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Abstract
In this work, a novel monocular simultaneous localization and mapping (SLAM) system with application to micro aerial vehicles is proposed. The main

difference with respect to previous approaches is that a barometer is used as a unique sensory aid for incorporating altitude information into the sys-

tem in order to recover an absolute metric scale. First, an observability analysis of a simplified model of a monocular SLAM system is developed. From

this analysis, several theoretical results are derived. Among others, one important result is related to the fact that the metric scale can become obser-

vable when measurements of altitude are included in the system. In this case, sufficient conditions for observability are presented. The design of the

proposed method is based on these theoretical results. Simulations and experiments with real data are presented to validate the proposed approach.

The results confirm that the metric scale can be retrieved by including altitude measurements in the system. It is also shown that the proposed method

can be practically implemented, using low-cost sensors, to perform visual-based navigation in GPS-denied environments.
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Introduction

State estimation of vehicle position is a fundamental necessity

for any application involving autonomous micro aerial vehi-

cles. Monocular simultaneous localization and mapping

(SLAM) deals with the way in which a mobile robot can
operate in an a-priori unknown environment by using an on-

board monocular camera to simultaneously build a map of its

surroundings, which is used to track its position. Some exam-

ples of SLAM systems are those of Dehghan and Moradi
(2016) and Ihemadu et al. (2015). In the case of micro aerial

vehicles, monocular SLAM techniques represent an excellent

alternative, especially owing to several limitations regarding

the design of the platform, mobility and payload capacity
that impose considerable restrictions on the available compu-

tational and sensing resources.
In particular, and compared with other kinds of visual

configuration (e.g. stereo vision), the use of monocular vision

has some advantages in terms of weight, space, power effi-

ciency or scalability. For example, in stereo rigs, the fixed
base-line between cameras can limit the operation range.

Conversely, the use of monocular vision introduces some tech-

nical challenges. First, depth information cannot be retrieved

in a single frame; hence, robust techniques for recovering the
depth of the features are required. Another challenging aspect

of working with monocular sensors has to do with the impos-

sibility of directly recovering a metric scale of the world. If no

additional information is used, and a single camera is used as
the sole source of data to the system, only the map and

trajectory can be recovered, without metric information

(Davison et al., 2007).
In this work, this latter issue is addressed in the context of

monocular SLAM navigation for micro aerial vehicles. A

common approach for setting the metric scale in some early

monocular SLAM methods was to use a pattern with known

dimensions at the initialization stage (e.g. Davison, 2003;

Eade and Drummond, 2006; Munguia and Grau, 2007). With

the subsequent use of monocular SLAM methods in different

kinds of robotics application, such as micro aerial vehicles,

the necessity of using better approaches to incorporate metric

information into the system has become more evident. Also,

there are other kinds of robotic application where the prob-

lem of the metric scale is involved. For instance, Zhuang

et al. (2015) propose a metric scale coordination technique

for solving the problem of variable object scales in 3D object

detection.
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Related work

In the case of monocular SLAM with application to aerial

vehicles, different approaches have been followed for recover-

ing the metric scale of the world. Mirzaei and Roumeliotis

(2008) retrieved the monocular scale factor from a feature pat-

tern with known dimensions. In experiments presented in

Forster et al. (2013) and Weiss et al. (2011), the map is initially

set by hand, by aligning first estimates with the ground-truth

to determine the scale of the environment. Celik and Somani

(2013) addressed the problem of scale recovery for environ-

ments formed by corridors, such as those commonly found in

office buildings. In this case, several assumptions are made

about the structure of the environment, such as the flatness of

the floor. Also, it is assumed that the relative altitude of the

micro aerial vehicle from the floor is determined by using an

ultrasonic range sensor, as is the distance from the micro aer-

ial vehicle to the wall of the corridor. Another approach for

recovering the metric scale consists of integrating inertial mea-

surements from an inertial measurement unit (accelerometer

or gyroscope). In particular, Nützi et al. (2011) explicitly con-

sidered the scale in the system state, which was estimated

through an extended Kalman filter (EKF). The filter makes

use of an innovation error defined by the difference between

the unscaled acceleration (obtained from monocular vision)

and the measured acceleration in the vertical axis (obtained

from an inertial measurement unit). Wang et al. (2014) also

follow the same approach. The potential problem with this

approach is that the acceleration obtained from an inertial

measurement unit has a dynamic bias that is difficult to esti-

mate. This bias introduces, at the same time, a bias in the esti-

mated scale. Also, in this kind of setup, a precise calibration

for the alignment of the camera and the inertial measurement

unit is required. Chowdhary et al. (2013) propose an EKF-

based method to fuse measurements from inertial sensors, a

monocular downward-facing camera and a range sensor

(sonar altimeter). In this approach, it is assumed that land-

marks lie on a plane (flat-terrain assumption). Because the

range sensor is aligned with the camera, it is assumed that the

range readings provide reliable information about the depth

of the features. The metric scale is recovered through the

range and bearing measurements. In this sense, this method

can be considered as being like a range-and-bearing SLAM

scheme, instead of a truly bearing-only (monocular) SLAM

system. However, the efficacy of this method depends on the

assumption of a flat terrain, and is also limited by the opera-

tion range of the sonar.

