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Abstract—Obesity is a chronic disease that can lead to an
increased risk of other serious chronic diseases and even death.
We present switching and time-delayed feedback-based model-
free control methods for the dynamic management of body mass
and its major components. The estimation of body composition
based on human body weight dynamics is proposed using a soft
switching-based observer. Additionally, this paper addresses the
control allocation problem for optimal body weight management
using linear algebraic equivalence of the nonlinear controllers
based on dynamic behavior of body composition described in
literature. A control allocator system computes the required
energy intake and energy expenditure from a controlling range of
inputs to track a desired trajectory of body mass by optimizing
a weighted quadratic function. Simulation results validate the
performance of the proposed controllers and the observer under
disturbances in recording energy intake and energy expenditure
figures.
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I. INTRODUCTION

Obesity, a serious social and public health problem, is

increasing dramatically among the population not only in

high-income and developed countries, but also in low-to-

middle-income and poor, developing countries, particularly

in urban settings. Obesity and being overweight result from

a variety of factors, such as physical inactivity, high level

of stress, as well as inappropriate diet. Obesity and being

overweight are also associated with heart disease, certain types

of cancer, type 2 diabetes, stroke, arthritis, breathing problems,

and psychological disorders, such as depression (Laila, 2010),

(Sentocnik, AtanasijevicKunc, Drinovec and Pfeifer, 2013).

Many studies have been conducted to try and understand the

etiology of weight gain and obesity. In (Chow and Hall, 2008),

a model based on macronutrient and energy flux balance is

presented. A computational model, presented in (Hall, 2010),

shows how diet perturbations result in adaptations of fuel

selection and energy expenditure that predict body weight and

composition changes in both obese and non-obese individuals.

In (NavarroBarrientos, Rivera and Collins, 2011), the authors

incorporated both physiological and psychological factors in

a dynamical model to help develop behavioral interventions.

Solving the obesity problem through healthy body weight

management has been of interest in the control community

(Karimi and Rao, 2015). In (Laila, 2010), closed loop control

of body composition was done, and the energy intake into the

body is regarded as the input control to the system. Clinical

open-loop and closed-loop control efforts for various scenarios

were studied in (Sentocnik et al., 2013), and the efficacy of

the treatment can, in this way, be significantly improved.

Control of body mass or its major components may

need daily body composition measurement. Several meth-

ods, such as air displacement plethysmography, dual-energy

x-ray absorptiometry, bioimpedance spectroscopy, quanti-

tative magnetic resonance and magnetic resonance imag-

ing/spectroscopy, are presented in (Baracos and et al, 2012).

These methods are expensive to administer and inconvenient

to arrange for frequent measurements. To minimize the as-

sociated cost and inconvenience, we propose a technique for

estimation of body composition using observer design based

on daily measurements of total body weight alone.

Feedback linearization (FL) and sliding mode control

(SMC) are two widely used control schemes for nonlinear

systems. Despite their desirable features, the inability to

handle explicit input constraints is a major drawback of using

FL/SMC, while the body weight control system described

in this research clearly has input constraint–limitations in

energy intake and physical activity. To resolve this problem,

(Gwak and Masada, 2008) proposed a constrained FL/SMC

nonlinear optimal controller that can be represented in a simple

constrained linear least-square problem.

A precise dynamic model is difficult to build, and the

identification of the model parameters has to be individualized

and can vary over time. Therefore, a controller that does not

require a dynamic model would be a useful and more robust

tool than model-based controllers, especially when precise

tracking is achievable with small control gains.

In addition, measurements of energy intake and energy

expenditure are prone to errors and lead to huge disturbances

to the system (Hall, 2015). Hence, the robustness of an

observer to disturbances is essential for accurate prediction

of body composition.

