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ABSTRACT

Estimating the performance of multimedia traffic is important in numerous contexts, including routing
and forwarding, QoS provisioning, and adaptive video streaming. This paper proposes a network
performance estimator which aims at providing, in quasi real-time, network performance estimates
for IoT multimedia traffic in IEEE 802.11 multihop wireless networks. To our knowledge, the pro-
posed multimedia-aware performance estimator, or MAPE, is the first deterministic simulation-based
estimator that provides real-time per-flow throughput, packet loss and delay estimates while consid-
ering inter-flow interference and multi-rate flows, typical of multimedia traffic. Our experimental
results indicate that MAPE is able to provide network performance estimates that can be used by
IoT multimedia services, notably to inform real-time route selection in IoT video transmission, at a
fraction of the execution time when compared to stochastic network simulators. When compared to
existing deterministic simulators, MAPE yields higher accuracy at comparable execution times due
to its ability to consider multi-rate flows.

Keywords Network Performance Estimator, IoT Multimedia Applications, Performance Predictions, Wireless Route
Selection.

1 Introduction

Efficient transmission of multimedia traffic in multihop wireless networks poses significant challenges mainly due
to their more stringent Quality of Service (QoS) requirements (e.g., throughput and delay), especially in the case of
real-time applications [1]. Additionally, multihop wireless communication is inherently more prone to losses and
congestion; for instance, the performance of a single wireless link can vary due to factors such as link-layer transmission
rate, its signal-to-noise-ratio (SNR), and complex propagation phenomena. Furthermore, transmission of multiple
flows that are not limited by rate control mechanisms can also cause congestion, as well as inter-flow interference,
medium access contention, and collisions [2]. And, in the specific case of multimedia traffic, even though compression
techniques use a pre-defined average data rate as a target, the actual data rate of the compressed flow may vary
considerably depending on scene complexity, flow resolution, and the different types of frames [3].

Estimating network performance is an effective mechanism to address the challenges raised by multimedia traffic as a
way to achieve QoS-aware admission control, resource provisioning and allocation in multihop wireless networks [4].
It allows estimating current available network capacity as well as deciding whether the network can fulfill each
flow’s requirements. In addition, accurate multimedia performance estimates are useful for routing and video coding
decisions [5, 1, 6].

There is a wide variety of IoT (Internet of Things) multimedia applications that can benefit from a real-time network
performance estimator to route selection [5], such as surveillance systems for outdoor or indoor spaces in smart cities
that require multiple video sources transmitting simultaneously to the monitoring center [7]. Note that the performance
of these application scenarios can vary according to the selected route for each video flow, as this may cause inter-flow
interference.
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As will be discussed in more detail in Section 2, different performance estimators have been proposed but do not fulfill
the needs of IoT multimedia applications which require estimators to account for multi-rate flows as well as inter-flow
interference, while being able to provide their estimates in a timely and resource-efficient manner.

In this paper we propose the Multimedia-Aware Performance Estimator, or MAPE for short, which estimates network
performance for multi-rate multimedia flows using their video coding rate as input. To the best of our knowledge,
MAPE is the first estimator that is able to provide throughput, packet loss and delay estimates in real time considering
rate-heterogeneous flows and accounting for inter-flow interference.

Experiments using different IoT multimedia application scenarios demonstrate that MAPE is able to provide real time
network performance estimates, i.e., throughput, delay, and packet loss, with savings of over two orders of magnitude in
execution time when compared to the ns-3 [8] network simulator. Furthermore, we show how MAPE can be used to
improve video transmission quality by guiding route selection on a per-flow basis.

The remainder of this paper is organized as follows: Section 2 reviews related work on network performance estimation
in IEEE 802.11 networks. Section 3 describes MAPE’s design and operation in detail. Our experimental methodology,
and results from our evaluation of MAPE’s accuracy are reported in Sections 4 and 5, respectively. Section 6 shows
how MAPE can be used to guide route selection in order to improve video transmission quality. Finally, Section 7
concludes the paper and presents directions for future work.

2 Related Work

IEEE 802.11 networks have offered several attractive rate-capable amendments that serve various multimedia application
scenarios [1]. Providing performance estimates is critical to meet QoS guarantees in such networks. Existing approaches
to network performance estimation in IEEE 802.11 networks can be classified in three main categories, namely:
mathematical models, online estimators, and discrete-event simulators.

Mathematical models Estimators based on mathematical models typically make simplifying assumptions to make
modeling tractable. For instance, most existing proposals target one-hop flows [9, 10, 11]. Moreover, they make
additional simplifications, such as perfect links and identical transmission rates for all nodes. In the context of per-flow
performance estimation, Laufer and Kleinrock [12] present a more complete model for analyzing the throughput
of CSMA/CA networks. This model estimates the maximum throughput for each flow by modeling the network
behavior as a system of non-linear equations and solving the resulting optimization problem. That approach can become
prohibitively expensive for larger networks, as the size of the system of equations grows exponentially with the number
of network nodes.

