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In a main memory database (MMDB), the
primary copy of the database may reside
permanently in a volatile memory. When a
system failure occurs, the database must be
reloaded efficiently from archive memory into
main memory. This paper presents four
different reload schemes and the simulation
models constructed to compare the algorithms.
Simulation results indicate that the reload
scheme based on freguency of data access gives
the best overall performance in terms of
transaction response time and system
throughput.
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Introduction

With the availability of large and inexpensive main
memories, it becomes possible to place all or a major
portion of the database in main memory instead of disks
to improve the system performance. This leads to the
designs of Main Memory Database Systems (MMDB)
([Ammann, 1985], [DeWitt,1984], [Garcia-Molina, 19831,
[Gruenwald,1991], [Hagmann,1986], [Kumar, 1991],
[Lehman,1987]).
The MMDB model used in this paper is based on

MARS(MAin memory Recoverable database with Stable log),
a MMDB system designed at Southern Methodist
University [Eich, 1987]. Its architecture is shown in
Figure 1. The primary copy of the database is stored in
main memory (MM) and its older version is stored in
archive memory (AM) for backup purpose. Periodically,
the database is checkpointed from AM to MM using the
fuzzy checkpoint technique [Hagmann, 1986]. AM disks
are organized using the disk striping technique [Salem,
1986] and consist of two areas: system data cylinders
and user data cylinders. All updates take place in a
stable memory (SM) which acts as a shadow memory.
During normal transaction processing, dual address
translation to MM and SM is used to detect if the value
of the needed data is in SM. If so, then it takes prece-
dence over that found in MM. At commit time, after-
image records (AF1M) are copied from the shadow
memory to MM and to the log buffer stored in SM. The
SM also contains an archive memory directory and a
checkpoinl bit map to indicate modified pages since the
last checkpoint. When a page in the log buffer is full, it
is copied onto the log disk. A database processor (DP) is
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Figure 1. MARS Architecture

used to handle normal database processing, while a
recovery processor (RP) is used to perform recovery
processing acitivities. Each processor has its own
memory (DP MEM/RP MEM) to facilitate its process-
ing.

In a MMDB system, such as MARS, the primary copy
of the database may be stored in a volatile main

memory. The database needs to be reloaded from
archive memory into main memory upon a system
failure caused by power outage, preventative mainte-
nance, software or hardware errors [Lehman, 1987].
Typically, power loss occurs 0.6 times per month
[Controlled, 1987], and preventative maintenance once
per month. If a system needs to process 1000 transac-
tions per second and it is down for only 1/2 hour then
1,800,000 transactions may be lost. An efficient reload
scheme must resume transaction processing quickly
without degrading the overall system performance.
The purpose of this paper is to introduce several

alternatives to perform the reload operation and to
show how these alternatives can be simulated for

comparison purpose. The rest of the paper is organized
as follows. In Section 2 four different reload algorithms
are presented. Section 3 describes the simulation models
constructed to measure the performance of the algo-
rithms. Section 4 highlights some results of the simula-
tion experiments which indicate that the frequency-
based reload algorithm outperforms other reload
algorithms. Conclusions are given in Section 5.

Reload Algorithms
This section describes four different reload algo-

rithms : Ordered Reload, Ordered Reload with Prioritization,
Smart Reload, and Frequency Reload. These algorithms are
different from one another based on the down time,
reload prioritization, reload preemption, access fre-

quency of data, and AM structure. Reload prioritization
indicates the priority of data to be reloaded and reload
preemption means that reload of some data can be
suspended and replaced by reload of some other data.

Ordered Reload

This algorithm does not take reload prioritization,
preemption, or access frequency into account. It reloads
the data according to the order it is stored on AM. Its
purpose is to reload the entire database in the shortest
amount of time. This algorithm consists of the following
steps.

- Step 1: (performed by DP): Reload the database into
MM following the order in which the database is stored
on AM on a cylinder basis. A cylinder basis means that
cylinder 1 of all disks are reloaded in parallel. After
cylinder 1 is memory resident then the reload of cylin-der 2 starts and so on. Reload of cylinder 2 on a disk
starts immediately after reload of cylinder 1 on the same
disk is completed, even though reload of cylinder 1 on
other disks may not be finished. This step is completed
when the entire database is in MM.

o Step 2: (performed by RP in parallel with step 1 ):
Copy to the shadow memory all AFIM records of
committed transactions recorded on the log from the
second to last begin checkpoint. These records are
associated with a special recovery transaction.

~ Step 3: Bring the system up.
~ Step 4: (performed by RP in parallel with transac-

tion processing): Copy the AFIMs records mentioned in
Step 2 from the shadow memory to MM.
Note that due to the dual address translation to MM

and SM during normal transaction processing men-
tioned earlier, the AFIMs from the log need not be
applied to the checkpointed pages found in AM prior to
bringing the system online.

Ordered Reload With Prioritization

This algorithm does not consider access frequency;
but does consider reload prioritization and preemption.
Its goal is to reload data that is needed immediately
before other data so that the system can be brought up
before the entire database is reloaded and waiting
transaction response time can be reduced. The algo-
rithm consists of the following steps:

- Step 1: Identify waiting transactions and their 
’

needed pages. From the information given by the AM
directory, group these pages according to cylinders.
Waiting transactions include not-yet-committed transac-
tions and backlogged transactions when the system was
down.

- Step 2: Reload system pages into MM on a cylinder
basis. This means that cylinder 1’s of all disks are
reloaded in parallel since cylinder I on each disk is
assumed to store system pages.

- Step 3 (Performed by DP): Reload the rest of the
database based on the following prioritization until the
reload threshold is reached.
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3.1. Priority 1 (highest): Reload pages needed by
waiting transactions on a cylinder basis.

3.2. Priority 2: Reload the rest of the cylinders on all
disks according to the order they are stored on disks.

- Step 4 (performed by RP in parallel with step 3):
Copy to the shadow memory all AFIM records of
committed transactions which are recorded on the log
from the second to last begin checkpoint. All these
AFIM records are associated with a special recovery
transaction.

o Step 5: Bring the system up when the reload
threshold is reached.

o Step 6: Reload the rest of the database based on the
following prioritization until the entire database is in
MM:

6.1. Priority 1 (highest priority): Reload pages
needed by executing transactions on a demand basis.
Executing transactions are those which arrive after the
system resumes its execution.

