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Geometric analysis-based trajectory
planning and control for underactuated
capsule systems with viscoelastic
property

Pengcheng Liu1, Hongnian Yu1 and Shuang Cang2

Abstract
This paper proposes a novel geometric analysis-based trajectory planning approach for underactuated capsule systems with viscoelastic property. The

idea is to reduce complexity and to characterize coupling by imposing a harmonic drive and then to compute the dynamics projection onto a hyper-

manifold, such that the issue of trajectory planning is converted into geometric analysis and trajectory optimization. The objective is to obtain optimal

locomotion performance in terms of tracking error, average capsule speed and energy efficacy. Firstly, an analytical two-stage velocity trajectory is given

based on control indexes and dynamic constraints. A locomotion-performance index is then proposed and evaluated to identify the optimal viscoelastic

parameters. The trajectory is optimally parameterized through rigorous analysis. A nonlinear tracking controller is designed using collocated partial

feedback linearization. For the sake of efficiency in progression and energy, the proposed method provides a novel approach in characterizing and plan-

ning motion trajectory for underactuated capsule systems such that the optimal locomotion can be achieved. Simulation results demonstrate the effec-

tiveness and feasibility of the proposed method.

Keywords
Underactuated capsule systems, trajectory planning, nonlinear geometric analysis, viscoelasticity

Introduction

The last two decades have witnessed a surge of contributions
to the researches and applications of underactuated mechani-
cal systems (UMSs). These systems are defined with fewer

independent control inputs m than the degrees-of-freedom
(DOF) n, and as such, n� mð Þ degrees of freedom cannot be
directly actuated and controlled. Synthesis of the control sys-
tems for UMSs, according to the Brockett’s theorem

(Brockett et al., 1983), is always challenging owing to the
non-holonomic property, complicated internal dynamics and
unavailability of feedback linearizability. As UMSs, the cap-
sule systems (Fang and Xu, 2011; Huda and Yu, 2015; Kim

et al., 2010; Liu et al., 2014, 2016; Yu, M. Nazmul Huda,
et al., 2011) have become an increasingly active domain of
research and received significant attentions. However, as
recently reported in Shiriaev et al. (2014), it is always challen-

ging to find an appropriate way to describe and characterize
performance of the non-collocated subsystem owing to the
underactuation and dynamic couplings.

The primary objectives of trajectory planning for autono-
mous capsule systems are optimal travel distance and fast

average travel velocity. The internal force-static friction prin-
ciple (Yamagata and Higuchi, 1995) has been well-employed
(Bolotnik and Figurina, 2008; Fang and Xu, 2011; Huda
et al., 2014; Kim et al., 2007; Lee et al., 2008; Liu, et al.,

2013b; Liu et al., 2014; Wang et al., 2008; Yu et al., 2011). In

recent years, intensive researches have been conducted

towards optimal periodic control modes of the internal driv-

ing mechanism, namely velocity-controlled mode (Lee et al.,

2008; Li et al., 2006; Su et al., 2009; Yu et al., 2008) and

acceleration-controlled mode (Fang and Xu, 2011; Yu et al.,

2011). The minimal energy solution was obtained in Li et al.

(2006) to generate a four-step motion pattern. An optimal

controller was designed with experimental comparison in Lee

et al. (2008). A four-step acceleration profile was proposed in

Yu et al. (2011) for the motion control of capsubots. The

stick-slip effect was considered and elaborately analysed by

Fang and Xu (2011) to optimize the parameters of the internal

controlled mass to obtain maximal average steady-state velo-

city. It is evident that friction plays pivotal roles in propulsion

and locomotion for self-propelled capsule systems. In the fast

motion stage, the system is propelled to move back and forth

under the underactuated dynamics and nonlinear friction,

which contributes to the net progressions. Therefore, describ-

ing and characterizing the coupling behaviour, which are
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difficult and challenging, are of vital importance particularly

for efficient trajectory planning. Unfortunately, a majority of
reported results in the literature, such as Li et al. (2006) and
Yu et al. (2008), were mainly devoted to the couplings in the

slow motion stage, optimal control design of the fast motion
was usually neglected. This is owing to the coupling dynamics
that make the related analysis a difficult task. Towards trajec-

tory construction, it is worth mentioning that there are several
significant studies for overhead cranes systems based on phase
plane analysis of crane kinematics (Sun et al., 2011, 2012),

whilst as locomotion systems, the locomotion-performance
indexes (e.g. average locomotion velocity, energy efficiency)
were not examined. Indeed, it is a tough task to achieve

steady-state periodic motion of the actuated subsystem and
efficient system performance simultaneously.

