given by the semantics of the DEVS
abstract simulator). As a consequence,

• a DEv-PROMELA model can be abstracted to a
PROMELA model in which the structure is preserved.
This means that some qualitative properties like the
intrisic existance of a path between two abstract states
can be formally checked; time is seen as ordered
events and the size of the statespace of models can
be subdued (compared to the statespace of a timed
model);

• a DEv-PROMELA model can be abstracted to a DEVS
model in which the timed behaviour is preserved.
This means that some quantitative properties, like
properties in which the next state depends on the
time elapsed in the current state, can be checked by
simulation; time is seen as timed events and discrete-
event simulation models can be expressed with a clear
syntatic language.

Shorter, DEv-PROMELA is thus a formal language with
the syntax of PROMELA. It embbeds both PROMELA and
DEVS primitives. The semantics of the simulation model is
given by the DEVS abstract simulator.

2.2 Syntax of DEv-PROMELA
DEv-PROMELA is then designed as an extension of
PROMELA for the modelling of discrete-event systems.
However, in order to model the previously described DEVS
primitives, new syntactic elements are obviously needed.
PROMELA is a deep and interesting specification language
with plenty of elements. Thus, we just present in this section
the minimal main modifications that will allow the modelling
of discrete-event systems.

A new datatype. For representing infinite and unbounded
real values, we introduce a new abstract type called real. It
is useful for modelling time and infinite data. As any other

Prepared using sagej.cls

Ac
cep

ted
for

Pu
bli
cat
ion

8 SIMULATION: Transactions of The Society for Modeling and Simulation International XX(X)

PROMELA types, real can be used to defined local and
global variables.

real i, j, k;

Real variables can also be used in structures and in arrays,
without restriction.

Statements. PROMELA statements define the actions
which are done when the system changes its state following
a transition. DEv-PROMELA extends them by prefixing
each of them with an event descriptor, which allows their
characterization, i.e. if they are autonomous or reactive
statements.

Event descriptors describe the delay between the
execution of any previous statement and the prefixed one,
or describe an event which will trigger the execution of this
statement. Event descriptors are defined as follows:

<event stmnt> ::= "[" <timed trans> "]"
<stmnt> | <stmnt>
<timed trans> ::= <clt expr> | <evt
expr> | <clt expr> <op> <evt expr>
<clt expr> ::= "clt:" <real expr>
"->emit:" <evt val>
<evt expr> ::= "evt:" <evt val> [<op>
<evt expr>]
<op> ::= "|"
<evt val> ::= <mtype> | "silent"
<real expr> ::= <real> | "infinity" | /*
Any C-function returning a real value */

Consider the following examples:

1. [clt: 3.0→ emit:newa] a = a + 10;
2. [evt:newb] b = a - b;
3. [clt:lifespan(c) → emit:newc |

evt:newd] c = c * d;

(1) means that the execution of a = a + 10 is
performed 3.0 units of time after the execution of a previous
statement. Before executing this statement, an event newa is
emitted.

(2) means that the statement will be triggered only if the
event ”newb” is received.

(3) means that the statement c = c * d will be
triggered either if the elapsed time between the execution
of a previous statement and this one is equal to the value
lifespan(c) (in this case, ”newc” will be outputed) or, if the
the event ”newd” occurs.

The third example shows one of the main characteristics
of DEv-PROMELA: a statement can be executed in different
manners, with at most one explicit timed descriptor (defined
by clt command) and with at most one descriptor per event.
Note that the clt command is optional. If it is not defined
and there is at least one evt command, we consider the
elapsed time before the execution of the statement is equal to
∞. For convenience, if there is no event descriptor (no clt
command nor evt command), the statement is interpreted
as if it is prefixed by [clt: 0.0→ emit:silent]. The
statement is executed without any delay by emitting the
default silent event. The silent event is an event which does

not cause any explicit change in the system, but defined in
order to conform to the DEVS formalism.

Selection construct. The selection construct is a control-
flow construct that helps to define the structure of the
automaton corresponding to the PROMELA program. The
original construct has a unique start and stop state. Each
option sequence defines an outgoing transition from the start
state to the stop state. Thus, the end of each option sequence
leads to the end state that follows the construct. Consider
the example given in Algorithm 3. The PROMELA resulting
structure is composed by three states per path, as shown in
Figure 1. When entering the selection construct, the process
evaluates each guard, leading to an intermediate state, before
executing the option. This mechanism allows PROMELA to
separate evaluation of guard and outgoing instructions. If two
options are evaluated to true, both paths can be executed in a
non-deterministic manner.

ALGORITHM 3: PROMELA conditional structure.
1: if
2: :: (x == 2)→ x = 3;
3: :: (y == 2)→ y = 4;
4: fi;

Figure 1. Structure generated by Algorithm 3 (on the left) and
Algorithm 4 (on the right).

In a DEv-PROMELA model, such a construct defines
transitions between a set of equivalent states. The meaning is
that, whatever the state for which x = 2, only the transition
defined by the first option is defined (except for the state
(x = 2, y = 2)). This transition leads to a state for which
x = 3. In this case, this means that each option of the
construct describes a set of source states verifying at least
the guard of the option. Thus, like for assignments, each
DEv-PROMELA option is prefixed by an event descriptor.
Then, a DEv-PROMELA version of Algorithm 3 is given in
Algorithm 4.

Prepared using sagej.cls

Ac
cep

ted
for

Pu
bli
cat
ion

Yacoub et al. 9

ALGORITHM 4: DEv-PROMELA conditional struc-
ture.

1: if
2: :: [clt: 3.0→ emit:silent]

(x == 2)→ [clt: 0.0→ emit:newx] x = 3;
3: :: [clt: 1.3→ emit:silent] (y == 2)→
y = 4;

4: fi;

Note that the event descriptor can be placed before the
control structure. In this case, this means that all evaluation
of each guard will occur after the same delay.

But what happens if multiple guards are verified ? Tra-
ditional PROMELA allows non-deterministic behaviours,
because the model-checker will systematically explore all
possibilities. Thus, for a source state, multiple outgoing
transitions can exist. Still, a discrete-event simulation model
is deterministic by definition. This could be seen as a
restriction, but in fact, it forces designers to fully specify
the modelled system. Indeed, what does the system actually
do if x = 2 and y = 2 ? DEv-PROMELA considers that the
options are ordered by time then by order. For example,
in Algorithm 4, only the second option is executed. If the
time was the same for both options, the first one would be
executed.

Repetition construct. The repetetion construct allows the
definition of loops. The structure is likely similar to the
selection construct, except that the end of each option leads
back to the start of the structure. Only the option associated
to a break statement leads to the end of the structure. As in
the case of a conditional structure, the option can be prefixed
by an event descriptor.

ALGORITHM 5: DEv-PROMELA loop structure.
1: do
2: :: [clt: 3.0→ emit:newx] (x == 3)→
y + +;

3: :: [clt: 1.3→ emit:newy] (y == 2)→
break;

4: od;

Consider Algorithm 5. If the program is in a state (x =
3, y = 1), the first transition will be triggered after 3.0 units
of time, leading to a new state (x = 3, y = 2). The next
instruction y == 2 is then executed after a delay of 1.3
units of time.

Process priority. Priority between processes is another
thing that we need to be able to define. Indeed, if two events
occur at the same time, we need to know what event must be
processed first. This corresponds to the select tie-breaking
function seen previously. For that, DEv-PROMELA defines
a process descriptor using the following grammar:
<proctype decl> ::= "[" priority "="

<int> "]" <proctype>
The semantics of priority will be defined in the next section.

Clock and timeout. The last syntactic element concerns
time handling. PROMELA defines a timeout keyword used
as an escape for a blocked system (i.e. a system for which

there is no more enabled statement), for example when a
system has no valid option to progress through a selection
construct. In DEv-PROMELA, such a case means that the
system is not well specified. In such a case, simulation cannot
be performed and will return an error.

Each process is also associated to a virtual local clock
which measures the elapsed time since the last event. DEv-
PROMELA allows transitions depending on the elpased
time. Two convenient instructions, getElapsedTime and
getCurrentDate, enable access to this clock valuation.

2.3 Meaning of DEv-PROMELA
DEv-PROMELA primitives. To keep the equivalence

between PROMELA, DEVS and DEv-PROMELA, we
associate for each DEv-PROMELA proctype block a
DEv-PROMELA atomic process. Each atomic process
is coupled with the other processes that compose the
specifications. The whole system is then viewed as a DEv-
PROMELA coupled program. Programs can be coupled
to make a more complex program or interact with the
environment.

Semantics of a DEv-PROMELA program. Formally, a
DEv-PROMELA program Pr is a transition system T =
(S,Λ,→) where S is the cartesian product of the set of states
of each process, the set of global variables and channels that
compose the program, Λ is the set of all statements and→ the
set of transitions. Consider a program Pr at time t and two
states s = (spi , sqj , ...) and s′ = (s′pi , s

′
qj , ...). Then, s l→ s′

with l ∈ Λ if it exists a transition from spi to s′pi , from sqj
to s′qj , ... and if it does not exist any other transition which
can be triggered before the date t. In other words, the next
event of Pr is the minimum value of all the next events of
each process and external events. This definition comes from
the fact that a DEv-PROMELA program can be simulated
by a DEv-PROMELA atomic process. The demonstration is
similar to the closure under coupling property of DEVS.

Semantics of a DEv-PROMELA process. A DEv-
PROMELA process P with a set of statements L is an
automaton

T = (Sτ , E, δi, δe, s0, F)

where

• Sτ = {si = (ts, i, l1, ..., lm, ... ∈ N×∏m
i=1 Li ×∏n

j=1Gj ×
∏o
k=1 Ck)} is the set of states. i is the

identifier of the state related to the statement l which
defines it; the sets Li (resp. Gj) are the sets of values
of each local (resp. global) variable li (resp. gj);

• E is the set of events; E contains at least the silent
event denoted ε;

• δi : Qf → Q0 × E is the internal transition partial
function;

• δe : Q× E → Q is the external transition partial
function;

• s0 is the initial state;
• F is the set of final states.

Moreover, we define:

Prepared using sagej.cls

Ac
cep

ted
for

Pu
bli
cat
ion

10 SIMULATION: Transactions of The Society for Modeling and Simulation International XX(X)

- ta :

{
Sτ → R+

s 7→ ts
is the state lifetime function; the

lifetime of each state is given by the delay before
executing the next statement in the specifications;

- Q = {q = (s, dt),∀s ∈ Sτ} such that 0 ≤ dt ≤ ta(s)
is the set of total states; dt denotes the time elapsed in
the state s;

- Q0 = {q = (s, 0),∀s ∈ Sτ} ⊂ Q;
- Qf = {q = (s, ta(s)),∀s ∈ Sτ} ⊂ Q.