6.2. Priority 2: Reload the rest of pages needed by
waiting transactions on a cylinder basis.

6.3. Priority 3: Reload the rest of the cylinders on all
disks according to the order they are stored on disks.

o Step 7 (performed in parallel to step 6): Copy all
AFIM records mentioned in step 4 to MM.
When the reload threshold is reached, the system

resumes its execution and priority 1 starts. At this point,
reload preemption is in effect to ensure data of higher
reload priority is brought into MM before data of lower
reload priority by allowing the lower reload priority to

.~ ~ be preempted by the higher one. Since cylinder is
chosen to be the reload granularity for this algorithm,
the reload preemption will not take place until the entire
cylinder which is being reloaded is brought into MM.
As a new transaction arrives, it demands some pages to
be loaded into MM. This means that data of priority 1
has just been requested. The RP then checks to see if the
current reload of a cylinder is completed. If yes, it
switches the priority 2 to the background mode, stops
executing priority 3, and starts reloading the data
needed by the new transaction (priority 1) in the
foreground mode. ,

Smart Reload

This algorithm uses prioritization, preemption, and
access frequency. Its purpose is not only to reload data
that is needed immediately before other data but also to
reload data that is accessed more frequently before data
that is accessed less frequently. Its motivation is to take
advantage of hot spots which have been demonstrated to
exist in many database applications ([Chou, 1985],
[Copeland, 1986], [Gawlick, 1985], [Sacco, 1982], [Sacco,
1986]). A hot set (or hot spot) is a subset of the database
that is frequently accessed. Reloading the hot sets first
should reduce the number of page faults, and thus
reduce response time of subsequent transactions. This
algorithm does not attempt to predict what will be

.

referenced next, instead it relies on the hot set concept to
guarantee that the data reloaded is that with the highest
probability of being referenced among data in the
archive memory.

In this algorithm, at any point in time, reload of the
most frequently accessed block into MM is expected,
except for the case of reload on a demand basis. A block
(page) is used as the reload granularity to reload in the
precise order of frequency of access. This algorithm
consists of the following steps:

- Step 1: identify waiting transactions and their
needed pages the same way as with the ordered reload
with prioritization algorithm.

- Step 2: Reload system pages into MM on a cylinder
basis.

o Step 3 (performed by DP): Reload the rest of the
database based on the following prioritization until the
reload threshold is reached:

3.1. Priority 1 (highest priority): Reload pages
needed by waiting transactions according to the de-
creasing order of access frequency of these pages.

3.2. Priority 2: Reload the rest of the database
according to the access frequency. The highest fre-
quency page is reloaded before the second highest
frequency page and so on. At any time when reload of
priority 2 takes place, the highest frequency page among
the pages on each disk is searched and reloaded.

. Step 4 (performed by RP in parallel with step 3):
Copy to the shadow memory the AFIM records of the
committed transactions recorded on the log after the
second to last begin checkpoint. Associate this with a
special recovery transaction.

o Step 5: Bring the system up when the reload
threshold is reached.

- Step 6: Reload the rest of the database based on the
following prioritization until the entire database is
memory resident.

6.1. Priority 1 (highest priority): Reload pages
needed by executing transactions on a demand basis.

6.2. Priority 2:is the one assigned priority 1 in
step 3.1.
6.3. Priority 3:is the one assigned priority 2 in 

.

step 3.2.
· Step 7 (performed in parallel to step 6): Copy all ;

AFIM records in step 4 to MM. ’,.

Preemption of a lower priority reload by a higher
priority reload is allowed; however there is no case in
which an entire cylinder must be reloaded before
preemption can take place. Instead, the preemption is in
effect immediately right after the currently reloaded
block is memory resident.

Frequency Reload

This algorithm takes reload prioritization, preemp-
tion, and access frequency into account. Its purpose is to
reduce the total reload time as well as to improve
throughput by trying to minimize the movement of disk
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heads, reloading data that is needed immediately before
other data, and taking advantages of hot spots. This
algorithm works similarly to the smart reload algorithm
except that it chooses cylinder instead of block to be its
reload granularity and calls for a special AM structure,
which is named frequency AM structure. Its intent is to
approximate the smart reload but reduce the overhead
and improve reload performance.
The frequency AM structure consists of two areas,

system data cylinders and user data cylinders. The user
data cylinders are arranged based on the decreasing
order of page access frequency. Except for the case of
demand reload, the algorithm ensures that, within each
disk, lower numbered cylinders are reloaded before
higher numbered cylinders. This means that more
frequently accessed pages are brought into MM before
less frequently accessed pages. Once data is placed on
the disks in the correct order, the freguency reload
algorithm works much the same as the ordered reload
with prioritization algorithm.

Performance Analysis
There are many different approaches one can take to

do performance analysis: analytic, benchmark, or
simulation [Wilkinson, 1981]. As pointed out in [Deitel,
1984] and [Demurjian, 1987], it is usually difficult to find
precise solutions for an analytical model if the model is
complex and detailed. Therefore, this approach tends to
simplify the problem in order to keep the formulae
tractable [Wilkinson, 1981]. The benchmark approach
studies the performance based on existing systems. The
evaluator runs a benchmark, which is a production
program, on the system that he or she wants to evaluate.
As stated in [Deitel, 1984], &dquo;Benchmarks are not useful
in predicting the effects of proposed changes, unless
another system exists with the changes incorporated on
which the benchmarks may be run&dquo;. At present, MARS
has not yet been built, thus the benchmark approach
cannot be used. Since a detailed performance study is
expected in this research, a detailed simulation model is
chosen to be constructed for each reload algorithm.

Four simulation models are constructed to simulate
the MARS system with a reload process incorporated.
Each model has a different way to handle the reload

process. The goal of the models is to measure the
performance of the proposed reload algorithms when
applied to MARS. This section describes the language
chosen for simulation, resources and transaction
representation, parameters used, performance measure-
ments, and the overall simulation model for each

algorithm.

Simulation Language
There are many programming languages on which a

simulation model can be built. General purpose lan-

guages, such as Pascal, C, PL/I, can also be used.

However, these languages were not invented for
simulation; they require a lot of effort from simulators to
implement features that are usually encountered in
simulation: queuing, statistics gathering, parallelism,
etc. To hasten the simulation process, a language that is
designed for simulation such as SIMULA, SLAM II,
should be used. Since SLAM II is available on SMU’s
IBM 3081, it is chosen to implement the simulation
models for this research.