In addition, it is well-established in control practices that
smart actuators (e.g. piezoelectric actuators, shape memory

alloys) may experience the lag problem (certain delay in time
such as hysteresis) originated from magnetic, ferromagnetic
and ferroelectric materials, which may occur between the appli-
cation and the removal of a force (Hassani et al., 2014; Iyer

et al., 2005; Wang and Su, 2006). It occurs with sudden changes
in velocity/acceleration, and this is the circumstance of the cap-
sule’s motion. In order to drive the capsule body via coupling

behaviour, the internal mechanism has to be actuated by the
actuator with relatively higher velocity/acceleration. Besides,
the nonlinear interaction between actuator and driving mechan-

ism needs to be characterized such that practical engineering
requirements can be met. In this paper, a novel trajectory plan-
ning approach for underactuated capsule locomotion is pro-

posed. The nonlinear interaction between actuator and driving
pendulum is characterized by a viscoelastic pair of torsional
spring and viscous damper. The proposed method features geo-

metric analysis of dynamic coupling, identification of optimal
viscoelastic parameters and optimization of the trajectory para-
meters. The evaluation of the computational complexity of the

proposed algorithm through real-time implementation will be
conducted in due course. The main contributions of this paper
are as follows: (i) Designing a characterization algorithm

towards the underactuation-induced dynamic couplings using
the nonlinear geometric analysis approach. (ii) Proposing ker-
nel practical control indexes in the presence of viscoelastic

property and the jag problem, and construct an analytical
motion trajectory with promising efficacy and characteristics in
continuity and smoothness, which facilitate the design of track-
ing controller. (iii) Developing an analytical parameterization

algorithm for optimization of the trajectory parameters.
The paper is organized as follows. The capsule system and

modelling are presented in the second section. The problem
formulation is given in the third section. The trajectory plan-

ning algorithm is detailed in the fourth section with the design
of a tracking controller. Simulation results are provided and
discussed in the fifth section. Finally, conclusions are given in

the sixth section.

The capsule system and modelling

Definition 1: The set of DOF of UMSs can be partitioned
into two subsets (Spong, 1998), which referred to as

collocated subset with its cardinality contains the actuated

DOF and equals the number of control inputs; and non-

collocated subset accounts for the remaining non-actuated

DOF.
The considered capsule system is shown in Figure 1, which

contains a pendulum (with length l and mass m) and a plat-

form (with mass M) merged with the rigid massless capsule

shell. The actuator is mounted at the pivot to rotate the pen-

dulum. The interaction between the actuator and the pendu-

lum is described by a linear viscoelastic pair of torsional

spring with elastic coefficient k and damper with viscous coef-

ficient c. It is assumed that the mass of the pendulum is cen-

tralized at the ball and the center of mass of the platform

coincides with the pivot axis. As a result, the capsule motion

is constrained on XY plane. In what follows, for the sake of

brevity, su, cu and S _x will be employed to denote the trigono-

metric function sinu, cosu and the signal function Sign _xð Þ,
respectively.

The capsule system works as follows. The capsule body is

propelled over a surface rectilinearly via interaction between

the driving force and the sliding friction, generating alterna-

tive sticking and slipping locomotion. Meanwhile, the elastic

potential energy is stored and released alternatively in compa-

tible with contraction and relaxation of the torsional spring.

The motion of capsule starts with static state, and it moves

when the magnitude of resultant force applied on its body in

the horizontal direction exceeds the maximal value of the fric-

tion force. It is termed as the sticking phase when the above

condition is not satisfied. At the instant the condition is met,

the sticking phase is annihilated and the capsule body moves

progressively, this fast motion is called the slipping phase.

Therefore, friction is a vital factor for optimal control of the

stick-slip locomotion.
The underactuated capsule dynamics are derived using the

Euler-Lagrangian approach as

M qð Þ€q+C q, _qð Þ _q+K qð Þq+G qð Þ+Fd =Bu ð1Þ

where q tð Þ= ux½ �T represents the system state vector.

M qð Þ 2 R2 3 2 is the inertia matrix, C q, _qð Þ 2 R2 3 2 denotes

the Centripetal-Coriolis matrix, K qð Þ 2 R2 3 2 is the general-

ized stiffness matrix, G qð Þ 2 R2 3 1 represents the gravitational

torques, B 2 R2 3 1 is the control input vector, Fd tð Þ denotes
the frictional torques, u 2 R1 is the control input applied to

Figure 1. Schematic of the enapsulated system.
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the system. Details of the variables above are listed as follows:

M qð Þ= ml2 �mlcu

�mlcu M +mð Þ

� �
, C q, _qð Þ= 0 0

mlsu
_u 0

� �
,

K qð Þ= k 0

0 0

� �
, G qð Þ= �mglsu0½ �T , B= 10½ �T and

Fd tð Þ= c _uf
� �T

. f denotes the sliding friction force. Note that,

in this paper, the Coulomb friction model

f =
m M +Fy

� �
S _x, for _x 6¼ 0

f0, for _x= 0

�
is assumed, with

Fy =mg � ml _u2cu � ml€usu � ku+ c _u
� �

su=l be the internal

reaction forces applied on the pendulum by the platform in

the vertical direction, f0 denotes the stiction force when cap-

sule speed is zero. m and c represent the coefficient of sliding

friction and the motor viscous friction at the pivot, respec-

tively. g 2 R+ is the gravitational acceleration. The capsule

dynamics encompass the collocated and non-collocated sub-

systems, wherein the latter one contains the system kinematics

that capture the coupling behaviours between the driving pen-

dulum and the capsule body.