Consider a DEv-PROMELA process P in a state s at time
t, and the next statement l with its event descriptor. We can
admit the process P is in fact in a state q = (s, t) (if t denotes
the elapsed time since the last event). If l denotes an internal
transition and if t = ta(s), then the statment l is enabled.
The event associated with the transition is emitted to all the
other processes composing the program, before the transition
is triggered, and the next event for the process P is defined
by :

de′ = getCurrentDate+ ta(s′)

with ((s′, 0), e′) = δi(s). If l denotes an external transition
on an event e, then the transition is triggered only if the
process receives the event e. In this case, denote t the date
of the event e. The next state is given by q′ = δe(q, e) with
q′ = (s′, 0). If δe is not syntactically defined for (s, e), then
the next state is given by q′ = (s, dt) and ta(s) = ts where
dt is the elpased time from the previous event.

2.4 Relations between DEv-PROMELA and
DEVS

The main goal of DEv-PROMELA is to provide another way
to enhance modelling, verification and validation of discrete-
event systems by using simulation and model checking. To
do that, we must demonstrate that a DEv-PROMELA model
can be simulated and verified. The first relation can be easily
demonstrated by showing that, for a given DEv-PROMELA
model, it exists a DEVS model that simulates it.

Proposition 1. A DEv-PROMELA atomic process P is a
DEVS atomic model.

This demonstration is relatively easy, thanks to the con-
struction of DEv-PROMELA. Consider a DEv-PROMELA
process P = (Sτ , E, δi, δe, s0, F) and a DEVS atomic
model A = (X,Y, S, δint, δext, λ, ta). P will define the
same system as A if and only if :

1. Sτ = S, both models have the same state space;
2. X ⊆ E and Y ⊆ E; the sets of inputs and outputs are

subsets of the set of events;
3. given s and s′ two states such that s′ = δint(s)

and y = λ(s); then, it exists sτ and s′τ such that
((s′τ , 0), y) = δi((sτ , ta(sτ))) and ta(s) = ta(sτ);

4. given s and s′ two states, and x an input such that
δext(s, x) = s′; then it exists sτ and s′τ such that s′τ =
δe(sτ , x);

Proof. Considering a DEVS atomic model built upon a
DEv-PROMELA process model, in which X = E, Y = E,
and S = Sτ . We define δint and λ such that:

• if ta(s) 6=∞ and δi(q) = (q′, e) such that q =
(s, ta(s)) and q′ = (s′, 0), then δint(s) = s′ and
λ(s) = e.

• if ta(s) =∞, δint(s) = s and λ(s) = ∅. s is a passive
state, then this transition will never be enabled.

We define δext as follows:

• if δe(q, e) = q′ with q = (s, dt) and q′ = (s′, dt′),
then δext(q, e) = s′;

• if q = q′ and ta(s) 6=∞, then ta(s′) = ta(s)− dt and
q′ = (s′, 0). This condition ensures that δext is defined
for all (q, e) ∈ Q×X and time is preserved.

Then, we can show that A simulates P. Considering the
transition system < S′,Λ,→> where

• S′ = Sτ ∪ S;
• Λ = (X ∪ E)× (Y ∪ E);
• →= Im(δi) ∪ Im(δint) ∪ Im(δe) ∪ Im(δext);

where ∪ denotes the disjoint union operator. Therefore, A
simulates P if there is a simulation R = S′ × S′ such that
for all (p, q) ∈ R and l = (x, y) ∈ Λ, if

p
l→ p′

then
q

l→ q′

However, p l→ p′ only if

1. (p′, y) = δi(p), meaning that p′ is reached by an
internal transition that outputs y. By construction, we
know that it exists (q, q′) ∈→ such that q′ = δint(q)
and y = λ(q). Moreover, ta(p) = ta(q) and ta(p′) =
ta(q′) by construction.

2. p′ = δint(p) and y = λ(p), meaning that p′ is
reached by an internal transition that outputs y.
By construction, we know that it exists (q, q′) ∈→
such that (q′, y) = δi(q). Moreover, ta(p) = ta(q) and
ta(p′) = ta(q′) by construction.

3. p′ = δe(p, x), meaning that p′ is reached by an
external transition that consumes x. By construction,
we know that it exists (q, q′) ∈→ such that q′ =
δext(q, x). Moreover, ta(p) = ta(q) and ta(p′) =
ta(q′) by construction.

4. p′ = δext(p, x), meaning that p′ is reached by an
external transition that consumes x. By construction,
we know that it exists (q, q′) ∈→ such that q′ =
δe(q, x). Moreover, ta(p) = ta(q) and ta(p′) = ta(q′)
by construction.

Thus, A simulates P. Symetrically, we can show that for all
(p′, q′) ∈ R, if

q
l→ q′

then
p

l→ p′

Thus, P simulates A, meaning P and A are bisimilar.

We can then build a DEVS atomic model that simulates
exactly the behaviour of a DEv-PROMELA process.

Proposition 2. A DEv-PROMELA program Pr is a DEVS
atomic model.

Prepared using sagej.cls

Ac
cep

ted
for

Pu
bli
cat
ion

Yacoub et al. 11

Proof. Given a DEv-PROMELA program Pr with n
processes P1 to Pn. Given EV ENT , a convenience
function such that EV ENT (Pn) is the set of events
of Pn. Then, we can define a DEVS atomic model
A = (X,Y, S, δint, δext, λ, ta) which simulates the DEv-
PROMELA program:

1. Sτ = ∪ni=1Si ×
∏n
j=1Gj ×

∏o
k=1 Ck, where Si are

the sets of the states of each process, Gj the sets of
the values of the global variables, and Ck the sets of
the values of the channels;

2. X ⊆ ∪nEV ENT (Pn) and Y ⊆ ∪nEV ENT (Pn);
the sets of inputs and outputs are subsets of the set of
events;

3. δint : Sτ → Sτ . Given s = (s1, s2, ...) and s′ =
(s′1, ...) and s′′ = (..., s′2, ...) in Sτ . Then:

• if δi1(s1, ta(s1)) = (s′1, 0, e) where δi1 is the
internal transition function of the process 1, then
δi(s) = s′ ;

• if δint(s) = s′ and λ1(s1) = e, and
δe2(s2, dt, e) = (s′2, dt

′), then δint(s
′) = s′′

and ta(s′) = 0 ; this case describes the internal
coupling of DEv-PROMELA processes ;

4. ta : Sτ → R. s = (s1, s2, ...) and s′ = (s′1, ...), then:

• if s is the initial state, ta(s) =
min(ta(s1), ..., ta(sn));

• if s′ = δint(s), then ta(s′) =
min(ta(s′1), ta(s2)− ta(s1), ..., ta(sn)−
ta(s1)) ;

• if s′ = δext(q, e) and q = (s, dt), then ta(s′) =
min(ta(s′1), ta(s2)− dt, ..., ta(sn)− dt)) ;

5. δext : Q×X → Sτ ; Given s = (s1, s2, ...) and s′ =
(s′1, ...) and s′′ = (..., s′2, ...) in Sτ . If δe1(s1, dt, x) =
(s′1, dt

′), then δext(s, e) = s′ ;
6. given s = (s1, ...), λ(s) = y if λ(s1) = y;

We must show that A simulates Pr. We denote by
STATESPACE(Pr) the total statespace of the DEv-
PROMELA program Pr. If A simulates Pr, this means that
for each (p, p′) ∈ STATESPACE(Pr) such that p→ p′,
it exists (q, q′) ∈ Sτ such that it exists an internal or an
external transition to go from q to q′. But, p→ p′ if:

1. p = (spi , ..), p′ = (sp′i , ..) and→= (δip , ...) such that
(sp′i , y) = δi(spi); by construction, we know that it
exists δint(q) = q′ and y = λ(q) that corresponds
to the transition δi(spi). Moreover, ta(p) = ta(q)
and ta(p′) = ta(q′). Indeed, the next event in
Pr is generated by the minimum value of all
the future events. And by definition, ta(q′) =
min(ta(s′1), ta(s2)− ta(s1), ..., ta(sn)− ta(s1)).

2. p = (spi , ..), p′ = (sp′i , ..) and →= (δep , ...) such
that (sp′i) = δe(spi , x) where x is an internal event
generated by any other process of the system. This
transition is enabled before the internal transition
that has emitted the event is triggered. However, by
construction, we know that it exists δint(q) = q′ and
∅ = λ(q) that corresponds to the transition δe(spi),
and ta(q) = 0.

3. p = (spi , ..), p′ = (sp′i , ..) and →= (δep , ...) such
that (sp′i) = δe(spi , x) where x is an external event

received by the system. However, by construction, we
know that it exists δext(q, x) = q′ that corresponds to
the transition δe(spi , x).

Thus, A simulates Pr.

We can then define a DEVS atomic model which simulates
exactly the behaviour of a DEv-PROMELA program. It is
interesting to note that in the case of a DEv-PROMELA
program without global variables and channels, we can build
a DEVS coupled model that simulates the DEv-PROMELA
specifications. In that case, the property of closure under
coupling gives exactly the DEVS atomic model described
above, and in this case, the coupled model is similar to the
DEv-PROMELA program.

Proposition 3. A DEv-PROMELA program Pr is legitimate
if the DEVS equivalent model is legitimate.

Because a DEv-PROMELA program can be simulated
by a DEVS model, we can deduce all the properties of
the program from the DEVS model. Particularly, a DEv-
PROMELA program is legitimate if the DEVS equivalent
model is legitimate. For example, if the DEVS model goes
into an infinite loop of internal events where time does not
advance beyond a certain point, we can deduce that the DEv-
PROMELA program has the same behaviour.

2.5 Relation between DEv-PROMELA and
PROMELA

Checking a DEv-PROMELA model is possible only if we
can at least find an equivalent PROMELA model, meaning
the structure expressed by the DEv-PROMELA model can
be abstracted to a PROMELA model. We must then prove
that it exists at least one PROMELA model which is an
abstraction of the given DEv-PROMELA model. We can do
that by using the pre-order simulation relationship between
models.

Proposition 4. Given a DEv-PROMELA process model P ,
it exists a PROMELA process model P ′ that preserves the
structural properties of P .