In this language, arrays are used to hold data in a
simulation. Each entity created is associated with a one-
dimensional array named ATRIB. Properties (attributes)
of the entity are stored in this array. A one-dimensional
array XX is available for retaining global data. SLAM II
also provides a data structure called ARRAY. This
structure consists of many one-dimensional arrays each
of which is called an ARRAY row. These array rows are
used to store global information for a simulation.

Resources

The simulation resources include LOG (log disk), DP
(database processor), SM (stable memory), MM (main
memory), AMI,...,AM5 (five disk units for archive
memory), and RP (recovery processor). The RP is
responsible for recovery activities, such as logging,
checkpointing, reloading. This resource is assigned with
four different allocation priorities. The highest priority is
used when RP attempts to reload data due to page
faults caused by the special recovery transaction
mentioned in Section 2. The second highest priority is
for reload due to page faults caused by normal transac-
tion processing. The third highest is assigned to logging,
committing, checkpointing, and reloading of data
needed by waiting transactions. The lowest priority is
used for reload of unneeded data in the background.

Transaction Representation
Each transaction is represented as an entity in SLAM

II and has its own set of attributes. The values of these
attributes might be different, but all transactions consist
of the following attributes: Transaction Identification (a
number starting from 1 to the total number of transac-
tions examined in a particular run), Multiprogramming
Number (a number from 1 to 20 since there are at most
20 transactions which can run concurrently), Transaction
Creation Time (time at which the transaction enters the
system), Operation Number (number of read or write
operations a transaction performs. This number is
generated using a uniform distribution between 5 and
10), Operation (read represented as 1.0 or write repre-
sented as 2.0; whether an operation is read or write
depends on the read and write probabilities chosen),
and Page Number (page that is accessed by the transac-
tion operation; it is generated by using either an expo-
nential distribution or uniform distribution which is
selected before running the simulation). Note that the

 at UNIV OF OKLAHOMA LIBRARIES on January 20, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


21

Table 1. Dynamic parameters.

Table 2. Static parameters (part 1).
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Table 3. Static parameters (part 2)

last two attributes constitute a pair that must always go
together. The first attribute in the pair indicates the
operation to be performed on the page specified in the
second attribute of the pair. The number of this pair is
specified in the Operation Number attribute.

Simulation Parameters

The following tables present the dynamic and static
parameters used in the simulation models. The param-
eter of random distribution type for page usage indi-
cates the distribution function selected for generating
page numbers used by transactions in a simulation run.

This function is either exponential or uniform. If the
former is chosen, its mean must also be provided. Most
of the static parameters are adopted from existing
literature. To simulate AM disks, the IBM 3380 disks are
used [IBM, 1984]. The seek time, latency, transfer time,
page size, number of blocks per disk, and number of
tracks per cylinder are based on these disks. Time to
allocate/release an MM page comes from [Salem, 1987].
Time to request an I /O and log page size are used in
[Lehman, 1986]. Time that DP needs to signal RP for a
page fault falls into the context switch range estimated
in [Peterson, 1986]. Time to perform SM address
translation is discussed in [Corti, 1991]. Time to perform
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MM address translation is computed for the worst case
in which 3 MM accesses are needed to access the

segment table, page table, and to calculate the offset. The
actual update of a frequency counter is assumed to take
3 instructions. The frequency counters are stored in the
SM. To update a frequency counter, 2 accesses to SM
must be done to get the previous value of the frequency
counter and record its new value. The rest of the

parameters are adopted from [Fan,1988] with changes
being made to reflect the difference in CPU power.

Performance Measurements

To study the performance of the proposed reload
algorithms, the following measurements are obtained
for each simulation run.

. Reload Time: this represents the total time an
algorithm needs to reload the entire database into MM.
In the ordered reload algorithm, since the entire data-
base is reloaded before the system is brought up, the
reload time only includes the I/O time. However, in the
other algorithms, depending on the reload threshold,
the system might resume its execution before the entire
database is reloaded; the reload time therefore includes
all elapsed time from the time the reload process starts
until it finishes.

o System Unavailability: time during which the
system is down. Given the system throughput when no
failure occurs, this measurement dictates the number of
transactions which must be backlogged when the
system went down. It is undesired to have a long
system unavailability. The difference between the reload
time and the system unavailability is demonstrated in
the following time line.

o Page Faults: this gives the number of page faults
incurred by each algorithm.

o Transaction Response Time: this gives the mean of
transaction response time. Together with this, a stan-
dard deviation is also obtained to see how the transac-
tion response times differ from their mean value. Since
the system may go down while a transaction is being
processed, the response time of the transaction is
evaluated from the time the transaction enters the

system until it commits. In this case, the transaction
response time also includes the down time.

- System Throughput: number of transactions
committed per second. This is measured by dividing the
total number of transactions committed by the time at
which the last transaction commit is performed.
Among these measurements, the last two are the most

crucial because they dictate the performance of the
examined reload algorithm.

Model Descriptions
This section describes the simulation models used to

measure the performance of the four proposed algo-
rithms. Figure 3 shows a diagram of the simulation

I

Figure 2. Time Line Diagram

model. Note that in this diagram, queues Rl, R2, R3, and
R4 stand for queues of different allocation priorities
associated with the resource RP. All other resources,
each has only one queue. Due to space limit, the dia-
gram shows only one AM disk. The logical relationships
among resources will not change if more AM disks are
added.
Each model contains four components: initialization,

transaction processing, checkpointing, and reloading.
The reload component is only activated when system
failure occurs. The details of these components are
described in the following subsections. Due to the
differences among the four proposed reload algorithms,
there are also some modifications in the implementation
of the components when applied to different reload
algorithms.

Initialization Component
In this component, there are three major phases: 1)

initialization of dynamic and static parameters and
array rows, 2) frequency collection and priority queue
construction, and 3) organization of the initial MM and
AM structures to be used before a system failure occurs.
Phase 1 is the same in all reload algorithms. Phase 2 is
not needed in the ordered reload and ordered reload
with prioritization algorithms. Phase 3 is the same in all
algorithms except for the frequency algorithm.

Parameter and Array Row Initialization Phase

In this phase, all parameters are set to their initial
values. The dynamic parameters are chosen by the
evaluator for each simulation run while the static

parameters are set to the values listed in Tables 2
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through 3. Since SLAM II does not support dynamic
data structures, arrays are essentially used to implement
all data structures in this simulation. Each one-dimen-
sional array is called one array row in SLAM II. In this

phase, all array rows are initialized to 0.0’s except for
array row 38 which is set to 1.0’s to indicate that all
cylinders (or pages as in the smart algorithm) are not
needed by waiting transactions and not yet reloaded at
the beginning.