Online Estimators While mathematical models for performance estimation are useful to understand the limits of
contention-based medium access protocols, approaches that can be operated online are required in practice, e.g., for
real-time applications such as adaptive video streaming [13, 14, 15, 16, 17, 18, 19, 6, 20] and routing protocols [21]. In
particular, performance estimation for adaptive video streaming is discussed in [16, 18]. These studies also consider
buffer occupancy information for predicting performance to improve video streaming quality of experience (QoE).
The work reported in [20] proposes a method to reduce the impact of inaccurate throughput prediction on QoE by
controlling the buffer occupancy within a safe range. In turn, routing metrics provide indirect information that is
expected to correlate well with throughput [21], but they usually fail to evaluate the interference between flows.

Discrete-Event Simulators Discrete event simulators can be stochastic or deterministic. Stochastic simulators use
pseudo-random number generators to determine the outcomes of events that have some level of randomness (e.g., the
choice of backoff intervals for medium access), while deterministic simulators replace pseudo-random generation with
deterministic values (e.g., a fixed average backoff interval).

Network performance estimation performed by stochastic simulators like ns-3 [8] and OMNET++ [22] is commonly
used to either conduct an a-priori evaluation of a certain network and its protocols, guide network provisioning,
deployment or operational tasks. Because of their random nature, they usually require a large enough number of runs
for every experimental configuration in order to obtain statistically meaningful results, which adds to their inherent
scalability limitations, long execution times, and high computational resource needs. On the other hand, deterministic
estimators provide an adequate accuracy with identical results no matter how many times they are run. However, they
must be designed to perform in real-time while the network operates to help dynamically adjust operational parameters.

One notable example of this latter class of performance estimators is AFTER [23]. It was proposed to tackle the
problem of real-time throughput estimation for multihop IEEE 802.11 networks. AFTER simulates the behavior of the
link- and network layers to quickly converge to steady state behavior that allows it to estimate the long term average
throughput of each flow for a given set of application flows and corresponding routes. To this end, it maintains in
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memory a complete view of the network topology and performs a deterministic simulation of the network dynamics,
generating simulated virtual packets (v_packets) for each flow at their respective virtual source nodes, triggering a
number of other relevant simulation events, such as wireless medium access, queue management (v_packets being
added, removed and discarded from buffers) and, eventually, the delivery of v_packets to their virtual destination nodes.
In particular, AFTER takes into account inter-flow interference, employing a set of deterministic rules to deal with
nodes competing to access the wireless medium. However, AFTER cannot handle arbitrary traffic models because it
seeks to estimate the maximum achievable network throughput by considering each flow to have an infinite backlog at
the source. This means that AFTER provides no support for scenarios in which multimedia applications themselves
limit the transmission rate of each flow.

In summary, to our knowledge, MAPE is the first deterministic performance estimator that takes into account both
inter-flow interference and heterogeneous flows, i.e., flows with different data rates, while being able to be executed in
real-time.

3 Multimedia-Aware Performance Estimator

As discussed in Section 2, although a number of performance estimation approaches have been proposed, none of them
is able to provide real-time performance estimates that account for both inter-flow interference and rate-heterogeneous
flows. The proposed Multimedia-Aware Performance Estimator, or MAPE, tries to fill this gap and uses a deterministic
simulation-based approach to estimate the long term average throughput, packet loss and end-to-end delay for all
(multi-rate) flows considering inter-flow interference. Note that considering multi-rate flows is essential to more
realistically reproduce the behavior of multimedia applications. For instance, in video applications, transmission rates
are determined by video coding at each source and, therefore, each flow can be transmitted at different rates.

3.1 MAPE - Design and Operation

Algorithm 1 illustrates MAPE’s overall operation, which is divided in three steps: Step 1 - MAPE starts with a complete
snapshot of the current network state as input consisting of a representation of the network topology that includes link
quality estimates (i.e., link frame delivery probability), list of currently active flows along with the respective paths,
and each flow’s data rate; Step 2 - MAPE then uses the initial network snapshot to simulate the network as it operates
until reaching steady state, which is used to compute long term throughput, packet loss, and end-to-end delay estimates
in Step 3. Note that we employ the term steady state in the same sense as in [23], i.e., as a finite cycle of states that
repeats themselves.

Algorithm 1: MAPE’s pseudo-code.
{Step 1: Initialization}
networkTopology ←graph representing the network
flowsPath← list of paths of all flows
flowsRate← list of bitrate of all flows
{Step 2: Simulation}
while no Steady State do

foreach flow f ∈ flowsPath do
Update the number of v_packets received by flow f ;
Schedule the queuing of new packet of flow f to its queue according to flowsRate;

end
Next network state;

end
{Step 3: Estimation}
Compute long term per-flow performance.

