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Abstract
A crucial aspect of every experiment is the formulation of hypotheses prior to data collection. In this paper, we use a
simulation-based approach to generate synthetic data and formulate the hypotheses for our market experiment and cali-
brate its laboratory design. In this experiment, we extend well-established laboratory market models to the two-asset
case, accounting at the same time for heterogeneous artificial traders with multi-asset strategies. Our main objective is
to identify the role played in the price-bubble formation by both self-impact (i.e., how trading orders affect the price
dynamics) and cross-impact (i.e., the price changes in one asset caused by the trading activity on other assets). To this
end, we vary across treatments the possibility of traders of diverting their capital from one asset to the other, thereby
artificially changing the amount of liquidity in the market. To simulate different scenarios for the synthetic data genera-
tion, we vary along with the liquidity the type of trading strategies of our artificial traders. Our results suggest that an
increase in liquidity increases the cross-impact, especially when agents are market-neutral. Self-impact, however, remains
significant and constant for all model specifications.
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1. Introduction

Since the seminal work of Smith et al.,1 (henceforth, SSW)

experimental asset markets proved to be a very powerful

tool to analyze bubble-crash patterns, which turns out to be

a very persistent phenomenon in the laboratory under dif-

ferent settings (e.g., the research stuides2–6). A delicate

aspect of every experimental analysis is the formulation of

hypotheses. Before conducting any laboratory experiment,

researchers have to state the assumptions that they are

going to test in the laboratory (a process often known as

preregistration process often known as pre-registration.7)

and calibrate their market design, e.g., decide the number

of participants and sessions trading time. All these steps,

which have to be planned carefully, produce non-trivial

issues for researchers. A normally followed route is to con-

duct preliminary pilot experiments, which are quite costly

but allow the researcher to collect preliminary data. Pilot

sessions can also be used to formulate hypotheses if not

supported by theoretical modeling. However, the situation

might be extremely challenging with novel experiments, as

previous setup and knowledge can be of limited help. In

that event, an alternative path which follows in this paper

is to rely on a simulation-based approach. More precisely,

starting from a specific experimental market design, we

derive synthetic data which allows us to track the price

dynamics across different treatments, formulate our experi-

mental hypotheses and calibrate our design.

Our experimental design builds on the well-established

setup of SSW (e.g., the literature8): we extend it to the

two-asset case as our main objective is to identify the role

that price impact, in its two components of self- and cross-

impact, has on the price-bubble mechanism. Price impact

describes the relation between orders and price changes,

which plays a crucial role in real financial markets
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dynamics, leading to flash crashes or instability events

occurring in very short time scales (e.g., intraday) in

which liquidity plays a fundamental role, e.g., the Flash

Crash of 6 May 2010 and the Treasury bond flash crash of

15 October 2014.9–12 Self-impact describes the price

changes triggered by orders on the same stock,13–15 while

cross-impact captures the effects that price changes trigger

on other assets (see, for example, the literature16–19).

Indeed, as observed during the Flash Crash of 2010, a cas-

cade of instabilities might affect a large set of assets and

the entire market very rapidly,9 e.g., as a consequence of

the execution of assets portfolio orders and more generally

on the commonality of liquidity across assets.20

To identify these effects, we vary across treatments the

possibility of traders to move capital between markets,

allowing in one case traders to divert money from one

asset to the other (treatment T2-Unique), while in the other

(T1-Separated), they have a separated portfolio for each

asset. Compared to empirical work (e.g., the literature21),

our experimental analysis has the main advantage of hav-

ing a complete control over market dynamics, which

allows us to explore how price impact evolves during dis-

tinct trading phases. In particular, we can keep track of the

fundamental values of each asset, an unobservable vari-

able in real data. In addition, the simplicity of our design

(i.e., having only two stocks) allows us to identify and

estimate cross-market relationships with relative ease

compared to empirical analysis, often hampered by the

estimation of very large matrix.

However, due to the novelty of our analysis, it is hard to

precisely formulate our main hypotheses and calibrate the

experimental design. Wan and Hunter22 showed that simu-

lated markets might generate similar patterns observed in

experimental asset markets. Furthermore, several works

attempt to explore the impact of artificial traders on finan-

cial markets by employing different agent-based simula-

tions analyses (e.g., the literature.23–25). Similarly, we

follow this route by setting up a series of agent-based mod-

els replicating our experimental design, which allows us to

generate synthetic data to analyze the price dynamics

under different scenarios. More precisely, we extend the

model of Duffy and Ünver8 in the two-asset case incorpor-

ating heterogeneous agent strategies.

The Duffy and Ünver’s model8 is one of the first (along

with the literature26,27) to compare the results from finan-

cial market with artificial traders with those of experimen-

tal markets with human traders. In particular, they propose

an agent-based computational approach with near-zero

artificial traders to replicate the experiments of SSW.

They also analyze the impact of intelligent traders with

differing fundamental motivations on agent-based simula-

tions of financial markets bring more insight into the

micro-structural dynamics that work against market

efficiency.

To generate the synthetic data according to the Duffy

and Ünver model, we first need to adapt it to our case,

thereby extending it to the two-asset case. In addition, to

proxy the behavior of the human participants in the labora-

tory and improve our ability to study real hybrid financial

markets, in the spirit of Baghestanian et al.,5 we introduce

specific heterogeneous artificial traders which follow dif-

ferent investment strategies (i.e., being market-neutral or

directional traders) (Modern markets are hybrid markets.

It is has been estimated that algorithmic traders are

involved in up to 70% of the total trading volume.6).

Importantly, our exercise not only serves to confirm the

price-bubble formation and cross-impact effects, but also

to calibrate our experimental market and formulate rele-

vant hypotheses about the drivers of market impact. In

particular, we employ the order flow imbalance measures

of Cont et al.28 to retrieve estimates of self- and cross-

impact matrix during the boom phase and study how

cross-impact changes with respect to other trading periods

and between treatments (In contrast to da Gama Batista

et al.,11 we do not incorporate the market impact directly

in the price dynamics, and we estimate it without imposing

any prior impact model.). The final objective will be to

replicate the same type of analysis once our experimental

data are collected in the laboratory to assess the role of

human behavior in the market and its consequences on

price impact.

The paper is structured as follows. In section 2, we pres-

ent our experimental design. In section 3, we illustrate the

structural price model providing extensions to the multi-

asset case. In section 4, we present the results of structural

price models investigating the price dynamics with differ-

ent model specifications, and in section 5, we report the

market impact estimates based on the previous model spec-

ifications. In section 6, we derive the hypotheses we want

to investigate and validate with laboratory data. In section

7, we conclude this paper.

2. Market environment design

Our design consists of a market where there are J agents

which interact in T = 15 trading period and trade M = 2

assets. Each trading period is composed of 180 s, where a

trader can submit an ask or bid price for the two assets.

Following the research studies,1,4,5 we define the funda-

mental value of an asset as the discounted dividend cash

flows plus a terminal value. For asset i, we denote with di

the expected dividend payment for asset i, i.e., the average

dividend paid by asset i, and with TVi its buy-out (or ter-

minal) value, i.e., the terminal payoff paid by i at the end

of the last trading period T . Then, at time t, the fundamen-

tal value for asset i is provided by:

FVt, i =(T � t+ 1) � �di + TVi
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For both assets, the dividend process is described by a

Bernoulli process as follows (Negative dividends represent

holding costs, see Kirchler et al.4). The dividends distribu-

tion of the first asset P1 is drawn by a uniformly distributed

random variables with support d1 = f0, 0:1, 0:16, 0:22g
and terminal value equal to 1:80. Therefore,

FVt, 1 =(T � t + 1) � 0:12+ 1:80. The dividends of the

second asset are defined on the support

d2 = f�0:2, � 0:1, 0, 0:1, 0:2g where d2, TV = 2:80. We

remark that if di . 0 the fair value FVt, i is decreasing as

t! T . Thus, the first asset has a declining fundamental

value with an average decreasing trend by 0:12 for each

period (see Figure 1). However, the second asset has an

expected dividend value of zero with a terminal value of

2.8. For convention, we name asset 1 the speculative asset

and asset 2 as the value asset (Even if we adopt the same

terminology of Caginalp et al.,2 we did not use their ‘‘spec-

ulative relation’’ to establish if an asset is more speculative

than another (see Caginalp et al.2 for further details).).

Table 1 reports a summary of statistics for the two fun-

damental values. The fundamental values intersect each

other around round 8. Figure 1 displays the average funda-

mental values for the two assets.