Frequency Collection and Priority Queue Construction
Phase

In this phase, frequency of page access is gathered and
priority queues of access frequencies are formed. The
priority queues are needed to keep track which page has
the highest frequency, second highest, and so on. The
frequency reload algorithm uses this information to
form its initial MM and AM structures in phase 3 while
the smart reload algorithm uses this information in the
reload component.
To simulate frequency collection, each simulation

requires an extra run at the beginning called the first
run. In this run, all XX(9) transactions that are intended
to be examined in an actual run are generated in the
same way mentioned in Section &dquo;Generation of Informa-
tion for a Transaction.&dquo; A frequency counter for each

page is formed by counting the number of occurrences
of the page. A user-defined array, FRE, is used to store
these frequency counters. The frequency information is
collected for all XX(9) transactions. In the actual simula-
tion run (not the first one) the frequency counter array,
FRE, is accessed to get the frequency information. In this
simulation, the transactions that are executed are exactly
the same as those that are generated to collect frequency.
The knowledge of data reference behavior in transaction
processing is therefore assumed to be accurate. How-
ever, later runs also evaluate the situation when this is
not the case.
After the frequency collection is done, the frequency

reload algorithm forms a priority queue to store pages
in decreasing order of frequencies. The smart reload
algorithm forms multiple priority queues, each of which
is for one disk. The reason for this is that the smart

algorithm always reloads a page that has the highest
frequency of access on a disk. When reloading pages in
parallel from multiple disks, a page of the highest access
frequency on every disk is sought.

Initial AM and MM Structure Construction Phase

In this phase, the initial structures of the AM and MM
are formed. These two memories are represented by
array rows 31 and 32 respectively. Array row 31 is

Figure 3. Simulation Model
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equally divided into sections. Each section is used to
store data for one AM disk. The initial structures of
memories are used during the time before a system
failure occurs. When a system failure takes place, the
initial AM remains the same but the MM structure

changes as the reload process comes into existence. The
initial structures of MM and AM are the same when

applied to the ordered reload, ordered reload with
prioritization, and the smart reload algorithms. They do
not follow any particular memory structure. Each
location of the arrays that are used to represent MM and
AM is filled with a page number in such a way that

page number i is stored in location i. These structures
are formed differently when applied to the frequency
reload algorithm. Their structures are organized
following the freguency AM structure model as described
in Section 2 with the information in the priority queue of
access frequencies formed in phase 2.

Transaction Processing Component
The component is created using a CREATE statement

in SLAM 11. Each transaction is represented by an entity.
The number of transactions that can be executed

concurrently in the system (multiprogramming level) is
specified by the user. The CREATE statement is then
used to generate those many entities at the same time
starting at time unit 0. Each transaction then goes
through several phases until it commits. Following are
the descriptions of these phases.

Generation of Information for a Transaction

In this phase, each transaction is assigned its creation
time which is the time it enters the system, transaction
identification number, multiprogramming number,
number of operations it is going to perform, operations,
and pages on which operations are performed. The
creation time is obtained from the SLAM global variable
TNOW which gives the system current time. This
attribute is collected later to obtain transaction response
time. The transaction identification number is 1 greater
than the transaction identification number assigned thus
far. The first number assigned has a value of 1. The
multiprogramming number is in the range of [1,XX(7)]
where XX(7) is the multiprogramming level chosen for a
particular simulation run. The number of operations a
transaction is going to perform is generated by using a
uniform distribution function for values between 5 to 10.
This transaction size assumption is similar to the one
used in [Wilkinson;, 1981]. The operations (reads or
writes) are generated using a feature called probabilistic
branching in SLAM II in which the probabilities of reads
and writes are specified through two global variables
XX(4) and XX(5). Note that these probabilities are
dynamic parameters; thus they can be varied from run
to run as desired.
Each operation generated is associated with a page

number. These pages are obtained by using either an
exponential distribution function or a uniform distribu-
tion function. If the exponential distribution function
f(X) for page usage is chosen a mean must also be
supplied. The value of X at which the cumulative
distribution is 99% is called the cut-off point. The range
between 0 and the cut-off point is divided into intervals.
The number of the intervals is equal to the number of
pages examined in a simulation run. This means that if
an X falls into interval i then it is associated with page
number i. If a uniform distribution function is chosen for

page usage, then page numbers are formed uniformly
between 1 and the maximum number of pages exam-
ined in a simulation run. There is no time associated
with this phase.

Preprocessing and Locking Phase
In this phase, the database processor (DP) prepro-

cesses the transaction and tries to obtain all needed locks
for the transaction. Note that in our system, two-phase
locking concurrency control is implemented with page
level locking and preclaiming of all resources. If all locks
cannot be granted, the transaction must wait in a gate
whose identification number is the same as the
transaction’s multiprogramming number. A gate is a
special feature in SLAM II. It allows entities to wait until
it is opened by some other entities. The transaction that
must wait in a gate is said to be blocked. It can only
proceed if the gate is opened by some other transaction.
Once the gate is opened, the transaction must go
through the same process again to try to obtain all
needed locks. This process of obtaining locks is repeated
until the transaction is provided with all its locks.

Operation Processing Phase

Once the transaction passes the previous phase, each
of its operations must be processed (no abnormal aborts
are assumed to exist). The DP preprocesses an operation
and performs SM and MM address translations in
parallel for the page on which the operation is per-
formed. The address of a page in this simulation is, in
fact, the number of the page. MM and SM are imple-
mented using two array rows 32 and 33 in SLAM II. The
address transactions are done by searching the array
rows for the page number. The SM address translation
has a higher precedence than the MM address transla-
don. If the page is found in SM, then if the associated
operation is a read, the DP will read one SM word
(AFIM). If the operation is a write, the DP will write an
entire SM record onto SM, and set the corresponding bit
in the bit map to 1 to indicate that the page has been
modified. If the page is not found in SM but found in
MM, then if the operation is a read, the DP will read one
MM word. If the operation is a write, then copy the page
number to the SM and continue processing via SM. If
the page is found in neither SM nor MM, a page fault
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occurs. How to bring this page into MM is a part of the
reload component which will be described later. The
operation processing is delayed until the needed page is
reloaded. The same process is repeated for every
operation until all operations performed by the transac-
tions are processed. Note that when applied to the
frequency and smart algorithms, this phase also incurs a
frequency calculation overhead. In these two algo-
rithms, after the DP preprocesses in operation, it must
also update the frequency counter associated with the
page on which the operation is will performed.