At the end of each iteration, MAPE stores a snapshot of the current network state, which consists of currently ongoing
transmissions with their respective remaining times, the content of the queues and the backoff counter of the wireless
medium access for all nodes that are traversed by any flow on the evaluated flow set, and the current medium access
priority list. To decide whether the steady state has been achieved, the current state is compared to all previous ones.
Whenever a duplicate state is found, MAPE declares that steady state has been reached and computes the average
throughput, packet loss rate and end-to-end delay for each flow. A heuristic stop criterion is also used to guarantee low
execution time and adequate real-time performance independent of application scenarios. When duplicated states are
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not found, MAPE computes the average cycle performance of events within which at least one packet from each flow
has been delivered to its final destination as an attempt to approximate steady state performance.

Unlike stochastic simulators that study network behavior over a predefined period of time, MAPE aims at estimating
the performance of the network, e.g., throughput, packet loss, and end-to-end delay at steady-state. This can be
especially useful for QoS provisioning and, as previously noted, for route selection in real-time multimedia applications.
Additionally, as discussed in Section 2, deterministic simulators that assume rate-homogeneous flows may result in
severely inaccurate estimates for a number of reasons. First of all, the performance of a flow is necessarily limited by
its transmission rate. Thus, such simulators may grossly overestimate performance in scenarios where network capacity
is much larger than the aggregate demand of the active flows. Furthermore, severe underestimates may also occur for
individual flows because interfering flows may be transmitted at a higher rate, consuming more network resources
than they would in reality, reducing the achievable performance of other flows. MAPE overcomes these limitations by
explicitly accounting for both multi-rate flows and inter-flow interference and thus attains more accurate performance
estimates in more realistic multimedia application scenarios.

While MAPE builds on “traditional” deterministic estimators such as AFTER [23], unlike these estimators, MAPE
relaxes the assumption that all flows have infinite backlogs and instead generates v_packets according to the rate of
each flow — which can be specified as an input, based on the flows’ video coding rate, for instance. Whenever invoked,
MAPE receives flow rate arguments as input and uses them deterministically to simulate the network dynamics by: (1)
generating simulated v_packets for each flow at their respective source nodes, (2) triggering a number of other relevant
simulation events, such as wireless medium access transmission, queue management (v_packets being added, removed
and discarded from buffers), and, (3) eventually, delivering v_packets to their destination nodes. As such, inter-flow
interference happens as a result of buffer overflow, link-layer transmission losses, and medium access conflicts.

3.2 MAPE - Implementation

MAPE’s current implementation uses AFTER [23] as the underlying deterministic performance estimator. As shown in
Figure 1, MAPE starts by initializing the simulation state with its input arguments. In this phase, the first packet of
each flow is added to the queue of the respective source node and the simulation time is initialized to keep track of the
events that are used to generate scheduled v_packets. Thus, the main loop of the simulation starts with the advance of
the simulation according to the time of next possible events. This loop also handles packet receptions and eventually
generates new transmission events until it detects that the network has reached a steady state — a state when the same
sequence of events starts to repeat itself — which informs MAPE that it can then compute the estimated performance of
each flow.

Figure 1: MAPE’s implemention

MAPE’s functionality is implemented as a module (called SPR for Specific Per-flow Rates) that interfaces with the
deterministic simulation engine to (1) provide flow rate information as part of simulation initialization, (2) update
each flow when their v_packets are received, (3) generate new v_packets according to the stipulated flow rates, and (4)
provide per-flow performance measurements.

MAPE uses a representation of the current simulation state, which includes information about all received v_packets.
Furthermore, the SPR module implements a procedure to schedule the next packet generation for each flow according to
the specified rate and keeps track of the number of v_packets received per flow, which is used to calculate performance
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estimates for each flow. The number of received v_packets is also used to determine the steady state cycle – i.e. the
shortest sequence of network states that repeats itself indefinitely on the steady state of the simulation. While in the
original AFTER the network state is updated when an v_packet from any flow arrives at the destination, in the SPR
module the condition was modified to update it only when all flows receive at least one v_packet.

To simulate v_packet transmissions, MAPE starts by placing the initial v_packet of each flow on the queue of the
respective source node. It then iterates through all nodes that have at least one v_packet on their queues and triggers
events for dequeuing a v_packet and adding this v_packet to a transmission buffer, where the v_packet is stored while
waiting for an opportunity to be transmitted.

Note that MAPE’s SPR Module introduces a mechanism to schedule the next v_packet generation for each flow
according to the specified rate. Once per-flow rates have been specified, the scheduler uses them to place new v_packets
in each source node’s queue until the steady state is detected. Thus, v_packets of each flow are generated according to
the intervals of the simulation time. To keep track of the simulated time, MAPE uses a time variable that is updated
according to the end time of a link layer transmission attempt and the backoff procedure.