Objectives and contributions

In this work, a novel monocular SLAM system with applica-

tion to a micro aerial vehicle is proposed. The main difference

with respect to previous approaches is that a barometer is

used as a unique sensory aid for incorporating altitude infor-

mation in the system to recover an absolute metric scale.
An observability analysis for this kind of system was devel-

oped. From this analysis, several theoretical results were

derived. In this sense, one central contribution of this work is

to show that, under certain conditions, the incorporation of

altitude measurements in the system is sufficient to recover

the metric scale in estimates.
The design of the proposed method is based on these

results. The proposed method is useful for performing visual-

based navigation in fully GPS-denied environments or as a

backup system in periods where a GPS signal is not available.
To the best of our knowledge, this is the first monocular

SLAM approach that relies on this minimalistic barometer–
camera setup. Some of the main features that highlight the

applicability of the proposed method are as follows:

� It differs from such methods as those of Celik and
Somani (2013) or Chowdhary et al. (2013); in the pro-

posed method, there is no need to make assumptions

about the structure of the environment or about the

limitations regarding the operation range of a sonar

device.
� Compared with the methods of Nützi et al. (2011) and

Wang et al. (2014), in the proposed method there is no
need for an extensive pre-calibration routine for align-

ing the inertial measurement unit and the camera.
� According to Hopkins et al. (2010), the dynamic error

bias of a barometer is smaller than the bias of an accel-

erometer. Actually, the barometer is commonly used

as an augmentation sensor to limit errors in inertial

navigation systems.
� The architecture of the proposed method is based on a

well-known methodology, EKF-SLAM.

Problem description

For the sake of clarity, the problem to be addressed in this
work is introduced in a simplified two-degrees-of-freedom

context. However, it is important to note that this simplifica-

tion is still representative of all the major aspects of the full

problem. Later, the proposal will be extended to the six-

degrees-of-freedom problem. Let us consider the following

unconstrained model, _xr = f (xr, u), of a camera Cs attached

to a micro aerial vehicle (see Figure 1)

Figure 1. System parametrization.
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_xc = vx _zc = vz
_uc =vc

_vx =Vx _vz =Vz _vc =O
ð1Þ

where xr = ½xc, zc, uc, vx, vz,vc�T is the vector state of camera

Cs. Let ½xc, zc, uc� represent the position and orientation of the

camera, and ½vx, vz,vc� their first derivatives. In this model, an

unknown input u= ½Vx,Vz,O�T of linear and angular accel-

erations is assumed, with zero-mean and known-covariance

Gaussian processes. Also it is assumed that the camera Cs is
capable of detecting and tracking 2D feature points. The mea-

surement process is modelled by equations of the form

hui(x)=arctan2
zc � zi

xc � xi

� �
� uc

xi =(1=ri) cos (u0 i)+ x0i

zi =(1=ri) sin (u0i)+ z0i

ð2Þ

where ½xi, zi� is the Euclidean position of an ith feature coded

by its inverse form. The state of an ith feature yi is defined by

yi = ½x0i, z0 i, u0 i, ri�
T, where ½x0i, z0 i� is the position of the cam-

era Cs when the feature was first detected, u0 i is the first bear-

ing measurement and ri = 1=di is the inverse of the feature

depth di (see Figure 1).
The system state x, to be estimated, is composed by the

camera state xr and is augmented with the state yi of every
feature contained in the map

x= ½xr, y1, y2, . . . , yn�T ð3Þ

If no other metric information is included in the system, the

estimates will converge to an unknown metric scale. This fact

is formalized in Civera et al. (2007), where the state vector is
split into a metric parameter s, unobservable with only mono-

cular measurements, and a dimensionless map and camera

part

xs = ½s,Pxc
,Pzc

, uc,Pvx
,Pvz

,Pvc
,Py1

, . . . �T ð4Þ

where the notation P fvariableg, is used to indicate the corre-

sponding dimensionless version of a state variable. For exam-

ple, ½Pxc
,Pzc
� represents the dimensionless position of the

camera. Camera measurements will reduce the scene geome-

try uncertainty, but not the uncertainty in the metric para-

meter s. The mapping from the state vector xs to the metric
geometry is a nonlinear computation involving the dimen-

sionless geometry and the parameters s and Dt (time)

xc = sPxc
zc = sPzc

vx = sPvx
Dt

vz = sPvz
Dt vc = sPvc

Dt

yi = ½sPx0 i
, sPz0 i

, ui,Pri
=s�

8<
: ð5Þ

Observability analysis

In this section, the observability of the system (equation (3))

is studied in terms of the metric parameter s, and the dimen-

sionless camera part and map. When a system is fully obser-
vable, the lower bound of the error in our estimate of its state

will depend only on the noise parameters of the system and

will not be reliant on initial information about the states. This

has important consequences in the context of SLAM.
For the sake of simplicity, the analysis will be developed

by using the two-degrees-of-freedom model. Nevertheless, we

are interested in having a SLAM method that works in a real

six-degrees-of-freedom scenario. In this case, to generalize the

analysis results obtained with the two-degrees-of-freedom sys-

tem, one can think in the following manner. Let us consider a

micro aerial vehicle moving freely in any direction in

R
3 3 SO(3). Now let us consider the plane defined by the 3D

velocity vector of the camera–micro aerial vehicle system and

the line that is parallel to the z-axis of the navigation frame,

which crosses the origin of the camera–micro aerial vehicle

system coordinate frame. Finally, let us assume that, for each

instant of time, the two-degrees-of-freedom analysis is carried

out over this vertical plane. Of course, in this case, the two-

degrees-of-freedom analysis will not contribute to investigat-

ing the observability of the yaw of the vehicle. However, this

fact does not represent a major problem since we are mainly

focused on investigating the observability of the metric scale

parameter.
From the previous section, let us recall that the state of an

i th feature yi is defined by yi = ½x0i, z0i, ui, ri�, where ½x0i, z0i�
is the position of the camera Cs when the feature was first

detected, ui is the first bearing measurement and ri = 1=di is

the inverse of the feature depth di. Because ½x0i, z0i, ui� is
directly given when the i th feature is initialized, the following

analysis will be focused on the observability of the state of the

camera Cs and the inverse depth of the features. Therefore, x

will be taken as x= ½xr, r1, r2, . . . , rn�.
Now, consider the previous system state in terms of the

metric parameter s and the dimensionless parameters.