Transaction Commit Phase

There are two processes running in parallel in this
phase: transaction committing and logging. These two
activities are done by the recovery processor (RP). For
transaction commit, if the transaction is read-only, the
next phase is taken. Otherwise, the RP writes a BT
record onto the log buffer to indicate the begin of the
transaction, copies the transaction’s shadow records
from SM to the log buffer, and writes a record ET onto
the log buffer to indicate the end of the transaction. The
RP then updates the bit map and copies the
transaction’s AFIMS from SM to MM. The locations in
the SM that are occupied by the transactions are then
freed. For logging, if a log buffer page is full, the RP
requests an I/O to flush that page to the log disk. The
RP repeats the same process for all full log pages. The
logging entity is then terminated.

Unlocking Phase <

After the transaction commits, all its locks are released
one by one by the DP. A FORTRAN event is called at
this point to actually perform this process. After this is
done, the transaction response time is collected on this
transaction. The number of transactions committed is
also accumulated.

After Unlocking Phase
Once a transaction finishes all phases listed above, it is

said to completely finish its processing. The entity that is
used to represent the transaction can now be used to
represent another transaction. However, at this point a
decision must be made. If the number of transactions
committed is equal to the number of transactions
committed before the system went down, the system is
brought down to simulate a system failure. The reload
component then takes place at this point. Otherwise, if
the number of transactions generated is smaller than the
number of transactions that must be examined in this
simulation run, the entity is routed back to the first
phase to generate information for next transactions. The
same process is then repeated. If the number of transac-
tions committed is equal to the number of transactions
that must be examined then the system throughput is
collected at this point (note that the system keeps going

until the reload is completed). The system throughput is
evaluated by dividing the number of transactions
committed by the current system time TNOW. Since the
maximum number of transactions to be created in a
simulation run equals the number of transactions to be
examined in the run, there will not be other transactions

executing when the system throughput is collected.
When the transaction processing is activated after a

system failure occurs, the special recovery transaction
must be given immediate attention followed by the
waiting transactions, before new transactions can be
created. Whether all three types of transactions are
allowed to be in the system at the same time depends on
the multiprogramming level and the number of waiting
transactions. When the system resumes its execution
after a system failure, for each entity passed through this
component, the following checks are done. If the entity
represents the special recovery transaction, the commit
for this transaction then takes place. If the waiting file
described in the reload component is not empty, then a
waiting transaction is removed from this file and its
attributes are copied to the current entity. This means
that the current entity now represents a waiting transac-
tion. The waiting transaction skips the first phase of the
transaction processing component described in the
Section&dquo;Generation of Information for a Transaction.&dquo;
and proceeds from the second phase on. This process is
repeated for all waiting transactions in the waiting file
until the waiting file is empty. At this point, if the
number of transactions created so far does not exceed
the number of transactions to be examined in a simula-
tion run XX(9), then new transactions are created. Each
new transaction goes through all phases described in
this component.

Checkpoint Component
In MARS, fuzzy checkpoint is used to checkpoint .

modified pages from MM to AM. A bit map stored in
SM keeps track of modified pages. The checkpoint
component is created through a CREATE statement
starting at time until 10. This process starts by recording
a record BC in the log buffer to indicate the beginning of
the checkpoint The bit map is then searched for a 1
which indicates that the corresponding page has been
modified since the last checkpoint. If a 1 is found, the RP
copies the page from MM to MM buffer, and requests a
write to the appropriate AM disk. The page is then 

,

written onto the AM disk and the page buffer is re- 
’

leased. The checkpoint process is then repeated until all
locations in the bit map are checked. The RP then writes
a record CE to indicate the end of the checkpoint. One
checkpoint process is said to have completed. There is a
delay of 30 units of time until the next checkpoinl
process begins. To simulate the next checkpoint process,
the entity is routed back to the beginning of the
checkpoinl component.
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Reload Component
In this component, there are three different phases:

initial work upon a system failure, reloading due to
prefetch, and reloading due to page faults. The second
phase takes place when a system failure occurs and is
also going on in the background after the system is
brought up as in the case of frequency, ordered reload
with prioritization, and smart algorithms. The third one
only comes into existence when the system resumes
execution. These three phases are described in the
following paragraphs.

Initial Work Upon a System Failure Phase
At the time when a system failure occurs, all resources

must be made inactive, and all active transactions must
be kept somewhere so that they can be restarted later.
To simulate this situation, PREEMPT statements are
used. These statements preempt the resources that are
currently in use. Each preempted entity is checked to see
if it is a waiting transaction or a checkpoint process.
Waiting transactions are those that were active when the
system went down. The identification is made by
examining the multiprogramming number of the entity.
The multiprogramming numbers assigned to transac-
tions have the values in the range of [1, XX(7)] where
XX(7) is the multiprogramming level chosen for a
particular simulation run. The multiprogramming
number of a checkpoint entity is 0. Note that there is
only one checkpoint process in the system at any time.

If a preempted entity is a waiting transaction, it
together with all of its attributes are stored in a file
called waiting file. If it is a checkpoint process, its
attributes will not be kept. The preempted entity is then
terminated from the simulation. After all resources are

preempted, all queues associated with resources are
then emptied. The main memory is also emptied to
simulate its volatility. The lock matrix is reinitialized
and all multiprogramming gates that are used to block
transactions in simulating concurrency control are
reopened.

In all algorithms, except for the ordered reload
algorithm, data needed by waiting transactions must be
identified. A FORTRAN event is called to perform this.
Array row 38 is used to keep track of which cylinders
(or pages in the smart algorithm) are needed by waiting
transactions and which cylinders are already reloaded.
Array location (38,i) has a value of 2.0 if the cylinder i (or
page i in the smart algorithm) is already reloaded; a
value of 0.0 if the cylinder is not needed by waiting
transactions and not yet reloaded. At this time, since
reloading is not yet started, and all locations of array
row 38 have been initialized to 1.0’s by the initialization
component discussed in Section 3.6.1.1., the only task to
do is to set array location (28.i) to 0.0 for every cylinder i
(or page i in the smart algorithm) needed by waiting
transactions. In all reload algorthims, the system is then

delayed for an INDN TM units of time before the next
phase, reload due to prefetch, can be entered. Following
is an example of the array 38 formed at this point for a
simulation which has totally 6 cylinders to be reloaded
on all disks. In this example, cylinders 2 and 4 are
needed by waiting transactions and are not reloaded
yet; cylinders 1,3,5 and 6 are not needed by waiting
transactions and not reloaded yet.