Remark 1: The contact interface is anisotropic, and asymme-

try characteristic may arise owing to physical and structural

inconsistency of the system parameters. It is plausible that

the stiction force f0 exists with its value falling into the thresh-

old of the Coulomb friction, that is,

�m M +Fy

� �
S _x,m M +Fy

� �
S _x

� �
. This is owing to the sticking

motion and largely relying on the magnitudes of the external

forces. In this paper, we assume that there is no friction force

applied on the capsule when it keeps stationary ( _x= 0). The

studies on dynamic frictions will be reported in due course.
Harmonic excited forces have been employed to generate

periodic motions for capsule systems as studied in Liu et al.

(2013a, 2013b). On this occasion, forward and backward

motions can be generated and controlled via proper tuning of

the control parameters. Utilizing the harmonic force AcOt

with amplitude A and frequency O to excite the pendulum,

and introducing the characteristic time scale vn =
ffiffiffiffiffiffiffi
g=l

p
and

the characteristic length x0 = g=vn
2 to obtain the non-

dimensional equations of motion, we have

M½ � €h

 �

+ C½ � _h

 �

+ K½ � hf g+ G½ �+ Fd½ �=

Wf gud ð2Þ

where M½ �= 1 �cY
�cY l+ 1

� �
, C½ �= 0 0

sY _Y 0

� �
,

K½ �= r 0

0 0

� �
, G½ �= �sY

0

� �
,

Wf g= 1

0

� �
and F½ �= y _Y

f 0

� �
,

ud=hcvt and f 0=m l+1ð Þ�sY €Y�cY _Y
2� rY+y _Y
� �

sY

h i
S _X .

The derivations above are conducted w.r.t. the dimension-

less time t =vnt and the configuration variables are trans-

formed to hf g= j1j2½ �T = YX½ �T . The dot (� ) in (2) denotes

the derivative in the scaled time coordinate. The rest of the

non-dimensional quantities are defined as

X = x=x0, l=M=m, r= k= ml2vn
2

� �
, y = c= ml2vn

� �
,

h=A= ml2vn
2

� �
, v=O=vn ð3Þ

Remark 2: Nondimensionalization of the governing equations

can simplify the analysis of the model through searching the

dimensionless groups that control its solution patterns.

Under the dimensionless coordinate, the physical meanings

of the control parameters are captured as: l is the mass ratio,

r and y respectively denote the normalized elastic and viscous

coefficients, h and v are the normalized excitation amplitude

and frequency.

Problem formulation

A typical time history of the system performance after initial

transients is presented in Figure 2, wherein the capsule displace-

ment and pendulum angular velocity are shown. It is evident

that the net capsule displacement during one cycle of excitation

R is mainly determined by the ramp edges of the harmonic force

in forward motion stage RF. However, such periodic motions

are essentially not optimal, since for each motion cycle, the for-

ward displacement obtained in RF is partly counteracted in the

forthcoming backward motion stage RB, and excessive energy

are consumed owing to the backward journey.

Figure 2. Time histories of typical steady-state capsule motion.
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Therefore, a two-stage motion trajectory needs to be con-
structed that optimally utilizes the ramp edges of the harmo-

nic excitation in the forward motion stage and thereafter,
sufficiently neutralize the backward motions via optimal con-
trol of the sticking phase and friction. The definitions are
given as follows:

Definition 2: Progressive stage: driving the pendulum with
higher angular acceleration incorporating with the release of
the elastic energy stored in the torsional spring that leads the
capsule to overcome the maximal static friction to generate a

slipping motion ( _X 6¼ 0).

Definition 3: Restoring stage: returning the pendulum to ini-
tial position slowly to restore the potential energy and pre-
pare for the next cycle, the resultant force exerting on the
capsule body in horizontal direction is less than the maxi-
mum dry friction, that is, the capsule is kept in the sticking
phase in this stage ( _X = 0).

Based on the practical control indexes and dynamic con-
straints associated with the stick-slip locomotion of the cap-

sule, the following principles are designed as objectives need
to be achieved to construct an optimal motion trajectory for
the driving pendulum:

Principle 1: For each motion cycle, the pendulum is con-
strained rotating within an advisable angle range, indicating
that the upper and lower boundaries are given as

Y tð Þj j �Y0 ð4Þ

whereY0 is the prescribed angular displacement of the driving
pendulum.