This paper, partly presented in (Karimi and Rao, 2014),

is based on the dynamic behavior of body weight based on

macronutrient intake and the energy balance model. Here, two

model-free control algorithms for body weight management

using a priori knowledge of control input and a switching-

based PI controller are presented. The energy expenditure of

the body is regarded as the input control to the system. Body

components are estimated using a dynamic observer based
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on daily measurement of total body weight supplemented by

periodic measurement of individual body components. Next,

control allocation problems are formulated using FL/SMC as

linear algebraic equations, and input constraints and optimiza-

tion issues are addressed. Finally, effectiveness and robustness

of the proposed algorithms are demonstrated through simula-

tions.

II. PROBLEM DEFINITION

The major components of human body mass are fat and

lean masses and both of these factors as well as total body

mass need to be managed.

The goal of this work is to propose controllers that suggest

daily energy intake or physical activity to track a preferred

trajectory of weight/fat reduction or increase. It is suitable

for professional athletes, the elderly individuals at risk of

Sarcopenia, people with disabilities or sickness and those who

need to precisely manage their weight/fat/lean due to medical

reasons or less body weight fluctuation.

Since the controllers are robust enough, some deviation

from their suggestions is tolerable, and good tracking can be

still practically achieved. So, the human preference issue is

considered implicitly.

When it is intended to control fat/lean mass, we need to

have daily estimation of fat/lean mass to use in the con-

troller whether the controller is model-free or model-based.

Since measurement of fat/lean mass is hard and expensive to

do every day, we design an observer to estimate the body

compositions using daily total body weight measurement and

periodic fat mass measurement. The dynamic model, which

encompasses fat and lean masses as system states, is used for

observer design.

It is assumed that the subject is able to follow the control

suggestions and their moods, energy intake and physiological

behavior are normal and not pathological. Also, it is assumed

that energy intake and expenditure are reasonably precisely

measurable.

III. BODY WEIGHT DYNAMICS BASED ON THE

ENERGY BALANCE MODEL

To describe the energy balance in humans, different mathe-

matical models have been developed. A comprehensive three-

compartment model is presented in (Sentocnik et al., 2013)

and (NavarroBarrientos et al., 2011).

The daily energy-balance (EB) equation is described as

EB = EI − EE (1)

where EI represents the daily energy intake, EE represents

the daily energy expenditure, and BM is the body mass of the

person expressed in terms of fat (F), lean (L) and extracellular

fluid (ECF).

BM = F + L+ ECF (2)

The energy intake is based on the consumed food and its

caloric value

EI = k1ci+ k2fi+ k3pi (3)

where ci indicates carbohydrate intake, fi and pi indicate

the fat intake and the protein intake (all representing model

inputs), respectively, and kis are constant coefficients.

To track fat mass, lean mass and extracellular fluid, the

following balance equations were used:

dF

dt
=

1− r

ρF
EB (4)

dL

dt
=

r

ρL
EB (5)

dECF

dt
=

ρw
Na

[

ζNa(ECFinit − ECF )− ζci

(

1−
ci

cib

)]

(6)

where ρF and ρL are the energy density of the body fat and

lean muscle mass respectively, ρw is the density of water,

cib is the baseline carbohydrate intake, and the ratio r is the

parameter describing the imbalance denoted by EB to the

compartments fat mass and lean mass. This parameter, r, was

defined in (Hall, 2007) based on the Forbes formula (Forbes,

1987), which was obtained after analyzing body composition

data collected from many adults:

r =
c

c+ F
; c = kk

ρL
ρF

(7)

Forbes found that this relationship was similar whether weight

loss was due to diet or exercise. Prolonged exercise or a

significant change in the protein intake may cause a different

relationship for r.

The daily energy expenditure is calculated as follows:

EE = [PA] + [TEF ] + [RMR] (8)

where PA (input to the model) represents the energy spent

on physical activity, TEF is the thermic effect of food,

and RMR is the resting metabolic rate needed for basic

physiological processes. Equation (8) can be also written as

EE = [δ ·BM ]+[β ·EI ]+
[

K + γLL+ ηLL̇+ γFF + ηF Ḟ
]

(9)

where δ = PA
BM

represents the physical activity coefficient

and the constant K depends on the initial conditions and is

calculated using Equation (1) and Eqs. (4) – (6) in the steady

state: EB = Ḟ = L̇ = ˙ECF = 0
Therefore, for the steady-state conditions, Eq. (9) can be

rewritten as follows:

K = (1 − β)ĒI − γLL̄− γF F̄ − P̄A (10)

where the bars over the variables indicate the steady state of

the corresponding variables.

