

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor del artículo publicado en:
This is an author produced version of a paper published in:

Simulation 73.1 (1999): 5 – 12

DOI: http://dx.doi.org/10.1177/003754979907300102

Copyright: © 1999 The Society for Modeling and Simulation International

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1177/003754979907300102

Semiautomatic generation of web courses by means of an Object
Oriented Simulation Language

Manuel Alfonseca, Juan de Lara, Estrella Pulido

Universidad Autonoma de Madrid, Dept. Ingenieria Informatica
{Manuel.Alfonseca, Juan.Lara, Estrella.Pulido}@ii.uam.es

Abstract

This paper describes the procedure we have
used to semiautomatically generate three
different courses for the web. The simulations
used in these courses have been written in our
special-purpose object-oriented continuous
simulation language (OOCSMP). A compiler we
have written for this language automatically
generates Java code and html pages, which
must be completed manually with the text and
images associated to each.

Keywords

Simulation in the Web, Education, Object
Oriented Languages, Java code generation,
Continuous Simulation.

Introduction

The World-Wide-Web (WWW) is becoming a
very important tool in the educational field.
Every day there are more and more courses
based on its use [1-2], which go from a simple
transposition of classroom notes, to the
inclusion of more sophisticated elements, such
as simulations, animated graphics, and so forth.
In particular, the Java language has made the
courses more interactive, faster to execute and
easily transportable to multiple platforms.

The clear interest towards this field has created
a need for adequate tools to help in the
elaboration of the courses, which should make it
possible to express all the possibilities offered
by WWW teaching [3-4]. In the words of the
"Multimedia Educational Software Task Force",
dependent on the European Commission
Directorate-General XIII [5]: "From now on,
there must be stress on helping to develop
authoring tools, easy to use by the teachers who
wish to include in their teaching methods
multimedia elements (both local and on the
web)".

Educational multimedia systems [6] should be
based on an interaction between the knowledge
to be learned and the student who will learn it.
The main objective should not be a mere
acquisition of information: the student should
attain the ability required to effectively execute

the procedures needed for problem resolution in
the field of his studies.

Simulation can interact with the web in several
interesting ways [7]:

• Building and executing distributed models.
• Providing web-based tools, such as

simulation interpreters.
• Integrating previously generated simulation

models in educational courses (this is our
approach).

Models available in the web may be written in
Java, or in any other language accessible
through CGI. There are two main ways of
reducing the effort needed to build the models:

• Providing a library that contains pre-

defined classes which may be used by the
user to build the model. In this case, the
model builder usually programs in a
general purpose language, such as C++ [8-
9] or Java [10-13].

• Using a special purpose simulation
language and a compiler that translates the
models into other languages, such as Java
and C++. This is our approach, and our
language is called OOCSMP.

This paper describes the OOCSMP language
and the COOL compiler which translates
OOCSMP code into Java and C++. It also
presents the procedure to follow in order to
integrate complex continuous simulations in
interactive WWW pages by means of the Java
programs automatically generated by COOL.
Next, the problems to be solved to generate
code are described. Finally, the procedure has
been applied to the construction of three
different courses on the web: a course on
Newton’s gravitation law, a practical course on
Ecology and an introductory course on
Electronic circuits.

Semiautomatic generation of
educational courses on the WWW

Figure 1: Procedure for course generation

The procedure proposed to generate courses for
the web consists of the following steps (see
figure 1):

1. Designing on paper an interactive course

based on continuous simulation models.
Depending on the course, a single model
may be used in one or more (sometimes all)
pages.

2. Building the models in our own continuous
simulation language, OOCSMP. This
language is an object-oriented [14] extension
of the old CSMP simulation language [15].

3. Designing the different simulation runs for
each page in the course. The same basic
model may be tested in different situations
and provides interactive facilities that make
it possible for the student to experiment.

4. Translating the models into C++ and testing
them. The compiler provides a fast, easy-to-
use stand alone environment that simplifies
testing and allows the course-writer to
experiment many different situations.

5. Translating the models and run situations
into Java applets. The same compiler is used
for both this and the previous step, as the
object language is a parameter of the
compiler.