Substituting equation 5 into equations 1 and 2, and augment-

ing the system state with s, the following dynamics are

obtained

_s= 0, _Pxc
= sPvx

Dt, _Pzc
= sPvz

Dt
_uc = sPvc

Dt, _Pvx
= 0, _Pvz

= 0
_Pvc

= 0, _Pri
= 0

ð6Þ

In the system defined by equation 6, a constant-acceleration

camera model is assumed, as well as a rigid scene (the feature

map remains static) and a constant metric scale. The system

output equations are

hu i(xs)=arctan2
sPzc

� zi

sPxc
� xi

� �
� uc

xi =(s=Pri
) cos (ui)+ sPx0 i

zi =(s=Pri
) sin (ui)+ sPz0 i

ð7Þ

Hence, for n landmarks being measured by the camera, the

system output is defined as h= ½hu1, . . . , hun�T, and the system

state as xs = ½s,Pxc
,Pzc

, uc,Pvx
,Pvz

,Pvc
,Pr1

,Pr2
, . . . ,Prn

�T
Hermann and Krener (1977) demonstrated that a non-

linear system is locally weakly observable if the observability

rank condition, rank(O) = dim(x), is verified. For the analy-

sis presented in this section, the observability matrices O are

computed as described in the appendix.

Urzua et al. 3



The following result is obtained for the system defined by

equations 6 and 7:

� The maximum degree of observability is obtained with

four landmarks. In this case, dim(xs) = 11, rank(O) =
8. As could be expected, the system is partially obser-

vable, in this case with three nonobservable modes.

The observability is not increased by adding more

landmarks. Because the metric scale is not observable

when only angular measurements are available, one of

those unobservable modes should correspond to the

metric parameter s.

Now consider that measurements of the altitude of the

camera–micro aerial vehicle are available. The additional sys-

tem output equation for hzc
is

hzc
(xs)= sPzc

ð8Þ

Hence, for n landmarks being measured by the camera, the

system output is now defined as h= ½hzc
, hu1, . . . , hun�T.

The following results are obtained for the system defined

by equations 6, 7 and 8:

� In this case, the maximum degree of observability is

obtained with three landmarks and dim(xs) = 10,

rank(O)= 8. Hence, the system is still partially obser-

vable, but with two nonobservable modes. With mea-

surement of altitude, one extra mode becomes

observable.

Now let us consider a case where the orientation of the

camera is fixed pointing to the same direction all along the

trajectory. In this case, if the variables related with the orien-

tation are removed, the system state is defined as

xs = ½s,Pxc
,Pzc

,Pvx
,Pvz

,Pr1
,Pr2

, . . . ,Prn
�T ð9Þ

Also note that, with this new system state, uc is removed

from equation 7. With the foregoing modification, the follow-

ing results are obtained:

� The maximum degree of observability is obtained with

three landmarks, but in this case the system becomes

observable, that is, dim(xs) = 8, rank(O)= 8.
� Considering the last results, it can be deduced that uc

and Pvc
are the unobservable modes. But more

importantly, it is shown that the metric scale becomes
observable with the inclusion of altitude

measurements.

For this scenario (system state defined by equation 9),
some extra results are obtained by assuming different condi-
tions in the vehicle state and by investigating their effects
regarding observability (see Table 1):

� Movement of the vehicle along the vertical axis
Pvz
6¼ 0ð Þ is a sufficient (not necessary) condition for

full observability.
� A vertical position different from the origin, together

with movement along the horizontal axis
Pzc
^Pvx

6¼ 0ð Þ is a sufficient (not necessary) condi-
tion for full observability.

� The worst-case scenario of observability (rank
Oð Þ= 6) is obtained when there is no movement at all

Pvz
=Pvx

= 0ð Þ.
� The horizontal position Pxc

ð Þ has no effect on
observability.

Method description

This section presents a six-degrees-of-freedom altitude-aided
monocular SLAM method. The proposed method is moti-
vated by the theoretical results obtained in the previous sec-
tion. In this sense, as has previously been seen, it is difficult
to recover the metric scale using monocular vision. However,
it was found that the metric scale can become observable by

assuming that the orientation of the camera is already known,
together with the inclusion of altitude measurements in the
system.