2.1. Market treatments

In our experiment, traders will have the opportunity to buy

and sell assets in each period via a continuous double-

auctions open limit order book (see, for example, the liter-

ature1,4,29). At the beginning of the experiment, each parti-

cipant is endowed with two fictitious asset units, i.e., asset

1 and asset 2, and a cash balance of US$5.85 in total (In

the laboratory, we will use our experimental currency, the

ECU.). Our experimental market will be a hybrid one with

artificial agents and human participants. Each order is for

only one share (as in Fink et al.29). The order book is

empty at the beginning and at the end of a period, and it is

anonymous, i.e., the identity of the trader submitting an

order is concealed. In particular, in all treatments, there

will be two types of traders, human participants and noise

traders, along with market-makers. Noise traders are

‘‘near-zero-intelligence’’ agents, and can be likened to

inexperienced subjects in the market (see Duffy and

Ünver8). A market-maker is an agent who, on a continuous

and regular basis, proposes prices at which he is ready to

buy and sell a given asset.30 That is, as in real financial

markets, the role of market-makers in our experiment is to

provide liquidity (see in detail section 3.4). (Market-mak-

ers are said to be part of 70% of the electronic trades in

the United States (40% in the European Union (EU) and

35% in Japan) (see Guéant et al.31). Some of them are

‘‘official,’’ i.e., there is an agreement with an exchange for

maintaining fair and orderly markets (e.g., the Designated

Market Makers on the New York Stock Exchange

(NYSE)) while others are just acting as liquidity providers

without any obligation to do it (e.g., high-frequency tra-

ders) (see Guéant.30)) Having more liquidity in the market,

i.e., more transactions from both types of artificial agents,

is essential for our purpose as it allows us to precisely esti-

mate the effect of market impact by increasing the number

of available observations while keeping track of agents’

actions. On top of that, having market-markers in addition

to noise agents results in a price volatility more in line

with what is observed in real financial markets (as

described in details in section 4). To sum up, in our

experimental market, we will have:

Figure 1. Average fundamental values for the two assets. The blue (red) lines represent the value of the Speculative (value) asset.

Table 1. Summary statistics of the fundamental values for the
two assets.

Dividends d1 ∈ f$0,$0:10,$0:16,$0:22g d1 = $0:12

Initial value FV1,1 = 3:6
FVt,1 = (T � t+ 1) · 0:12+ 1:80

Terminal value TV1 = 1:80

Dividends d2 ∈ f$� 0:20,$� 0:10,$0,$0:10,$0:20g �d2 = $0

Initial value FV1,2 = 2:80
FVt,2 = 2:80

Terminal value TV1 = 2:80
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1. human traders that cannot go short and do not

know which players are posting the order. They

will play a relevant role in the laboratory

experiment;

2. noise traders buy and sell according to the tradi-

tional Duffy and Ünver model, and post quotes fol-

lowing a homogeneous Poisson process. They can

be considered as ‘‘near-zero intelligent’’ agents.

They have the same initial inventory as human par-

ticipants (see section 3);

3. market-makers post bid/ask quotes at the beginning

of the sessions following the Avellaneda/Stoikov

model (see Ho and Stoll32 and Avellaneda and

Stoikov33 and more information in section 3). In

contrast to other participants, they can go short.

Their main role is to provide liquidity to the mar-

ket, thereby increasing market efficiency.

To isolate the effect of price impact, we conduct two main

treatments: the first one (T1-separated) features a market

in which traders have two separated portfolios (i.e., parti-

cipants cannot divert the money of one asset to the other

one); the second one (T2-Unique) features a market in

which traders have a unique portfolio (i.e., the money can

be freely invested in each of the two assets with no restric-

tions). Thus, treatment T1-separated is similar to Caginalp

et al.2 except for traders’ inability to freely move capital

across markets (i.e., stocks). Indeed, in T2-Unique (with

independent orders) traders can freely divert their capital

from one asset to the other. Thus, comparing these two

treatments allow us to identify the effect of changes in

liquidity on cross- and self-impact. Importantly, for both

treatments, asset dividends are placed in the respective

portfolio. Kirchler et al.4 show how merging the savings

account for dividend cash with portfolio cash implies an

increasing Cash/Asset (C/A) ratio, which in turn generates

an increase in the available liquidity for traders.

Since in our simulation-based analysis, we do not con-

sider the presence of human agents, in the spirit of

Baghestanian et al.,5 we setup different investment strate-

gies for artificial traders which can be used as proxies for

the human participants’ behavior. In particular, we will

consider either directional or market-neutral players, i.e.,

players that either place orders in the same side in both

markets or in the opposite side in the two markets (see

section 3.3). Indeed, this study will serve as a future base

to evaluate the behavior of financial markets featuring

human participants as active players.

Thus, in section 4, we additionally examine the T2-

Unique treatments in which players follow one of the two

factor-investing style strategies, namely, T2-Unique-

Directional and T2-Unique-Market-Neutral, or a combina-

tion of the two, namely, T2-Unique-Heterogeneous. Finally,

to assess the role of market-makers, we integrate them in

previous setup, namely, T2-Unique-Heterogeneous-MM.

3. Structural agent-based model for order
book dynamics

In this section, we first describe the Duffy and Ünver

model.8 We then extend this model to our multi-asset envi-

ronment, additionally considering the existence of market-

markers. Finally, we specify a heterogeneous agent–based

model when traders follow different factor-investing style

strategies.

3.1. The Duffy and Ünver model

In the Duffy and Ünver market model, J agents trade the

same asset P1 in T trading periods. The asset pays a ran-

dom dividend at the end of each period t. Each trading

period t is composed of S submission rounds, where tra-

ders can place their orders, following a double- auction

market mechanism with continuous open-order book

dynamics. Specifically, in each submission round, agents

have to determine their position, i.e., whether they buy or

sell the asset, and the amount they are willing to pay or

receive for the asset (i.e., a quote). A Bernoulli variable

decides the traders’ position in each submission round.

The probability to be a buyer decreases in each trading

period so that in the last trading sessions, traders are more

prone to sell. This condition allows the Duffy and Ünver

model to capture the same liquidity dynamics observed in

Smith et al.1 and is named the weak-foresight assumption.

The quote of a trader’s order is then determined by the

weighted sum of the previous period’s prices and a ran-

dom value proportional to the fundamental value. Duffy J

and Ünver8 introduce this randomness in traders’ quote to

capture traders’ uncertainty about the fundamental value,

while the weighting parameter, the so- called anchoring

parameter, indicates that agents are more likely to post

quotes close to the previous period’s prices (see also

Baghestanian et al.5) and represents a crucial parameter to

explain the price-bubble shape.

Therefore, during the round s in the trading period t, an

agent can place buy (bid) or sell (ask) orders. Agents can

submit a bid or ask quotes for a unit of the asset, see also

Smith et al.1 where standard bid and ask improvement

rules are employed.

We now report the main model specification we have

implemented from the Duffy and Ünver model:

� We allow a trader to place an order in all the bid

and ask sides, i.e., if he is a buyer (seller), the agent

can place a bid (ask) price which is not necessarily

greater (smaller) than the current best bid (ask)

price. However, the quotes cannot be unbounded

since they must satisfy the traders’ inventory condi-

tion (see point below). Furthermore, a trader can

have only one outstanding limit order, and an agent
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cannot be in the bid and ask side in the book

simultaneously.
� For each trading time period t, at the beginning of

each round s, the trading priority is assigned by a

permutation of participants. Then, once a trader is

selected, a Bernoulli variable, B(pt), determines the

trader’s position (buyer or seller) for the submission

round. So, if in a trading period t and at round s, a

trader is selected to be a buyer (seller) and has an

open ask (bid) position in round s� 1, the trader

will not submit any order in the round s. We refer

to this condition as the one-side condition.
� The probability to be a buyer, during the trading

period t at submission round s, of an agent j is given

by pt. We assume the weak-foresight assumptions

of Duffy and Ünver,8 i.e., the probability to be a

buyer is decreasing among the trading periods:

pt = max 0:5� ut, 0f g, where u 2 0,
0:5

T

� �

As stressed in Duffy and Ünver,8 we choose u . 0 to

get consistent results with the experimental data. A posi-

tive u implies a gradual increase of excess supply toward

the end of the market and so it contributes to the reduction

in mean transaction prices. In particular, its primary role is

to reduce the transaction volume over time consistent with

the experimental data (see Smith et al.1 and Duffy and

Ünver.8) This assumption is crucial for the Duffy and

Ünver model to generate the observed crash patterns in the

laboratory market (By considering the heterogeneous

model of Baghestanian et al.,5 the weak-foresight assump-

tion can be dropped as we did in a companion paper. The

price dynamics of the Baghestanian et al. model heavily

depends on a more complex parameterization of agents’

strategies compared to simplest Duffy and Ünver model.