Consider a DEv-PROMELA process model P . We get
a PROMELA process model P ′ by removing all the event
descriptors and abstracting real data from P . P and P ′

are two state-transition systems, whose respective entire
statespace is denoted S and S′. Thus, P ′ preserves the
structure of P if and only if

∀(s, s′) ∈ S × S,∃(t, t′) ∈ S′ × S′,
δi(s) = (s′, e) ∨ δe(s, e) = s′ ⇒ t

l→ t′

where l is a statement. Look at each type of statement defined
previously.

Assignment. A DEv-PROMELA assignment is a state-
ment l with an event descriptor ev that defines one or
several transitions between two states s and s′. A PROMELA
assignment is a statement l that defines only one transition
between two states t and t′. Then, if P ′ is obtained by
removing the event descriptor ev, it exists a (t, t′) ∈ S′ × S′
such that t l→ t′.

Prepared using sagej.cls

Ac
cep

ted
for

Pu
bli
cat
ion

12 SIMULATION: Transactions of The Society for Modeling and Simulation International XX(X)

Selection and repetition constructs. A DEv-PROMELA
selection (repetition) construct defines transitions between
subsets of S. Given Sa ⊂ S and Sb ⊂ S such that Sa verifies
a guard, and Sb is the subset of end states related to the
selected option. This means ∀sa ∈ Sa,∃sb ∈ Sb, δi(sa) =
(sb, e) ∨ δe(sa) = (sb, e) by executing the option. Then, if
P ′ is obtained by removing the event descriptor, each couple
(sa, sb) can be mapped to a (ta, tb) such that ta

l→ tb.
Moreover, we can be sure it exists at least one such couple
because PROMELA allows non-deterministic behaviours.

Channels. The mechanism of channels is exactly
preserved in DEv-PROMELA. Sending and receiving
operations link two states s and s′. Only the lifespan and
the meaning of transitions are changed. Thus, removing the
event descriptor preserves the link between the states.

Definition 1. We call autonomous instance of a DEv-
PROMELA process P any parametrization of the lifespans
of states such that the model contains no passive state.

DEv-PROMELA model allows modelling systems whose
next states depend on the time elapsed in the current state.
This behaviour can obviously, for example, lead to deadlock
in passive state. Because PROMELA does an abstraction
of time, these kinds of behaviours cannot be captured or
modelled. However, a PROMELA model will be a good
abstraction if it covers at least all the parametrizations of the
DEv-PROMELA model containing no passive state. In this
case, the PROMELA model simulates all the autonomous
instances of the DEv-PROMELA model.

Proposition 5. Given a DEv-PROMELA process model P ,
and a PROMELA process model P ′ obtained by removing
all the event descriptors. Then, P ′ simulates all autonomous
instances of P .

As demonstrated, P ′ preserves all the structural properties
of P . The set of autonomous instances of P contains all the
possible orders of events. Because P is a process, only a
change in conditional/loop structures can lead to different
behaviours between instances. However, the PROMELA
model P ′ contains all the possible paths for these structures.
As a consequence, P ′ simulates all the autonomous instances
of P .

Proposition 6. A PROMELA program P ′r got from a DEv-
PROMELA program Pr by removing all event descriptors
preserves the structural properties of Pr. Moreover, P ′r
simulates all autonomous instances of Pr.

A global state of a DEv-PROMELA program is the
cartesian product of the set of states of each process. Thus,
at a time t, the next event (and the next statement) is
selected by taking the minimum value of the date of the
next event of each process. This means that the statespace
represented by all autonomous instances contains all the
possible permutations between statements. This is exactly
the executing graph of the PROMELA model P ′r. Then,
it exists a PROMELA model that is an abstraction of a
DEv-PROMELA model. This model is obtained by only
removing the event descriptors from the source model.
Moreover, we can say that the symbolic DEv-PROMELA
model simulates the PROMELA model.

2.6 Nature of DEv-PROMELA
As a consequence of the two relationships presented
above, the DEv-PROMELA specifications embbed two
representations of timed properties and two points of view
of a same transition system. As a DEVS simulation model,
the DEv-PROMELA model considers time as quantitative
(events are considered as timed events). As a PROMELA
verification model, it focuses on time as qualitative (events
are considered as ordered events). One important question
can be raised from this construction: is DEv-PROMELA
an extension of PROMELA ? Is DEv-PROMELA a new
formalism ? Is DEv-PROMELA an extension of DEVS ?

DEv-PROMELA is a formalism based on the PROMELA
formalism for its syntaxic part, and on DEVS for its
semantics. While the syntax defines the macro-level of
the underlying automaton, the semantics gives details on
how transition are triggered at the micro-level. This means
that the resulting PROMELA model generated from a
DEv-PROMELA model is more abstract than the second
one, and contains less timed information. Therefore, purely
reasonning on a DEv-PROMELA model is possible, and
refining a PROMELA model to obtain a DEv-PROMELA
model is easily possible by anotating the former model.
However, to prove that DEv-PROMELA is an extension of
PROMELA, we need to prove that any PROMELA models
can be encompassed in a DEv-PROMELA model. This
demonstration is out of the scope of this paper.

On the other hand, a DEv-PROMELA model is strictly
equivalent to a DEVS model as shown previously. This
means that there is always a DEVS model which exactly
behaves as a DEv-PROMELA model. However, we know
that all DEVS models in general cannot be represented by a
DEv-PROMELA model, because a DEv-PROMELA model
is structurally finite (or at least, it exists a finite symbolic
DEVS to represent it, due to the structural equivalence with
PROMELA). As a result, we can hypothesize that DEv-
PROMELA is a subclass of DEVS [54].

2.7 Closure under Coupling
Closure under coupling is an important aspect in hierarchical
construction because it ensures that the formalism is well-
defined and enables checking for the correctness of coupled
models [24, 55]. Basically, closure under coupling gives the
assurance that the behaviour of a coupled model can be
described by an atomic model, which consequently ensures
the validity of the hirarchical construction. Therefore, we
have to prove that a DEv-PROMELA model obeys the rules
stated in [24] and that a DEv-PROMELA coupled model can
be expressed itself as a DEv-PROMELA atomic model.

Definition 2. Given a DEv-PROMELA program P =
(P0, P1, ..., Pn, Ep) composed by n DEv-PROMELA pro-
cesses Pj = (Sj , Ej , δij , δej , s0j , Fj). We define Ep as the
event set accepted by the network.

Proposition 7. We can define a DEv-PROMELA process
Mp = (SM , Ep, δiM , δeM , S0M , FM) which describes the
behaviour of P .

In this case:

Prepared using sagej.cls

Ac
cep

ted
for

Pu
bli
cat
ion

Yacoub et al. 13

• Ep = ∪Ej ;
• SM = ×Sj for all j such as Pj is a component of P ;
• FM = ×Fj for all j such as Pj is a component of P ;

We define then the remaining equivalent function δiM and
δeM . Given an event e ∈ Ep and q = (q0, .., qn), we have:

δeM (q, e) = (q′0, ...)

with q′j = δej (qj , e), and

δiM (q) = (δ∗eM (q∗, e∗j), e
∗
j)

with q∗ = (q0, ..., δ
∗
ij

(qj), ..., qn) and e∗j the event resulting
from the imminent transition δ∗ij . This transition is unique
by definition: if there are concurrent imminent transitions,
the priority function selects the next executed transition. The
result is that

δ∗eM (q, e) = (q0, ..., qn)

if e is the silent event or if there is no component which
defines a such partial function for the imminent resulting
event e, or

δ∗eM (q, e) = (..., δej (qj , e), ...)

if there is a component which defines a partial function for
the imminent resulting event e (we recall here that all DEv-
PROMELA processes are intercoupled).

By this construction, any DEv-PROMELA program
can be rewritten and simulated by a DEv-PROMELA
process. However, this construction is possible only
because we rigourously define an equivalence between the
syntaxic structures in DEv-PROMELA and PROMELA.
Indeed, transition functions are built on equivalence
between the PROMELA state-transition structure and
the automaton underlying DEv-PROMELA. Therefore, a
rigourous demonstration of the closure under coupling
should involve a rigourous demonstration of the above
construction for each syntaxic structure of PROMELA.

3 Combined V&V Workflow

3.1 Overview
A DEv-PROMELA model can be thus used for generating
both verification and simulation model. However, it is
important to know what exactly the DEv-PROMELA
model represents. As an extension of PROMELA, DEv-
PROMELA specifications can be a conceptual model of a
software, especially event-driven software, or more precisely
its formal specifications. While the verification model
derived from the specifications removes the computational
properties, it can be used for checking the flow and
communications between processes. This means that the
computerized verification model will be generally used for
validating flow properties (what we call static and structural
properties). This verification model can also be used for
inspecting and verifying the future implementation in a
symbolic way. An analogy can be thus done with static test
techniques [56].

On the other hand, as a subclass of DEVS, DEv-
PROMELA specifications can be considered as a conceptual

model of the computerized simulation model and as a
conceptual model of the final software. This model can be
used for checking behavioural properties and evaluating
data (what we call dynamic and behavioural properties).
In particular, it can be used for validating counterexamples
given by the model-checker, or confirming the absence of
errors by playing scenarios. An analogy can be thus done
with dynamic test techniques [56]. Furthermore, while the
simulation model is obtained from the DEv-PROMELA
specifications model, it means that the verification model
is also formal specifications of the simulation model (even
the simulator is abstracted). This is important in the case of
V&V of simulation models.

Shorter, DEv-PROMELA specifications are formal speci-
fications and conceptual model of simulators (i.e. the imple-
mentation of the simulaton model) and of the final software.
Anyway, depending on what kind of properties is checked,
simulation and formal verification can be used for both ver-
ification or validation purposes. As a formal framework, the
DEv-PROMELA specifications can be combined with many
traditional techniques for a more robust V&V workflow.

3.2 Software Verification and Validation in
Software Life Cycle

The literature of Software Engineering, Software Verification
and Validation, and Verification and Validation of Simulation
Models proposes many workflows explaining the V&V
procedures. The first one (figure 2) shows clearly the
difference between verification and validation. Verification
processes overcome only during the development phases to
check if the computerized program fulfills the development
requirements. Validation is the process in which the final user
tests the final software and checks if it meets its functional
specifications. This means the validation steps are done only
on the final software.

Figure 2. Schema of V&V Process from [57].