Assumptions and remarks

As shown in Figure 2, the platform considered in this work is
a quadrotor moving freely in any direction in R

3 3 SO(3).
However, it is important to note that the proposed monocu-

lar SLAM method could be applied to any other kind of plat-
form. The proposed method is mainly intended for local
autonomous vehicle navigation. In this case, the local tangent
frame is used as the navigation reference frame. Thus, the ini-
tial position of the vehicle defines the origin of the navigation
coordinates frame. The navigation system follows the NED
(north, east, down) convention. The magnitudes expressed in
the navigation and in the camera frame are denoted by the

Table 1. Degree of observability obtained by testing the combination of state variables ½Pxc
,Pzc

,Pvx
,Pvz
� equal to zero; rank Oð Þ= 8 denotes the

maximum degree of observability for the system state defined in equation 9. In this table the number one is set for nonzero values

1 : = fx 2 R : x 6¼ 0gð Þ.

Pvz
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Pvx
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

Pzc
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

Pxc
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

rank Oð Þ 6 8 7 8 6 8 8 8 6 8 7 8 6 8 8 8
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superscripts N and C, respectively. All the coordinate systems
are right-handedly defined.

In the previous section, it has been demonstrated that the

orientation of the camera is unobservable when only an angu-

lar sensor (i.e. a camera) is used. Fortunately, for such appli-

cations as aerial vehicles, attitude estimation is handled well
by available systems (e.g. Euston et al., 2008; Munguia and

Grau, 2014). In this sense, one approach that can be used to

address the lack of observability in orientation consists of fus-
ing measurements from an inertial measurement unit.

Nevertheless, in this work, it is assumed that a monocular

camera is mounted over a servo-controlled gimbal. This kind

of accessory, used mainly for stabilizing video capture, has
become very common in aerial applications. In our case, the

gimbal is configured to counteract changes in attitude of the

quadcopter; therefore, it stabilizes the orientation of the cam-
era toward the ground (see Figure 2). With this assumption,

the system state can be simplified by removing the variables

related to orientation, and the problem is focused on position
estimation.

Also, in the previous section, the system state has been split
into a metric parameter s and another part with the dimen-

sionless map and camera, in order to show explicitly that the

metric scale of the system is observable when altitude mea-
surements are included in the system. By knowing this fact,

hereinafter, the metric parameter will again be considered to

be implicit into the system variables.
In this work, a barometric sensor is available for measur-

ing atmospheric pressure. It is also assumed that the location
of the origin of the camera frame with respect to other ele-

ments of the quadcopter (e.g. a barometer) is known and

fixed. In this case, the position of the origin of the vehicle can
be computed from the estimated location of the camera.

A standard monocular camera is considered. In this case, a

central-projection camera model is assumed. The image plane,

where a noninverted image is formed, is located in front of the

camera’s origin. The camera frame C is right-handed, with the
z-axis pointing to the field of view.

The R
3 ) R

2 projection of a 3D point located at

pN =(x, y, z)T to the image plane p=(u, v) is defined by

u=
x0

z0
, v=

y0

z0
ð10Þ

Let u and v be the coordinates of the image point p expressed

in pixel units, and

x0

y0

z0

2
4

3
5=

f 0 u0

0 f v0

0 0 1

2
4

3
5pC ð11Þ

Let pC be the same 3D point pN, but expressed in the camera

frame C by pC =RNCpN. Let RNC be the rotation matrix that

allows transformation from the navigation frame N to the

camera frame C. Also, it is fulfilled that RNC = (RCN)T, and

RCN is known by the use of the gimbal.
Inversely, a directional vector wC = ½wC

x ,wC
y ,w

C
z �

T can be

computed from the image point coordinates u and v as

wC(u, v)=
u0 � u

f
,

v0 � v

f
, 1

� �T
ð12Þ

Vector wC points from the camera optical centre position to

the 3D point location; it can be expressed in the navigation

frame by wN =RCNwC.
The distortion caused by the camera lens is considered

through the model described in Bouguet (2008). By using the

former model (and its inverse form), undistorted pixel coordi-

nates (u, v) can be obtained from (ud , vd), and vice versa. In
this case, it is assumed that the intrinsic parameters of the

camera are already known: focal length f , principal point

(u0, v0), and radial lens distortion k1, . . . , kn.

System state

The system state to be estimated is

x= ½xr, y1, y2, . . . , yn�T ð13Þ

where xr = ½rN, vN�T represents the state of the camera–

quadcopter system. At the same time, rN = ½xc, yc, zc� denotes

Figure 2. Coordinate systems: the local tangent frame is used as the navigation reference frame (N). In this work, the monocular camera is

mounted over a servo-controlled gimbal that counteracts changes in attitude of the quadcopter.

Urzua et al. 5



the position of the camera expressed in the navigation frame

and vN = ½vx, vy, vz� denotes the linear velocity of the vehicle
expressed in the navigation frame. In equation 13, yi repre-
sents the location of the i th feature point, parametrized in its
inverse-depth form

yi = ri, ui,fi, ri½ �T ð14Þ

where ri = ½x0i
, y0i

, z0i
� are the coordinates of the centre of the

camera when the feature is observed for the very first time; ui

and fi are azimuth and elevation, respectively; and ri = 1=di

is the inverse of the feature depth di.

Prediction

The architecture of the system is defined by the typical loop
of predictions and updates of the standard EKF-SLAM,
where the EKF propagates the vehicle state as well as the fea-

ture estimates. The interested reader is referred to the works
of Bailey and Durrant-Whyte (2006) and Durrant-Whyte and
Bailey (2006) for a good review of the EKF-SLAM

methodology.
The system state x is taken a step forward by the following

discrete model

rN
kjk�1 = rN

k�1jk�1 + vN
k�1jk�1Dt

vN
kjk�1 = vN

k�1jk�1 +VN

y1kjk�1
= y1k�1jk�1

..