The obtained model is used for an optimal controller,

observer design, and simulations, which will be presented in

the following sections.

IV. MODEL-FREE CONTROL

CONTROLLER DESIGN

Let the control objective be steering any combination of

body composition masses, including total body mass, to a

desired reference value/trajectory without using the dynamic

model in the controller. It is considered that physical activity
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is the only control input to the system and that it conforms

to a desired shape. The body weight dynamics (4)-(6) can be

formed as

ẋ = h(x, y, u) = f(x, y) + g(x, y)u (11)

y = Cx (12)

in which x = [F, L, ECF ], u = δ, y is a controlled output,

C is a 1× 3 matrix and

f(t, x, y) =







(1− a− bF )(EI − [β · EI ]− [K + γLL+ γFF ])
(a+ bF )(EI − [β · EI ]− [K + γLL+ γFF ])
ρw
Na

[

ζNa(ECFinit −ECF )− ζci

(

1− ci
cib

)]







(13)

g(x, y) =





−(1− a− bF )BM
−(a+ bF )BM

0



 (14)

Differentiating the output (12) with respect to t yields

ẏ = Cf(x, y) + Cg(x, y)u (15)

Introducing from (15) a constant, ḡ, representing the nomi-

nal value of g, we can rewrite (15) into the following equation:

ẏ = ḡu+ [Cf + (Cg − ḡ)u]

= ḡu+H(t) (16)

where H(t) denotes the total nonlinearity, which is ex-

pressed as

H(t) = Cf + (Cg − ḡ)u (17)

The desired error dynamics is defined with an asymptoti-

cally stable linear time invariant system as in the following:

ėy = Πey (18)

The linearizing feedback control law results in

u = ḡ−1(ẏd −H(t)−Πey) (19)

Note in equation (19) that the time delayed estimation of the

total sum of system nonlinearities is used in place of the total

sum of system nonlinearities. Namely,

H(t) ≈ H(t−∆) = ẏ(t−∆)− ḡu(t−∆) (20)

Combining equations (19) and (20), the time delayed control

law (Fig. 1(a)) can be obtained as

u = δTDC = ḡ−1(ẏd −H(t−∆)−Πey)

= u(t−∆) + ḡ−1(ẏd − ẏ(t−∆)−Πey) (21)

The stability condition was shown in (Youcef-Toumi and Wu,

1992). If a specific trajectory for weight loss is desired then,

we can address the tracking problem. In this controller, not

only the current and previous outputs are used, but the previous

input is also considered, which could make it more efficient

for tracking purposes.

In many circumstances, a modest initial increase in phys-

ical activity is preferred at the beginning of the program.

Switching-based set-point regulation is an alternative way to

move the body weight to a desired value considering the

(a)

(b)

Fig. 1. Controller block diagram: (a) time delayed and (b) switching-based

predefined physical activity shape. A possible formula for δ
is given by

u = δINC = δ0 + k1(y0 − y)ξ (22)

The parameters δ0 and y0 are the initial values for the δ and y,

respectively. To steer the human body to a particular weight,

the following algorithm is proposed (see Fig. 1(b)):

δ = δINC

IF δINC > δPI

δ = δPI

END,

where δPI is a proportional-integral controller as

u = δPI = k2 ey + k3

∫

ey dt (23)

The control parameters are chosen in such a way that δPI is

greater than δINC at the beginning. So, the control action is

started with δINC and then switched to δPI when it is less

than δINC .