Further, if we precisely look at the development cycle
(figure 3), we can see that validation is essentialy testing
techniques on the final computer program. At each step of

Prepared using sagej.cls

Ac
cep

ted
for

Pu
bli
cat
ion

14 SIMULATION: Transactions of The Society for Modeling and Simulation International XX(X)

the development cycles corresponds requirements defined at
a suitable level of abstraction [58]:

• Unit tests validate each software unit, if they fit for use;
• Integration tests validate each group of combined

software unit, if they deliver the expected results;
• System tests (or validation tests) validate the behaviour

of the software, in the context of Functional
Requirement Specifications and System Requirement
Specifications;

• Acceptance tests are formal testing with respect to
user needs, requirements, and business processes
conducted to determine whether a system satisfies the
acceptance criteria and to enable the user, customers
or other authorized entity to determine whether or not
to accept the system.

Figure 3. V-model representation from [59].

At each intermediate steps, static verification techniques
are also performed (figure 4).

Figure 4. V&V in Software Development Life Cycle proposed
by [59].

These techniques evaluate the correctness of the comput-
erized model against the requirements at each step, meaning
whether the implementation fulfills the specifications. These
techniques essentially concern [60]: code reviews, symbolic
execution, data analysis, semantics analysis, etc. As sum-
mary, validation a priori concerns only executing the final

software, while verification (or testing) is the fact of checking
source code, or a model of this code, at each step of the
development cycle.

3.3 Verification, Validation and Accreditation
of Simulation Models

Verification, Validation and Accreditation of Simulation
Models (V&VA) [61] is a specialized V&V procedure
applied to simulation models. In fact, simulation models
are always developed using observations from an existing
system under study or from theoritical assumptions about
this system. As a recall, a simulation model is always
related to an EF as stated in Section 1. As a consequence,
before using a simulation model, ensuring its credibility
according to data from real world and from simulation world
is necessary. However, a simulation model is also a software
program, meaning that Software V&V procedure should also
be applied during the development of the simulator.

This feelings is confirmed when we analyze the V&V
workflow of simulation models (figure 5).

Figure 5. The Sargent Circle for V&V of Simulation Model [2].

In this one, we can clearly see that verification procedures
concern only the computerized simulation model and the
simulation model specifications. Validation then consists on
using a set of test data to ensure the simulator replicates
the real system. However, in the same manner than dynamic
verification blurs the boundary between verification and
validation, we can see that simulation model is indirectly
used for validating the conceptual model. Indeed, the
simulation model allows inferring new hypothesis on the
system theories which is used for building the conceptual
model. This means that, if simulation is used on a model of
software, it can be used for both verification and validation
purposes. In the same manner, while verification is the fact
of checking the correctness of an implementation against
specifications, model-checking can be used for validating
behaviours using an abstraction of a software. This means
that model-checking is also a validation activity [62, 63],
even if it is performed not on the software itself, but on a
model of it.

Prepared using sagej.cls

Ac
cep

ted
for

Pu
bli
cat
ion

Yacoub et al. 15

These notions are very important while designers must
exactly know what they are working on. Moreover, DEv-
PROMELA adds a new level in the development cycle. For
these reasons, we develop a clearer iterative V&V workflow.

3.4 Workflow with Combined V&V
The objective is to make easier the discovery of defects, bugs
or flaws in a design, lack of requirements or specifications
at early stages of the SDLC, by using combined formal
and simulation checking. In the same time, reader shall be
conscious that the use of simulation models actually needs
an experimental frame which doesn’t exist yet in the case of
software development. Indeed, our goal is to use simulation
in order to help the development of a software. This means
that the V&V of the simulation model is performed in a
progressive way along to the different development iterations
of the target software. That’s why we proposed to develop a
new combined V&V workflow (Figure 6), based on the V-
model and the Sargent’s Model. This workflow respects two
principles:

• the workflow is defined as a double-iterative cycle in
which models and software evolve in alternance.

• the workflow integrates all the steps of the classical
V-model: specification phase, analysis phase, design
phase, development phase. V&V and evaluation are
performed in parallel. If a defect is detected, the next
iteration allows fixing the V&V model or the software.

We obtained the V&V workflow proposed in Figure 6 with
five important steps.

Specification phase. The specification phase consists on
gathering the customer needs and analyzing requirements.
Informal specifications are translated into formal specifica-
tions, in which technical constraints and formalisms’ lim-
itations are added. From requirements and formal specifi-
cations, experts can develop a classic software design and
translate functional properties in DEv-PROMELA models.
This steps allows also experts to design a specific V&V
formalism if needed. If it is the case, this formalism should
respect the properties of the combined formalisms in order
to ensure the resulting models can be both verifiable and
simulable. For example, we suppose that DEv-PROMELA
can be extended or refined using the hierarchy of simulation
formalisms [64]. From this model, a DEVS conceptual
model and PROMELA specifications can be automatically
extracted. Acceptance tests are also written during this phase.
Simulation scenarios and experimental frame for this specific
iteration are also defined during this step.

Design phase. The design phase consists on making the
architecture of the global software. This design is based
on an event-driven architecture, as DEv-PROMELA gives
a support for hierarchical event-driven designs. We mean
that the DEv-PROMELA model already gives the designer
a rigorous frame around which a robust design can be built.
Typically, the designer will add all the elements which have
a meaning from the semantic point of view, and which
are not modelled in the DEv-PROMELA specifications. For
example, this step allows the designer to define classes which
represent players and for which a DEv-PROMELA model
was written. In parallel, integration tests are written.

Model analysis. During this step, the PROMELA model
is automatically converted to a SPIN verification model,
and the DEVS conceptual model is translated to a
DEVS simulation model. Rigourous Computerized Model
verification is performed in order to ensure the computerized
models are well implemented for their purpose. This
verification can be guaranteed through model transformation
processes. A cross-checking is then performed: structural
and static properties are formally verified and validated
using the verification model; behavioural and dynamic
properties are validated using simulation. If the cross-
checking produces divergent results, counter-examples are
generated, and which allow designers to understand the
causes and the outcomes of the faulty design. A neww
iteration then begins in order to fix the model. Otherwise,
classical model verification and validation are performed
using the simulation scenarios and requirements specified
in step 1. These two complementary verification and
validation ensures that both the conceptual and implemented
models acts as intended. It corresponds to the operational
validation, theory validation, conceptual model validation
of the Sargent’s model. Depending on the current iteration,
experts can decide to start a new iteration to increase the
accuracy of the model if the model is not enough refined.

Software generation and implementation. A software
implementation is derivated from the DEVS simulation
model, called the program. This program is completed with
elements from the design phase and which cannot validated
using the model, or because the designers decided not to
integrate them in the model (readers must be aware that
we still remains exposed to decidability, complexity and
state-space explosion problems). As explained before, this
program relies naturally on an event-driven architecture
while the DEVS simulation model is already an event-driven
program. Then, classical software verification is performed
against the non-functional specifications defined in step 1.

Software validation and testing phase . This step cor-
responds to the right branch of the V-model. Software vali-
dation is performed using simulations scenarios, integration
tests and acceptance tests defined in step 1. Especially,
designers can compare results obtained during the simulation
and results obtained during the testing phase. If divergence
is observed, developers can easily detect if errors comes
from implementation or from erroneous design (because the
design was already validated during the previous iterations
and implementation is based on an automatic code gen-
eration). If all tests are successfully passed, an artifact is
delivered and a new iteration begins in order to implement
new functionnalities.

Next iteration. At the next iteration, the previous program
artifact can be used as a refined prototype. This prototype
is used to gather new datas and make new assumptions
in order to refine the specifications and needs (the system
theory in the Sargent’s model), refine the simulation itself,
and perform a verification and validation of the simulation
model. This process is repeated until the development of the
software is finished.

As a summary, the combined V&V workflow shows
exactly the separation between conceptual model, comput-
erized model and final software. This separation allows

Prepared using sagej.cls

Ac
cep

ted
for

Pu
bli
cat
ion

16 SIMULATION: Transactions of The Society for Modeling and Simulation International XX(X)

Figure 6. The Combined V&V Iterative Workflow. Orange dashed arrows represent cycles in model development or software
development. Black dashed arrows represent checking tasks. Plain arrows represent artifacts generated at each stage of the
workflow.

designers to focus on the most important requirements dur-
ing the analysis and designing phase, and adding the less
important computational aspects in the last iterations of the
development cycle. Moreover, while the DEv-PROMELA
specifications are formal, they can be surely analyzed in a
formal fashion using theorem proving for instance. However,
this is outside the scope of this paper.

4 Application: Modelling and Building a
Video Game

As an illustration of our proposed methodology, we apply
it for building a video game, or more precisly a part of
the gameplay of a video game. Digital gaming [65, 66] is
an interesting emerging field of research, while it gathers
many problems of computer sciences. Especially, studies
of the structure and development of a game shows that
game architectures are composed by hundreds of classes,
divided in two categories: functional and non-functional
classes. Most of the efforts concern the development of non-
functional classes. As a result, a lot of bugs are more related
to a misdesign of functional requirements, because we try to
adapt these requirements to the non-functional architecture.
Video game developers are therefore facing the complexity
of game, and it is well-known that they do not expense time
in designing and in verification and validation procedures.
Indeed, rigourous tests are considered as a loss of time, and
only acceptance testing are intensively performed. This leads
to many released games with a lot of bugs and defaults.

However, if you look at more precisely the structure of a
game [67], we realize that it is in the most of case almost a
discrete-event system in which time has a great importance.
In fact, digital games are generally designed with a layered
approach (figure 7):

Figure 7. Layered Architecture of a Digital Game.

• The target system API gathers functionalities that
allow communications between the engine and the
host system;

• The engine is the core of the digital game soft-
ware. This layer provides generic routines and pro-
cedures that perform common operations. Generally,
the engine is divided into modules: Graphical Engine
handles the rendering process, Physics Engine com-
putes the physical effects of the objects that compose
the virtual world, AI handles artificial behaviours,
etc. All these modules need to communicate each
others using messages. Modern implementations use
threads and events [68];

• The gameplay layer contains the end-user rules.
We can say that this layer is the clothing of
a game. Generally, it contains specific procedures
and processing. It is common to find event-
based implementation through object-oriented pattern
(observer pattern, etc.).

Thus, a video game can be seen as a set of processes that
communicate each others in an asynchronous manner, and

Prepared using sagej.cls

Ac
cep

ted
for

Pu
bli
cat
ion

Yacoub et al. 17

Figure 8. Bomberman, 1983.

using an event-oriented architecture. While our objective is
not to deal with the complexity of an entire game, but just
illustrating how DEv-PROMELA and the combined V&V
approach can be used, we only focus in this section on a
small part of the Engine and the Gameplay layers of a well-
known game: Bomberman (figure 8). This game, whose the
first release dates back to 1983, consists on a small character
controlled by the player and which poses bomb on a map.
When a bomb explodes, the nearest ennemies die, or new
paths of the map are opened. Obviously, the player has many
constraints: he cannot bring infinite bombs, he has a finite
number of lifes, and he cannot move outside of the map. In
this section, we focus on the first development iteration using
DEv-PROMELA and our proposed V&V workflow. Readers
should understand these steps are repeated for each set of
specifications, until the game is fully developed. DUring
this iteration, designers decided to focus on part related
to character control. This character control involves three
subsystems: characters in the gameplay layer, input manager
in the engine layer, and the keyboard at the API level. Our
iteration focus on these three components.