Once the simulation reaches steady state, MAPE computes the average throughput of each flow as the ratio between
the total number of v_packets delivered within the last steady state cycle — i.e., the period between two repeating
simulation events — the steady state cycle length. In addition, the SPR Module computes packet loss and end-to-end
delay by tracking all v_packets from the instant when they are generated at their source nodes until they are received
at their destinations. MAPE is then able to estimate the average per-flow packet loss rate and end-to-end delay. Such
metrics account for the data link layer transmission attempts and queuing delays.

3.3 Discussion

While MAPE makes assumptions about network events and convergence to steady state, our experimental evaluation
(see Section 5) shows that MAPE is still able to estimate per-flow performance with adequate accuracy in quasi real
time.

Note that MAPE uses information about the topology of the network and the driving application (e.g., multimedia
sources, flow rates), and, in the application scenarios envisioned (e.g., Smart Cities, Industrial Automation), nodes are
typically stationary and have access to continuous power sources. As such, frequent topology changes (and energy
limitations) are not expected to play a significant role. In scenarios where topology changes need to be considered,
topology updates can be conveyed by proactive routing protocols.

Route selection is an example of how MAPE can be used in practice. The routing protocol would invoke MAPE with an
up-to-date network snapshot as input. Then, based on MAPE’s performance estimates, it would perform route selection
accordingly. For instance, a proactive link-state algorithm (e.g., OLSR [24]) can periodically discover topology changes
and disseminate this information through link state updates that MAPE can use to adjust its estimates. Network topology
information would be updated whenever a node identifies “significant” changes in the network topology, e.g., link
failures, new nodes/links or changes in link quality. As part of our experimental evaluation (see Section 6), we show
how MAPE can guide route selection and, as a result, improve video transmission quality.

In its current implementation, MAPE assumes that flows are transmitted at constant bitrate. However, multimedia
applications typically employ variable bitrate transmission. One way to address this is to simply have MAPE use the
flow’s average bitrate, which can be determined during transmission. Another approach to handle dynamic traffic
patterns is to provide MAPE with updated data rate information whenever significant transmission rate changes are
detected in the video coding process. In this work, we use the average bitrate of each video trace as input to MAPE. As
part of future work, We plan to add support to variable bit rate flows.

4 Evaluation Methodology

We evaluated MAPE against two types of discrete event simulators, stochastic (ns-3) and deterministic (AFTER). We
chose ns-3 because it is widely used by the network researchers and practitioners since it provides an adequate model
of the network and, thus, provides reliable estimates of network performance. We use AFTER as the example of
a deterministic simulator and demonstrate that MAPE can achieve better accuracy by being able to model specific
per-flow rates, i.e., it simulates each flow transmitting at specified multimedia bitrates.

In this section, we describe the experimental methodology we use to evaluate MAPE, including the topologies and
traffic models considered, as well as how the experiments were carried out.
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4.1 Experimental Topologies

We evaluate MAPE using two different IoT wireless network topologies akin of IoT scenarios and whose parameters are
summarized in Table 1. The Random Indoor topology aims to replicate smart building scenarios and was generated by
placing nodes randomly within an indoor environment. The Grid Outdoor topology tries to simulate smart city scenarios
of neighborhood blocks and streets in an urban region, represented by a grid. More specifically, we reproduced a region
of the city of Niterói, in the state of Rio de Janeiro, Brazil using an 8× 7 grid of nodes in which two consecutive nodes
are placed 60m and 70m apart on a given line and column of the grid, respectively.

Table 1: Simulation scenarios

Parameters Topologies
Random Indoor Grid Outdoor

Deployment area (m2): 100 x 100 360 x 490
Number of nodes: 30 55
PHY/MAC technology: 802.11g 802.11g
Link speed: 18 Mb/s 18 Mb/s
Mac Queue Size: 10p 10p
Packet Lifetime: 1000ms 1000ms
Traffic Control Queue Size: 1p 1p
Network Queue Size: 1p 1p
Propagation Model: Shadowing Cost231

For a fair comparison between the two simulators, we set up the same link speeds, queue sizes and packet lifetime
policy on ns-3 and MAPE. The Shadowing and Cost231 propagation models [25] were chosen to more realistically
reproduce indoor and urban environments. All simulations use the same MAC and PHY technology and the same link
speed, which was chosen to support multimedia application scenarios.

In order to estimate link quality (an information that is required by MAPE), a series of preliminary simulations were
performed using the ns-3 simulator. For all nodes in each topology, we executed a simulation transmitting 20, 000
packets to extract the long term quality of each link.

4.2 Traffic Models

In addition to link quality, MAPE requires per-flow transmission rate information. In our experiments, we use a mix of
three different rates (as shown in Table 2) to represent different levels of video quality. The EvalVid framework [26]
was used to generate traces of the same video clip with these three rates, and the resulting average bitrate of each video
trace was used as input to MAPE. Additional traffic generation parameters and their values used in our simulation
experiments are listed in Table 2.