6. Automatic generation of html skeletons for
each page in the course. The Java applets
embodying the models are automatically
embedded in the html pages.

7. Manual addition of text, images, and
internal/external references to the skeletons.
This adjustment is needed to fill the html
skeletons with explanations, images and
cross references to other pages. The
resulting set of pages is ready to be made
available to the students through the
Internet. Some of the courses we have
generated will be discussed in the remainder
of the paper.

We will explain all these steps in detail with
examples in subsequent sections.

All these capabilities are incorporated into a
single tool that we call COOL (a Compiler for
the OOcsmp Language), a compiler that
translates OOCSMP source code and,
depending on the invocation options, generates
Java and/or html skeletons, or C++ for DOS,
WINDOWS 95 or Unix environments. An
additional set of options makes it possible to
select many different presentation possibilities
in the Java applets.

The OOCSMP continuous simulation
language

The OOCSMP language is a true extension of
the old CSMP simulation language, in the sense
that CSMP programs can still be compiled and
executed by OOCSMP compilers. The
extensions added to the language make it
possible to build extremely compact object-
oriented models when the system to be
simulated consists of many similar interacting
parts, as in the examples we present here.
Additionally, the OOCSMP language also
includes capabilities to solve partial differential
equations and implements an algebra for
matrices and vectors. All this adds greatly to the
power of the language and extends its domain of
application.

The object-oriented extensions added to
OOCSMP can be found in [16]:

A few additional extensions increment the
capabilities of the OOCSMP language:
• Solution of partial differential equations by

the finite elements [17] and/or the finite
differences methods [18].

• Several graphical outputs: two-dimensional
and three-dimensional plots, two types of
iconic representations, maps of isosurfaces,
and a plot for the partial differential
equations grids.

• The PARAMETER sentence makes it easy
to modify the values of some constants
during program invocation.

• The run separator sentence, consisting only
of the symbol \, may be used to define
different runs of the same model. All the
instructions after this sentence, to the end of
the program or the next \ sentence, will be
considered as a different run. The model
itself cannot change, but all the declarative
instructions: TITLE, DATA, TIMER, object
constructions, object arrays and the PRINT/
PLOT/ICONICPLOT/CONNECTIONPLOT
directives may be modified. Every \ sentence
restores the original state of the model. The
changes specified afterwards modify that

state.

The generated Java code

COOL can translate OOCSMP source code into
Java and C++. A class (C++ or Java) is
generated for each OOCSMP class, and a main
file is generated to handle the user interface, and
to perform the simulation loop. The structure of
this loop varies depending on the selected
integration method.

The actions of the main simulation loop
(OOCSMP DYNAMIC section outside classes)
are accomplished in a function called
<NAME>_s2() , both in the C++ and Java
cases. This function is called several times in
the simulation loop (depending on the
integration method).

Apart from these similarities, the task of
generating code [19] from the OOCSMP models
is quite different depending on which code
(C++ or Java) has to be generated.

The main difference is the graphical user
interface generated. Some of the Java graphical
objects are not possible in the C++ case. In
Java, two different threads are launched : one
for the graphics, another for the simulation loop.

Some of the graphical representations create
their own thread too.

In the Java case, a file is generated for each
OOCSMP class. In the C++ case, a header file
is generated too. In this last case, the generation
of the constructors is simplified due to the
possibility of using parameters with default
values. In the Java case, a constructor must be
generated for every parameter with a default
value.

Another difference is the absence of pointers in
Java. The pointers are ‘simulated’ by means of
simple variables, which are updated with the
correct values at some points of the simulation
execution.

If the option of generating a standalone Java
program is selected, a file (called
<NAME>.java) is generated to make possible
starting the application as an Applet too. If this
option is not present, only the main file (called
frm_<NAME>.java) is generated (plus all the
class files).