Moreover, since their model is calibrated with experimen-

tal data where only one asset is considered, instead of pre-

senting preliminary results using their parameters, we

prefer to postpone the analysis with the Baghestanian

et al. model when our experimental data are available.).

� At the end of each trading period t we compute the

mean traded price, �pt, i, which is publicly available.

The mean traded price �pt is defined as the average

of the mean of round prices �ps
t . If the volume of

transactions, i.e., number of shares traded in period

t round s is denoted by vols
t , then:

�ps
t =

1
vols

t

Pvols
t

h= 1 ps
t, h if vols

t . 0

pb�a, s
t if vols

t = 0

(

where p
b�a, s
t is the mean bid–ask spread price, and ps

t, h is

the price of the hth unit traded in period t of session s. Then,

pt = 1=S
PS

s= 1 �ps
t represents a measure of the market price

of a share, see Duffy and Ünver8 for further details.

� At the beginning of the market session, each trader

j has an endowment of cash xj and a quantity of the

asset y j. Then, a buyer (seller) j in period t at round

s can place (Where we also consider the one-side

condition.) a bid (ask) quote if enough cash bal-

ances x
j
t, s . 0 (share quantity y

j
t, s . 0) is available

in his account. Thus, trader j places a quote follow-

ing a convex combination of the previous period

mean traded price �pt�1 and a random quantity ut, s.

This random price is proportional to the current

expected fundamental value drawn from a uniform

distribution with support ½0, k � FVt�, where k . 0.

This noise captures the possibility that agents can

make some decision errors. So, if j is a buyer, j can

place a bid price given by:

b
j
t, s = min (1� a)ut, s +a�pt�1, x

j
t, s

� �
and if j is a seller, he can place a ask price given by:

a
j
t, s =(1� a)ut, s +a�pt�1

where a 2 (0, 1) is the so-called anchoring parameter. The

anchoring parameter plays a crucial role in the price-bubble

formation, since prices will necessarily increase at the

beginning to decrease as the fundamental value decreases,

with the number of sellers increasing over time. As stressed

in Duffy and Ünver,8 this kind of explanation for the price-

bubble mechanism holds regardless of u. As we will see,

when u= 0 the price will continue to get a ‘‘hump-

shaped’’ path with no decrease in transaction volume:

� When the submitted bid (ask) price is greater

(smaller) than or equal to the current best ask (bid)

price, the unit is sold at the current best ask (bid)

price. At the end of each trading period t, after the

round S, the order book is completely cleared (We

simply clean out the two sides of the order book

without executing limit orders.), where dividends

are paid out and we update the agent cash accounts.

In particular, at the beginning of the first round,

s= 1 in the trading period t + 1 the book is ini-

tially empty (We will introduce market-maker

agents to ensure enough liquidity to traders.). We

employ a real-time adjustment rule, i.e., during a

trading period t in a round s, any executed orders

are immediately executed and the cash and share

accounts are, respectively, adjusted.

Cordoni et al. 603



Even if the particular architecture specification would

appear to influence the simulation results, as remarked in

Duffy and Ünver,8 the results are insensitive to the type of

order book convention and structure.

3.2. Two-asset extension

We now introduce the generalizations of the previous

model to our experimental design. To extend the Duffy

and Ünver model in a the two-asset market, we may simply

specify two model specifications to the two assets P1 and

P2. Therefore, we have two order books with the relative

parameters, ki,ai,ui. However, we have to carefully set

the time priority. Specifically, we consider two different

time priority for the two books related to the two assets.

Therefore, in a given round s, the two time priorities of

book 1 and book 2 are embedded and executed alterna-

tively (We have tested in preliminary analyses other execu-

tion ordering and we did not find any particular change in

simulations results.). More precisely, if t( � ) denotes the

time priority (i.e., a permutation of the N traders) for the

round s, we first execute the first order for book 1, t1(1),
and then that of book 2, t2(1). Then, we consider the sec-

ond ones, t1(2) and t2(2), so that in events time, we have

t1(1).t2(1).t1(2).t2(2). ���t1(i).t2(i).t1(i+1).
t2(i+1), and so on.

The main feature of the multi-asset scenario is the

design of a specific multi-asset trading strategy which tra-

ders can implement. We are going to explain the details of

this feature in the next section.

3.3. Heterogeneous agent–based model: factor-
investing styles

The near-zero-intelligence agents of Duffy and Ünver can

be essentially viewed as a prototype of noise traders in real

financial market. Therefore, to understand how different

trading strategies can induce significant cross-impact

effects in a multi-asset scenario, and to better proxy the

behavior of human traders, we introduce artificial agents

with different strategies mimicking factor-investing style

(see, for example, Li et al.34).

To do that, we assume that the traders read a signal to

buy or sell assets following one of the assets i. We assume

that agents follow the speculative asset, and we denote the

signal as si 2 f�1, 1g, where 1 means that si is a buy sig-

nal and �1 a sell signal. The probability of reading a buy

or sell signal is modeled by pi, i.e., the probability to be a

buyer or a seller for asset i.

Then, in order to introduce heterogeneity in our popula-

tion, we design a percentage of agents following one of the

two market factors yj. A directional trader places orders on

both assets following the directional market factor, i.e.,

yD = ½1, 1�T . However, a market-neutral agent will place

orders following yM = ½1, � 1�T . Therefore, when an

agent reads the market signal si, he decides the position on

the asset i and if the trader is a directional will place the

same order side on the other assets, i.e., the position on

both assets are described by the product si � yD, while in

the market-neutral case, the agent will place an opposite

order side on the other asset, e.g., his order will be deter-

mined by si � yM .

Therefore, we consider three classes of agents: directional,

market-neutral, and noisy traders. Each trader chooses a posi-

tion following the speculative asset P1 and decides the posi-

tion on the value asset P2 using a market factor for the

directional and market-neutral agents, while the noise trader

randomly selects the two-asset positions. As stated above,

the positions on asset one are chosen using the probability

the weak-foresight assumptions of Duffy and Ünver.8 The

quotes, bt, s and at, s are placed randomly for all the traders

following the specification of Duffy and Ünver.8

Remark 3.1. An agent who follows the directional or

market-neutral vectors could be interpreted as a stylization

of a general factor-investing strategy. Indeed, the two mar-

ket factors yD and yM are the eigenvectors of a general

symmetric matrix:

L=
1 l

l 1

� �

and this matrix could represent the correlation of the two

assets or, more interestingly, the cross-impact matrix.

3.4. Agent-based model with market-makers

To ensure sufficient liquidity at all trading periods and to

make our laboratory design closer to typical real market

architecture, we include market-maker agents, which place

bid/ask quotes in an opening session before round s= 1

for all trading period t and act as liquidity providers for all

other rounds. This should provide price and order book

dynamics in line with what observed in real market

sessions.

We employ the Avellaneda–Stoikov (AS) market-

making model (see Ho and Stoll32 and Avellaneda and

Stoikov33), where market-makers place optimal quotes in

order to maximize the expected (Costant Absolute Risk

Adversion (CARA)) utility criterion within a finite time

horizon T in an order book. We consider the setting of

Guéant et al.31 where market-makers have a maximum

authorized inventory Q, which can be, in contrast to tra-

ders, either long or short. Furthermore, Guéant et al.31

proved that the optimal bid and ask quotes of the market-

maker in the Avellaneda–Stoikov model are given, respec-

tively, by:
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where p is the current value of the reference price (the

mid-price), g is the market-maker’s risk-aversion, k

characterizes the price sensitivity of market participants

and the functions yq(t), jqj4Q, which make the market-

maker’s optimal quotes depend on its inventory, denoted

by q, and they are defined as:
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where a= k=2gs2 and h=A(1+ g=k)�(1+ k=g), s is the

volatility of the asset, and A characterizes its liquidity.