4.1 Specifications Phase
The first phase consists on analyzing the specifications
selected for this iteration. Knowing the architecture of a
game and the requirements, we can easily deduce some
properties:

• The player controls one character with input coming
from the keyboard.

• A character can move in only one direction at time.
• When a player places a bomb, its position is the same

than the position of the player.
• When a bomb blows up, all the walls around a finite

radius explode.
• The player have a finite number of lifes.
• The game is over when the number of lifes is equal to

0.
• Each bomb blows up after a finite number of seconds.
• The character moves with a constant speed.
• The character cannot move throw a wall.

Using these informal specifications, we can deduce that:

1. Bombs and characters can be considered as asyn-
chronous processes which evolve in parallel. More-
over, we can describe their behaviours with a state
machine.

2. Bombs and characters react to and emit events. Indeed,
the character moves only when an event enforces it
to move. Bombs are created when the player emits a
bomb creation event, and blows after dt units of time.
Explosions involve modifications of the map. As a
consequence, we can deduce that transition functions
depend on time and events.

3. The map is a finite set of elements. Each element
have a position which can be described by a couple
(x, y) ∈ R× R.

4. The speed is a constant function. While the game is
refreshed at each computed frame, the move equation
is descretized and computed following the function:

pos(x, y, t+ ft) = pos(x, y, t) + speed(x, y) ∗ ft

where ft is the elapsed time between two frames.
Then, some properties can be expressed using Linear
Temporal Logic (LTL). For instance, the fact that a
player can move in only one direction at time:

� ((posx(t+ ft) 6= posx(t)∧
posy(t+ ft) = posy(t)) ∨

(posx(t+ ft) = posx(t) ∧ posy(t+ ft) 6= posy(t)))

While the positions are computed at each frame, we
can store the old positions and the new positions in
variables. At the end of the computation, the new state
just needs to satisfy this property.

5. In the same way, we can check that a bomb will always
blows up with a LTL property:

� (blows up(n)) ∀n ∈ D (D ⊂ N)

where n is the id of a bomb.

4.2 Modelling Phase
The specifications phase shows that such a game can be
pretty modelled using DEv-PROMELA, as each gameplay
element can be expressed with discrete-event state machines
that communicate each others (Figure 9). In this example,
the gameplay layer is seen as a DEv-PROMELA program
which receives events from the engine layer. The gameplay
layer is a coupling of DEv-PROMELA subprocesses that
are interconnected each others. This means that when a
process emits an event, this one is transmitted to all the other
processes.

Each gameplay element is then represented by a DEv-
PROMELA atomic model. For instance, a playable character
can be modelled with a state machine as shown in Figure
10. The character stays in the IDLE state until it receives an
event that implies a move. Then, it stays in this new move
state during dt units of time. This amount of time models
the time needed to compute two consecutives frames, that is
why there is an internal loop transition from each move state
to itself. If an end move event is received, the state machine
returns to the IDLE state. This DEv-PROMELA process thus
models a kind of character controller.

Prepared using sagej.cls

Ac
cep

ted
for

Pu
bli
cat
ion

18 SIMULATION: Transactions of The Society for Modeling and Simulation International XX(X)

Figure 9. Example of a partial gameplay architecture with
DEv-PROMELA. Not all the coupling have been represented.

Figure 10. Example of a partial DEv-PROMELA process
controlling a playable character. Not all the transitions have
been represented. Dashed arrows represent internal transitions,
while plain arrows model external transitions.

A syntactic version of the DEv-PROMELA model
is given in Algorithm 7. This version is really close
to any implementation language. Like said earlier,
cposx, cposx1, cposy, cposy1 variables represent the
position of the character computed at the previous frame and
at the current frame. l.11 allows the process to evaluate the
global state of the game. If the game is not finished, the state
machine acts as expected: it stays in IDLE (l.12 to l.18)
until an event is received. Otherwise, the move is updated
at each dt units of time (l.21 to l.26). Finally, the posing
bomb action is modelled (l.17 and l.19). For each gameplay
element, a proctype block can be written in the same
manner. Note that non-prefixed statements means that they
correspond to states with a zero lifespan. This enforces the
statement to be immediately executed.

At a lower level, we can also model the Input Manager
(figure 11). This engine component translates each input
keycode generated by the API layer to a an event that

the character controller can understand. We can therefore
consider the Engine layer as a DEv-PROMELA coupled
model which is itself coupled to the DEv-PROMELA
models that composed the Gameplay layer. In this design,
the Input Manager is just a DEv-PROMELA atomic model
as given in figure 12. The interpretation of the model is
simple: when the player presses a key, the corresponding
event is emitted to the Input Manager that immediately
translates it into the corresponding action event. This does
not mean that the Input Manager is coded using a State
Pattern, but it just represents the fact that a program is a state
machine. Therefore, a possible C++ implementation of this
Input Manager could be the ones given in Algorithm 6. At
this point, reader could thus ask why using DEv-PROMELA
to model the Input Manager, while time does not seem to
play a role in the implementation. As previously said, this
model is not a translation of the source code, even we could
also code an Input Manager using a State Pattern. In fact,
this model illustrates the fact that DEv-PROMELA allows
modeller to express the delay between the moment a key is
pressed or released and the moment this event is translated
into an event code, by setting the lifespan of the translation
states (Left, Right, Up, Down, and Release). This can have
an great impact on the other subsystems of the game, while
we can therefore model a processing delay which can lead
to performance issues in the final game. This is useful in
the context of digital games, to introduce laggy scenarios
for instance. Another advantage is that an input simulator
can be easily implemented, while we just need to couple
the input manager model with an input generator model.
This generator can be modelled/implemented using any
formalisms/language thanks to the DEVS Bus mechanism
[23, 24].

ALGORITHM 6: A possible C++ implementation of
the InputManager.

1: func type InputManager::handle(int code, int state)
2: {
3: if(state == RELEASE) return

action[”END MOVE”];
4: else if(code == KEY LEFT) return

action[”MOVE LEFT”];
5: else if(state == KEY RIGHT) return

action[”MOVE RIGHT”];
6: else if(state == KEY UP) return

action[”MOVE UP”];
7: else if(state == KEY DOWN) return

action[”MOVE DOWN”];
8: return NULL;
9: }

When the modelling of the game subsystems is done,
the requirements are then encoded into LTL PROMELA
properties. For instance,

• � (state == POSE BOMB) becomes
ltl{eventually (state == POSE BOMB)};

• ltl{always ((state ==
POSE BOMB) implies X(state == IDLE))}
means that the next state of POSE BOMB is IDLE;

Prepared using sagej.cls

Ac
cep

ted
for

Pu
bli
cat
ion

Yacoub et al. 19

Figure 11. DEv-PROMELA Architecture of the game. Black boxes correspond to DEv-PROMELA coupled model, blue boxes to
DEv-PROMELA atomic model, and orange edges to events between the components.

Figure 12. DEv-PROMELA atomic model of the Input Manager.

• ltl {always(cposx >= 0 and cposx <=
mapw) and (cposy >= and cposy <= maph)}
checks that the character can’t move outside the map.

• etc.

All theses properties follow with the process models in the
DEv-PROMELA specifications. When the model is fully
written, the computerized verification and simulation models
are automatically generated.

4.3 Implementation Phase
Design. During this first iteration, no design phase were

needed, allowing designers to focus only on functional
requirements. Indeed, non-functional requirements which
support the computations are already integrated in the
structure which support the simulation. Therefore, our three-
layered architecture is implicitely generated by the coupling
of the DEv-PROMELA models. While the simulation model
is based on OOP, we don’t need to overload a new
design. However, complementary sequence diagrams or
collaborative diagrams can be made if needed.

Verification Model Generation. The generation of the
SPIN verification model is done in two steps:

1. PROMELA equivalent specifications are generated
from the DEv-PROMELA model. All the meta
instructions are removed (Algorithm 8).

2. Then, the model is compiled with the SPIN model-
checker to generate the corresponding verification
model. Explaning how the model is generated is
outside of the scope of this paper, while we let the
responsability of this generation to the model-checker.
Note that a modification of the SPIN model-checker

can be done to take into account the real abstract
type. For the purpose of this paper, we assume that
real values could be abstracted into integer values in
the conceptual model.

Simulation Model Generation. Generation of the
computerized simulation depends on the simulation library
and framework which are used by the developer. Therefore,
the DEv-PROMELA model is converted into a DEVS
algebraic specifications which can then be encoded into any
target simulators, for instance, into a XML format, JAVA
classes, C++ classes, etc. Concerning OOP implementations
of DEVS, many patterns have been proposed [69, 70]. For
this paper, we decide to use an implementation close to a
game architecture (Figure 14). This architecture is based on
an observer pattern and a state pattern [71]. White classes
are a part of a simulation framework which can be embbeded
in the Engine Layer. The grey classes are the concrete classes
realized in the Gameplay Layer. They embbed the code of
the corresponding DEv-PROMELA simulation model.

The DEVS model is therefore a composition of
DEVSAtomic and DEVSCoupled instances. Each
instance of them is a finite state automaton which aggregates
concrete states. A state corresponds to an atomic statement
of the DEv-PROMELA conceptual model. Then, a specific
class for each real process is created (Character and
Bomb). These classes inherit from DEVSAtomic. This part
of this architecture represents the structural part of the model.

Then, the semantics (i.e. the behaviour) is implemented
by the classes
DEVSCoordinator, on the one hand, which is a subclass
of TimeScheduler, and DEVSSimulator on the other
hand. The first one is responsible of handling time advance
and events. It computes the next minimum event and notifies
all the children (given by the composition of DEVSCoupled
instances). The second one is responsible of generating the
corresponding behaviour of each DEVSAtomic instance,
meaning executed the code inside each concrete DEVS
atomic model.

Each LTL property generates also a DEVSAtomic
subclass. In fact, while LTL properties are Buchi automata,
they can be encoded into DEVS models. Instances of these
classes are plugged to the global model for monitoring the
global behaviour. If a property is violated, a specific error

Prepared using sagej.cls

Ac
cep

ted
for

Pu
bli
cat
ion

20 SIMULATION: Transactions of The Society for Modeling and Simulation International XX(X)

event is emitted thanks to an assertion or any other exception
mechanisms, and stops the simulation.