Listing 1 shows a brief scheme of a typical main
Java file generated with COOL:

package <NAME>
import java.awt.*;
...
//import objects from our Java //library
import csmp.plot.PlotData;
...
public class frm_<NAME> extends (Frame|Applet) impl ements Runnable [,...]
// other interfaces, depending on the graphical out puts selected...
{
// Declare arrays of simulated pointers to the vari ables beeing integrated,
// plot and printed ...
...
// Declare the model Data
...
// Declare the graphical objects
...
public void run() // launchs a thread for the calcu lus
{ ... }
public void stop()// Stops the thread
{ ... }
void <NAME>_s2() // implements the calculus to be done in the simulation loop
{ ... }
void initAllArrays()// initializes the arrays of s imulated pointers...
{ ... }
public void frm_<NAME>()
// constructor,adds graphical objects and initializ es data
{ ... }
public void <NAME>_sim(...) // The simulation Loo p
{ // Initialize the selected graphical representati ons
...
for (;;){

<NAME>_s2();
// Print the selected variables

...
// Plot the selected variables
...
// Perform integration, depending on the selected i ntegration method...
...

}
}
public boolean handleEvent(Event e) // Handles user actions
{...}
private void updateArrays()
// Updates the array of pointers to the variables b eeing integrated
{...}
private void updatePlots() // Updates the array of variables to be plotted
{...}
private void updatePrints() // Updates the array of variables to be printed
{...}
// Some other functions depending on the graphical outputs selected
}

Listing 1 : A scheme of Java generated code

A course on Newton's gravitation law

This course may be found at the following web
address:

 http://www.ii.uam.es/~epulido/newton/grav.htm

(Step 1) The course consist of six which show:

• A simple description of Newton's Mechanics

with different solutions to the two-body
problem (a free fall following different
orbits: a circle, an ellipse, a parabola, a
hyperbole and a straight line).

• A model of the solar system, as a practical
example of the n-body problem. For
convenience, the solar system is shown in
two separate parts: the inner system (from
Mercury to Jupiter) and the outer system
(from Jupiter to Pluto), with different time
scales.

• A model of the Sun-Earth-Moon system.
The time and plot scales are adjusted to
make the two orbits distinguishable.

• The discovery of Neptune by John Couch
Adams and Urbane Jean-Joseph Le Verrier,
indicating how this discovery transformed
an apparent failure of Newton's Mechanics
into an outstanding success. The discovery is
illustrated by a double simulation of
Uranus's orbit, in the presence and in the
absence of Neptune.

• A geo-stationary satellite which keeps
constant its distance to the Earth has been
simulated using the same model, changing
only the values of the constants and the
instanced objects (members of the class
Planet). The effect of the Moon on the
satellite's orbit is illustrated by performing a
double simulation in the presence and in the
absence of the Moon. To test the second

case, we only have to change the mass of the
Moon to zero.

• Finally, the last page leaves the student
freedom to experiment with the simulated
solar system, providing the ability to change
the planet parameters and the universal
constants (the mass of the Sun or the
gravitational constant), to play at answering
what-if questions.

(Step 2) This course is based on a single
continuous simulation model of the n-body
problem, which is applied in the different pages
to several situations which provide an overview
of the possible uses of Newton's gravitation law.
The model defines a single class (Planet) which
may be used indistinctly to represent the planets
in the solar system, natural or artificial
satellites.

Listing 2 shows the OOCSMP definition of the
Planet class, which is used in all the pages
described above. A more detailed description of
this model appears in reference [20]. Figure 2
shows one of the pages in the course.

* Definition of Planet class *

CLASS Planet {
 NAME name
 DATA M, X0, Y0, XP0, YP0, FI
 INITIAL
 FIR:=FI*PI/180
 CFI:=COS(FIR)
 SFI:=SIN(FIR)

* Calculations for a planet *

 DYNAMIC
* Distance to the Sun
 R2 := X*X+Y*Y
 R := SQRT(R2)
 Y1 := Y*CFI
 Z := Y*SFI
* Mutual influences

* The Sun on this planet
 APS := G*MS/R2/R
* This planet on the Sun
 ASP := G*M/R2/R
 XPP := -(ASP+APS)*X
 YPP := -(ASP+APS)*Y
 XP := INTGRL(XP0,XPP)
 YP := INTGRL(YP0,YPP)
 X := INTGRL(X0,XP)
 Y := INTGRL(Y0,YP)