Table 2: MM and CBR traffic parameters
Parameters Values

MM-Traffic
Video: Hall Monitor
Encoding: H.264/MPEG-4 AVC
Frame rate: 30 Hz
Format: YUV CIF, 352 x 288
Number of frames: 3600
Target Bitrate: 256, 512, 1024 kb/s
Packet size: 1024 bytes

CBR-Traffic
Bitrate: 261, 485 and 836 kb/s
Packet size: 1024 bytes

Experiments which used multimedia (MM) traffic employ a publicly available and commonly used video clip, namely
“Hall Monitor” [3], which was converted to H.264 format with a rate of 30 frames per second. Considering real-time
transmission delay and human tolerance, the play-out buffer is set to 300ms to mitigate potential out-of-order packets;
packets with delay longer than 300ms are discarded at the decoder.

In video traffic, transmission rates may vary according to the coding technique used. For example, more important
video frames (e.g., MPEG I-frames) are often transmitted at higher rates than the target compression bitrate, while less
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important frames (e.g., MPEG P-frames and B-frames) are transmitted at lower rates. In our experiments, multimedia
(MM) traffic target bitrates used by MAPE are based on long-term average bitrates calculated at the video source
encoder. Because MAPE currently models variable bit rate flows using their long-term average rates, we also ran
experiments with CBR traffic in our ns-3 simulations in order to assess how short-term fluctuations of the video traffic
bitrate affect MAPE’s estimates. In those experiments, we adopt the same bitrates used as input for AFTER and MAPE
as listed in Table 2. As part of our future work (see Section 7), we will modify MAPE’s current variable bit rate traffic
model to be able to account for shorter-term transmission rate variations.

4.3 Experiments

Simulation experiments were conducted as follows. For each topology, we computed the 5 best paths (based on the
quality of their links) for 500 source-destination pairs generated randomly. Selecting one path for each pair, out of their
5 best, we generated random instances for scenarios with 3, 6, 9, and 12 pairs (or flows), which are used to transmit
concurrent video flows with 3 different levels of quality – a third of the flows use each of the three transmission rates
listed in Table 2. For instance, in a scenario with 6 flows, we have 2 sources transmitting at 256 kb/s, 2 sources
transmitting at 512 kb/s, and 2 sources transmitting at 1024 kb/s. We left out the evaluations of scenarios with more
than 12 flows because the networks become saturated. These scenarios do not provide satisfactory support for video
applications, so they are not relevant for this work.

Finally, all scenarios were also executed in the ns-3 simulator for both the CBR and MM traffic models using a
simulation time of 120s. For each scenario, execution time, per-flow throughput, end-to-end delay, and packet loss
were computed by averaging results over all runs.

4.4 Evaluation Metrics

We evaluate MAPE’s performance according to execution time and prediction accuracy. Since ns-3 is a packet-level
simulation platform, we are using its throughput, packet loss and end-to-end delay statistics as the ground truth in our
performance study. Throughput is calculated as the ratio between the number of packets delivered to the destination and
simulation time. End-to-end delay is the time interval between when a packet is transmitted by the source node and
when that packet is delivered at the destination, averaged over all packets received, and packet loss is calculated as the
percentage of packets transmitted that were not delivered to the destination.

We expect MAPE to achieve predictions close to those of ns-3, but in a reproducible manner and at a fraction of the
required execution time. We also use SSIM [27] and another metric called classification inversions — as defined in [23],
and further explained in Subsection 6.2 — to evaluate video quality and demonstrate the practical suitability of MAPE
to the problem of route selection for multimedia applications.

5 MAPE’s Accuracy Evaluation

Our experimental evaluation aims at demonstrating MAPE’s ability to accurately estimate per-flow throughput, delay
and packet loss in a timely manner when compared to estimates provided by existing stochastic and deterministic
simulators. To this end, we compare MAPE against ns-3 [8] and AFTER [23] by considering the trade-off between
execution time and throughput, delay and packet loss estimate accuracy.

5.1 Execution Time

We measure average execution time for AFTER, MAPE, and ns-3 for each scenario considering the 95% confidence
intervals. All mean times are in milliseconds and simulations were performed on a dedicated server with an Intel i7-860
processor running at 2.8 GHz and 32 GB of RAM. As shown in Figure 2, MAPE and AFTER report execution times
that are at least 2 orders of magnitude lower than those of ns-3 for different scenarios.

Note that execution times for ns-3 vary from tens to hundreds of seconds for the scenarios considered. While we
observe a slight increase in MAPE’s time complexity when compared to AFTER’s for scenarios with only a few flows,
that difference becomes negligible when the number of flows increases. It demonstrate that MAPE is able to compute
per-flow network performance estimates in real time which can be used to inform core network services such as routing.
MAPE and AFTER are fast because, unlike stochastic simulators, they do not need to simulate nearly as many events to
reach steady state.