.

ynkjk�1
= ynk�1jk�1

8>>>>>><
>>>>>>:

ð15Þ

At every step, it is assumed that there is an unknown linear
velocity with zero-mean acceleration and known-covariance
Gaussian processes sa, producing an impulse of linear velo-
city: VN =s2

aDt. Note that in equation (15) it is assumed that

the map features yi remain static (rigid-scene assumption).
The state covariance matrix P takes a step forward by

Pkjk�1 =rFxPk�1jk�1rFT
x +rFuQrFT

u ð16Þ

where Q and the Jacobians rFx and rFu are defined as

rFx =

∂fv

∂xr

06 3 n

0n 3 6 In 3 n

2
4

3
5, rFu =

∂fv

∂u
06 3 n

0n 3 3 0n 3 n

2
4

3
5

Q=
U 03 3 n

0n 3 3 0n 3 n

� � ð17Þ

and ∂fv=∂xr represents the derivatives of the prediction model

(equation 15) with respect to the robot state xr and where
∂fv=∂u represents the derivatives of the prediction model with
respect to the system input u. Uncertainties are incorporated

into the system by means of the process noise covariance
matrix U =s2

aI3 3 3, through parameter s2
a.

Feature initialization

When a feature is detected for the first time from a monocu-
lar camera (bearing sensor), only information about the light

reflected from the feature can be retrieved. In this work, the

feature initialization process is conducted by means of the

well-known method described in Montiel et al. (2006). In this

case, new features are incorporated into the system state by

assuming a hypothetical initial inverse-depth Gaussian prior

on ri;N (r0,sr0
), which is applied to cover, with 95% prob-

ability, the range of depths from the closest possible depth to

infinity (see Civera et al., 2007).
The initialization function yidnew = fid(x, ui, vi, di) used for

computing new ID features is:

yidnew = r0, u0,f0, r0½ �T ð18Þ

with ½r0, u0,f0� calculated as in equation (14); r0 is a free

parameter. The system state x is augmented with:

xnew= ½xr, y1, y2, . . . , yn, yidnew �
T. The new covariance matrix

Pnew is computed by

Pnew =rJ

Pold 0 0

0 R 0

0 0 s2
r0

2
4

3
5rJT ð19Þ

where rJ is the Jacobian computed from the initialization

function fid with respect to the system state x, and R is the

measurement noise covariance matrix.

Visual updates

The active search technique (Davison and Murray, 1998) is

used for tracking visual features yi in each frame. Assuming

that, for the current frame, n visual measurements are avail-

able, respectively, for features y1, y2, . . . , yn, the filter is

updated with the Kalman update equations as

xkjk = xkjk�1 +Kk(zk � hk)

Pkjk =Pkjk�1 � KkSkKT
k

Kk =Pkjk�1rHT
i S�1

k

Sk =rHiPkjk�1rHT
i +Ri

8>>>><
>>>>:

ð20Þ

where z= ½zuv1
, zuv2

, . . . , zuvn
�T is the current measurement vec-

tor, h= ½h1, h2, . . . , hn�T is the current prediction measure-

ment vector, K is the Kalman gain and S is the innovation

covariance matrix. The following measurement prediction

model (u, v)= hi(x) is used.
Each feature yi models a 3D point pN located at

pN = ri +
1

ri

m(ui,fi) ð21Þ

where m(ui,fi) is the unit vector defined by the pair of

azimuth–elevation angles. The 3D point pN is expressed in

the camera frame C by pC =RNCpN, where RNC is the rota-

tion matrix that transforms from the navigation frame N to

the camera frame C; RNC = (RCN)T and RCN is known, assum-

ing that the camera is pointing to the ground. Finally, the

predicted image coordinates (u, v) are computed from pC

using equations (10) and (11).
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In equation (20), rH = ½rH1,rH2, . . . ,rHn�T is the

Jacobian formed by the partial derivatives of the measure-

ment prediction model h(x) with respect to the state x

rHi =
∂hi

∂xr

, . . . , 02 3 3, . . . ,
∂hi

∂yi

, . . . , 02 3 3, . . .

� �
ð22Þ

where ∂hi=∂xr represents the partial derivative of the measure-

ment prediction model hi with respect to the robot state xr,

and ∂hi=∂yi represents the partial derivative of hi with respect

to feature yi. Note that ∂hi=∂yi has only a nonzero value at

the location (index) of the observed feature yi. Let

Ri =(I2n 3 2n)s
2
uv be the measurement noise covariance matrix.

Altitude updates

Measurements of altitude can be inferred from measurements

of atmospheric pressure. The proposed method is mainly

intended for local autonomous vehicle navigation. Hence, the

altitude or height of the micro aerial vehicle above a local

ground location is computed from the change in pressure

between the ground and the altitude of interest. The following

formula can be used to compute the local altitude from baro-

metric data

za = 1� B

Bg

� �KRL0
Mg

 !
T

L0

ð23Þ

where B is the current barometric pressure measurement, Bg

is the barometric pressure at the initial position (home posi-

tion), KR = 8:314 4621 N-m/(mol-K) is the universal gas con-

stant, L0 = � 0:0065 K/m is the rate of temperature decrease

in the lower atmosphere, M = 0:0289644 kg/mol is the stan-

dard molar mass of atmospheric air, g = 9:80665 m/s 2 is the

acceleration of free fall and T is the temperature at the flight

location in kelvins. It is important to note that equation (23)