* Mutual actions of two planets *

 ACTION Planet P
* Distance to another planet
 DPP2 := (P.X-X)*(P.X-X)+
 (P.Y-Y)*(P.Y-Y)+(P.Z-Z)*(P.Z-Z)
 DPP := SQRT(DPP2)
* Influences
* The other planet on the Sun
 ASP1 := G*P.M/P.R2/P.R
* The other planet on this planet
 APP1 := G*P.M/DPP2/DPP
* Coordinate conversion
 Y2 := P.Y*COS(P.FIR-FIR)
* Actual action of the planet
 XPP += APP1*(P.X-X) - ASP1*P.X
 YPP += APP1*(Y2-Y) - ASP1*Y2

* Other data *

 PRINT R
 PLOT Y,X
 FINISH R=.0001
}

Listing 2: Declaration of the Planet
class in the course on Newton's
gravitation law

(Step 3) Although the same model is used in the
whole course, slight modifications need to be
done for each HTML page. As an example, for
the two body system in the first page, the
ACTION term is not required, as this is only
required for the case of three or more bodies.
For the remaining pages, the original model
may be used as-is. The only modifications
needed may be to inhibit some objects in the
plot or to modify the plot scales.

The rest of the course generation process has to
do with code and html skeleton generation and
is done automatically by the system. As
mentioned when describing the process, these
skeletons need to be completed manually by the
course designer with additional text, images and
hyperlinks.

Figure 2: A course on Newton's gravitation law

A practical course on Ecology

The course can be found at the following
address:

 http://www.ii.uam.es/~epulido/ecology/simul.htm

The course consists of seven pages presenting
the following ecosystems:

• An isolated three-species system (one

primary producer, one prey and one
predator), with the appropriate parameters to
bring the ecosystem out of equilibrium. The
student can observe the periodicity of this
kind of systems.

• A three-species system in equilibrium.
• A three-species system, originally in

equilibrium, which is invaded after some
time, first by a new prey, then by a new
predator. The first invasion takes the system
out of equilibrium. After the second
invasion, the whole five-species system
reaches a new periodical stability.

• The same system, invaded after some time,
first by a new predator, then by a new prey.
The periodical stability attained after some
time is completely different to the preceding
case.

• A five species system in equilibrium.
• A five-species system with an user interface

that lets the student modify the different
parameters to perform experiments. Some of
these experiments are suggested by the text
of the page, but the student may perform
many more.

• A simulation of an ecosystem with fifteen
different species that interact to build
complicated trophic chains and ecological
niches.

As mentioned above, the main components of
the html pages are the simulations of
ecosystems presenting different features. The
outputs of these simulations are presented
graphically in two different ways:

• A plot of the evolution of the populations of

the different species along time.
• An iconic representation of the same

populations. The number of icons of a given
species shown is proportional to its
population at any moment. As populations
wax and wane, icons appear or disappear.

One of the pages makes it possible to
dynamically add objects (species) during the
execution of the model.

Our model is based upon the Volterra equations
[21], with a few modifications. We consider
three different types of species:

• Primary producers, usually plants, which are

preyed upon, but do not prey.
• Superpredators, which prey but are not

preyed upon.
• Intermediate consumers, which prey and are

preyed upon.

Each species can have up to two vectors of
coefficients which represent its “appetence” for
other species and vice versa. These coefficients
are not constant, but a function of the
population proportions. Listing 2 depicts the
resulting model, written in OOCSMP. This
model is described in more detail in reference
[22], which also includes a version of the same
program written in the Modelica [23] language.

We have used the model to simulate a part of
the African savanna ecosystem. The data used
for the parameters and coefficients are more or
less real, as found in the literature [24]. Our
model contains fifteen different species, four of
which are carnivore, six herbivore, two
omnivore, and three primary producers (plants).
There are several trophic chains, the longest of
which consists of five species: lion-jackal-rat-
locust-grass.

Figure 3 shows on of the pages in the course on
Ecology, which uses icons to represent the
populations of the different species.