In the original work of Avellaneda and Stoikov,33 the

market-maker’s inventory is modeled by the differences of

two point processes which model the trading activity of

traders, i.e., the number of assets that have been, respec-

tively, bought and sold. In our setting, a market-maker

updates his inventory when a trader hits one of his quotes

at time t. Right after, the market-maker updates his opti-

mal quote according to the new inventory (The other para-

meters, A, g, k.), the remaining trading period time T � t

and reference price pt, where the volatility parameter st is

fixed as the intra-trading period volatility of the previous

trading period, i.e., the volatility observed in ½t � 1, t�.
In order to have a symmetric initialization of the order

book, we select JMM heterogeneous market-makers distin-

guishing them in terms of risk-aversion.

We remark that even if the Avellaneda and Stoikov

model is time continuous, the model can be reinterpreted

in a discrete way as also observed by Guéant et al.31

Therefore, we may use its discretization to produce reli-

able market-makers’ quotes.

3.5. Two-asset agent–based market model

We now summarize our agent-based model for the two-

asset market experiments. Recall that our market is

designed as a continuous double-auction market as in

Duffy and Ünver8 and agents are distinguished between

traders and market-makers. Market-makers post bid and

ask quotes at the beginning of the session following the

Avellaneda/Stoikov model, see section 3.4, and they will

eventually update their quotes if traders accept one of their

quotes. Therefore, market-makers agents will provide and

guarantee the necessary liquidity to the market in each

trading round so that a trade can occur. In contrast to tra-

ders, they can go short.

However, traders are the only participants who can

actively participate in the market, i.e., they can accept

quotes from other participants, which then generate a trade.

They can only have one outstanding position for each asset

and each quote is for one share, where standard bid/ask

improvement rules are applied. Depending on the market

treatments, traders can follow one of the factors investing

trading strategies of section 3.3.

Regarding the sequentiality, at the beginning of each

trading period, t, an opening session is executed where

market-makers place their quotes, characterizing the initial

liquidity offer for the two assets order books. Then, round

sessions start and the time priorities for the two books are

generated, t1 and t2. Then, traders can place orders, and

they are sequentially called following the two time priori-

ties, where we embed t1 and t2 as explained in section

3.2. An order of the trader can be posted in the book or

executed. In the last case, a trade occurs where the coun-

terpart can be another trader or a market-maker. When the

counterpart is another trader, then both agents update their

inventories and their quotes are removed from the book.

However, when the counterpart is a market-maker, the tra-

der and market-maker’s inventories are updated and the

market-maker updates quotes according to the new inven-

tory following the Avellaneda and Stoikov model. At the

end of submission round S, the book is cleared and divi-

dends are paid, while at the end of the trading period T ,

the terminal value is paid for each remaining share in tra-

ders’ inventories for both assets.

Table 2 and Algorithm 1 report a summary of the simu-

lation design.

3.6. Simulation setup

We design a market experiment where each market ses-

sion consists of T = 15 trading periods and where each

period lasts 180 s. Based on previous experimental evi-

dence (see, for example, Palan35), we hypothesize that a

trader could submit an order for the two assets every 30 s.

Therefore, we set up in simulation S = 6 rounds for each

trading period.

We remark that in T1 treatment, agents have separate

portfolios, where traders have initial endowments of

US$2:925 and two units of asset for the two portfolios. In

T2 treatment, each trader has a merged portfolio with an

initial endowment of US$5:85 and two units for each asset

(In the first simulations, we divide traders in three classes

depending on different initial endowments among T1 and

T2 treatments, as in Smith et al.1 and Duffy and Ünver.8
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Table 2. Simulation design summary.

Agents Market

Traders Market-Makers

• Initial inventory is composed of cash
and assets.

• Post bid and ask quotes at the
beginning of the sessions
following the AS model.

• A market session of T = 15 trading
periods, each one divided in S= 6
submission rounds.

• Can only have one outstanding
position for each asset and each
order is for one share. Standard bid/
ask improvement rules.

• Can go short. • In each round s, a trader can post bid/ask
quotes.

• Buy and sell according to Duffy and
Ünver8 with the extension provided
in section 3.2.

• The counterpart can be any another
trader or market-maker.

• Can follow one of the factor-investing
trading styles, see section 3.3.

• Trade orders are executed only by
traders (i.e., in trader/trader order, the
inventory is updated for both, in market-
maker/trader, the inventory is updated
for the trader while the market-marker
updates according to Avellaneda/Stoikov
model)

• Dividends are paid at the end of each
period t, and the inventories are updated.

Algorithm 1. Pseudo code of market design. The algorithm illustrates the sequence of the different operations between traders
and market-makers and the different market phases, i.e., from the opening session when dividends are paid. We distinguish traders
from market-makers since traders are the only ones who can actively participate in the market, i.e., they can accept quotes from
other traders. Market-makers in our design can only supply liquidity to the market.

Participants of the market: traders, market-makers.
for (t= 1 : T) {

Trading period t starts;

run opening session;
Market-makers place quotes in the order book, characterizing the initial liquidity offer;

for (s= 1 : S) {
Round trading session s starts;

Traders place orders following our extension of the DU model;

The time priorities for the two books are selected, τ1 and τ2;
Traders are sequentially called following the two time priorities, where we embed τ1 and τ2 as explained in section 3.2;

An order of the trader can be posted in the book or executed. In the last case, the order generates a ‘‘trade’’ where the
counterpart can be another trader or a market-maker;

if A‘‘trade’’is of the type Trader/Trader then
Both agents update their inventories;

end
if A ‘‘trade’’ is of the type Trader/Market-maker then
The trader’s inventory is updated and the market-maker updates his quotes according to the new inventory following the
Avellaneda and Stoikov model;

end
Round trading session s ends;

}
Trading period t is ends;
Dividends are paid for both assets.

}
The terminal value is paid for each remaining share in traders inventories by each asset.
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However, we did not observe any significant differences

in terms of price dynamics and market impact estimates.).

Thus, in T1, traders cannot divert cash of one asset in the

other. We consider one type of treatment T1 (T1-Separated)

and three types of T2 treatments, where agents place orders

independently for the two assets and are either all

directional (T2-Unique-Directional), all market-neutral

(T2-Unique-Market-Neutral), or a combination of the two

(T2-Unique-Heterogenous). Finally, we consider two het-

erogeneous model specifications in which we additionally

consider the presence of JMM = 10 market-makers. For

each simulation treatment, we run N = 100 simulations

with a total of J = 33 traders (The number of participants is

chosen similar as much as possible to those of our future

experiment in the laboratory.).

The order type (buy or sell) is decided by pt, 1, the prob-

ability related to the asset 1. This means that agents, in

some sense, follow the price of the asset 1 and decide to

buy or sell the asset 2 depending only on pt, 1 (As comple-

mentary treatments, we consider the case when the order

side is decided fixed by pt, 2, i.e., traders follow the value

asset. In other words, the directional and market-neutral

cases correspond trivially to the case when the agents place

an order following a unique Bernoulli variable. The results

are available upon request, since we observe no relevant

findings.). To determine the quotes, we set for the specula-

tive asset P1, the agents’ parameters based on the estimates

of Duffy and Ünver,8 i.e., k1 = 4:1946, a1 = 0:8499, and
u1 = 0:01643. These parameters were estimated by Duffy

and Ünver8 in order to replicate SSW experiments, so we

might expect that the price dynamics of P1 will exhibit the

typical bubble shape of market experiments (Duffy and

Ünver8 have calibrated their model to reproduce the SSW

experiments.). Since, k1 = 4:1946 traders will post on

average twice the fundamental value of P1 even if they will

put more weight on previous price. This will generate the

same hump-shaped pattern of Smith et al.,1 where traders

start to trade at a low price level and subsequently generate

an upward trend which is finally eliminated by large-scale

selling orders posted by traders due to the weak-foresight

assumption (u1 . 0). However, since the dynamics of the

value asset should be aligned with its fundamental value

(see Kirchler et al.4), the parameters of the asset 2 are set

in a complementary way with respect to that of asset 1.

Thus, for asset 2, we set k2 = 2, a2 =(1� 0:8499),
u2 = 0. A value k2 = 2 would force agents to trade at the

intrinsic value on average. The weight a2 given to the

‘‘anchor’’�pt�1 is complementary to that for asset 1. This

implies that agents place an order on the asset 2 with bid/

ask prices which are close to the dividend fair value dt, 2

than past prices. Finally, since we set u2 = 0, we expect

to observe no imbalance between demand and supply as

the one observed for asset 1. We summarize the model

parameters in Table 3.