Verification and Validation using Model Checking. Now
both computerized model have been generated, we can use
them to check properties. The first property we can verify
concerns the flow of the state machine. If we check whether
the state POSE BOMB can be reached with the Algorithm
7, the model-checker ensures that it cannot be reached.
Indeed, there is no statement that leads to this state. In
the same manner, we can easily see that there is no test
concerning the property that enforces the character to stay
into the map. A counterexemple is generated showing that
we have a scenario for which the absolute position can be
greater than the size of the map. In the next iteration, we
modify the model and we add these lines into the algorithm,
in replacement of line 21:

:: if (cposx - dt * speed != mapw) ->
cposx1 = cposx;....

This time, the checker ensures that the character cannot go
out of the map. We check also if we can always reached the
IDLE state from any move, and the checker ensures that is
possible.

Verification and Validation using Simulation. When we
complete the verification with simulation, we state that:

1. There exists scenarios in which the character leaves the
map. In fact, this come from the fact that the model-
checking sees the time as ordered event, meaning it
did not take into account the time elapsed between two
frames. We can immediately fix this bug by replacing
the previous fix with:

:: if (cposx - dt * speed <= mapw)
-> cposx1 = cposx;....

2. In the same manner, the simulation shows that, if the
time scheduler is not well-formed, for example if dt =
∞, the model goes into an infinite loop. This loop was
not captured by the checker because of the same fact:
time is not seen as a quantitative dimension in model-
checking.

3. In the same manner, some counterexamples generated
by the untimed model can be replayed in the timed
model.

Finally, we can deduce that model-checking is useful
for verifying and validating the flow and the bounds of
values. Discrete-event simulation is useful for checking
event properties and confirming the results given by the
formal verification. Therefore, we can take benefits from the
speed of untimed model-checking coupling the accuracy of
simulation analysis.

4.4 Release Phase
Finally, in order to get the final character controller of
our game, we need only to replace the DEVSCoordinator
root instance by a real-time coordinator which handles the
game loop. If the class inherits from the TimeScheduler
class, the change is immediate according to the OOP best
practices. This new class can be verified using traditional

verification processes (unit tests and code review). In our
specific exemple, this class corresponds to a function which
returns immediately at each call. In this way, we reduce the
development effort. It is interesting to note that during this
first iteration no code was handwritten. Therefore, the code
remains unchanged and we are sure that the software fulfills
at least the checked properties. The final software then needs
to be tested, analyzed, verified and validated using classical
techniques (i.e. using approaches that are not model-based).

5 Experimental Evaluation and
Comparison

This section introduces the experimental evaluation of the
approach proposed in this paper. For this purpose, we
compare two versions of the Bomberman. The first one is
developped using our model-based engineering approach;
the second one is developped using a classical software
engineering development V cycle.

The protocole of validation is then divided into multiple
steps:

1. Writing the validation test scenarios which will be
used for validating the two games;

2. Developping the two versions of the game;
3. Verifying the two programs using classical verification

techniques and our approach;
4. Validating the two softwares using classical validation

techniques and comparing results with simulation.

5.1 Write validation test cases
While we mainly focus on the development of the character
controller and the input manager, we choose a set of fourty
validation base tests relative to these both parts. These tests
are written during the requirement analysis, and cover safety
and liveness properties (Table 6). Particularly, we check for
instance that the hero correctly responds to the input events,
that the timed responses are always in an acceptable range,
and that stressing the game does not create computational
errors in the interpolated moves of the entities. These
validation tests are then formalized using the linear temporal
logic. We also verify by review that the requirements are
correctly formalized.

For each timed tests, we also decide to introduce some
random parametrizations; for instance, we make vary the
speed or the acceleration of the characters, or make change
the date of each event occurrence. The total set of validation
tests has finally fourty different tests scenarios. Note that
we consider the DEVS simulator and the SPIN model-
checker as verified and validated, so we do not perform the
computerized model verification (Figure 6).

5.2 Pre-validation using DEv-PROMELA
The DEv-PROMELA models of the character controller and
input manager are incrementaly built. At the end of each
iteration, the model is checked against the fourty properties
using both model-checking and simulation like previously
presented. The models are refined until they all comply with
the requirements. Figure 13 shows the number of fullfilled
properties at the end of each iteration. Then, in our example,
we need five iterations to ensure all the fourty properties

Prepared using sagej.cls

Ac
cep

ted
for

Pu
bli
cat
ion

Yacoub et al. 21

are correctly checked. Note that this step also allows a
way to evaluate correctness, completeness and testability of
the requirements. Validation corresponds to evaluation of
fourty functional requirements as defined in the game design
document:

• Moves of the characters;
• Collision detection;
• Items generations;
• Scoring system;
• Artificial Intelligence system;
• Graphics display and synchronization (use of the cor-

rect sprite and animation, verification of computation
on variable refresh rate);

• Sound synchronization;
• Input synchronization.

Each iteration corresponds to the implementation of
specific groups of specifications, beginning with generic
systems at the first iteration, and finishing by the gameplay
implementation at the last iteration. In this case, the model is
used as follow:

• Model-checking ensures that each instruction is
reachable, and there is no deadlock between thread;
in this case, model-checking is complementary to unit
test;

• Model-checking ensures that the parameters evolves
under boundaries (each function respects pre- and
post-conditions structurally);

• Simulation allows checking of specific subpart of the
parameter space: especially, we can generate long
sequences of events, inputs and parameters varia-
tions (speed computation to check if long compu-
tation doesn’t break the deadlock property, refresh
rate, resources loading speed, functional parameters
evolving outside of the expected boundaries, etc).

Figure 13. Pre-validation results.

5.3 Verification of the derived software and the
normal game

Concerning the model-based version of the game, its code is
then derivated from the DEv-PROMELA simulation model.
Verification is performed using classical methodologies
including code review, static analysis using proofs, and unit
tests. A DEv-PROMELA model is also regenerated from the
code and compared with the results got from the previous

steps, using model-checking and simulation. Concerning the
normal version of the game, the code is reviewed using
classical verification techniques only. The game is also
reverse-engineered to produce a DEv-PROMELA model
which is formally checked and simulated.

Table 3 summarizes the results between the three
methodologies concerning our game. As expected, all
the unit tests are successfully passed, including assertion
violations. Completeness refers to the fact that the
code responds to all the possible inputs defined in the
specifications. Consistency refers to the fact that the code
cannot produce contradictory behaviours. Unreachable states
correspond to line of code which cannot be executed. As
expected, classic verification techniques confirms what we
expected: the obtained software behave as intended, while it
was built from a simulation model.

Table 4 summarizes the results concerning the normal
game obtained by classic verification, model-checking and
simulation.

First, as expected, we see difference between separate
model-checking and simulation. The differences come
from the fact that the model-checking cannot capture
some time-dependant behaviours as we demonstrated in
previous sections. In these cases, simulation gives another
interpretation of the false positive errors found by the model-
checking. Second, we also see that the DEv-PROMELA
Reverse Model allows us to find some inconsistent
behaviours, which were not found using only tests. While
tests are only focusing on prepared scenarios, model-
checking allows us to explore the statespace and check what
kind of events can exactly occurs. Simulation then allows
us to find false positive and false negative errors among the
errors detected by the model-checking.

5.4 Validation of the derived software

Validation consists on testing our model-based game against
the fourty test scenarios and comparing the results with the
expected values and the values given in the first phase by
the simulation. Moreover, we add 2332 random scenarios
including random actions. The same evaluation is also done
for the normal game. Table 5 summuarizes the results. As
we see, concerning the validation tests, our DEv-PROMELA
model-based game, like the simulation model, reach 100%
of successfully validated test cases. While the model was
developed using these validation tests, the results is normal.
However, we see a difference between the simulation model
and the DEv-PROMELA model-based game concerning
the random tests. Even the results is greater that the
normal game, 8% of these random scenarios lead to an
inconsitent state. In most of the cases, these errors are related
to communication between components which were not
developed using our approach, for instance, synchronization
between graphics component and the input manager. In
these cases, simulation allows us to understand what exactly
happens in the communication between each component,
while formal validation using model-checking allows us to
understand what exactly happens in the execution graph.

Prepared using sagej.cls

Ac
cep

ted
for

Pu
bli
cat
ion

22 SIMULATION: Transactions of The Society for Modeling and Simulation International XX(X)

6 Conclusion and Future Works

As a conclusion, this paper introduced a new way for
combining model-checking and discrete-event simulation
for combined verification and validation procedures. This
promising methodology is based on the building of a new
formalism whose the foundations are a verifiable language,
to which we add the semantics of a simulation language.
As an example, we show how we built DEv-PROMELA
from both PROMELA and the DEVS formalism. As a result,
we see that formal verification can be used for verification
and validation, and that simulation can complete the
results obtained by model-checking. Indirectly this approach
reduces the size of the checked statespace while formal
verification and validation are not applied for checking the
same requirements.

We then proposed a new Software Verification and
Validation approach by introducing the use of our new
modelling language in the developing process. As an
illustration of such a methodology, we use DEv-PROMELA
for modelling, verifying and validating a part of a video
game. Because video games are essentially discrete-event
systems, they are well suited for such kind of methods.
Firstly, we show how requirements analysis motivates the
choice of DEv-PROMELA as formal specifications and
modelling language. We model each part of the game using
DEv-PROMELA, allowing us to generate two computerized
model: a formal verification model and a simulation model.
Verification model is used for checking the global flow of
the game, for instance to highlight unreachable states, while
Simulation model is used for checking the timed behaviour
and validating timed properties. Then, by changing the
event scheduler into a real-time scheduler, we can obtain an
implementation of the final game, which fulfills the verified
and validated properties. This approach was already applied
to other domains like manufacturing production lines, mobile
adhoc network, resource sharing algorithms.

As a model-driven engineering approach, our proposed
methodology suffers also from common issues of software
engineering. Indeed, our methodology strongly remains
dependant on test scenarios and experts, and the critical
key remains the requirement/specification phase. Indeed,
we can’t completely ensure that all the relevant tests are
performed during the cycle. For instance, if a requirement
is not specified, there is no chance to check an non-
existent property. However, compared to current approaches,
the use of formal verification and simulation early in
the development allows designers to detect flaws and
inconsistencies. Indeed, even if not perfect, the parameter
space can be better explored during the investigation phase
of the simulation. Additional work using machine learning
and cognitive architecture which would help designers to
generate relevant test scenarios for their models is interesting
way to overcome these difficulties. Test-driven approaches
could be also a way to reduce the dependency to scenarios,
while the model would be written iteratively according to
specific test cases.