As expected, execution times increase with the number of flows. However, AFTER and MAPE’s execution times
increase more significantly with the number of path hops because that increases the number of transmission and
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Figure 2: Execution time (log scale) for different number of flows

reception events needed to deliver the flows’ v_packets to the destination node. This explains the slightly higher times
measured with the Grid Outdoor topology, which typically requires paths with more hops because of the greater
distances between nodes.

5.2 Estimated Throughput

We measure throughput estimate accuracy as the ratio between the per-flow estimate returned by AFTER or MAPE and
the per-flow throughput obtained by ns-3. Differently from other common ways to measure accuracy, such as the mean
squared error, the way we evaluate accuracy conveys whether the estimate is an underestimate or overestimate of the
reference value, which is the value reported by ns-3. Figures 3 and 4 show MAPE’s and AFTER’s throughput estimate
accuracy for CBR and multimedia traffic in both the Random Indoor and the Grid Outdoor topologies, respectively. The
red line represents the “ideal” ratio of 1, i.e., a perfect match between the estimates and ns-3’s measured throughput.
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Figure 3: Estimated throughput accuracy relative to ns-3 in Indoor Random topology.

We observe that AFTER’s throughput estimates are significantly less accurate when compared to MAPE because
AFTER’s simulated flows attempt to transmit at the highest supported rate, typically resulting in overestimates. This is
particularly pronounced for scenarios with few flows in which there is low inter-flow interference and, consequently,
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Figure 4: Estimated throughput accuracy relative to ns-3 in the Outdoor Grid topology.

more residual network capacity to support higher transmission rates. As more flows are added, AFTER’s prediction
improves because, with more flows sharing the network’s capacity, there is less room for each flow’s transmission rate
to increase beyond the real transmission rate.

This prediction discrepancy between AFTER and MAPE also quantitatively demonstrates the impact that not accounting
for specific flow transmission rates may have. It also illustrates that MAPE is able to significantly improve prediction
accuracy for scenarios with few flows (in our experiments, 3- and 6-flow scenarios). MAPE’s accuracy decreases in
scenarios with more flows — with a bias toward overestimates due to some simplifications inherited from AFTER. For
instance, AFTER does not take into account packet losses due to collision, which may influence network throughput
when there are more flows transmitting simultaneously. Instead, in its inter-flow interference model, AFTER implements
a medium access scheduler based on an interference graph of the topology. In future work, we plan to address this issue
by improving how flow interference is modeled.

Note that MAPE yields higher accuracy for CBR traffic (Figures 3a and 4a). That is because its scheduler also generates
v_packets at constant rates. For multimedia (MM) traffic scenarios (Figures 3b and 4b), however, transmission rate
variations cause MAPE to overestimate the throughput. This is because bursts of the more important video packets cause
losses due to buffer overflow and packet collisions, while less important video packets which have lower transmission
rates are delivered more reliably.

We also evaluate the per-flow throughput prediction accuracy considering the different classes of flows based on their
transmission rates. Figure 5 summarizes the results for 6 flows using CBR and MM traffic in both the indoor and
outdoor topologies. We also ran these experiments for 3, 9 and 12 flows, but we omit those results since they show
similar trends. The red reference lines represent the ideal throughput based on the average bitrate generated for each
video trace.

The figure shows that AFTER tends to overestimate all three classes of flows. Moreover, as the source-destination
pair is chosen randomly regardless of the transmission rate of the flow, the average throughput estimated by AFTER
tends to be roughly the same for all three classes. Conversely, by knowing the transmission rate of each flow, MAPE is
able to more accurately estimate per-flow throughput. Note, however, that it slightly overestimates MM’s throughput.
This issue, which is more pronounced in the outdoor topology due to its higher link reliability, is due to the fact that
MAPE’s current implementation uses AFTER, and thus it inherits the mechanism used by AFTER to estimate packet
loss. It considers two possible sources of packet loss: buffer overflow and link-layer transmission losses. If all links that
compose a path have perfect delivery rates, losses computed by AFTER are only due to buffer overflow. In practice,
however, there are other sources of losses, such as collisions, and as a result, MAPE and AFTER tend to overestimate
flows’ throughputs.
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(b) Grid Outdoor Topology.

Figure 5: Average throughput for scenarios with 6 flows.

5.3 Estimated Delay and Packet Loss

We also evaluate MAPE’s delay and packet loss estimates. Figure 6 shows the average end-to-end delay, considering
the 95% confidence intervals for different number of flows in both experimental topologies. When compared to the
results obtained by ns-3, MAPE shows similar delay increase trend as the number of flows increases. Note that MAPE
overestimates the end-to-end delay for scenarios with 12 flows in both topologies. This is due to MAC layer congestion
as more flows share the same nodes/links increasing contention and consequently increasing MAPE’s time to reach
steady state, which, in turn, may cause MAPE’s execution to end before reaching steady state. Although MAPE’s
estimate is less accurate compared to ns-3 when it does not reach steady state, we will demonstrate in the Section 6 that
these results are still useful to inform the route selection process ahead of multimedia flow transmission.