OBSERVER DESIGN

The state vector containing fat, lean and extra cellular fluid

masses is not easy to measure directly every day. Therefore,

because of the cost and inconvenience, it is desirable to

estimate these from the system input and body weight.

The observer is designed to provide real-time estimates of

inaccessible dynamical states that might be required for the

implementation of control laws.

Substituting r from (7) into (4) and (5) leads to

ρF
dF

dt
= (1−

1

1 + F
c

)EB (24)

ρL
dL

dt
=

1

1 + F
c

EB (25)
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To cope with the non-linearity, the following linear approx-

imation is made
1

1 + F
c

≈ a+ bF (26)

Constants a and b must be determined based on the regression.

Then, Eqs. (24) and (25) are rewritten regarding the approxi-

mation as well as expansion of the EB components obtained

from Eq. (1).

ρF
dF

dt
= (1−a−bF )(EI−[δ·BM ]−[β ·EI ]−[K + γLL+ γFF ])

(27)

ρL
dL

dt
= (a+ bF )(EI− [δ ·BM ]− [β ·EI ]− [K + γLL+ γFF ])

(28)

For observer design, we arrange the obtained system of

differential equations of (27), (28) and (6) as the following

class of nonlinear systems:

ẋ = h(t, x, y, u) = Ax+Bu+Φ(t, x, y, u) (29)

y = Cx (30)

where x = [F, L, ECF ] and A is a constant matrix.

It can be shown that Φ(t, x, y, u) is Lipschitz i.e.

‖Φ− Φ̂‖ ≤ λ‖(x − x̂)‖ (31)

and designing an observer for Eq. (29) is feasible if the pair

(A,C) is observable.

A =







−(1−a)γF+bK

ρF

− (1−a)γL

ρF

0
−aγF−bK

ρL

−aγL

ρL

0

0 0 − ρw

Na
ζNa






(32)

C = [1 1 1] (33)

The Luenberger observer is well-known and widely used

for time-invariant linear systems in order to estimate the state

vector when that is not directly measurable. Consider the

following extended Luenberger observer for the system (29)-

(30) (Pagilla and Zhu, 2004):

˙̂x = Ax̂+Bu+Φ(t, x̂, y, u)+
λ2 + ǫ0
||C||2

G(y−Cx̂)+G1(y−Cx̂)

(34)

where ǫ0 ≥ −λ2 and G1 is chosen such that A − G1C is

Hurwitz, and G is the observer gain matrix. Let the estimation

error

x̃ = x− x̂ (35)

in which P0 is positive definite matrix. Then, by considering

the following Lyapunov function candidate

V (x̃) = x̃TP0x̃ (36)

the observer gain G is obtained as

G = P−1
0 CT /2 (37)

In reality, it may not be possible to measure precisely both

energy intake and energy expenditure every day. To overcome

this problem, it is assumed that the measurement of body

components is performed periodically. Hence, in Eq. (34) with

Fig. 2. Proposed observer block diagram

ǫ0 = −λ2 the following soft switching observer is presented

(see Fig. 2)

˙̂x = Ax̂+Bu+Φ(t, x̂, y, u)+(1−q)G1(y1−C1x̂)+qG2(y2(jT )−C2x̂)
(38)

˙̂x = f(x̂, y, u)+g(x̂, y)u+(1−q)G1(y1−C1x̂)+qG2(y2(jT )−C2x̂)
(39)

y1 = C1x, y2(jT ) = C2x(jT ), j = 1, 2, ... (40)

in which C1 = [1 1 1], C2 = 1, Gis are observer gain matrices,

T is the period that measurement of components is performed,

and 0 ≤ q ≤ 1 is a weighting factor for soft switching:

q = exp(−
t− jT

kq
), jT ≤ t < (j + 1)T (41)

kq is appropriately determined.

Using intermittent measurement of full states in addition to

daily body weight measurement, the degree of observability

would be increased.