Figure 3: A practical course on Ecology

An introductory course on electronic
circuits

This course may be found at the following web
address:

 http://www.ii.uam.es/~epulido/circ/modules.htm

The course shows how to build more complex
systems incrementally by using simpler circuits.

The simpler circuits are encapsulated as
OOCSMP classes, which are reused in the
complex circuits. It would also be possible to
connect the electronic circuits with other
components, but this is not shown in the course.

The models use the OOCSMP directive
CONNECTIONPLOT to produce a graphical
representation appropriate for electronics
circuits. Each block in the model appears as a
graphical image with its inputs and outputs
correctly connected, and special widgets for the
global input/output of the model. The user can
change the inputs to the circuit by clicking on
the widgets, watch the outputs and display the
values of the intermediate blocks by clicking on
them. It is also possible to visualise the output
as a seven segment led.

The course is divided into two main sections:
combinatorial circuits and sequential circuits.
The first includes adders (1 and 4 bits),
multiplexers (2x1 and 4x1) and decoders (2x4,
4x16 tree-decoders, coincident-decoders and a
decoder whose output is a seven segment led).

In the second section (sequential circuits) we
show a D-type flip-flop.

Figure 4: A 1-bit adder

The previous figure 4 shows the page of the
course that describes the 1-bit adder.

This course is described with more detail in
Spanish in reference [25].

Solution of partial differential
equations

We have generated some pages with examples
of the solution of PDEs [26] in one and two
dimensions. There are also examples of the grid
generation capabilities of OOCSMP. They can
be found in the following address :

http://www.ii.uam.es/~jlara/oocsmp/pdes.html

As an example, figure 5 shows the solution of
the diffusive transport equation in 1D.

Fig 5: Solving the non-diffusive transport

equation

Conclusion

The procedure we have used to build courses on
the web based on simulation Java applets is very
general, as proved by the three different courses
we have designed up to now. The set of tools
we have developed make it very easy to build
the courses by combining pages that use the
same models or quite different ones. The
OOCSMP language is much simpler to use than
Java in this area of application. Object
orientation further simplify the models, which
can be built in a hierarchical sequence, the
simplest being used as new building blocks by
the more complex.

Manual construction of the pages is reduced to a
minimum: only descriptive texts, static images
and cross-references have to be added by hand.
The Java-generated models provide
automatically a flexible user interface and a
complete set of output capabilities, including
two and three-dimensional plots, iconic plots
and electronic diagrams. The course writer may
select those most appropriate for the subject
matter of the course, or combine several in any
way.

In the future, we intend to extend the language
and the compiler in such a way that it would be
possible to include the text for the html pages in
the model, in the form of comments. We also
intend to include some code and access to a
database, so as to be able to control the
performance of each student with the courses
we generate.

We are also beginning to work with distributed
objects. Given an OOCSMP model, COOL will
optionally generate stand-alone code, or
distributed code. This will speed-up
considerably some simulations.

Acknowledgment

This paper has been sponsored by the Spanish
Interdepartmental Commission of Science and
Technology (CICYT), project numbers TIC-96-
0723-C02-01 and TEL97-0306.

References

[1] Thomson Publishing. 1997. Internet
Distance Education with Visual C++.
http://www.thomson.com/microsoft/visual-c
/teacher.h

[2] GNA The Globewide Network Academy.
1997. http://gnacademy.org.

[3] Aviation Industry CBT Committee
Computer Managed Instruction. 1977.
Computer Managed Instruction Guidelines and
Recommendations, AGR 006, Version 1.1,
AICC. http://www.aicc.org/agr006.htm.

[4] Schutte. 1997. Virtual Teaching in Higher
Education: The New Intellectual Superhighway
or Just Another Traffic Jam?.
http://www.csum.edu/sociology/virexp.htm.

[5] Directorate-General XIII. 1996. Educational
Multimedia: first elements of reflection. Task
force on Multimedia Educational software.

[6] Allen,J.T., Chance,R. 1998. Maximizing the
Learning of Information Systems via World
Wide Web. In Proceedings of Web Net 98. Vol.
2. pp.1245.