4. Simulation results on price dynamics

In this section, we analyze price dynamics generated by

the various treatments according to the basic models. We

also marginally consider the case when market-makers are

included, even if their role is primarily to provide enough

liquidity to human agents when we will go to the labora-

tory. However, artificial (noise) traders in the structural

model are designed independently from the presence of

market-makers. We thus expect they will have a significant

role in the laboratory sessions when humans and artificial

traders play together. As a result, in this first analysis, we

mainly present price-dynamics results concerning models

where market-makers are not considered, although in the

next section 5, we will also present and discuss the esti-

mates of cross-impact when market-makers are included as

well.

We first analyze the effect of changing traders’ liquid-

ity on price dynamics by comparing T1-separated and T2-

Unique. In line with the experimental results of Kirchler

et al.,4 we observe an amplification in price levels due to

the increase in C/A, when both dividends are collected in

the same portfolio for each trader, i.e., in T2-Unique treat-

ment (see Figures 2 and 3).

Then, to understand how different trading strategies can

impact prices, we examine two T2-treatments where tra-

ders follow one between directional and market-neutral

market factors. We observe that directional traders gener-

ate an undervaluation effect on the value asset P2, contrary

to market-neutral agents, which produce an overvaluation

effect on P2 (see Figures 4 and 5).

Finally, we investigate the effect of market-makers by

comparing T2-treatments where all the previous features

are implemented, i.e., considering heterogeneous agents,

of the previous treatments and where market-makers are

included in the market. The liquidity provided by market-

makers does not seem significant alter the price dynamics

of both assets, although we observe that at the beginning

of the trading session, the dynamics of P1 is more aligned

with its fundamental value, Figure 7, compared when

market-makers are absent, Figure 6.

For the sake of clarity, we summarize each treatment

results in the following:

Table 3. Model specification: πt,i = maxf0:5� uit,0g is the
probability to be a buyer or a seller for the asset i.

ui αi �i

i= 1 0.01643 0.8499 4.1946
i= 2 0 1 − 0.8499 2

Bid and ask quotes are given by, bt,s = minf(1� αi)u
i
t,s +αi�pt�1,i,xt,sg and

at,s = (1� αj)u
i
t,s +αi�pt�1,i, where ui

t,s is drawn by a uniform distribution

with support ½0,�idt,i�.
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1. T1-Separated: this is our base treatment in which

agents have separate portfolios. We basically

observe the same behavior as in Duffy and

Ünver,8 which based on SSW experiments, i.e., a

price bubble emerges for the speculative asset 1

(see P1 in Figure 2). Moreover, we observe the

same price shape of Kirchler et al.4 for the

second asset since the fundamental value is

constant (see P2 in Figure 2).

Figure 3. Mean transaction price and average volume of shares
traded among the trading periods for T2-Unique-Independent.

Figure 5. Mean transaction price and average volume of shares
traded among the trading periods for T2-Unique treatment with
market-neutral orders (following P1).

Figure 2. Mean transaction price and average volume of shares
traded among the trading periods for T1-Separated.

Figure 4. Mean transaction price and average volume of shares
traded among the trading periods for T2-Unique-Directional
(following P1).
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2. T2-Unique with independent orders (T2-Unique-

Independent): in this treatment, agents’ cash

accounts are merged into a single one for the two

assets considering the same endowments as in

T1-separated. Agents place order in each of the

two assets independently. As expected, in line with

the results observed by Kirchler et al.,4 we observe

an amplification on price levels, e.g., see the price

for the value asset P2, due to the increase in C/A

since both dividends are collected now in the same

portfolio for each trader, which generates an over-

all increase in cash (see Figure 3).

3. T2-Unique with directional orders (T2-Unique-

Directional): this treatment is similar to the previ-

ous one although agents’ orders now follow the

speculative asset 1 and place order in both assets

in the same position, i.e., using the directional

market factor. This treatment is also similar to the

experiment of Kirchler et al.,4 when part of the

investment capital is diverted from the value asset

toward the speculative one. Indeed, in addition to

observing a price bubble emerging for the specula-

tive asset 1, we observe a price reduction for the

value asset (see Figure 4).

4. T2-Unique with market-neutral orders (T2-Unique-

Market-Neutral): this is a complementary treatment

to the previous one, whereby agents place orders,

following the speculative asset P1, for both assets

in opposite positions, i.e., using the market-neutral

factor. In this case, we observe a price bubble for

both assets (see Figure 5).

5. T2-Unique with heterogeneous directional and

market-neutral orders (T2-Unique-Heterogeneous):

this treatment combines the feature of previous

treatments, in which there are 33% noise traders,

33% directional traders (always following the spec-

ulative asset P1) and 33% market-neutral traders

(see Figure 6).

6. T2-Unique with heterogeneous directional and

market-neutral orders when 10 market-makers are

present (T2-Unique-Heterogeneous-MM): we set

the market-makers parameter equal to k= 1,

A= 50, Q= 20. Each market-maker has different

risk-aversion parameter g, which is selected using

an equidistant grid in ½0:5, 1�. Results in this case

resemble the one presented in point 5. Having

market-makers providing liquidity does not signifi-

cantly alter the price dynamics of both assets,

although they are more realistic at the beginning

and at the end of the experiment (see Figure 7).

As a robustness check, we also repeated treatments 3–4

where the agents follow asset 2. In other words, u1 = 0,

so we expect that there is no decrease in volume and a

subsequent price decrease in the last trading periods for

P1. We do not observe any particular difference in price

path between these treatments and the T2 with indepen-

dent order, suggesting that a correlation in orders does not

affect prices correlation when the agent follows the signal

Figure 7. Mean transaction price and average volume of shares
traded among the trading periods for T2-Unique-Heterogeneous
with 10 market-makers. There are 33% noise traders, 33%
directional, and 33% market-neutral traders.

Figure 6. Mean transaction price and average volume of shares
traded among the trading periods for T2-Unique-Heteregenous.
There are 33% noise traders, 33% directional, and 33% market-
neutral traders.
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from the value assets (More details are available upon

request.).

To summarize, the results from our simulations suggest

that a price-bubble tends to emerge in all cases for the

speculative asset 1, while different dynamics appear for

the price of the value asset 2. In general, we interpret the

results of T2-Unique-Independent as those obtained by

purely noise traders with no particular trading strategy.

However, when we distinguish between two types of tra-

ders, namely, directional and market-neutral (i.e., T2-

Unique-Directional and T2-Unique-Market-Neutral), a

positive (negative) order correlation seems to imply a neg-

ative (positive) price correlation. Indeed, by construction,

the order types of a directional are positively correlated

(more precisely, they are equal); however, we observe a

negative price correlation. This was observed by Caginalp

et al.2 where they concluded that there might exist a nega-

tive liquidity mechanism that induces this price correla-

tion. This is precisely what comes out from the results of

T2-Unique-Directional, where, however, the order correla-

tion is positive. We remark that the quotes are independent

of the two assets. Interestingly, the heterogeneous model,

where the population is equally divided into three classes,

noise, directional, and market-neutral (T2-Unique-

Heterogeneous), provides equivalent results to that of the

T2-independent model, where all agents are noise traders.

Finally, when market-makers are considered (T2-

Unique-Heterogeneous-MM), the price dynamics of the

speculative asset starts close to the fundamental value,

hence more realistic than the previous ones. Indeed, as in

SSW experiments, traders in T2-treatments, since they are

inexperienced, start trading at a low value compared to the

fundamental value. Then, agents gain confidence and

create an upward trend which generates the typical price-

bubble shape. However, this inexperience is filled by

market-makers, which allows agents to trade at a more

efficient price. Thus, when market-makers are included,

traders may be considered more experienced than those of

the Duffy and Ünver model. Interestingly, even if traders

are experienced, we still observe price-bubble dynamics,

which is then intrinsically characterized by the experimen-

tal market design. Furthermore, in the Duffy and Ünver

model, we observe a liquidity drop when t! T , the vol-

ume of transactions significantly reduces at the end of the

market session. This effect is principally due to the weak

foresight of traders on the speculative asset. Therefore, the

liquidity generated by market-makers seems to anticipate

this liquidity drop process since agents start to trade at

prices close to the price-bubble peak and, therefore, with a

subsequent anticipated price deflation. The parameter set-

ting of the market-makers forces the average of their bid–

ask spread to be 1.5 on average. Therefore, at the begin-

ning of the market session, traders will mainly buy from

market-makers, while at the end, traders will post

(‘‘aggressive’’) quotes inside the market-makers spread,

making the liquidity provided by market-makers useless.

This suggests how cash flows from traders to market-

makers initially, and while at the end of the period due to

the market-makers inventory risk-aversion, the liquidity

provided by market-makers does not increase the transac-

tion volumes. This explains the reduction of the number of

transactions even if we have more liquidity in the market.