Figure 3. An example of array 38.

Reload Due to Prefetch Phase

In this phase, XX(1) concurrent entities are generated
to simulate XX(l) reload processes for XX(1) striped
disks. Each reload process reloads data residing on a
disk. Each disk is associated with a disk number starting
from 1. To reload a cylinder, the RP initializes an I/O
request to the I/O channel associated with a disk. The I/
O channel is then responsible for reading the cylinder
from the associated AM disk and writing the cylinder
onto the main memory. Once a cylinder is memory
resident, the reload process then starts reloading
another cylinder. The physical main memory address
for each page reloaded is formed by increasing the
current main memory physical address used thus far by
1. Therefore cylinders on the same disk might not reside
in consecutive locations in the main memory.
There are some differences in implementing this

phase for different reload algorithms. The specific
implementation of this phase for each algorithm is
described below.

- Ordered Reload Algorithms: when this phase is first
activated, cylinder 1 which is assumed to carry system
data on each disk is reloaded into the main memory.
The seek time used in reloading cylinder 1 on each disk
is the average seek. After all cylinder 1’s are memory-
resident, one more concurrent process is generated to
copy the AFIMS from the 2nd from the last checkpoint
in the log to the shadow memory. The number of these
AFIMS is assigned to the variable NUM_AFIMS. The
default value is 10. The page numbers for these AFIMs
are generated using either exponential distribution or
uniform distribution for page usage as described in the
transaction processing component. The copy is done by
the DP in parallel to the reload processes. The AFIMs
are associated with a special recovery transaction whose
identification number is a negative number -1000. Each
reload process, at the same time, continues reloading
cylinder 2, cylinder 3, and so on for a disk. The mini-
mum seek time is used in reloading these adjacent
cylinders. Note that when one disk reloads a cylinder,
say 3, another disk might still reload cylinder 2. When
all cylinders are reloaded, that is the entire database is
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memory-resident, all entities are terminated except one
and the system is brought up. The surviving entity is
used to simulate the processing part that takes place
after the system resumes its execution. Note that in
SLAM 11, the simulation is terminated if either there is
no entity alive in the system or the simulation time is
up. How the system is brought up and what is going to
take place after the system is brought up must be
simulated; the simulation cannot be terminated here.
Therefore one entity must be kept active at this time.
The reload time is measured for the simulated duration
from the start to the end of this component.
When the system is brought up from a system failure,

the only surviving entity is split into a number of
concurrent entities: one entity to represent the special
recovery transaction, XX(7)-1 entities to represent
normal transaction processing (recall XX(7) is the
multiprogramming level), and one entity for
checkpointing. The checkpoint entity will be initialed
after a delay of 10 units of time. The transaction process-
ing entities which include the special recovery transac-
tion and normal transactions are routed to the transac-
tion processing component. The checkpoint process is
branched to the beginning of the checkpoint component.

. Ordered Reload with Prioritization and Frequency
Reload Algorithms: this phase is the same in both
ordered reload with prioritization and frequency reload
algorithms. In the beginning of this phase, XX(I) concur-
rent entities are generated as in the ordered reload
algorithm. Each entity is used to represent one reload
process for a disk. Cylinder Is on all disks are reloaded.
After this is done, one more concurrent entity is gener-
ated to copy the committed AFIMs from the log to the
shadow as described above. In parallel, all reload
processes try to reload data needed by waiting transac-
tions into main memory on a cylinder basis. Array 38,
which keeps tracks of which cylinders are needed by
waiting transactions, is consulted during this process. If
a reload process gets to the end of this array, the reload
of data needed by waiting transactions for the associ-
ated disk is finished. If the reload threshold is not yet
reached, the reload process for the mentioned disk then
goes back to cylinder 2 on that disk and starts reloading
the rest of the cylinders (unneeded cylinders). Every
time a cylinder is reloaded, its location in array 38 is set
to 2.0. Before reloading a cylinder, this array is exam-
ined to see if the cylinder is already reloaded. If it is,
then the next cylinder is attempted. Note that in this
phase, the average seek is used throughout the reload
processes in computing the time the I/O channels must
locate the cylinders from appropriate AM disks.
The RP queue that is used to initialize 1 /Os for

unneeded cylinders has a lower priority than the one
used for reload of data needed by waiting transactions.
Note that when one reload process still reloads cylin-
ders needed by waiting transactions on its disk, other
reload processes might have already finished reloading

these types of data on their disks, and might be reload- 
’

ing data of a lower reload priority. After a reload
process reloads one cylinder on its disk, it checks to see
if all cylinders on the disk are already reloaded. If yes,
the reload process is terminated. If no, the reload

process continues reloading next cylinders.
The reload threshold is calculated by multiplying the

reload threshold percentage with the number of disks
used XX(I) and the number of cylinders to be reloaded
on each disk XX(43). When the reload threshold is
reached, the reload threshold is changed to be equal to
the database size. The system is brought up. At this
point, one reload process is chosen to be split into a
number of concurrent entities: one entity to continue the
reload process for the associated disk, one entity to
represent the special recovery transaction, XX(7)-1
entities to represent normal transactions, and one entity
to represent the checkpoint process that will start after a
delay of 10 units of time. The rest of the reload processes
for the other disks continue their reloading. The transac-
tion entities are then routed to the transaction process-
ing component. The checkpoint entity is branched to the
checkpoint component. Each of the reload entities is
routed to the reload due to prefetch component where a
check to see if more cylinders on its disk need to be
reloaded is done.