SIMULATION RESULTS

In this section, we present simulation results based on our

proposed controllers and observers. We use the following

coefficients and parameters of the dynamic system (Sentocnik

et al., 2013).

k1 = 4 kcal/g, k2 = 9 kcal/g, k3 = 4 kcal/g, ρF =
9400 kcal(kg/d), ρL = 1800 kcal/(kg/d), kk = 10.4 kg,

ρw = 1 kg/l, Na = 3.22 kg/l, ζNa = 3 kg/d/l, ζci =
4 kg/d, β = 0.24, γL = 22 kcal/kg, ηL = 230 kcal/(kg/d),
γF = 3.2 kcal/kg, ηF = 180 kcal/(kg/d).

The control objective in each simulation is tracking or

regulation of body or fat masses with initial conditions

[F, L, ECF, F̂ , L̂, ˆECF ] = [30, 45, 25, 31, 44, 26].
The influence of EI = 3492(1+ 0.02 ∗ rand), δ = δ(1−

0.2 ∗ rand) disturbances on controllers and the soft switching

observer are investigated in the following subsections. The

variable rand is a MATLAB function that generates uniformly

distributed pseudo-random numbers between 0 and 1. The

coefficient of 0.2 for disturbance in the physical activity could
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Fig. 3. The fat (F), lean (L) and extracellular fluid (ECF): time delayed body
mass controller
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Fig. 4. Control input δ: time-delayed body mass controller

be up to 200 kcal of energy expenditure in this case. Since

EI is multiple times greater than physical activity (δ · BM ),

the coefficient of rand in EI is chosen much less frequently

than the coefficient of rand in δ.

For the observer (39), measurement of the body components

is done every 90 days with the following parameters hereafter:

G1 = [1.9 1.2 − 0.3], G2ii = [0.8 1 − 0.2], kq = 5

Body mass controller

Next, we address how to control body weight according

to a desired cubic polynomial function using the controller

(21) even in the presence of disturbances. The initial and

final values of the body weight are 100 kg with slope -0.05

and 70 kg with slope 0, respectively. The control parameters

considered in this simulation are ḡ = 0.1 and Π = 10. Since

the controlled output is body weight and it is measurable

directly, controlling based on observer is not needed.

The results of the body weight control are shown in Figs.

3–4. The lean, fat and ECF masses are bounded without

fluctuation while body weight is being controlled (Fig. 3). The
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Fig. 5. The fat (F), lean (L) and extracellular fluid (ECF): switching-based
body mass controller
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Fig. 6. Control input δ: switching-based body mass controller

controller error is small in the presence of disturbances, which

implies good performance of the controller. The control input

δ in Fig. 4 has a dome shape using a time-delayed controller

for a cubic polynomial trajectory.

The results of the switching-based controller are presented

in Figs. 5 through 6. The control parameters chosen for this

controller are:

δ0 = 4, k1 = 0.5, ξ = 1, k2 = 0.2, k3 = 0.4
It is seen that the desired body weight is achieved even in

the presence of disturbances. The control input δ in Fig. 6 has

a hat (ˆ) shape that is different from the dome shape of the

time-delayed controller. We find that although the maximum

of the dome shape is lower than the maximum of the hat

shaped exercise profile, the desired weight can be achieved.

Fat mass controller

Here, the objective is to control fat mass to bring it to

a desired cubic polynomial function using the time-delayed

controller. The initial and final values of the fat mass are
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Fig. 7. The fat (F), lean (L) and extracellular fluid (ECF): time delayed fat
mass controller
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Fig. 8. Observer errors: Eq. (39)

30 kg with slope -0.02 and 15 kg with slope 0, respectively.

All controller and observer parameters are the same as the

1st simulation for body mass control. Since the controlled

output is fat mass and direct measurements are only available

periodically, observer-based control is necessary. Simulation

results of the controller and observer (39) are represented in

Figs 7–9. In addition to the decreasing and bounded body

composition masses in Fig. 7, small observer errors in Fig. 8

are achieved. There are some sharp changes in fat mass error

and spikes in δ (see Fig. 9), which come from rapid observer

corrections due to periodic measurement.