The same price and volume dynamics are also observed

for the other treatments considered.

However, if we increase the parameter k, the market-

makers’ spread will decrease and the number of transac-

tions remains constant over the trading period (see Guéant

et al.31). In this case, the typical price-bubble shape will no

longer be observable since the price will remain constant

for all trading periods at the market-makers’ mid-price.

To conclude, by analyzing the market impact among

the different treatments, we notice that the T2-Unique-

Market-Neutral exhibits the larger and significant cross-

impact effect, as it is confirmed by the subsequent results.

5. Statistical price model: market and
cross-impact estimation

Since the seminal paper of Kyle,36 linear models for mar-

ket impact are widely used to study impact of (aggregate)

net order flow and price movements. We consider the pop-

ular order flow imbalance, OFI, measure of Cont et al.,28

to estimate market impact. Roughly speaking, OFI repre-

sents the imbalance between supply and demand at the best

bid and ask prices during a fixed time interval. In particu-

lar, after computing OFIt 2 R
M between period t � 1 to t

(see Cont et al.28), we estimate the following model:

rt =L OFIt + et ð1Þ

where rt 2 R
M represents the assets returns, et 2 R

M is the

residual term, and L 2 R
M 3 M is the market impact

matrix. As usual the noise term et is uncorrelated from

OFIt, i.e., cov(et,OFIt)= 0. The diagonal components of

L represent the so-called self-impact coefficients, while

the off-diagonal terms represent the cross-impact effect

between the selected assets. Furthermore, due to the fea-

tures of experimental data, we may infer a causal and sta-

tistical relation between fundamental values changes and

OFIt.

5.1. Market-impact estimation based on simulated
data

We now compute the OFI and estimate market and cross-

impact using simulated data for each market session. We

follow Cont et al.28 and the standardization of Mertens

et al.37 More precisely, we compute OFI for each trading

round s among the periods. For our market design, the

OFIt, s, i for the asset i is computed first as the difference
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between of net (buy) order flow, V B
t, s, i, and net (sell) order

flow, V S
t, s, i, where there are no cancelations at the best bid

and ask, i.e.,

OFIt, s, i =V B
t, s, i � V S

t, s, i

The net (buy) order flow is defined as V B
t, s, i =

Lb
t, s, i �Mb

t, s, i, where Lb
t, s, i denotes the volume (number of

shares) of limit buy orders at the best bid, and Mb
t, s, i denotes

the volume of market (sell) orders occurring at the best bid

during round s. However, V S
t, s, i = La

t, s, i �Ma
t, s, i, where

La
t, s, i denotes the volume of limit sell orders at the best ask,

and Ma
t, s, i denotes the volume of market (buy) orders occur-

ring at the best ask during round s (see Cont et al.28 for fur-

ther details). Then, following Mertens et al.,37 we standardize

OFIt, s, i by rescaling with its standard deviation and market

depth dt, �, i, i.e.,

ofit, s, i :=
OFIt, s, i

dt, �, is(OFIt, s, i)

where dt, �, i is defined as the average among the rounds of

the average volume at the best bid and ask,

dt, �, i = 1=S
PS

s= 1 (V
b
t, s, i +V a

t, s, i)=2, i.e., depth is defined

as the average of the size at the best quotes (see also

Mertens et al.37).

Therefore, we compute for each round s at trading time

t, following Mertens et al.,37 the normalized log-returns of

mid-prices rt, s, i (by its standard deviation) and we estimate

the market impact coefficients lt, 1, i and lt, 2, i for asset

i= 1, 2 in a panel regression among round s and across

simulations for each trading period t, i.e., for each trading

period t = 1, 2, . . . , T ,

rt, s, i, k = lt, i, 1 � ofit, s, 1, k + lt, i, 2 � ofit, s, 2, k + et, s, i, k ,

k = 1, 2, . . . ,N ; s= 1, 2, . . . , S
ð2Þ

so that we may obtain an estimate of market impact among

the trading periods t, for asset i= 1, 2. The terms l�, 1, 2
(l�, 2, 1) measures how the order flow imbalance of asset 2

(1) impacts the returns of asset 1 (2), i.e., the cross-impact.

Figures 8 and 9 exhibit the estimates of l�, �, 1 and l�, �, 2
obtained by the regression (2) for each trading period

t for T2-Unique-Independent/Neutral and T2-Unique-

Heterogeneous/Heterogeneous-MM. Tables 4 and 5 report

the time average estimates of market-impact coefficients

among the trading periods. The results related to T1-

Separated are similar to those of T2-Unique-Independent,

but with a weaker cross-impact effect due to the capital

restrictions which we have imposed in T1.

We observe that the estimations of the regression model

(2) highlight how the self- impact remains significant and

constant among the trading periods for all the model speci-

fications considered. Moreover, we observe asymmetric

cross-impact estimates. Specifically, for almost all model

specifications, the cross-impact effect l21, the impact of

order-flow imbalance of asset 1 on returns of asset 2 is

positive. However, the cross-impact term l12 is not statisti-

cally different from zero so that the returns of asset 1 are

essentially influenced by the self-impact l11. Furthermore,

from Tables 4 and 5, we observe that the cross-impact

terms are smaller on average than those of self-impact.

Moreover, we note that market-neutral agents seem to play

a relevant role in generating a positive and significant

cross-impact effect l12 with respect to directional traders.

When agents follow the market-neutral factor, we find sig-

nificant cross-impact terms of asset 1 to asset 2. We also

observe a significant cross-impact term in the simulations

when the two fair values intersect. Moreover, while the

self-impact estimates are quite uniform among all specifi-

cations, even when market-makers are considered, the

cross-impact terms are reduced by the market-makers’

effect, even though the estimates remain statistically

significant.

We summarize our preliminary results as follows:

1. The market-neutral investors play a relevant role in

generating cross-impact effects.

2. The cross-impact tend to be asymmetric, where the

impact of the liquidity of (the speculative) asset 1

on asset 2 returns are significant and positive. The

liquidity of (the value) asset 2 is not relevant to

explain asset 1 returns.

3. The self-impact remains significant and constant

among the trading periods for all model

specifications.

In Appendix 1, we repeat the previous analysis to investi-

gate market impact during price-bubble crashes using other

market liquidity measures. We employ the order imbalance

(see, for example, da Gama Batista et al.11) and the excess

bids measures (see Selten and Neugebauer38). However,

we found inconclusive and insignificant results for both

measures. The volume imbalance does not provide signifi-

cant coefficients even for self-impact coefficients. The

excess bids measure provides, in general, noisy and con-

trasting results. Therefore, we restrict the statistical analy-

sis to the OFI measure.

5.2. A possible interpretation of cross-impact effect

Since we know the fundamental value for each asset, in

regression (2) we consider as an explanatory variable the

ratio between fundamental values. Precisely, we consider

rFV , t = log (FV1, t=FV2, t) as a distance measure between

the two-asset values, which in our design is positive for the

first half trading period and negative in the last trading

period. In particular, rFV , t becomes zero in the middle period

when the two-asset values intersect each other, which is the

region where agents will have more difficulty to disentangle
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the two values (We expect that the confusion generated by

the intersection of fundamental values will play a relevant

role with human traders rather than artificial.).

Therefore, we estimate the market impact coefficients

lt, 1, i and lt, 2, i for asset i= 1, 2, for each round s at trad-

ing time t, in a panel regression among round s and across

simulations for each trading period t, i.e., for each trading

period t= 1, 2, . . . , T ,

rt, s, i, k =at, i � rFV , t + lt, i, 1 � ofit, s, 1, k

+ lt, i, 2 � ofit, s, 2, k + et, s, i, k ,
ð3Þ

for each k = 1, 2, . . . ,N and s= 1, 2, . . . , S. Tables 6

and 7 report the average estimates of market impact and a

for different model specifications. The ratio of fundamen-

tal values filters out the cross-impact effect. This result

suggests that cross-impact effects are a masked outcome

of the intrinsic relations between fundamental values and

prices. The price-bubble mechanism of asset 1 pushes out

the price of asset 2 as an intrinsic effect. Interestingly, the

self-impact are consistent to what observed in the previous

analysis, and significantly positive.

We observe that a2 estimates turn out to be quite oscil-

latory among trading periods. Especially during trading

period 7 and 8, when rFV , t is close to zero, the estimates

of a2 results to be huge and oscillatory. Since this beha-

vior is observed among the various model specifications,

we report as an example in Figure 10 the estimates of ai

for T2-Unique-heterogeneous specification model where

there are 33% directional and market-neutral agents. The

behavior of a2 explains the huge standard deviations of

the average estimate of Tables 7 and 8.