[7] Fishwick,P.A. 1996. Web-based simulation:
Some Personal Observations. In Proceedings of
the 1996 Winter Simulation Conference,
Coronado, pp. 772-779.

[8] Jones,J., Roberts,S. 1996. Design of Object-
Oriented Simulations in C++ . In Proceedings
of the 1996 Winter Simulation Conference,
Coronado.

[9] Schwetman.H. 1995. Object-oriented
Simulation Modeling with C++/CSIM17. In
Proceedings of the 1995 Winter Simulation
Conference.

[10] Healy,K.J, Kilgore,R.A. 1997. Silk: A
Java-Based Process Simulation Language. In
Proceedings of the 1997 Winter Simulation
Conference, Atlanta, pp. 475-482.

[11] Page,E.H., Moose Jr.,R.L., Griffin,S.P.
1997. Web-based Simulation in Simjava using
Remote Method Invocation. In Proceedings of
the 1997 Winter Simulation Conference,
Atlanta, pp. 468-474.

[12] Howell,F., McNab,R. 1998. A Discrete
Event Simulation Library for Java. In Fishwick
P., Hill D., Smith R., Ed: Proceedings of the 1st
International Conference on Web-based
Modeling and Simulation, SCS San Diego.

[13] Page,E.H., Griffin,S.P. 1998. Transparent
Distributed Web-Based Simulation using
Simjava. In Fishwick P., Hill D., Smith R., Ed:
Proceedings of the 1st International Conference

on Web-based Modeling and Simulation, SCS,
San Diego.

[14] Prapidapis,K.S, Colley,M., Chernett,P, An
object oriented automated framework for
simulation of complex physical systems.
ESS’97. Passau, pp 31-35.

[15] IBM Corp. 1972. Continuous System
Modelling Program III (CSMP III) and Graphic
Feature (CSMP III Graphic Feature) General
Information Manual, IBM Canada, Ontario,
GH19-7000.

[16] Alfonseca, M., Pulido, E., Orosco, R., de
Lara, J. OOCSMP : an object-oriented
simulation language. ESS'97, Passau, pp. 44-48.

[17] Zienkiewicz, O.C ; Taylor, R.L. 1989. The
Finite Element Method, 4th edn, vol. I,
McGraw-Hill; New York.

[18] Strikwerda, J.C. 1989. Finite difference
schemes and partial differential equations.
Chapman & Hall; New York.

[19] Acebes,L.F., de Prada, C.SIMPD : An
intelligent modelling tool for dynamic
processes. ESS97. Passau, pp. 177-181.

[20] Alfonseca, M., de Lara, J. And Pulido, E.
November 1998. An object-oriented continuous
simulation language and its use for training
purposes. 5th International Workshop on
Simulation for European Space Programs,
Noordwijk, The Netherlands.

[21] Volterra, V. 1931. Leçons sur la Théorie
Mathématique de la Lutte pour la Vie, Gauthier-
Villars, Paris.

[22] Alfonseca, M., de Lara, J. and Pulido, E.
October 1998. Educational simulation of
complex ecosystems in the World-Wide Web,
Proceedings ESS’98, Nottingham, pp. 248-252.

[23] Elmqvist, H. and Mattson, S.E. 1997. An
Introduction to the Physical Modeling
Language Modelica, Proceedings 9th European
Simulation Sympossium ESS97, SCS Int.,
Erlangen, pp. 110-114. See also
http://www.Dynasim.se/Modelica/index.html.

[24] Rodríguez de la Fuente, F. 1970.
Enciclopedia Salvat de la Fauna, Salvat.

[25] Alfonseca, M., de Lara, J. and Pulido, E.
1998. Generación semiautomática de cursos de
Electrónica para Internet mediante un lenguaje

de simulación continua orientado a objetos. III
Congreso de Tecnologías Aplicadas a la
Enseñanza de la Electrónica (TAEE'98),
Madrid, pp. 125-130.

[26] de Lara, J., Alfonseca, M. Simulating
Partial Differential Equations in the World-
Wide-Web. EUROMEDIA’99. Munich. In
press.