provides the relative altitude of the vehicle with respect to its

initial position (which is defined by Bg). At the initial altitude,

za = 0; if the micro aerial vehicle moves below its initial alti-

tude, za will be negative.
To fuse the altitude measurements into the EKF-SLAM, a

loosely coupled approach is used. In other words, the SLAM

algorithm takes the altitude computed directly by equation

(23) as a high-level input.
In this case, the altitude of the micro aerial vehicle, zN,

measured (in the navigation frame) as za can be modelled by

za = zN +xz + vz ð24Þ

where xz is an additive error (bias) and vz is a Gaussian white

noise with a power spectral density s2
z . According to Hopkins

et al. (2010), the dynamic error bias of a barometer is smaller

than the bias of an accelerometer. Moreover, equation (23)

also provides compensation for variations in temperature dur-

ing the flight. Therefore, in this work, the bias xz is neglected;

however, in future work, it could be of interest to modify the

approach in order to estimate xz dynamically. Additionally, it

is important to note that vz is assumed to have a Gaussian

distribution; although this is not necessarily true, good experi-

mental results were found by using this approach.
Measurements of altitude are incorporated into the system

by means of the EKF standard update equations defined in

equation (20). However, in this case, the measurement model

ha(x) is simply defined by

ha = zN ð25Þ

where zN is taken directly from the system state x. For altitude

updates, rH = ½0, 0, 1, 0, 0, 0, 01 3 n6�T, where n is the number

of visual features and Ri =s2
z is the uncertainty associated

with altitude measurements.

System initialization

A short initial period of time t 2 ½0, T � is used for the system

initialization task. During this period, the vehicle is assumed

to be still. The barometric pressure at the initial position, Bg,

is determined by averaging the readings of the barometer

Bg =
1

T

Z T

0

Bdt ð26Þ

The initial position Bg will be used in equation (23) to com-

pute the relative altitude of the vehicle. As mentioned in the

section entitled [Assumtions]‘Assumptions and remarks’, the

initial position of the vehicle defines the origin of the naviga-

tion coordinate frame. In this case, the system state vector is

simply initialized as

x= ½01 3 3, 01 3 3�T ð27Þ

Experimental results

In this section, results obtained using synthetic data from

simulations are presented, as well as results obtained from

experiments with real data. The experiments are carried out

to validate the performance of the proposed method.

Simulations

To validate the proposed approach, the six-degrees-of-free-
dom system was simulated under different conditions. In this

case, a quadrotor was commanded to fly over a surface com-

posed of randomly distributed 3D points, following a circular

pattern. During the flight, the altitude of the vehicle was var-

ied to follow a sinusoidal pattern (see Figure 3). In simula-

tions, the monocular camera was emulated by using the same

parameter values of the camera employed in the experiments

with real data. except that, in this case, a Gaussian noise with

su = 18 was added to the angular measurements. Also, it is

assumed that the camera is pointing to the ground and it is

able to track, without error, all the landmarks inside its field

of view. The altitude sensor was configured to emulate the
behaviour of the Adafruit BMP183 barometric low-cost sen-

sor. In this case, the measured altitude was corrupted with

Gaussian noise with sz = 0:25 m.
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To obtain a better insight of the performance of the pro-

posed method, a comparison with the approach used in Nützi

et al. (2011) and Wang et al. (2014) is presented. In this case,

the metric scale is explicitly estimated through an EKF that

incorporates inertial measurements from an inertial measure-

ment unit. For this purpose, the Invensense MPU-600 inertial

measurement unit sensor was emulated in simulations. For

this inertial-measurement-unit-based method, it is assumed

that the alignment of the camera and the inertial measurement

unit is perfectly known. In simulations, the hypothetical initial

depth of features is set to dini = 0:5 m and the dynamic error

bias of the barometer and accelerometers is neglected.
Figure 3 shows the results obtained from simulating both

methods: (i) the barometer-based method (proposed approach)

and (ii) the inertial-measurement-unit-based method. Two

experimental cases are presented: (i) a flight with large varia-

tions in altitude (upper plots) and (ii) a flight with small varia-

tions in altitude (lower plots). In experiments, the mean

absolute error in position was computed, as well as the pro-

gression of the metric scale over time. In every case, the results

were obtained by averaging 10 Monte Carlo executions.
Analysing the results closely, it can be appreciated that the

convergence time of the inertial-measurement-unit-based

method is longer than that obtained with the barometer-

based method. It is important to note that convergence time

obtained with the inertial-measurement-unit-based method is

consistent with the results presented in Nützi et al. (2011).

Also, note that the error in position is minimized as the

metric scale converges to one. The simulation results suggest

that the barometer-based approach should be a good alterna-

tive to the inertial-measurement-unit-based approach.

Experiments with real data

A custom-built quadrotor was used for experiments with real

data (see Figure 4). The vehicle is equipped with: (i) an

Figure 3. The proposed barometer-based approach was compared with an inertial-measurement-unit-based approach. Upper plots show results

obtained for a flight with large variations in altitude. Lower plots show results obtained for a flight with small variations in altitude.

IMU: inertial measurement unit; MAE: mean absolute error; NED: north, east, down.