Principle 2: The angular velocity and angular acceleration of
the driving pendulum need to be placed within bounded
ranges, given by

_Y tð Þ
�� ��� vY, €Y tð Þ

�� ��� aY ð5Þ

where vY 2 R+ and aY 2 R+ are absolute boundary values
of the angular velocity and acceleration, respectively.

Principle 3: The capsule is contacting with the sliding surface,
in order to achieve a non-bounding motion, a constraint for
the contact force needs to be satisfied, which means the con-

tact force has to be always greater than zero, gives

l+ 1ð Þ � sY €Y� cY _Y2 � rY+ y _Y
� �

sY . 0 ð6Þ

Principle 4: The capsule has to be remained stationary after
one cycle of forward motion to wait for the pendulum’s
return. In this occasion, the force of the driving pendulum
applied on the capsule in horizontal direction has to be less
than the maximal static friction, gives

cY €Y� sY _Y
2
+ rY+ y _Y
� �

cY

��� ����m

l+ 1ð Þ � sY €Y� cY _Y
2 � rY+ y _Y

� �
sY

h i
ð7Þ

Remark 3: Principles 1 and 2 are associated with the collo-
cated subsystem, which is prone to control and convenient to

achieve, whilst Principles 3 and 4 are of vital importance for

the non-collocated capsule locomotion and energy efficacy.

Therefore, as one major contribution, both of these principles

are explicitly considered through the nonlinear geometric

analysis method.
In addition, a transition function (Phase II as shown in

Figure 3) is introduced to cope with the jag problem and to

synchronize the motion trajectory. Figure 3 depicts the pro-

posed two-stage velocity trajectory based on the aforemen-

tioned control indexes, objectives and synchronization

considerations. The planned trajectory is described as

_Y tð Þ=

P1vsvt, t 2 0, t1½ Þ
P1v, t 2 t1, t2½ Þ
P1vsvt�t2

, t 2 t2, t3½ Þ
t3 � t

t3 � t2

P2, t 2 t3, t4½ Þ
t3 � t

t4 � t3

P3, t 2 t4, t5½ Þ

� P3, t 2 t5, t6½ Þ
t6 � t

t5 � t6

P3, t 2 t6, t7½ Þ

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð8Þ

where P1v and P3 are upper and lower trajectory boundaries,

respectively. P2 is the critical boundary when the capsule

keeps stationary, v is the frequency of excitation.

Geometric analysis-based trajectory
planning

Definition 4: Poincaré maps: one considers a periodic orbit

with initial conditions within a section of the space, samples

the solution of a system according to an event-based or time-

based rule, and then evaluates the stability properties of equi-

librium points (or fixed points) of the sampled system

(Westervelt et al., 2007).
It is evident from (6) and (7) that Principles 3 and 4 are

susceptible to the elastic coefficient r and viscous coefficient

y, which are vital factors for energy consumption. In this sec-

tion, a novel approach is explored to characterize the

Figure 3. Schematic profile for the syncronized velocity trajectory.
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coupling and identify the qualitative variation laws in terms

of the capsule performance, such that the optimal viscoelastic

parameters are selected beforehand and fed into parameteri-

zation of the motion trajectory. Concretely, when the control

indexes and non-collocated dynamic constraints are consid-

ered, the proposed geometric analysis-based trajectory plan-

ning algorithm is given by:

Algorithm 1: Construction and optimization of motion

trajectory.

Step 1. Compute and project the underactuated dynamics

onto the dimensionless Poincaré maps;
Step 2. Describe and characterize coupling between the col-

located and non-collocated subsystems, and identify the

optimal viscoelastic parameters via capsule locomotion-

performance index;
Step 3. Characterize the dynamic constraints for stick-slip

progression through rigorous analytical analysis towards

underactuation and internal coupling;

Step 4. Compute the trajectory boundaries;
Step 5. Optimize and parameterize the planned trajectory

for each phase with identified optimal viscoelastic para-

meters from Step 2, characterized the conditions for optimal

stick-slip progression from Step 3 and computed trajectory

boundaries from Step 4.

Remark 4: Poincaré maps are able to sample the solution of a

system according to an event-based or time-based rule, and

then evaluate the stability properties of equilibrium points (or

fixed points) of the sampled system. The proposed algorithm

utilizes the knowledge from both collocated and non-

collocated subsystems to facilitate efficient locomotion of the

capsule system. The computation and projection of dynamics

onto an induced hyper-manifold of the closed-loop system

enables convenient analysis and characterization of the

underactuated couplings.

Coupling characterization and viscoelastic parameter
identification

In this subsection, coupling behaviour and qualitative varia-

tion laws induced by the viscoelastic parameters for the pro-
gressive stage are firstly characterized and identified. From
the viewpoint of energy, it is evident that efficient utilizations
of potential energy stored in the spring and dissipative energy

in the damper are crucial factors for energy efficacy. The aver-
age progression per period is characterized geometrically to
examine the locomotion-performance index.