The last simulation shows the results of a switching-based

controller for the regulation of fat mass using the observer of

(39) depicted in Figs. 10–12. The initial and final values of

the fat mass are 30 kg and 15 kg, respectively. All parameters

are similar to the parameters of the same controller for body

mass, but k2 = 0.7.

In summary, observer-based time delayed control methods

perform well in the trajectory tracking problem as shown in the

results of the fat mass controller where at least one of the body

component measurements is needed. In the case of total body
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Fig. 9. Control input δ: time delayed fat mass controller
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Fig. 10. The fat (F), lean (L) and extracellular fluid (ECF): switching-based
fat mass controller
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Fig. 11. Observer errors: Eq. (39)
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Fig. 12. Control input δ: switching-based fat mass controller

mass control, the observer is not necessary in the time delayed

controller because the body weight is directly measurable.

Also, a switching-based controller works well for set-point

regulation, and the same discussion is valid for requiring an

observer for this controller.

V. CONTROL ALLOCATION

CONSTRAINED OPTIMAL CONTROL DESIGN

Let the control objective be steering any combination of

body composition masses, such as body mass, to a desired

trajectory. It is assumed that both energy intake and physical

activity are the control inputs to the system. This shows

overactuation and there are an infinite number of solutions.

Hence, a control allocation procedure is required to find the

best solution that fits within the objective and limitations of

the problem.

The body weight dynamics (4)-(6) can be formed as

ẋ = h(t, x, y, u) = f(t, x, y) + g(x, y)u (42)

y = Cx (43)

in which x = [F, L, ECF ], u = [EI, δ], y is a controlled

output, C is a 1× 3 matrix and

f(t, x, y) =





−(1− a− bF ) [K + γLL+ γFF ])
−(a+ bF ) [K + γLL+ γFF ])

ρw
Na

[ζNa(ECFinit − ECF )− ζci]



 (44)

g(x, y) =





(1− β)(1− a− bF ) −(1− a− bF )BM
(1− β)(a+ bF ) −(a+ bF )BM

ρw
Na

ζci
z1
cib

0



 (45)

It is presumed that the carbohydrate energy intake is propor-

tional with total energy intake.

k1ci = z1EI (46)

Differentiating the output (43) with respect to t yields

ẏ = Cf(x, y) + Cg(x, y)u (47)

Let the desired dynamics for the feedback linearization be

defined as

ėy + λfley = 0 or ẏ = ẏdes − λfley (48)

Then, substituting (48) into (47) results in

[Cg(x, y)] u = [ẏdes − λfley − Cf(x, y)] (49)

For sliding mode control (SMC), instead of setting the

design surface temperature as the output, the sliding surfaces

S = ey + λsm

∫

ey dt are selected as the outputs. With only

one differentiation

Ṡ = ėy + λsmey = ẏ − ẏdes + λsmey

= Cf(x, y) + Cg(x, y)u− ẏdes + λsmey (50)

= −Γ · sgn(S)

[Cg(x, y)] u = [ẏdes−λsmey −Cf(x, y)−Γ · sgn(S)] (51)

Now approaching the system as a control allocation prob-

lem, we define the optimization problem as

us =argmin
u

(
1

2
(u − ū)TW (u− ū)) subject to

Au = b (52)

uimin ≤ u ≤ uimax, i = 1, 2

where A = Cg(x, y)

b =

{

ẏdes − λfley − Cf(x, y) for FBL

ẏdes − λsmey − Cf(x, y)− Γ · sgn(S) for SMC
(53)

The objective function in (52) is given by the quadratic

function of the control inputs in which W is a weighting

matrix.

Since A is a full row rank matrix and the dimension of u is

larger than the number of equations, the problem is redundant

and has an infinite number of solutions.

Now, the aforementioned control allocation problem with

input limitation is solved using the fmincon optimization

solver in MATLAB. The uimin and uimax should be within

bounds so that the allocation problem becomes feasible. The

threshold values defining the bounds could depend on various

factors, such as physical limits and initial and boundary

conditions.

