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Abstract This article addresses the tracking control problem of uncertain
fractional-order nonlinear systems in the presence of input quantization and
external disturbance by combining with radial basis function(RBF) neural net-
works(NNs), fractional-order disturbance observer(FODO) and backstepping
method. The unknown nonlinearities of fractional-order systems is approxi-
mated by RBF NNs. The design of hysteretic quantizer achieves quantification
of input signal and avoids chattering. The FODO is utilized to evaluate the
external disturbance exist in fractional-order systems. According to fractioanl-
order Lyapunov stability analysis, the bounds of all the signals in the closed-
loop system is proved. The effectiveness of the proposed method is confirmed
by the simulation results.
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1 Introduction

Fractional-order calculus was proposed more than three hundred years [1], and
it still attracts the research interest of a great many researchers thanks to its
unique properties and great potentials in many applications [2–7]. In the field
of engineering, the models can be established more concisely and precisely by
using fractional-order calculus. In recent years, an increasing number of re-
searchers focus on the study of fractional-order systems, especially in stability
analysis and controller design [8–13].

As we know, adaptive backstepping has been widely used in the control of
integer-order nonlinear systems [14–17]. In recent years, some researchers have
extend backstepping method to solve the control problem of fractional-order
nonlinear systems [18, 19]. In [18], an adaptive fuzzy backstepping controller
was design to deal with a kind of uncertain fractional-order nonlinear system.
In [19], adaptive backstepping method was used to solve the control problem
of a triangular fractional order systems with non-commensurate orders.

Until now, the quantized control is widely used in linear and nonlinear
systems since its theoretical and practical significance in modern engineering.
In order to reduce the chattering, a kind of hysteretic quantizer is introduced
in [20]. In [21], the author studied a fractional-order nonlinear systems with
input quantization, and proposed an output feedback tracking controller. An
adaptive backstepping controller with hysteretic quantizer was proposed in
[22]. In our paper, the hysteresis quantizer will be further studied in fractional-
order systems .

In actual application, systems are often affected by external interference
and uncertain parameters, disturbance observer can used to estimate the dis-
turbance and attenuate their effects. There are many integer-order disturbance
observer techniques has been reported. Two different design methods of nonlin-
ear integer-order disturbance observer was given to handle disturbance in [23]
and [24]. Recently, the studies of fractional-order disturbance observer have re-
ceived much consideration [25–27]. A class of uncertain fractional-order chaotic
systems with unknown disturbance and input saturation is studied in [25].
In [27], a FODO based sliding mode control was studied, the control problem
of with matched and mismatched disturbances was solved. In our paper, the
FODO is designed to estimate both of disturbance and uncertain parameters
for nonlinear fractional-order system.

Inspired by the above discussions, we study the backstepping control prob-
lem for fractional-order nonlinear systems with disturbance and input quanti-
zation. The main contributions of this paper can be highlighted as the follow-
ing. Firstly, a hysteresis quantizer is designed to compensate for disturbance
and uncertain parameters, which can simplify the design process. Second, the
input quantization is considered in the design of fractional order controllers.
Third, the system to be concerned with is very common in practice.

The organization of the remaining paper is as follows. The problem formu-
lation and preliminaries are given in Section 2. The FODO and backstepping
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controller design for the system are presented in Section 3. The simulation
results can be found in Section 4. And, we conclude this article in Section 5.

2 Problem Formulation and Preliminaries

2.1 Fractional Calculus

There are several different forms for the definition of fractional derivative,
among them, the most used in engineering applications is the Caputo defini-
tion. The Caputo definition form we use is as follows.

c
0D

α
t f =

1

Γ (n− α)

∫ t

0

f (n)(τ)

(t− τ)α+1−n
dτ (1)

where Γ (z) =
∫

∞

0
tz−1e−tdt denotes the Euler’s Gamma function, and Γ (z +

1) = zΓ (z). For the differential order α, we only consider it on the set (0, 1).
For simplicity of description, c0D

α
t is abbreviated as Dα. The Laplace transform

of (1) is

L(Dαf =

∫

∞

0

e−stDαfdt

=sαF (s)−

m−1
∑

k=0

sα−k−1f (k)(0)

(2)

where F (s) is the Laplace transform of f .

Definition 1 [28] The Mittag-Leffler function is defined by

Eα,β(z) =

∞
∑

k=0

zk

Γ (kα+ β)
(3)

where α > 0 and β ∈ R, z ∈ R. Its Laplace transform can be given by

(Ltβ−1Eα,β(λt
α))(s) =

sα−β

sα − λ
(4)

where Re s > 0, λ ∈ C and |λs−α| < 1.

Lemma 1 [28] For the above Mittag-Leffer function, if β > 0, then

∫ z

0

Eα,β(λt
α)tβ−1dt = zβEα,β+1(λz

α). (5)

Lemma 2 [3] Assuming that the origin is an equilibrium point of a nonau-
tonomous fractional-order nonlinear system

Dαx = f(t, x) (6)
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where f : I × Ω → R is Lipschitz continuous. If there exist some class-K
functions g1, g2, g3 and a Lyapunov function V (t, h) such that

g1(‖x‖) ≤ V (t, x) ≤ g2(‖x‖)

DαV (t, x) ≤ −g3(‖x‖)
(7)

then (6) is asymptotic stability.