(a)

(b)

Figure 8. Market-impact estimates using regression (2). Values with orange (dark) star are significant at 5% (10%) level using HAC
standard errors. (a) Estimates for treatment T2-Unique-Independent and (b) estimates for treatment T2-Unique-Market-Neutral.
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(a)

(b)

Figure 9. Market-impact estimates using regression (2). Values with orange (dark) star are significant at 5% (10%) level using HAC
standard errors. (a) Estimates for treatment T2-Heterogeneous and (b) estimates for treatment T2-Unique-Heterogeneous and 10
market-makers.

Table 4. Time average, among trading period t, of market-impact estimates obtained by regression (2) for T2 treatments with
homogeneous population.

T2-independent T2-directional T2-Market-Neutral

(a) Estimates for T2-Unique
λ11 0.657 (0.033) 0.639 (0.047) 0.657 (0.050)
λ12 0.014 (0.042) 0.058 (0.042) − 0.011 (0.021)
Adjusted R2 0.402 0.393 0.397
λ21 0.125 (0.045) 0.046 (0.040) 0.167 (0.067)
λ22 0.630 (0.031) 0.659 (0.039) 0.422 (0.127)
Adjusted R2 0.394 0.459 0.176

(b) Estimates for T2-Unique with 10 market-makers
λ11 0.767 (0.295) 0.756 (0.317) 0.760 (0.285)
λ12 0.034 (0.047) 0.060 (0.045) − 0.015 (0.059)
Adjusted R2 0.419 0.380 0.457
λ21 0.046 (0.112) 0.066 (0.107) 0.088 (0.115)
λ22 0.737 (0.059) 0.712 (0.060) 0.800 (0.128)
Adjusted R2 0.317 0.317 0.312

Standard deviations are reported in parentheses. We also report the average adjusted R2 for each regression.
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It is crucial to confirm this simulation analysis using

market laboratory data. We expect to repeat the previous

analysis by calibrating the models with parameters derived

from experimental data and directly measuring cross-

impact relations with fundamental values. Therefore, we

can now formulate our main hypotheses, to be tested once

experimental data has been collected.

6. Discussion: hypotheses formulation

Given the previous simulation results, we derive our main

hypothesis related to the cross-impact effect. In particular,

we expect that the uncertainty and difficulty to disentangle

the two-asset values during the central phase of the experi-

ment might trigger a significant liquidity mechanic effect

by which the price of one asset is affected by orders of the

other asset. We emphasize this hypothesis as follows:

H1. The uncertainty and difficulty in disentangling the

two-asset values trigger a significant cross-impact

effect between the two-asset prices. This effect will be

stronger in treatment T2-Unique compared to T1-sepa-

rated as in the former case, there are no restrictions in

moving the capital from one asset to the other.

Results from our simulation analyses support this hypoth-

esis. We observe a price-bubble emerging in the specula-

tive asset that also affects the price dynamics of the value

asset in all cases we examined (see section 4 to get an

overview of the different factor-investing styles and price

dynamics). Estimation of the cross-impact confirms that

this effect is positive and statistically significant in most

cases (see l2, 1 in Figures 8 and 9 and Tables 4 and 5). If

this hypothesis will be validated with laboratory data, it

will have an important policy recommendation: in order to

prevent price-bubble propagations (i.e., significant price

deviations from the fundamental values), the regulator

could operate in the market by imposing some capital con-

straints that impede capitals to divert from one asset to

another, i.e., as in T1 treatment.

Another hypothesis we derive concerns the cross-

impact asymmetries:

H2. The liquidity mechanism which generates the price

bubble does not involve a symmetric cross-impact

between the two assets.

In particular, we expect a larger cross-impact of the specu-

lative asset on the value asset, rather than the opposite.

Indeed, the price bubble of the speculative asset is mainly

driven by an endogenous mechanism, e.g., it does not

depend on the price realization of the value asset and it is

often observed in single asset experiments (see Palan35 for

a review). Results from our simulation results support this

hypothesis. In all cases, we observe a larger and significant

cross-impact of the speculative asset (see l2, 1 vs l1, 2 in

Figures 8 and 9 and Tables 4 and 5), but never the reverse.

The third hypothesis refers to the self-price impact:

H3. The self-impact will not change significantly in

treatment T2-Unique compared to T1-Separated.

In other words, we expect that the removal of liquidity

constraints will only affect cross-impact without signifi-

cantly affecting the self-impact. Results from our simula-

tion results support this hypothesis (see l1, 1 and l2, 2 in

Figures 8 and 9 and Tables 5 and 6).

Table 5. Time average, among trading period t, of market-impact estimates obtained by regression (2) for T2 treatments with
different factor-investing style agents by varying the percentage of directional (Dir.) and market-neutral (MN) traders.

Dir. 33.00% 40% 30%

MN. 33.00% 30% 40%

(a) Estimates for T2-Unique-Heterogeneous
λ11 0.649 (0.059) 0.652 (0.036) 0.653 (0.034)
λ12 0.007 (0.037) 0.026 (0.023) 0.012 (0.031)
Adjusted R2 0.381 0.399 0.385
λ21 0.117 (0.057) 0.131 (0.055) 0.155 (0.050)
λ22 0.627 (0.056) 0.634 (0.045) 0.599 (0.101)
Adjusted R2 0.380 0.381 0.347

(b) Estimates for T2-Unique-Heterogeneous with 10 market-makers
λ11 0.762 (0.291) 0.765 (0.289) 0.763 (0.285)
λ12 0.034 (0.049) 0.036 (0.043) 0.035 (0.056)
Adjusted R2 0.407 0.396 0.394
λ21 0.058 (0.098) 0.076 (0.062) 0.060 (0.114)
λ22 0.723 (0.055) 0.727 (0.056) 0.742 (0.067)
Adjusted R2 0.310 0.321 0.319

Standard deviations are reported in parentheses. We report also the average adjusted R2 for each regression.
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A further strong hypothesis which we can derive taking

advantage of the experimental data is the following:

H4. Within treatments, the relationship between asset

prices and fundamental values makes the cross-impact

effect negligible.

This hypothesis will allow us to investigate the origin of

the cross-impact effect as the result of an intrinsic relation

between fundamental values. From our preliminary results,

see section 5.2, the cross-impact vanishes when a distance

measure between the two-asset fundamental values is

included in regression (2). If H4 results to be valid, it

would point the relationships between intrinsic values as a

possible explanation of the cross-impact effect, further

supporting assumption H1.

7. Conclusion

Hypotheses formulation is always a crucial step when

planning an experiment. This work presents a simulation-

based approach to derive the hypotheses for our financial

Table 6. Time average, among trading period t, of market-impact estimates obtained by regression (3) for T2 treatments with
homogeneous population.

T2-independent T2-directional T2-Market-Meutral

(a) Estimates for T2-Unique treatments
α1 0.277 (1.392) − 0.270 (0.694) 0.010 (1.055)
λ11 0.642 (0.047) 0.633 (0.052) 0.633 (0.052)
λ12 0.005 (0.041) 0.053 (0.044) − 0.023 (0.017)
Adjusted R2 0.401 0.392 0.396
α2 − 0.710 (5.979) 0.046 (0.461) − 1.304 (9.911)
λ21 0.033 (0.033) 0.040 (0.048) − 0.005 (0.040)
λ22 0.591 (0.030) 0.654 (0.042) 0.345 (0.141)
Adjusted R2 0.400 0.458 0.192

(b) Estimates for T2-Unique treatments with 10 market-makers
α1 − 0.3117 (0.653) − 1.243 (3.151) − 0.292 (0.663)
λ11 0.740 (0.292) 0.721 (0.315) 0.745 (0.278)
λ12 0.013 (0.024) 0.033 (0.043) − 0.028 (0.069)
Adjusted R2 0.419 0.380 0.457
α2 − 0.214 (3.276) − 0.480 (2.668) − 0.512 (5.356)
λ21 − 0.014 (0.095) 0.032 (0.079) − 0.010 (0.096)
λ22 0.695 (0.052) 0.684 (0.058) 0.704 (0.097)
Adjusted R2 0.319 0.317 0.318

Standard deviations are reported in parentheses. We report also the average adjusted R2 for each regression.