Logically, to stop an increase in body mass, the maximum

allowable amount of energy intake would be ĒI at the

beginning of the program. It means that the first component

of us = [us1 us2] should be equal to or less than ĒI at the

initial time that is us1(t = 0) ≤ ĒI . Hence, the minimum

value for energy intake changes over time and is proposed as

u1min = ĒI − ρ1(1− ρ2 exp(−t/τ)), u1max = ĒI (54)

where the parameters ρ1, ρ2 and τ are for determining lower

bound, upper bound and speed of convergence from upper

bound to lower bound of us1 to design appropriate behavior.

At the beginning of treatment, EImin is equal to ĒI−ρ1(1−
ρ2) and after the passing some time, it is ĒI − ρ1.

SIMULATION RESULTS

In this section, we consider simulations that rely on the

proposed allocated controller for comparative analysis and

performance investigation. The control objective in each sim-

ulation is computing energy intake and physical activity

coefficients using (52) to track a desired cubic polynomial
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Fig. 13. The fat (F), lean (L) and extracellular fluid (ECF) for ρ1 = 500:
(a) FL and (b) SMC
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Fig. 14. Physical Activity Coefficient (δ) for ρ1 = 500: (a) FL and (b) SMC

function of total body mass in the presence of uncertainty,

noise and disturbances. The initial and final values of the

body weight are 100 kg with slope -0.05 and 70 kg with

slope 0, respectively. The control parameters considered in

this simulation are

λfl = 0.7, λsm = 0.1, W11 = 0.2, W22 = 1000, Wij =
0, Γ = 0.01, ū = [3500 0], ρ2 = 1, τ = 5, ĒI = 3500
For true comparison, the bound of tracking errors for both

controllers are considered to be equal so that λsm would

be 7 times greater than λfl. The applied uncertainty to the

system and noise to the measured daily body weight are

r = (1+0.5∗rand)∗r and bm = bm+0.1∗rand, respectively

and EI = 3492(1 + 0.01 ∗ rand) and δ = δ(1 − 0.1 ∗ rand)
disturbances inserted in to the inputs. The rand is a MATLAB

function that generates uniformly distributed pseudo-random

numbers between 0 and 1.

Here, the results of u1min = EImin = 3000 (i.e. ρ1 = 500)

is considered and the results are given in Figs. 13–15. As long

as the energy intake meets the lower bound, increases in the

physical activity coefficient occur (see Figs. 14 and 15). The

sliding mode controller shows in Fig. 14 a significantly smaller

increase in δ than the feedback linearization one.

Instead of total body mass, we can consider any combina-

tion of body composition for control purposes by appropriate

determination of matrix C in Eq. (12). Similar results are

obtained when the fat mass is considered to be controlled.
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Fig. 15. Energy Intake for ρ1 = 500: (a) FL and (b) SMC

VI. CONCLUSION

This paper has presented two model-free controllers for hu-

man weight management with physical activity as the control

input. The first method is based on time-delayed feedback of

the system input for approximate linearization and the second

one is a switching-based controller. To estimate the daily body

composition (fat, lean and extracellular fluid), a soft switching-

based observer using human body weight dynamics has been

proposed. This is based on daily measurements of body weight

and periodic measurement of whole body composition. This

paper also has addressed weight management as a control

allocation problem with energy intake and physical activity

coefficients as the two inputs. Based on dynamic behavior

of body composition, feedback linearization and sliding mode

controllers have been used to form linear algebraic equivalence

of the nonlinear controllers. Then, an input-constrained non-

linear optimal controller was designed using the constrained

linear least squares method. Moreover, a subject may prefer

that the start point of energy intake or expenditure is close to

the current one. So this preference has been considered in the

model-free set point control and optimal-model-based control.

Also, it could be imposed through the reference trajectory

planning of the model-free tracking control.
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