- Smart Reload Algorithm: in this phase, cylinder 1
which is assumed to store system information on each
disk must be reloaded entirely using the cylinder
approach. Array 38 locations are now used to keep track
of which pages are needed by waiting transactions and
which pages are already reloaded. Recall that in the
other three algorithms, each location in this array
corresponds to one cylinder instead of one page. Similar
to the implementation of this phase in the other algo-
rithms, after cylinder Is on all disks are reloaded, one
more entity is created to copy the committed AFIMs
from the log to the shadow memory in parallel to the
reload processes. Each reload process now starts

reloading the page that has the highest access frequency
among pages needed by waiting transactions on each
disk. To do this, each reload process must consult both

array 38 to find out which pages needed by waiting
transactions and the priority queue associated with its
disk to get the page of the highest access frequency. The
RP then requests an I/O for this page and the I/O
channel is responsible for reading it from the appropri-
ate AM disk and writing it onto MM. When this is done,
the page location in array 38 is set to 2.0 to indicate that
the page is already reloaded.
After the reloading of the pages needed by waiting

transactions, if the reload threshold is not yet reached,
then the reload process is routed back to cylinder 2 and
starts reloading unneeded pages with a lower RP
allocation priority. When reloading unneeded pages, the
reload process on each disk must always consult its
associated priority queue and array row 38 to find out
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the page that has the highest access frequency among
unneeded pages for reload.
The reload threshold is computed in terms of pages. It

is equal to the reload threshold percentage multiplied
with the number of disks used XX(I) multiplied with the
number of cylinders to be reloaded per disk XX(43)
multiplied with the number of blocks per cylinder
XX(43). When the reload threshold is reached, the
system is brought up the same way as implemented in
the ordered reload with prioritization and frequency
reload algorithms.

Reload Due to Page Faults Phase

This phase takes place when the system is brought up
and a page fault occurs. Page faults can be caused by
committing the special recovery transaction or by
executing waiting or new transactions. Note that this
phase is needed in all algorithms but the ordered reload
algorithm. Since the reload granularity in the ordered
reload with prioritization and frequency reload algo-
rithms is a cylinder while in the smart reload algorithm
is a page, the implementation of this phase in the first
two algorithms is slightly different from the one in the
last algorithm. The descriptions of this phase in these
algorithms are given below.

- Ordered Reload with Prioritization and Frequency
Reload Algorithms: when a page fault occurs, the DP
signals the RP to bring in the needed page. A FOR-
TRAN event is called to identify the disk address which
includes the disk number and cylinder number of the
wanted page. Since the reload granularity is a cylinder,
the cylinder on which the wanted page resides is called
the demanded cylinder. The transaction (entity) that
causes the page fault is called the current entity. The
location in array 38 that corresponds to the demanded
cylinder is checked to see if the cylinder has just been
brought into MM while DP was signaling RP and while
the disk address identification process was going on. If
yes, then no reload is needed. The transaction (or entity)
that caused the page fault is routed to where its page
fault was detected. In doing this, the transaction must be
checked to see if it is a special recovery transaction or a
normal transaction. The origin where a page fault occurs
is different between these two types of transactions. If
no, array row 39 is checked to see if the demanded
cylinder is currently engaged in a reload process due to
a page fault reload process or due to a prefetch reload
process. Note that array row 39 is used to keep track of
the in-reload-process head position. Array location (39,i)
is 1.0 if cylinder i (or page i in the smart algorithm) is
currently in the reload process due to page faults; 2.0 if
cylinder i is currently in the reload process due to
prefetch; and 0.0 if it is not currently in the reload
process. If the demanded cylinder is found to be
currently engaged in either a prefetch reload or page

fault reload, then no reload is performed, instead, the
current entity simply waits for the current reload
process to finish and is routed back to where its page
fault was detected. If none of the above is true, then the
current entity is checked to see if it is the special recov-
ery transaction or a normal transaction. One of the ,

following two cases is found:

1) The current entity (demanding transaction) is the special
recovery transaction: recall that the RP has four different
allocation priorities for reload. Each priority is associ-
ated with one queue which is called a reload queue.
Queue 1 has the highest allocation priority, while queue
4 has the lowest one. The RP will initialize I/O requests
for entities waiting in queue 1 before initialize I/O
requests for entities waiting in queue 2 and so on. Recall
that queue 1 contains the special recovery transaction
when this transaction is waiting for the RP to reload its
demanded cylinder. Queue 2 contains normal transac-
tions that are waiting for the RP to reload their de-
manded cylinders. Queue 3 contains reload entities that -
are waiting for the RP to reload cylinders needed by
waiting transactions in the prefetched fashion. Queue 4
contains reload entities that are waiting for the RP to
reload unneeded cylinders in the prefetched fashion.

In this case, the four reload queues associated with RP
are examined. Queue 1 is checked to see if it contains
entities that need to reload the same cylinder as the
demanded cylinder. If yes, the current entity is put into
a temporary file number 93 and is terminated from the
simulation at this time. If no, queue 2 is checked for the
same things. If queue 2 contains some entities that need
the same cylinder as the demanded cylinder, this means
that this cylinder has been requested by transactions of a
lower reload priority, the current entity is put into
queue 1, and the entities found in queue 2 are removed
from queue 2. Since these entities need to continue their

processing when the demanded cylinder is reloaded,
they are kept in a temporary file number 94 to wait for
the reload of the demanded cylinder. If queue 2 does not
contain the entities described above, queue 3 is checked.
If an entity that tries to reload the same demanded
cylinder is in queue 3 the entity is removed from the
queue. The current entity is then put into queue 1. If this
kind of entity does not exist in queue 3, queue 4 is
checked for it. If found, the same action as for queue 3 is ,
done. If not found, the current entity is simply put in 

’

queue 1. When the demanded cylinder is reloaded, the
temporary files 93 and 94 are searched for the entities
that need the same cylinder. These entities are removed
from these files and routed back to where their page
faults were detected to continue their processing.

2) The Cllrrent entity. (demanding transaction) is a normal
transaction: a normal transaction can be either a waiting
transaction or a new transaction. The four reload queues
are also examined as discussed above. If an entity that
needs the same cylinder as the demanded cylinder is
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found in queus 1 which has a higher RP allocation
priority than the current entity, this current entity is put
into the temporary file 94 and is terminated from the
simulation for now. If the same entity is found in queue
2, the current entity is put into the temporary file 95 and
is also terminated from the simulation. If the same kind
of entity is found in queue 3 or queue 4, this entity is
released from the queue, and routed back to the reload
due to prefetch phase. The current entity is then put into
queue 2. Note that reload queue 3 contains entities

waiting for RP to reload cylinders needed by waiting
transactions. Reload queue 4 contains entities waiting
for RP to reload unneeded cylinders. It is in the reload
due to prefetch phase that these two types of prefetch
reload are originated. When the demanded cylinder is
completely reloaded, files 94 and 95 are searched for
entities that need to reload the same demanded cylin-
der. These entities are removed from these files and
routed back to where their page faults were detected so
that they can continue their processing.

o Smart Reload Algorithm: the reload due to page
fault phase in this algorithm is very similar to the one
described above for the ordered reload with

prioritization and frequency reload algorithms, except
that in this case, the reload granularity is a page, not a
cylinder. The same implementation is applied to the
smart reload algorithm with a cylinder being changed to
a page.