Qualitative variation law of the elastic coefficient r is pre-

sented in Figure 4. The effects of r on the pendulum and cap-
sule subsystems are shown in Figures 4(a) and 4(b),
respectively. It is also observed in Figure 4(a) that a grazing

of angular displacement occurs at r= 0:25, and thereafter
the angular displacement largely decreases as r increases. As
a locomotion system, the average locomotion speed is of vital
importance for locomotion system, in this regard, the average

capsule progression per period of excitation is characterized
and shown in Figure 4(b), wherein the global maximum and
minimum average progression points are recorded at r= 0:9
and r= 0:25, respectively. A pair of locally maximal and
minimal points of average progressions is also identified at
r= 0:65 and r= 0:75. Time histories of the capsule displace-

ments for t 2 370, 400½ � are presented in Figure 5 to verify the
identified variation law. It indicates that for a smaller coeffi-
cient at r= 0:1, the spring is insufficient to generate enough
force to enhance the capsule progression, accordingly the cap-

sule performs vibrational motion around the starting point.
Similarly, for a larger coefficient at r= 2:0, the spring
becomes sufficiently ‘hard’ to trap the capsule progression.

For the values in between, the spring either contributes to the
forward motions of the capsule (e.g. r= 0:7, 0.9), or drags it
backwards in the opposite direction (e.g. r= 0:3, 0.25).

Figure 6 presents the qualitative variation law of viscous

coefficient y. From Figure 6(a), it is observed that as y

increases, the angular displacement decreases monotonously.

Figure 4. Qualitative variation laws of r obtained for h= 0:8, v= 1:7, n= 0:8 and l= 3:6.

(a) Angular displacement; (b) Average capsule progression per period.
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However, it seems insufficient to identify and conclude the

effects of y on the capsule performance through the observa-

tion on the pendulum subsystem. Therefore, the average cap-

sule progression per period of excitation is portrayed in

Figure 6(b), where the maximum average progression point is

recorded at y = 1:3. Interestingly, from Figure 6(b) it is noted

that the capsule progression increases monotonically as y aug-

ments for y 2 0, 1:3ð �; on the other hand, the viscosity acts

negative roles by decreasing the capsule’s forward progression

for y 2 1:3, 5:0ð �. The identified optimal viscous value is criti-

cal for the system and controller design. Time histories of the

capsule displacements for t 2 370, 400½ � are presented in

Figure 7 to verify the qualitative variation law.

Remark 5: As shown in Figures 4(a) and 6(a), the perfor-

mance of the collocated subsystem can be conveniently evalu-

ated using conventional approaches via the affined

projection, whilst it is a challenging task to evaluate the non-

collocated subsystem. The proposed approach can character-

ize the internal dynamic couplings such that the non-

collocated capsule performance is evaluated beforehand

through the locomotion-performance index. The optimal val-

ues of viscoelastic parameters can be identified accordingly.

From Figures 5 and 7, it is obvious that the backward

motions decrease the locomotion efficacy. To sufficiently sup-

press the effect of backward motions, the sticking phase needs

to be controlled at the restoring stage through dynamic inter-

actions with the sliding friction, which will be discussed in the

following subsections.

Dynamic constraints characterization

Conventional motion planning approaches are not directly

applicable to the capsule subsystem that is non-collocated; as

such, the dynamic constraints (6) and (7) imposed on the cap-

sule locomotion need to be fully considered when planning an

efficient nominal forced trajectory. The following proposi-

tions are given to characterize the constrained stick-slip

motions.

Proposition 1: From Principle 3, the non-bounding motion

for the capsule can be achieved if the following condition is

satisfied

_Y2 Y+rY+ y _Y
� ��� ��\-2=2 ð9Þ

Figure 5. Time histories of the capsule displacements.

Figure 6. Qualitative variation laws of y obtained for h= 0:8, v= 1:7, r= 0:9 and l= 3:6.

(a) Angular displacement; (b) Average capsule progression per period.
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where

-=l+ 1

Proof: From Principle 3, we have

Y+rY+ y _Y
� �

sY + _Y2cY\ l+ 1ð Þ ð10Þ

Using the auxiliary angle formula and enlarging the inequal-

ity, a sufficient condition is given as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y+rY+ y _Y
� �2

+ _Y
4

q
\ l+ 1ð Þ ð11Þ

Then employing the AM-GM inequality theorem yields

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 _Y

2
Y+rY+ y _Y
� �q

\ l+ 1ð Þ ð12Þ

Therefore, we have

_Y2 Y+rY+ y _Y
� ��� ��\ l+ 1ð Þ2=2 ð13Þ

Proposition 2: From Principle 4, the sticking motion for the

platform in the restoring stage can be achieved if the follow-

ing condition is satisfied

Y+ _Y2 + rY+ y _Y�-q ð14Þ

where

-=l+ 1,q=m=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 + 1

p

Proof: Utilizing the forces in the horizontal and vertical direc-

tions, removing the absolute value sign and considering one

side of the inequality that

cY Y
�

sY _Y2 + rY+ y _Y
� �

cY�m

l+ 1ð Þ � sY Y
�

cY _Y
2 � rY+ y _Y

� �
sY

h i
ð15Þ

Reorganizing (15), we have

msYY+cY _Y
� �

+ mcY _Y
2 � sY _Y

2

 �

+

m rY+ y _Y
� �

sY + rY+ y _Y
� �

cY
� �

�m l+ 1ð Þ ð16Þ

Using the auxiliary angle formula and enlarging the inequal-

ity, a sufficient condition is given as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 + 1