Future works can concern improvement of the combi-
nation between simulation and model-checking, especially
using simulation to narrow the searching statespace. This
could make the formal verification faster. In the same way,

we can study how modifying the SPIN model checker to
take into account the abstract real value. This would prevent
false errors returned by the checker and that are caused by
the untimed level of abstraction. Another one could concern
the study of the properties of the DEVS subclass generated
by DEv-PROMELA, as we showed we can extend or reduce
it using different simulation formalisms [64]. Especially,
we can formally demonstrate that DEv-PROMELA is an
extension of PROMELA. Concerning our proposed V&V
workflow, we didn’t study in this work how we could
integrate our methodology in agile methods. Indeed, V&V
is a very consuming tasks, therefore it would be intersting to
understand how they could be adapted in the case of a devel-
opment following agile recommendations [72]. Finally, the
main improvement is in the use of cognitive architecture and
machine learning to overcome the needs of strong expertise.
Indeed, research in empirical software engineering and data-
driven approaches in machine learning suggests it would be
possible to automatically generate relevant scenarios and test
cases from an existing database, in order to target specifically
incomplete specifications, or focus on specific cases in the
experimental frame [29, 73].

Acknowledgements

This work is part of the R&D project ”MAGE”, from French
”Investing for the Future” national program. We thank Bernard P.
Zeigler and Chungman Seo for assistance and for comments that
greatly improved work and the manuscript.

Author biography

Aznam Yacoub was a member of Laboratoire d’Informatique
et des Systemes (LIS), Marseille, France. His research interests
include software engineering, artificial intelligence, cognitive
science and multimedia.

Maâmar El-Amine Hamri is an Associate Professor at Aix-
Marseille University. He is also a member of Laboratoire
d’Informatique et des Systemes (LIS), Marseille, France. He has
been active for many years in Modeling and Simulation research
area.

Claudia Frydman is a full Professor at Aix-Marseille University.
She is also a member of the Laboratoire d’Informatique et des
Systemes (LIS). She has been active for many years in knowledge
management and currently her research is focusing especially on
researches on knowledge-based simulation.

References

1. Shah US. An excursion to software development life cycle
models: An old to ever-growing models. SIGSOFT Softw Eng
Notes 2016; 41(1): 1–6.

2. Sargent RG. Simulation model verification and validation.
In: Proceedings of the 23rd Conference on Winter Simulation,
WSC ’91, Washington, DC, USA: IEEE Computer Society,
1991. pp. 37–47.

3. Pham H. Software reliability. In: Wiley Encyclopedia of
Electrical and Electronics Engineering. 1999. DOI:10.1002/
047134608X.W6952.

Prepared using sagej.cls

Ac
cep

ted
for

Pu
bli
cat
ion

Yacoub et al. 23

4. Clarke EM and Wing JM. Formal methods: State of the art and
future directions. ACM Computing Survey 1996; 28(4): 626–
643.

5. Woodcock J, Larsen PG, Bicarregui J et al. Formal methods:
Practice and experience. ACM Computing Survey 2009; 41(4):
19:1–19:36.

6. Clarke EM and Emerson EA. Design and synthesis
of synchronization skeletons using branching-time temporal
logic. In: Logic of Programs, Workshop, Springer-Verlag,
1982. pp. 52–71.

7. Queille JP and Sifakis J. Specification and verification of
concurrent systems in cesar. In: Proceedings of the 5th
Colloquium on International Symposium on Programming,
Springer-Verlag, 1982. pp. 337–351.

8. Clarke EM, Grumberg O and Peled DA. Model Checking. MIT
Press, 1999.

9. He X. PZ nets - a formal method integrating petri nets with z.
Information and Software Technology 2001; 43(1): 1–18.

10. Nguyen A, Quan T, Nguyen P et al. COMBINE: A tool
on combined formal methods for bindingly verification. In:
Proceedings of the 8th International Symposium on Automated
Technology for Verification and Analysis, Springer Berlin
Heidelberg, 2010. pp. 387–395.

11. Konur S, Fisher M and Schewe S. Combined model checking
for temporal, probabilistic, and real-time logics. Theoretical
Computer Science 2013; 503: 61–88.

12. Holzmann GJ. Design and Validation of Computer Protocols.
Prentice-Hall, Inc., 1991.

13. Alur R and Dill DL. A theory of timed automata. Theoretical
Computer Science 1994; 126(2): 183–235.

14. Clarke EM. The birth of model checking. In: 25 Years
of Model Checking: History, Achievements, Perspectives.
Springer Berlin Heidelberg, 2008. pp. 1–26.

15. Dacharry HP and Giambiasi N. A formal verification approach
for devs. In: Proceedings of the 2007 Summer Computer
Simulation Conference, SCSC ’07, Society for Computer
Simulation International, 2007. pp. 312–319.

16. Baier C and Katoen JP. Principles of Model Checking. The
MIT Press, 2008.

17. Huth M and Ryan M. Logic in computer science: modelling
and reasoning about systems. Cambridge University Press,
2005.

18. Hamri M, Giambiasi N and Naamane A. Generalized discrete
events for accurate modeling and simulation of logic gates.
In: Concepts and Methodologies for Modeling and Simulation.
Springer International Publishing, 2015. pp. 257–272.

19. Giambiasi N, Escude B and Ghosh S. Gdevs: a generalized
discrete event specification for accurate modeling of dynamic
systems. In: Proceedings 5th International Symposium on
Autonomous Decentralized Systems, 2001. pp. 464–469. DOI:
10.1109/ISADS.2001.917452.

20. Bill R, Gabmeyer S, Kaufmann P et al. Model checking of
ctl-extended ocl specifications. In: Proceedings of the 7th
International Conference on Software Language Engineering,
Springer International Publishing, 2014. pp. 221–240.

21. Gore R. Springsim 2015 - conceptual modeling with
alloy, 2015. URL https://github.com/rossgore/

alloy-tutorial.
22. Syriani E and Vangheluwe H. Programmed graph rewriting

with time for simulation-based design. In: Proceedings of the
1st International Conference on Theory and Practice of Model

Transformations, Springer Berlin Heidelberg, 2008. pp. 91–
106.

23. Zeigler BP. Theory of Modeling and Simulation. John Wiley,
1976.

24. Zeigler BP, Muzy A and Kofman E. Theory of Modeling
and Simulation - Discrete Event and Iterative System
Computational Foundations. 3rd ed. Springer, Academic Press,
Inc., 2019.

25. Minsky M. Matter, mind and models. In: IFIP Congress,
Spartan Books, 1965. pp. 45–50.

26. Banks J and Carson JS II. Introduction to discrete-event
simulation. In: Proceedings of the 18th Conference on Winter
Simulation, WSC ’86, New York, NY, USA: ACM, 1986. pp.
17–23.

27. Banks J. Handbook of simulation: principles, methodology,
advances, applications, and practice. John Wiley & Sons,
1998.

28. Holzmann G. The SPIN Model Checker : Primer and Reference
Manual. Addison-Wesley Professional, 2003.

29. Traoré MK and Muzy A. Capturing the dual relationship
between simulation models and their context. Simulation
Modelling Practice and Theory 2006; 14: 126–142.

30. Alur R, Courcoubetis C, Halbwachs N et al. The algorithmic
analysis of hybrid systems. Theoretical computer science 1995;
138(1): 3–34.

31. Borger E. Abstract state machines: a unifying view of models
of computation and of system design frameworks. Annals of
Pure and Applied Logic 2005; 133(1): 149–171.

32. Katoen JP. Advances in probabilistic model checking. In:
International Workshop on Verification, Model Checking, and
Abstract Interpretation, Springer, 2010. pp. 25–25.

33. Foures D, Albert V and Nketsa A. Simulation validation using
the compatibility between simulation model and experimental
frame. In: Proceedings of the 2013 Summer Computer
Simulation Conference, SCSC ’13, Vista, CA: Society for
Modeling and Simulation International, 2013. pp. 55:1–55:7.

34. Olsen M and Raunak M. A method for quantified confidence of
devs validation. In: Proceedings of the Symposium on Theory of
Modeling & Simulation: DEVS Integrative M&S Symposium,
Society for Computer Simulation International, 2015. pp. 135–
142.

35. Zengin A, Köklükaya E and Ekiz H. Verification and validation
of the devs models. In: Proceedings of 2nd International
Symposium on Sustainable Development, 2010. pp. 425–433.

36. Coelho CNJ and Foster HD. Advanced Formal Verification.
Springer US, 2004.

37. Godefroid P. Combining model checking and
testing. Technical report, Microsoft, 2013. URL
http://research.microsoft.com/apps/pubs/

default.aspx?id=200544.
38. Goldberg E. On bridging simulation and formal verification,

2008.
39. Bicarregui J, Dick J, Matthews B et al. Making the most

of formal specification through animation, testing and proof.
Science of Computer Programming 1997; 29(1-2): 53–78.

40. Abdulhameed A, Hammad A, Mountassir H et al. An
approach combining simulation and verification for sysml
using systemc and uppaal. In: 8ème conférence francophone
sur les architectures logicielles, Paris, France, 2014.

41. Zeigler BP and Nutaro JJ. Combining devs and model-
checking: Using system morphisms for integrating simulation

Prepared using sagej.cls

Ac
cep

ted
for

Pu
bli
cat
ion

24 SIMULATION: Transactions of The Society for Modeling and Simulation International XX(X)

and analysis in model engineering. In: Proceedings of the 26th
European Modeling and Simulation Symposium, 2014. pp.
350–356.

42. Zeigler BP and Nutaro JJ. Towards a framework for more
robust validation and verification of simulation models for
systems of systems. The Journal of Defense Modeling and
Simulation: Applications, Methodology, Technology 2015; : 1–
14.

43. Zeigler BP, Nutaro JJ and Seo C. Combining devs and model-
checking: concepts and tools for integrating simulation and
analysis. International Journal of Simulation and Process
Modelling 2017; 12(1): 2–15. DOI:10.1504/IJSPM.2017.
082781.

44. Dacharry H and Giambiasi N. Formal verification with timed
automata and devs models: a case study. In: Proceedings of
Argentine Symposium on Software Engineering, 2005. pp.
251–265.

45. Yacoub A, Hamri M, Frydman C et al. Towards an extension
of promela for the modeling, simulation and verification of
discrete-event systems. In: Proceedings of the 27th European
Modelling and Simulation Symposium (EMSS 2015), 2015. pp.
340–348.