Model Assumptions/Restrictions
Due to the limitation on the virtual memory assigned

to each user on the SMU’s IBM 3081, the number of
pages used in this simulation cannot exceed 5400. At
most 5 AM disks are examined in this simulation. The
MM size is assumed to be large enough to store the
entire database. The SM size is unlimited.

Simulation Results

We performed eleven testing sets for eleven different
dynamic parameters: number of pages, number of disks,
read and write probabilities, percentage of transactions
committed before the system goes down, multipro-
gramming level, total number of transactions examined,
reload threshold, page size, mean of the exponential
distribution for page usage, uniform distribution type
for page usage, and number of transactions generated
for frequency collection. Due to space limitation, in this
section we highlight only the results obtained from
running some of these testing sets. Complete results can
be found in [Gruenwald, 1990].

Vary Number of Pages
The number of pages is varied between 600 to 5400.

Due to the limit on the virtual memory space allocated
for each user on SMU’s IBM 3081, a number of pages

that is larger than 5400 cannot be tested. This does not
make the results reported here invalid. In fact, the
results obtained show that a conclusion can be derived
even before 5400 pages are tested

Figure 4 shows that the reload time is increased as the
number of pages increases. This is expected since the
database size grows as the number of pages grows. The
smart algorithm yields the highest reload time since it
reloads data based on the block granularity approach
which requires a lot of arm movements to locate a
desired block on each disk. The other three algorithms
yield very compatible reload time because they follow
the cylinder approach in which the seek time and
latency are much less than in the block approach. The
ordered reload algorithm gives the best reload time as
expected. The frequency algorithm, due to its frequency
calculation overhead, yields a slightly higher reload
time than the ordered reload with prioritization algo-
rithm. On the average, the reload times incurred in the
ordered reload with prioritization, frequency, and smart
reload algorithms are 4%, 5.5%, and 182%, respectively,
higher than the one in the ordered algorithm.
From Figure 5, we see that when varying the number

of pages examined, the system throughput incurred by
the frequency algorithm remains the best, while the
smart algorithm is the worst. In the middle falls the
throughput obtained from the other two algorithms. As
the number of pages increases, the throughput de-
creases. The throughput incurred in the smart, ordered
reload with prioritization, and ordered reload algo-
rithms are 54%, 10% and 9% lower than that in the
frequency algorithm, respectively, when testing with
600 pages, and are 59%, 38%, and 37% lower when

testing with 5400 pages. , .

Figure 4. Effects of number of pages on reload time.
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Figure 5. Effects of number of pages on system throughput

Vary Number of Transactions Examined

The total number of transactions examined is changed
from 20 to 100. Since the knowledge of data referencing
behavior is assumed to be accurate, in each run of this

testing set, the frequency information is collected based
on those transactions that are examined only. Examin-
ing the system throughput shown in Figure 6, the
frequency reload algorithm always gives the best result,
and the smart algorithm gives the worst result in this
testing set. The other two algorithms yield very similar

system throughput.

Effects of Inaccurate Prediction of Reference
Behavior

The purpose of this experiment is to measure the
performance of the algorithms in case the prediction of
reference behavior of transactions is not accurate and
the hot spots do not exist at all. In this simulation run, a
uniform distribution function is used to generate pages
for frequency collection while transactions that are
created for execution have their pages generated using
an exponential distribution function with a random
stream that is different from the one used in the uniform
distribution for frequency collection. This is enforced to
make sure that the frequency collection process is totally
independent of the transactions that are examined in the
simulation. Table 4 shows the performance of the
frequency and ordered reload algorithms in this testing
case where time is measured in milliseconds, and
system throughput is the number of transactions
committed per second.
Table 4 shows that the frequency algorithm gives

worse transaction response time and system throughput
than those in the ordered reload algorithm. This is due
to the fact that the former incurs a high number of page

faults because of a lack of hot spots. However, the table
also shows that the differences in the reload time,
transaction response time, and system throughput are
rather small: 4%, 6%, and 4%, respectively. 

z

Summary and Conclusions 
’

Four reload algorithms to recover main memory
databases from a system failure have been proposed:
ordered reload, ordered reload with prioritization,
smart reload, and frequency reload. The differences
between these algorithms lie in the structure of the
archive memory, utilization of hot spots, reload granu-
larity, reload prioritization, and when to bring the
system up. Using the SLAM Il language, we have
constructed four simulation models to measure the

performance of these algorithms. Each model consists of
four components initialization, transaction processing,
checkpointing, and reloading, each of which has been
described in detail in this paper.
The simulation experiments showed that the smart

algorithm always gives the worst reload time, system
unavailability, number of page faults, transaction
response time, as well as system throughput. This fits
intuition due to many arm movements that this algo-
rithm must perform to locate a desired block for reload.

Figure 6. Effects of number of transactions examined on
system throughput

Table 4. Frequency vs. Ordered when there are no hot spots
and frequency collection is independent of transactions
executed
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The other algorithms give very comparable reload time
as intuitively expected since they all use cylinder to be
their reload granularity. This result reconfirms our
theoretical analysis [Gruenwald, 1990].
The prioritization algorithm performs more poorly

than the ordered reload algorithm in terms of transac-
tion response time and system throughput. This is
counter-intuitive since the former does not require the
entire database to be completely reloaded before
bringing the system up while the latter does. Appar-
ently the overhead required to identify waiting transac-
tions and their needed data, as well as the number of
page faults incurred in the prioritization algorithm, are
too high for the algorithm to yield a positive effect,
unless data on AM is organized in access frequency
order as we have seen in the frequency reload algo-
rithm.
The frequency algorithm almost always gives the best

transaction response time and system throughput in all
the testing cases. Its performance gain in the best case
outweighs the loss in the worst case. Comparing this
algorithm with the second best algorithm, ordered
reload, we found that in the best case the frequency
algorithm yields 56% more system throughput while in
the worst case it yields only 4% less system throughput.
The improvement in this algorithm fits intuition due to
the fact that hot spots have been taken into consider-
ation, data has been arranged on AM based on access
frequency, and the system can be brought online before
the entire database is memory-resident. The frequency
reload algorithm is thus the chosen one.
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