Figure 7 plots the average packet loss rate. It also shows a discrepancy between MAPE’s and ns-3’s estimates in
both topologies. But here, instead of overestimating, losses are generally underestimated by MAPE. The culprit is
the absence of a collision packet loss counter in MAPE, which causes it to be more prone to estimate lower overall
loss rates. These results also help explain the reason for instances in which MAPE overestimates the throughput — a
consequence of fewer packets being discarded at the MAC layer. Furthermore, as expected, packet losses for MM traffic
were even more impacted by the bursty nature of the video packet flows. As part of our future work, we plan to improve
how MAPE models packet losses due to collision.

Despite those discrepancies, the results shown in Figures 5, 6 and 7 demonstrate MAPE’s ability to capture the overall
trend in throughput, delay and packet loss for multimedia flows in different application scenarios. Furthermore, we
note that the discrepancies for 9 and 12 flows are mostly caused by network congestion and MAPE estimates being
generated before steady state is achieved.

In order to confirm this hypothesis, in Figure 8 we show a scatter plot for the 9-flow runs using the Random Indoor
topology representing which instances did and did not reach the steady state and their respective delays discrepancies
when comparing MAPE to ns-3 — i.e., the difference between MAPE’s and ns-3’s average delay estimates. Note that
we show results for the 9-flow Random Indoor topology experiments because, with 9 flows (and above), the network
gets more congested and consequently the number of instances that do not reach steady state increases, which, as
previously discussed, results in higher delay and packet loss discrepancies.

As the plot shows, when steady state is reached, MAPE yields adequate estimation accuracy, with discrepancies
concentrating around less than 100ms. However, MAPE tends to overestimate end-to-end delay for instances that do
not reach steady state, causing higher discrepancies.

Figure 9 confirms this observation — it shows a scatter plot of the path average throughput according to ns-3 for
instances that reached the steady state and those that did not as a function of the delay estimate discrepancies for the
12-flow experiments in the Random Indoor Topology (since they showed the highest discrepancies). As the plot shows,
higher throughput paths are concentrated around the smallest discrepancies, while the largest discrepancies happen
with paths that present poor network performance and are, thus, not suitable for multimedia flows. Note that instances
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Figure 6: Average end-to-end delay for different number of flows.
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(b) Grid Outdoor Topology.

Figure 7: Average packet loss for different number of flows.

with higher throughput were those in which MAPE was able to reach steady state, unlike runs that exhibit higher
discrepancies, which, again, are the ones where steady state was not reached.

As a tool to guide real-time route selection decisions for IoT multimedia applications, low throughput routes —likely
because of congestion — are generally undesirable, as they are often unable to meet the requirements of multimedia
flows. As such, overestimating delay for those paths should not negatively impact path selection. That is, MAPE’s
delay overestimates when compared to ns-3’s correspond to paths that are undesirable for video traffic anyway and
therefore should not be selected by routing.

6 Video Quality Evaluation

The ability to estimate network performance is essential to ensure adequate network support for many IoT multimedia
applications. In the case of applications involving video transmission, for instance, timely and fresh estimates of
the current state of the network can significantly help routing protocols to rapidly identify paths that satisfy QoS
constraints, as well as promote load balancing and network resource utilization. To examine how MAPE’s performance

11



Network Performance Estimator with Applications to Route Selection for IoT Multimedia Applications

0 100 200 300 400 500
−100

0

100

200

300

400

instances

de
la

y
di

sc
re

pa
nc

y
(P

re
d
ic
ti
on
−

R
ef

er
en

ce
)m

s

reached steady state
did not reach steady state

Figure 8: Difference between MAPE’s and ns-3’s average delay predictions considering MAPE’s steady and non-steady
instances for scenarios with 9 flows in the Random Indoor Topology.
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Figure 9: Path average throughput (according to ns-3) as a function of the difference between MAPE’s and ns-3’s
average delay predictions for scenarios with 12 flows in the Random Indoor Topology.

estimates can be used to improve overall video quality, we use a well-known Quality-of-Experience (QoE) metric called
Structural Similarity Index Measure (SSIM) [27] measured by the EvalVid video transmission and quality evaluation
framework [26]. In the second part of this section, we evaluate the quality of the video transmitted using the route
selected based on MAPE’s estimates.

6.1 Video Structural Similarity

The Structural Similarity Index Measure, or SSIM, measures video structural distortion which is known to correlate
with video quality as perceived by the end user [27]. This metric combines luminance, contrast, and structural similarity
of the frames to compute the correlation between the original frame and the (possibly distorted) displayed one. SSIM
values vary between 0 and 1, with higher values meaning better quality.