p
Y+ _Y

2
+ rY+ y _Y


 �
�m l+ 1ð Þ ð17Þ

Therefore, we have

Y+ _Y2 + rY+ y _Y�m l+ 1ð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 + 1

p
ð18Þ

Trajectory boundaries computation

The aim of optimization is to maximize the average capsule

speed during one motion cycle through appropriate design of

the velocity trajectory profile. Thus, a series of parameters

need to be selected, including the durations for each phase

t1;t7 and trajectory boundaries P1, P2 and P3. Based on the

constraints characterized above, the boundary conditions are

defined as

Y t0ð Þ=Y t7ð Þ= �Y0\0,Y t3ð Þ=Y0, _Y t0ð Þ= 0, _X t0ð Þ

= _X t3ð Þ= _X t7ð Þ= 0

Considering the planned trajectory (8) in the duration 0, t3½ �,
P2 can be explicitly obtained through integral calculation of

the system dynamics (2) under the consideration of Y0 that if

cY0
+msY0

6¼ 0. Therefore, we have

P2 = _Y t3ð Þ=

m l+ 1ð Þt3 � mr

ðt3

0

YsYdt +my YsY �
ðt3

0

YcYdt

0
@

1
A

2
4

3
5= cY0

+msY0
ð Þ

ð19Þ

Figure 7. Time histories of the capsule displacements.
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In addition, utilizing the principle of energy conservation in

Figure 3, the following formulations can be obtained as

ðt1

0

P1vsvtdt +P1v(t2 � t1)+

ðt3

t2

P1vsv1t�t2
dt � 1

2

P2

Np

v1

+ t2 � t3

� �
= 2Y0 ð20Þ

1

2
�P3ð Þ t7 � t4ð Þ+ t6 � t5ð Þ½ �= 1

2
P2 t4 � t3ð Þ+ 2Y0 ð21Þ

Therefore, the lower and critical trajectory boundaries are

obtained as

P2 = 2P1 1� cvt1
+v t2 � t1ð Þ+ cvt2

� cvt3�t2
½ � � 4Y0f g=

Np=v1 + t2 � t3ð Þ ð22Þ

P3 = 4Y0 +P2 t4 � t3ð Þ½ �= t7 � t4ð Þ+ t6 � t5ð Þ ð23Þ

Trajectory parameterization

Theorem 1: Consider the capsule system (2) and the planned

trajectory (8) with dynamic constraints (4)-(7) and the viscoe-
lastic property, if the trajectory parameters are chosen as

t1 =
-2

2(P1v)3
� y

� �
=r, t2 =vt3 � arcs P2

P1v

, t3 =
Np

v
,

t4 = � P2

-q� P2
2 � rP2t3 � yP2

+ t3,

t5 =
-q� P3

2 � yP3

rP3

, t6 =
4Y0 + t4 P2 + 2P3ð Þ � P2t3½ �

2P3

and t7 = 4Y0 � P2t3 +P2t4 + 2P3t5ð Þ=2P3

ð24Þ

Then the following properties hold:

1) the planned trajectory (8) is analytical;
2) Principles 1–4 are satisfied;
3) the time per period of locomotion can be evaluated

beforehand as Ttotal =
P7

i= 1

ti.

Proof: To optimally parameterize the motion trajectory, the

dynamic constraints are explicitly utilized with the identified
optimal viscoelastic parameters r and y. Specifically, for

Phase I, from Proposition 1, we have

_Y2 t1ð Þ Y
t1ð Þ

+ rY t1ð Þ+ y _Y t1ð Þ
� �����

����\-2=2 ð25Þ

where _Y t1ð Þ=P1v, €Y t1ð Þ= 0 and Y t1ð Þ=P1vt1. The

upper boundary of Phase I is obtained as

t1 =
-2

2(P1v)3
� y

� �
=r ð26Þ

The formulation for Phase II can be described as
P1vsvt3�t2

=P2, accordingly its duration can be derived as

t2 =vt3 � arcsP2=P1v ð27Þ

In view of the synchronization consideration, the motion tra-
jectory is designed to reach the amplitude of the harmonic

excitation at time t1 and keep it until time t2, and duration of
this phase has to be half of the excitation period, which gives
the duration Phase III as

t3 =Np=v ð28Þ

During Phase IV, the capsule is kept stationary that allows a
recovery process without any backward motion. Applying
Proposition 2 at time t3, gives