Figure 10. α estimates using regression (3) for T2-Unique-Heterogeneous model specification where there are 33% directional
and 33% market-neutral agents. Values with orange (dark) star are significant at 5% (10%) level using HAC standard errors.
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market experiment, which we will validate once the

laboratory data has been collected. The present analysis

relies on synthetic data derived by different agent-based

models which sufficiently replicate the experimental data.

We first extend the agent-based model of Duffy and Ünver

to our market design, in which we consider two financial

assets (instead of one) and introduce factor-investing

trading strategies. We also use the simulation approach to

calibrate our experimental design. Furthermore, Cordoni39

shows how the price-bubble dynamics of the (simulated)

experimental results presented herein are robust and

persistent to the parameter choice of the asset-price

models.

We believe that our work contributes to the understand-

ing of the origin and causes of cross-impact effects in the

process of price-bubble formation. In particular, in a mar-

ket environment where capital is relatively segmented

across treatments, while price information remains free to

move, cross-impact can be seen as the result of the entan-

glement of asset value fundamentals, triggered by the

boost of the speculative asset-price bubble. Our prelimi-

nary analysis supports this hypothesis (H1): the uncer-

tainty and difficulty in disentangling the two-asset values

trigger a significant cross-impact effect between the two-

asset prices. This effect is larger when there are no restric-

tions in moving capital across the market. Interestingly,

this effect appears to be asymmetric (H2), always trig-

gered by the boost of the speculative asset to the value

asset, while the liquidity of the second asset never influ-

ences the price bubble. This would imply a violation of

dynamic arbitrage in the sense of Gatheral40 (see, for

example, the literature17,18,41) which is not surprising in a

market where price bubbles are present. This suggests that

the price-bubble mechanism is endogenously generated by

the fundamental characteristics of the speculative asset.

Finally, we also observe that the self-impact is not sub-

stantially affected by the market’s liquidity alteration

(H3). An exception is the self-impact of asset 2 when

agents are market-neutral traders. We also expect that a

significant relationship between asset price and fundamen-

tal values will emerge with experimental data. In particu-

lar, our setting suggests that taking into account a distance

measure between the two-asset values will explain a great

part of the cross-impact effect (H4).

In conclusion, even though these preliminary results

are based on simulations derived from specific agent-

based models, we can draw several interesting conclu-

sions. All the results need to be confirmed with experi-

mental data in order to understand the relevance of human

traders in generating market impact effects under the

price-bubble formation process. Furthermore, relying on

the experimental data, we aim to calibrate the more

sophisticated Baghestanian et al.’s agent-based model, to

the two-asset market to further investigate the price impact

using the previous analyses setup featuring speculative or

fundamental trading strategies.

Table 7. Time average, among trading period t, of market-impact estimates obtained by regression (3) for T2 treatments with
different factor-investing style agents by varying the percentage of directional (Dir.) and market-neutral (MN) traders.

Dir. 33.00% 40% 30%

MN 33.00% 30% 40%

(a) Estimates for T2-Unique-Heterogeneous
α1 0.217 (0.543) 0.151 (0.912) 0.151 (0.912)
λ11 0.627 (0.063) 0.628 (0.057) 0.628 (0.057)
λ12 − 0.004 (0.038) 0.000 (0.026) 0.000 (0.026)
Adjusted R2 0.380 0.379 0.379
α2 − 0.635 (5.107) − 0.377 (3.812) − 0.377 (3.812)
λ21 0.014 (0.046) 0.021 (0.030) 0.021 (0.030)
λ22 0.584 (0.058) 0.624 (0.045) 0.624 (0.045)
Adjusted R2 0.388 0.410 0.410

(b) Estimates for T2-Unique-Heterogeneous with 10 market-makers
α1 − 0.641 (1.745) − 0.357 (1.959) − 1.063 (3.288)
λ11 0.731 (0.286) 0.729 (0.287) 0.728 (0.283)
λ12 0.005 (0.048) 0.000 (0.053) − 0.002 (0.029)
Adjusted R2 0.407 0.397 0.394
α2 − 0.471 (4.113) − 0.552 (3.347) − 0.549 (3.786)
λ21 0.003 (0.081) 0.030 (0.043) 0.010 (0.097)
λ22 0.676 (0.056) 0.685 (0.050) 0.696 (0.058)
Adjusted R2 0.312 0.321 0.320

Standard deviations are reported in parentheses. We report also the average adjusted R2 for each regression.
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Appendix 1

Market impact and other liquidity measures

We then repeat the previous analysis to investigate market

impact during price bubble crashes using other market

liquidity measure. We report the results for the homoge-

neous agents model specification. We employ the order

imbalance (see, for example, da Gama Batista et al.11) and

the excess bids measures (see Selten and Neugebauer38).

The order volume imbalance is defined as

rt =V b
t � V a

t =V b
t +V a

t 2 ½�1, 1�, where V b
t (V a

t ) are the

total volume at time t of limit of buying (selling) orders

(see da Gama Batista et al.11). Similarly, as for the volume

imbalance (see, for example, Cartea et al.42), there is

strong buying pressure when rt is close to 1, and there is

strong selling pressure when it is close to �1. A critique

to using OFI to estimate market impact is that we have to

use the mid-prices returns. Thus, we run regression (2)

using log-price returns (of realized prices (We also run

OFI regression using market price instead of mid-prices,

but as expected the regression provides no significant

results, see also Cont et al.28)) and by substituting OFI

with r.

Table 4 reports the time average estimates of market-

impact coefficients among the trading periods. In contrast

to the previous case, the market impact estimates also

seem to deteriorate for self-impact terms. Furthermore, we

observe now significant positive cross-impact effects of

volume imbalance of asset 2 to returns of asset 1 in T2

treatment with market-neutral orders following asset 1. In

general, we observe a persistent self-market impact effect

for the value asset, while the self-impact of asset 1 results

to be quite oscillatory.

We then explore the excess bids as another liquidity

measure. Following Selten and Neugebauer,38 we also test

the predictive model of excess bids, i.e., we test the pre-

dictability power of the excess bids variable at period t on

asset return of the next period t + 1. The excess bids dur-

ing the trading period t for agent j on asset i is defined as

the difference in number of submitted bids Lb
t, i, j minus

offers La
t, i, j, which in our market design correspond to the

number of limits buy and sell orders, respectively (see

Smith et al.1 and Selten and Neugebauer38):

Xt, i, j = Lb
t, i, j � La

t, i, j

If we account also for market orders, we obtain, on the

individual level, the excess bids after market clearing:

X 0t, i, j =(Lb
t, i, j � La

t, i, j)� (Mb
t, i, j �Ma

t, i, j)

where a market buy (sell) order for agent j means that j

purchases (sales) the asset at the best ask (bid).

Furthermore, if j places a market buy order and k is the

seller, then we account the market clearing only for the

excess bids agent j. Therefore, following Selten and

Neugebauer,38 we aggregate the excess bids measure at

level of traders, i.e., we compute the average among

agents X 0t, i = 1=J
PJ

j= 1 X 0t, i, j. Thus, we run regression (2)

at level of trading periods t among the simulations substi-

tuting OFI with excess bids X 0. Moreover, we test the pre-

dictive hypothesis of Selten and Neugebauer38 in our

market setting, where using their notation, we set to zero

the risk-free rate by regressing rt + 1, i, k on X 0t, i, k . In order

to avoid confusion, we call the first regression as ‘‘Market

Impact Regression’’ and the second one ‘‘Predictive

Regression.’’ Therefore, for each treatment, we compute

unique market impact estimates. Table 9 shows the results.

In contrast to previous cases, we obtain disparate results

among T2 specifications (see, for example, R2 measures).

Overall, these previous analyses show that the unique,

consistent liquidity measure that provides more evident

and significant market impact coefficients is the OFI

measure.

Table 8. Time average, among trading period t, of market-impact estimates obtained by regression (2) using order imbalance ρ for
T2 treatments.

T2 T2-D1 T2-M1

λOI
11

− 0.0018 (0.231) 0.2624 (0.260) 0.4672 (0.163)

λOI
12

0.3735 (0.162) − 0.5308 (0.163) 0.5007 (0.143)

λOI
21

–0.2907 (0.295) − 0.6556 (0.348) − 0.0287 (0.278)

λOI
22

0.4972 (0.233) 0.3412 (0.211) 0.5904 (0.122)

Standard deviations are reported in parentheses.

T2 refers to T2 treatments with independent orders, T2-D1 refers to T2 treatments with directional orders, and T2-M1 refers to T2 treatments

with market-neutral orders, respectively.
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