To show how MAPE estimates can be used to improve video quality, we run experiments transmitting the "Hall Monitor"
video clip (as described in Section 4.2) and compute the SSIM by comparing all transmitted and received video frames.
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Figure 10 plots the average SSIM of the instances for different numbers of flows in the Random Indoor topology.
According to the delay discrepancy ranges observed in Figure 8, we group experimental run instances in two classes,
where the first class exhibits delay discrepancies greater than 100ms (called lager delay discrepancy) and the second
class exhibits delay discrepancies equal to or less than 100ms (called smaller delay discrepancy) when compared to
the results obtained with ns-3. From Figure 10, we observe that larger delay discrepancy instances were not found in
scenarios with 3 flows; however, for the 6-, 9-, and 12-flow experiments, larger delay discrepancy instances resulted
in lower video quality. Consequently, as previously discussed in Section 5, since MAPE’s larger delay discrepancies
correlate with poorer video quality, MAPE estimates could be used to discard paths which would result in inadequate
performance for video transmission as they do not currently match the video transmission requirements. For example,
in real-time video applications, MAPE could be used to identify paths that provide a minimum threshold latency that
preserves adequate video quality.
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Figure 10: Average SSIM according to the instances with larger and smaller delay discrepancies for scenarios with
different number of flows in Random Indoor Topology.

6.2 Classification Inversions

To evaluate how MAPE can be used to inform path selection for video transmission, we use the concept of classification
inversions [23] defined as follows. Consider two different paths a and b. Suppose that video transmissions using path a
yield higher SSIM than if path b was used. If MAPE’s throughput estimate indicates that path b will outperform path
a, that constitutes a classification inversion using throughput as metric; otherwise, if path a is selected, there is no
inversion.

To better understand how classification inversions can be used in practice, let us consider the route selection problem in
multipath forwarding, where a set of paths needs to be selected for the transmission of multiple flows based on low
transmission rate. In this example, the most important aspect is to get the relative ranking of the paths correctly in order
to make adequate flow-to-path assignments.

Figure 11 shows a comparison between MAPE and AFTER in terms of classification inversions for both the Random
Indoor and the Grid Outdoor topologies as a function of the number of flows. We evaluate the quality of paths using
SSIM metric. For MAPE, we consider three possible scenarios: using the average throughput, packet loss or end-to-end
delay as metrics to compare the set of paths of all instances. Since AFTER does not estimate delay or packet loss, we
only show results when throughput is used to calculate classification inversions based on AFTER estimates. MAPE
results in lower percentages of classification inversions (lower than 20%) in all scenarios. AFTER, on the other hand,
yields 3 to 6 times higher classification inversion rates, as it ignores flow transmission rates.

Note that MAPE’s packet loss and delay estimates result in lower classification inversions for 9 and 12 flows when
compared to classification inversions based on throughput. This demonstrates that both delay and loss should be
considered when selecting paths for video transmission, especially when the network becomes saturated. These results
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Figure 11: Percentage of classification inversions in terms of SSIM for different numbers of flows.

are relevant because they confirm that MAPE’s estimates, which can be computed in quasi real time, can be used to
select paths that improve user QoE in terms of perceived video quality.

7 Conclusion

This paper introduced the Multimedia-Aware Performance Estimator, or MAPE for short, a per-flow estimator based
on a deterministic discrete event simulation approach. MAPE estimates the throughput, packet loss and end-to-end
delay of individual flows using their average transmission rate as input. To the best of our knowledge, MAPE is the first
performance estimator that is able to both account for inter-flow interference and accommodate rate-heterogeneous
flows, which is essential to more realistically model the behavior of multimedia traffic.

We evaluated MAPE in terms of execution time, prediction accuracy and ability to classify sets of paths according to
the video quality at the receiver. Our results indicate that MAPE yields comparable throughput, packet loss and delay
estimate accuracy when compared to stochastic network simulators such as ns-3 at a fraction of the execution time.
When compared to AFTER, through its ability to consider specific per-flow rates, MAPE yields higher accuracy at
comparable execution times. We also show in practice that by adopting video coding rates as input, MAPE is able to
obtain estimates similar to the ones obtained by ns-3 when driven by multimedia (MM) traffic. We also demonstrate
how MAPE’s accurate real-time throughput and delay predictions can be used to make routing decisions for multimedia
applications. In particular, we show that MAPE makes correct path selection decisions for over 80% of the cases,
including saturated network scenarios.

As part of future work, we plan to refine MAPE’s packet loss and delay models which will help improve its estimation
accuracy. While our current implementation uses IEEE 802.11, we also plan to extend MAPE so that it can also be used
with other IoT communication technologies such as IEEE 802.15.4 networks. We also intend to further explore the
correlation between routing metrics and video quality (e.g., based on the SSIM) and to incorporate into MAPE alternate
ways to model variable bitrate streams, including traffic patterns representative of prominent adaptive bitrate streaming
traffic, e.g., by simulating video frame packets bursts. Our overarching goal is to propose a cross-layer framework that
integrates MAPE with video coding for improved QoE.
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