Figure 4. Radio-controlled quadrotor used for testing the proposed

method.
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Ardupilot unit as flight controller (Open Source Community,

2015a), (ii) a radio telemetry unit 3DR 915Mhz, (iii) a DX201

DPS camera with a wide angle lens, (iv) a 5.8 GHz video

transmitter, (v) a NEO-M8N GPS unit and (vi) a low-cost

Measurement Specialties MS5611-01BA03 barometer, which

is included in the Ardupilot unit. The camera is mounted over

a particularly low-cost gimbal, which is servo-controlled using

standard servomotors.
In experiments, the quadrotor was manually radio-con-

trolled. A custom-built C++application running over a lap-

top was used to capture data from the quadrotor; the data

were received via a MAVLINK protocol (Open Source

Figure 5. Estimated trajectory and map obtained for two different flight trajectories. The flight trajectory obtained with the proposed method is

indicated in red. For comparison purposes, two external references of the flight trajectory were used: (i) GPS (green) and (ii) P4P visual reference

(black).

NED: north, east, down.
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Community, 2015b) and the digitalized video signal trans-

mitted from the quadrotor was also acquired. Data yielded

by the barometer, as well as frames captured from the cam-

era, were synchronized and stored in a dataset. The frames,

with a resolution of 320 3 240 pixels in greyscale, were

acquired at 26 fps. The quadrotor flights were conducted out-

doors in open lawn areas. A MATLAB implementation of

the proposed method was executed on the dataset offline to

estimate the flight trajectory and the environment map.
Two different flight trajectories (a and b) were followed

over two different test fields. Figure 5 shows the trajectory

and estimated map for both cases. The upper plots show

frames acquired during the flight. The middle plots show a

zenithal (x–y) view of the maps and estimated trajectories.

The lower plots show the sectional (x–z) view of the maps and

estimated trajectories.
In the experiments, to show that the proposed method is

able to work with real data for recovering the metric scale of

the SLAM system, two external references of the flight trajec-

tory were used: (i) the trajectory computed by filtering GPS

measurements and (ii) the trajectory computed using a per-

spective four-point (P4P) technique (see the appendix for a

description of the P4P technique). It is important to note that

the objective of these experiments is only to obtain an insight

into the ability of the proposed method for recovering the

metric scale of the estimates, by visually comparing the ampli-

tude of the signals obtained with the proposed method and

the reference signals.
In this case, neither the GPS nor the P4P technique is con-

sidered, by any means, as a competing approach to the

proposed method. In this sense, both, GPS and P4P make

explicit use of a-priori known metric references. Instead, the

GPS and P4P are only used as (imperfect) reference signals.
Figure 6 shows the progression over time for each esti-

mated trajectory by (i) the proposed barometer-aided mono-
cular SLAM method, (ii) GPS and (iii) P4P visual reference.

A separate plot for each coordinate, north, east, and down

(x, y, z), is presented. In this comparison, the results obtained

using the proposed method are obtained by averaging 10

executions of each method. It is important to note that these

averages are computed because the method is not determinis-

tic, since the search for and detection of new visual features is

conducted in a random manner over the images.
Based on the obtained results, it can be remarked that:

� Flight trajectory (a). In general, a good concordance

between the three estimates is obtained. For the x-

coordinate only, a slightly major discrepancy is

observed with the trajectory computed by the GPS. In

this case an average of 13 satellites are available along

the trajectory.
� Flight trajectory (b). A better concordance is observed

between the proposed method and the P4P visual ref-

erence. The error drift in GPS estimates (specifically

in the vertical axis) probably comes from the lower

availability of satellites, only eight in this case. It is

important to recall that the GPS is affected by several
sources of error. This can be especially problematic

when a micro aerial vehicle is performing fine man-

oeuvres (Munguia et al., 2016).

Figure 6. Estimated position in each coordinate frame: north (x), east (y) and down (z).
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Considering these results, it is shown that the proposed

method is capable of working with real data obtained from

low-cost sensors with the objective of estimating the flight tra-

jectory of a micro aerial vehicle.

Conclusions

In this work, an observability analysis has been conducted

over a simplified two-degrees-of-freedom model of a monocu-

lar SLAM system. The results of the observability analysis

confirm that the metric scale of the SLAM system is unobser-

vable when only angular measurements are available.

Additionally, it is shown that the modes corresponding to the

orientation of the camera are also unobservable. Conversely,

when measurements of altitude are included in the system,

the metric scale can become observable. In this case, sufficient

conditions for observability are presented.
Based on these theoretical results, a novel barometer-aided

monocular SLAM method with application to micro aerial

vehicles has been presented. To overcome the lack of observa-

bility of the camera orientation, the monocular camera is

mounted over a servo-controlled gimbal in order to stabilize

the orientation of the camera toward the ground. Hence, the

problem is focused on position estimation. To overcome the

lack of observability of the metric scale, a barometer is used

to incorporate measurements of the altitude of the micro aer-

ial vehicle in the filter.
Simulations and experiments with real data are carried out

to validate the proposed approach. The results confirm that

the actual metric scale can be retrieved by including altitude

measurements in the system. It is also shown that the pro-

posed method can be practically implemented by using low-

cost sensors, to perform visual-based navigation in GPS-

denied environments.
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Appendix

Computation of observability matrix

In this appendix, for simplicity, the symbol P will be removed

from the dimensionless variables. For instance, Pxc
will be

treated as xc.
For the system with angular measurements, which is

defined by equations (6) and (7), the observability matrix O
can be constructed from

O=
L0

f (hu1)

∂x

L1
f (hu1)

∂x
. . .
L0

f (hun)

∂x

L1
f (hun)

∂x

" #T
ð28Þ

where Li
f (h) is the ith order Lie derivative (Slotine and Li,

1991) of the scalar field of the measurement h with respect to

the vector field f . In this case, for each i angular measurement

yi = hui(x), the observability matrix O is augmented with the

zeroth-order and first-order Lie derivatives

0 fxc
fzc

�1 0 0 0 . . . 0 . . . fri
. . . 0 . . .

f2s
f2xc

f2zc
0 f2vx

f2vz
�d . . . 0 . . . f2ri

. . . 0 . . .