46. Yacoub A, Hamri M and Frydman C. Using dev-promela
for modelling and verification of software. In: Proceedings
of the 2016 Annual ACM Conference on SIGSIM Principles
of Advanced Discrete Simulation, SIGSIM-PADS ’16, ACM,
2016. pp. 245–253.

47. Yacoub A, Hamri M, Frydman C et al. Dev-promela:
an extension of promela for the modelling, simulation and
verification of discrete-event systems. International Journal
of Simulation and Process Modelling 2017; 12(3-4): 313–327.
DOI:10.1504/IJSPM.2017.085564.

48. Holzmann GJ. The model checker spin. IEEE Transactions on
software engineering 1997; 23(5): 279–295.

49. Natarajan V and Holzmann GJ. Outline for an operational
semantics of promela. In: Proceedings of the Second SPIN
Workshop, 1996.

50. Caplat G and Sourrouille JL. Model mapping in mda.
In: Workshop in Software Model Engineering (WISME2002),
2002.

51. Caplat G and Sourrouille JL. Model mapping using formalism
extensions. IEEE Software 2005; 22(2): 44–51. DOI:10.1109/
MS.2005.45.

52. Plotkin G. A structural approach to operational semantics. J
Log Algebr Program 2004; 60–61: 17–139. DOI:10.1016/j.
jlap.2004.05.001.

53. Kahn G. Natural semantics. In: Brandenburg FJ, Vidal-Naquet
G and Wirsing M (eds.) Proceedings of STACS 87: 4th Annual
Symposium on Theoretical Aspects of Computer Science
Passau, Berlin, Heidelberg: Springer Berlin Heidelberg, 1987.
pp. 22–39. DOI:10.1007/BFb0039592.

54. Blas MJ, Gonnet SM, Leone HP et al. A conceptual framework
to classify the extensions of devs formalism as variants and
subclasses. In: Proceedings of the 2018 Winter Simulation
Conference, WSC ’18, IEEE Press, 2018. pp. 560–571.

55. Zeigler BP. Closure under coupling: Concept, proofs, devs
recent examples. In: Proceedings of the 4th ACM International
Conference of Computing for Engineering and Sciences,
ICCES’18, New York, NY, USA: ACM, 2018. DOI:10.1145/
3213187.3213194.

56. Wallace DR and Fujii RU. Software verification and validation:
An overview. IEEE Softw 1989; 6(3): 10–17.

57. Ahmad W, Qamar U and Hassan S. Analyzing different
validation and verification techniques for safety critical
software systems. In: Software Engineering and Service
Science (ICSESS), 6th IEEE International Conference on,
IEEE, 2015. pp. 367–370.

58. Huizinga D and Kolawa A. Automated defect prevention: best
practices in software management. John Wiley & Sons, 2007.

59. Desai S and Abhishek S. Software Testing: A Practical
Approach. India: Phi Learning Private Limited, 2012.

60. Adrion WR, Branstad MA and Cherniavsky JC. Validation,
verification, and testing of computer software. ACM Comput
Surv 1982; 14(2): 159–192.

61. Balci O. Verification, validation, and accreditation.
In: 1998 Winter Simulation Conference Proceedings (Cat.
No.98CH36274), 1998. pp. 41–48. DOI:10.1109/WSC.1998.
744897.

62. Tran E. Verification/Validation/Certification. Technical report,
Carnegie Mellon University, 1999.

63. Gaudel MC. Checking models, proving programs, and testing
systems. In: Gogolla M and Wolff B (eds.) Proceedings of Tests
and Proofs: 5th International Conference, TAP 2011, Zurich,
Switzerland: Springer Berlin Heidelberg, 2011. pp. 1–13.

64. Yacoub A, Hamri M and Frydman C. Restricting dev-promela
with a hierarchy of simulation formalisms. In: Proceedings
of the Symposium on Theory of Modeling & Simulation,
TMS/DEVS ’17, San Diego, CA, USA: Society for Computer
Simulation International, 2017. pp. 13:1–13:11.

65. Frans M, Jan VL and Thorsten Q. Disciplinary identity of game
scholars: An outline. In: DiGRA ’13 - Proceedings of the 2013
DiGRA International Conference: DeFragging Game Studies,
2014.

66. Quandt T, Van Looy J, Vogelgesang J et al. Digital games
research: A survey study on an emerging field and its prevalent
debates. Journal of Communication 2015; 65(6): 975–996.
DOI:10.1111/jcom.12182.

67. Deloura M. Game Programming Gems. Rockland, MA, USA:
Charles River Media, Inc., 2000.

68. Epic. Unreal engine. Technical report, 2017. URL https:

//docs.unrealengine.com/latest/INT/.
69. Hamri M, Messouci R and Frydman C. The state event design

pattern. In: Proceedings of the 19th European Conference on
Pattern Languages of Programs, EuroPLoP ’14, New York,
NY, USA: ACM, 2014. pp. 15:1–15:14. DOI:10.1145/
2721956.2721987.

70. Messouci R. Conception par patrons des modèles à
Evenements Discrets : de la Machine à états finis au DEVS.
PhD Thesis, France, 2017.

71. Gamma E, Helm R, Johnson R et al. Design Patterns: Elements
of Reusable Object-oriented Software. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1995.

72. Huo M, Verner J, Zhu L et al. Software quality and agile meth-
ods. In: Proceedings of the 28th Annual International Com-
puter Software and Applications Conference, COMPSAC’04,
IEEE, 2004. pp. 520–525.

73. Nayrolles M and Hamou-Lhadj A. Clever: Combining code
metrics with clone detection for just-in-time fault prevention
and resolution in large industrial projects. In: Proceedings
of the 15th International Conference on Mining Software
Repositories, MSR ’18, ACM, 2018. pp. 153–164.

Prepared using sagej.cls

Ac
cep

ted
for

Pu
bli
cat
ion

25

Appendices

Table 3. Results of Verification of the derived software (in percent).

Classic Verification DEv-PROMELA
Reverse Model

DEv-PROMELA
Initial Model

Unreachable States 0 0 0
Correctness 100 100 100
Consistency 100 100 100
Completeness 100 100 100

Table 4. Results of Verification of the normal software (in percent).

Classic Verification DEv-PROMELA
Model-Checking

DEv-PROMELA
Simulation

DEv-PROMELA
Reverse Average

Unreachable States 12 18 19 18.5
Correctness 98 91 96 93.5
Consistency 100 96 98 97
Completeness 100 100 100 100

Table 5. Results of Validation of the both versions of game.

Pre-Simulation Results DEv-PROMELA
model-based game Normal game

Number of validated test
cases 40 40 37

Number of validated
random scenarios 2184 2151 2003

Total 93% 92% 86%

Table 6. Examples of Verification and Validation properties checked by combined methods.

Type Description Methodology

Verification
State Reachability: Verify each
statement can be executed in any
orders without affecting the result

Model-Checking

Verification
Deadlock: Verify the absence of
interlock between thread during
engine computation

Model-Checking

Validation

Bounded Parameters
Verification: Verify the upper and
lower boundaries of variables (type
verification): score, life, speed, level,
map representation
Validation: Validate that the
parameters evolve under their
definition interval

Model-checking and Simulation

Validation

Computing time variation: ensure
variation of computational time
doesn’t change the result of move
computation

Model-checking: Computational error
(divide by zero, infinite values, cycles
on type interval)
Simulation: Check if interpolation
formula always produce acceptable
values for animation

Prepared using sagej.cls

Ac
cep

ted
for

Pu
bli
cat
ion

26 SIMULATION: Transactions of The Society for Modeling and Simulation International XX(X)

ALGORITHM 7: DEv-PROMELA specifications of the Character Controller.
1: ...
2: bool game finished = false;
3: mtype {IDLE,MOV E LEFT,MOV E RIGHT,MOV E UP,MOV E DOWN,POSE BOMB}
4:
5: active proctype Character (real dt){
6: real cposx = 0, cposy = 0, cposx1 = 0, cposy1 = 0;
7: real blowsup time = 0.5;
8: int state = IDLE;
9: do

10: :: [clt : 0.0→ silent] (game finised == false)→
11: if
12: :: [evt : MOV E LEFT] (state == IDLE) state = MOV E LEFT ;
13: :: [evt : MOV E RIGHT] (state == IDLE) state = MOV E RIGHT ;
14: :: [evt : MOV E UP] (state == IDLE) state = MOV E UP ;
15: :: [evt : MOV E DOWN] (state == IDLE) state = MOV E DOWN ;
16: :: [evt : POSE BOMB] (state == IDLE) state = POSE BOMB;
17: :: [evt : END MOV E] (state 6= POSE BOMB)→ state = IDLE;
18: :: [clt : 0.5→ emit : bomb posed] (state == POSE BOMB)→ state = IDLE;
19: run Bomb(blowsup time);
20: :: [clt : dt→ emit : silent] (state == MOV E LEFT)→
21: cposx1 = cposx;
22: cposx = cposx− dt ∗ speed;
23: :: [clt : dt→ emit : silent] (state == MOV E RIGHT)→ ...
24: ...
25: fi;
26: od
27: }
28: ...

ALGORITHM 8: PROMELA specifications of the Character Controller.
1: ...
2: bool game finished = false;
3: mtype {IDLE,MOV E LEFT,MOV E RIGHT,MOV E UP,MOV E DOWN,POSE BOMB}
4:
5: active proctype Character (int dt){
6: int cposx = 0, cposy = 0, cposx1 = 0, cposy1 = 0;
7: int blowsup time = 1;
8: int state = IDLE;
9: do

10: :: (game finised == false)→
11: if
12: :: (state == IDLE) state = MOV E LEFT ;
13: :: (state == IDLE) state = MOV E RIGHT ;
14: :: (state == IDLE) state = MOV E UP ;
15: :: (state == IDLE) state = MOV E DOWN ;
16: :: (state == IDLE) state = POSE BOMB;
17: :: (state 6= POSE BOMB)→ state = IDLE;
18: :: (state == POSE BOMB)→ state = IDLE;
19: run Bomb(blowsup time);
20: :: (state == MOV E LEFT)→
21: cposx1 = cposx;
22: cposx = cposx− dt ∗ speed;
23: :: (state == MOV E RIGHT)→ ...
24: ...
25: fi;
26: od
27: }
28: ...

Prepared using sagej.cls

Ac
cep

ted
for

Pu
bli
cat
ion

27

Figure 14. Class Diagram of the Simulation Model.

Prepared using sagej.cls

Ac
cep

ted
for

Pu
bli
cat
ion