€Y t3ð Þ+ _Y t3ð Þ2 + rY t3ð Þ+ y _Y t3ð Þ�-q ð29Þ

where Y t3ð Þ=P2t3, _Y t3ð Þ=P2 and €Y t3ð Þ=� P2= t4 � t3ð Þ.
Then the duration t4 can be obtained as

t4 = � P2= -q� P2
2 � rP2t3 � yP2

� �
+ t3 ð30Þ

In terms of Phase V, applying Proposition 2 at time t5, we
have

€Y t5ð Þ+ _Y t5ð Þ2 + rY t5ð Þ+ y _Y t5ð Þ�-q ð31Þ

where €Y t5ð Þ= 0, _Y t5ð Þ=P3, Y t5ð Þ=P3t5.
Accordingly, the maximal boundary of Phase V is calcu-

lated as

t5 = -q� P3
2 � yP3

� �
=rP3 ð32Þ

Further relationship can be achieved in the duration of t4, t5½ �
as

P2 t5 � t4ð Þ=P3 t4 � t3ð Þ ð33Þ

To determine the trajectory profile for Phase VI and Phase
VII, it is noted that the durations of t4, t5½ � and t6, t7½ � are
accordant based on the design objectives, gives

t5 � t4 = t7 � t6 ð34Þ

Combining (33) with (22), we have

t6 = 4Y0 + t4 P2 + 2P3ð Þ � P2t3½ �=2P3 ð35Þ

t7 = 4Y0 � P2t3 +P2t4 + 2P3t5ð Þ=2P3 ð36Þ

The trajectory parameterization procedure (25)–(36) directly
indicates the analytical property of the planned trajectory (8)
and satisfaction of Principles (1) and (2). Propositions 1 and 2
ensure the satisfaction of Principles (3) and (4). Property (3)
can be directly shown by adding the trajectory durations from

(26), (27), (28), (30), (32), (35) and (36), that is, Ttotal =
P7

i= 1

ti.

Remark 6: It is noted that the trajectory planning scheme pro-
posed in this work can be adopted either in the open-loop con-
trol system design or as feedforward segment in the
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closed-loop control system formulation of the capsule systems.

Admittedly, it is nearly impossible to implement trajectory
planning algorithm merely in an open-loop control system to

cope with the unexpected uncertainties (e.g. unstructured and
unmodelled dynamics, external disturbances). Indeed, the pro-

posed approach may be combined with advanced control
schemes (e.g., robust and adaptive paradigms) to enhance

robustness to disturbances and adaptability to parametric
uncertainties with guaranteed performance of the proposed
algorithm. The main concentration of this work is optimized

trajectory planning for underactuated capsule systems; further
considerations in advanced control are beyond the scope here

and will be reported in another paper.

Remark 7: Indeed, evaluation of the computational complex-

ity of the proposed algorithm through real-time implementa-
tion is of vital importance. While the main focus of the

proposed work is to develop a novel off-line trajectory plan-
ning algorithm to make steps forward based on the previous
researches. The motivation behind is that the analysis for

dynamic coupling behaviour of the underactuated systems,
which is of much difficulty and challenge, is the foundation

to propose an appropriate trajectory. And few results have
been reported on the off-line trajectory planning incorporat-

ing the dynamic coupling behaviour and viscoelastic prop-
erty. Therefore, real-time implementation and evaluation of

the computational complexity of the proposed algorithm are
beyond the scope of the proposed work here and will be

reported in due course.

Tracking controller design

To verify the capsule performance under the proposed trajec-

tory planning scheme and to make convenient comparisons
with the conventional approach, a tracking control system is

designed in this subsection. Using the dynamic model in (2),
we have

1� 1

l+ 1
c2
Y

� �
€Y+

1

l+ 1
cY sY _Y

2
+ f 0


 �h i

� sY + rY+ y _Y= ud

ð37Þ

Define the trajectory tracking error and its derivatives as

~Y=Y�Yd , ~Y= _Y� _Yd and
€~Y= €Y� €Yd ð38Þ

Remark 7: It is noted that the duration of each motion phase
is fixed, using equations of motion (2) and the planned trac-

jectory, the prior knowledge of desired capsule and pendulum
trajectories for each sampling time can be obtained by conve-

nient computation.
Substituting (38) into (37) and conducting appropriate

mathematical manipulation, we have the following system

dynamics

1� 1

l+ 1
c2
Y

� �
€~Y= ud �

1

l+ 1
cY sY _Y

2
+f0


 �h i

+sY � rY� y _Y� 1� 1

l+ 1
c2
Y

� �
€Yd ð39Þ

Utilizing the collocated partial feedback linearization tech-

nique (Spong, 1998) for the system dynamics in (39), a feed-

back linearizing controller can be designed as

ud = 1� 1

l+ 1
c2
Y

� �
€Yd +

1

l+ 1
cY sY _Y

2
+f0


 �h i
� sY

+ rY+ y _Y� Kv 1� 1

l+ 1
c2
Y

� �
~Y� Kp 1� 1

l+ 1
c2
Y

� �
~Y

ð40Þ

where Kv and Kp are positive control gains selected by the

designer.
Substituting the tracking controller (40) into system (39),

the closed-loop system can be obtained in the following form

€~Y+Kv
€~Y+Kp

~Y= 0 ð41Þ

Therefore, it is evident through the Routh-Hurwitz criter-

ion that the system stability is guaranteed, concretely, the

designed tracking controller (40) drives the pendulum to fol-

low the planned trajectory exponentially fast.