� �
ð29Þ

where

fxc
=

∂(hu(x))

∂xc

= f (s, xc, zc, ri)

fzc
=

∂(hu(x))

∂zc

= f (s, xc, zc, ri)

fri
=

∂(hu(x))

∂ri

= f (s, xc, zc, ri)

f2s
= f (s, xc, zc, ri, vx, vz,vc)

f2xc
=

∂( fxc
s)

∂xc

vx +
∂( fzc

s)

∂xc

vz

f2zc
=

∂( fxc
s)

∂zc

vx +
∂( fzc

s)

∂zc

vz

f2vx
= f (s, xc, zc, ri)

f2vz
= f (s, xc, zc, ri)

f2ri
=

∂( fxc
s)

∂ri

vx +
∂( fzc

s)

∂ri

vz

Note that the extended part of the matrix (equation (29))

corresponds to the Lie derivatives computed with respect to

the inverse depth of the ith landmark. In this case, a nonzero

column ½ f1ri
, f2ri
�T will be located only at the indexes corre-

sponding to the ith landmark. For n landmarks, an observa-

bility matrix with dimension O2n 3 (7+ n) will be constructed.

In equation (29), note also the dependency of f2xc
, f2zc

and f2ri

on vx and vz. If vx = vz = 0, then f2xc
= f2zc

= f2ri
= 0.

When altitude measurements y0 = hzc
(x) are considered,

the observability matrix O can be computed from

O=
L0

f (hzc
)

∂x

L1
f (hzc

)

∂x

L0
f (hu1)

∂x

L1
f (hu1)

∂x
. . .
L0

f (hun)

∂x

L1
f (hun)

∂x

" #T

ð30Þ

In this case, the observability matrix O is augmented with the

zeroth-order and first-order Lie derivatives obtained from

altitude measurements

zr 0 s 0 0 0 0 01 3 n

2vzs 0 0 0 0 s2 0 01 3 n

� �
ð31Þ

With the inclusion of altitude measurements, and consid-

ering n landmarks, an observability matrix with dimension

O(2+ 2n)3 (7+ n) will be constructed. When variables related to

the orientation of the camera are not considered (equation

(9)), the fourth and seventh columns are removed from equa-

tions (29) and (31). In this case, an observability matrix with

dimension O(2+ 2n)3 (5+ n) is constructed. In this work, the

MATLAB symbolic toolbox was used to compute the deriva-

tives and the numerical solutions for each observability

matrix.
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P4P reference trajectory

In this work, to obtain an independent trajectory reference
for evaluating the performance of the proposal, the following

methodology was used.
Four marks are placed in the ground, forming a square of

known dimensions (see Figure 5). Each corner is a coplanar
point with spatial coordinates ½xi, yi, 0�, with i 2 1, . . . , 4, and
their corresponding four undistorted image coordinates ½ui, vi�
with i 2 1, . . . , 4. Then, for each frame, a perspective four-
point (P4P) technique (Chatterjee and Roychowdhury, 2000),
is applied iteratively to compute the relative position of the
camera with respect to the known metric reference. At each
frame, the image location of the four corners is provided by a
simple tracking algorithm designed for this purpose.

The P4P technique used to estimate the camera position,
defined by RCN and rN, is based on the work of Ganapathy
(1984). The following linear system is formed with the vector
b as unknown parameter

x1 f y1 f 0 0 �u1x1 �u1y1 f 0

0 0 x1 f y1 f �v1x1 �v1y1 0 f

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

x4f y4 f 0 0 �u4x4 �u4y4 f 0

0 0 x4 f y4 f �v4x4 �v4y4 0 f

2
666664

3
777775b=

u1

v1

..

.

u4

v4

2
666664

3
777775
ð32Þ

where

b=
r11

r3

r12

r3

r21

r3

r22

r3

r31

r3

r32

r3

r1

r3

r2

r3

� �T
ð33Þ

The linear system represented in equation (33) is solved for

b= b1 b2 b3 b4 b5 b6 b7 b8½ �T

The camera position is computed from

RCN =

r3b1 r3b2 (R21R32 � R31R22)

r3b3 r3b4 (R31R12 � R11R32)

r3b5 r3b6 (R11R22 � R21R12)

2
64

3
75,

rN = r3b7 r3b8 r3½ �T

ð34Þ

where

r3 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2

b2
1 + b2

3 + f 2b2
5

s
ð35Þ

In equation (34), the third column of matrix RCN is formed

by the combination of the values of the first and second col-

umns of the same matrix. The results obtained with this proce-

dure can be very noisy; for this reason, a simple low-pass filter

is applied to obtain the flight trajectory. The P4P trajectory is

computed with respect to the metric reference. Trajectories

obtained through visual SLAM have their own reference

frame. In experiments, both reference frames are aligned to

make the trajectories coincident at the beginning. In other

words, it is assumed that the initial position of the quadcopter

is known.
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