Simulation results

This section provides simulation results to verify the perfor-

mance and effectiveness of the proposed scheme.

Comparisons are made with Liu et al. (2014) (referred to as

EPC system), in which a two-stage velocity trajectory is pro-

posed using conventional approach with heuristically chosen

control parameters. The parameters are allocated in original

dimensions to make convenient comparisons. The system

parameters are configured as M = 0:5kg, m= 0:138kg,

l= 0:3m, g = 9:81m=s2, m= 0:01N=ms and system natural

frequency vn = 5:7184rad=s. Then, based on the proposed

algorithms, the viscoelastic parameters are selected as

k = 0:36Nm=rad and c= 0:0923kgm2=srad. The initial condi-

tions are set as u 0ð Þ= u0 =p=3, _u 0ð Þ= 0, x 0ð Þ= 0 and
_x 0ð Þ= 0.

Step 1. Based on the trajectory planning algorithm pre-
sented in subsections 4.2–4.4, the optimal durations for
each phase are calculated and detailed in Table 1, and
therefore adopted to construct the optimal motion trajec-
tory _ud .

Step 2. To make convenient and rigorous comparisons,
tracking control scheme (40) is employed for both capsule
systems. The control gains are tuned and selected to
achieve better control performance with values Kv = 100

and Kp = 50.

The simulation results are presented in Figure 8. It is

observed that the driving pendulum tracks the planned trajec-

tory accurately, and the maximum angular displacement,

velocity and acceleration are bounded under physical con-

straints during each motion cycle. The trajectory tracking per-

formances are presented in Figure 8(a). It is observed that the

maximum angular velocity using the proposed approach is

about 7.8 rad/s, which is lower than the EPC system with 11

Liu et al. 9



Table 1. Trajectory parameters for the simulation.

Trajectories t1 t2 t3 t4 t5 t6 t7

Trajectory EPC 0.1s 0.33s 0.9s 1.4s 5.8s 6.6s NA

Trajectory (8) 0.133s 0.195s 0.275s 0.9s 1.7s 5.8s 6.6s

Figure 8. Performance of the capsule systems.

(a) Tracking performance for one motion cycle. (b) Trajectory tracking errors. (c) Capsule displacements for five motion cycles. (d) Input torques for

five motion cycles.
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rad/s. The trajectory tracking errors using the proposed

method and the method for EPC system are shown in Figure
8(b), in which the proposed approach demonstrates better
convengence of the tracking error. The synchronized trajec-
tory also presents better transient performance in terms of the

overshoot, and the absolute value of maximum pendulum
swing is about 68.758 (17.18 smaller than the EPC system).
These results have good agreements with the trajectory plan-
ning indexes and principles. The average velocity with the pro-
posed trajectory calculated from Figure 8(b) for the first five

cycles is 0.642cm/s, whereas it is 0.629cm/s for the EPC sys-
tem. The distance-optimal property of the proposed approach
is verified. The transition functions inserted into progressive
stage guarantee the smooth transition, and thereafter a lower

maximum input torque as shown in Figure 8(c) (0.5367 Nm
compared with 0.6246 Nm of EPC system). This directly evi-
dents a superior performance in terms of energy efficacy. The
backward motions are sufficiently supressed as can be seen

from Figure 8(b). The results conclude that the stick-slip
motions are efficiently controlled through the proposed
method and therefore superior performance are guaranteed.

Conclusions

In this paper, a novel geometric analysis-based trajectory

planning scheme has been proposed for underactuated cap-
sule systems with viscoelastic property. The non-collocated
dynamic constraints have been considered into the control
indexes, wherein it was found that characterization of the vis-

coelastic interaction plays a vital role in optimal control of
the stick-slip motions with improved energy efficacy. The
dynamic couplings have been characterized through rigorous
geometric analysis on the Poincaré maps. The two-stage ana-

lytical motion trajectory has been constructed based on the
control indexes and dynamic constraints, which have been
evaluated analytically. The trajectory has been optimized and
parameterized via rigorous analysis. A tracking controller has
been designed to make the pendulum track the planned trajec-

tory. The effectiveness and efficacy of the proposed approach
have been verified through simulation studies. Future work
will be emphasized on real-time implementation, advanced
control schemes and experimental studies.
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