Lemma 3 [7] There is a smooth function z ∈ Rn, you can get

1

2
Dα

(

zT z
)

≤ zTDαz (∀t ∈ I) (8)

where B ∈ Rn
∫
n is positive definite.

2.2 System Formulation

This paper considered the fractional-order nonlinear system described in the
following form .



































Dαx1 = x2 + f1 (x1)
Dαx2 = x3 + f2 (x1, x2)
...
Dαxn−1 = xn + fn−1 (x1, x2, . . . , xn−1)
Dαxn = fn(x1, x2, . . . , xn) + d(t) + q(u(t))
y = x1

. (9)

where α is the system commensurate order, x = [x1, x2, . . . , xn]
T ∈ Rn is the

system state vector, and we only consider the case of 0 < α < 1. fi(xi)(i =
1, 2, . . . , n) are unknown smooth nonlinear functions. u(t) is a designed input,
and q(u(t)) is the actual quantitative input. y ∈ R is the output, and d(t) ∈ R

is the external disturbance.
Without loss of generality, we can rewrite the system formulation as



































Dαx1 = x2 + f1 (x̌1)
Dαx2 = x3 + f2 (x̌2)
...
Dαxn−1 = xn + fn−1 (x̌n−1)
Dαxn = q(u) + dn
y = x1

. (10)

where x̌i = [x1, . . . , xi](i = 1, 2, . . . , n), and dn = fn(x̌n)+d. Then, FODO will
be designed to estimate both of external interference d and unknown parameter
fn(x̌n).

Assumption 1 For system (10), dn and its fractional order derivatives are
bounded with |dn| < ďn and |Dαdn| ≤ η, where ďn > 0 and η > 0 are unknown
positive constants.



Title Suppressed Due to Excessive Length 5

2.3 Quantizer

We use a hysteretic type of quantizer to quantitatively control the input of
fractional order systems, which has the following form as in [22] and [29].

q(u) =











































ui sgn(u),
ui

1+δ
< |u| ≤ ui, u̇ < 0, or

ui < |u| ≤ ui

1−δ
, u̇ > 0

ui(1 + δ) sgn(u), ui < |u| ≤ ui

1−δ
, u̇ < 0, or

ui

1−δ
< |u| ≤ ui(1+δ)

1−δ
, u̇ > 0

0, 0 ≤ |u| < umin

1+δ
, u̇ < 0, or

umin

1+δ
≤ |u| ≤ umin, u̇ > 0

q (u (t−)) , u̇ = 0

(11)

where ui = η1−iumin(i = 1, 2, . . . ), δ = 1−η
1+η

with umin > 0, 0 < η < 1. q(u) is

in the set U = {0,±ui,±ui(1 + δ)}. A picture of the map of q(u) for u > 0 is
shown in Fig.1

Fig. 1 Map of hysteretic quantizer q(u) for u > 0.

Remark 1 In Comparison to logarithmic quantizer, hysteretic type of quan-
tizer gets more quantization grades, thereby avoiding chattering. η is reviewed
as the measure of the density of quantitative, which determines coarseness of
quantizer. Some detailed description can be found in [30].

In order to make the controller design more suitable, the hysteresis type of
quantizer will be rewritten as follows [30]

q(u) = h(u)u+ g (12)

where h(u) and g satisfy

1− δ ≤ h(u) ≤ 1 + δ, |g| ≤ umin (13)
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2.4 RBF NNs

We used the following RBF NNs to appropriate the unknown nonlinear terms.

f(ς) = ΦT ξ(ς) (14)

where Φ = [φ1, φ2, . . . , φl]
T ∈ Rl is the weight vector, in which l > 1 is node

number of neural networks . ς ∈ Ξ ⊂ Rq is neural networks input vector, and
q is input dimension. ξ(ς) = [ξ1(ς), ξ2(ς), . . . , ξl(ς)]

T means the radial basis
function, which is generally selected as the Gaussian function as follows

ξi(ς) = exp

[

−
(ς − ιi)

T
(ς − ιi)

κ2

]

, i = 1, 2, . . . , l (15)

where ιi = [ιi1, ιi2, . . . , ιiq]
T represents the center of the receptive field and κ

denotes the width of the basis function ξi(ς). By choosing a large enough num-
ber of l, RBF NNs can estimation f(ς) to arbitrary accuracy in the compact
set Ως ∈ Rl with arbitrary accuracy ǫ > 0 [31]:

f(ς) = Φ∗T ξ(ς) + ǫ(ς), ∀ς ∈ Ξ ⊂ Rq (16)

Φ∗ is ideal constant parameter vector, and the definition is

Φ∗ := arg min
Φ∈Rl

{

sup
ς∈Ξ

∣

∣f(ς)− ΦT ξ(ς)
∣

∣

}

(17)

and ǫ denotes the approximation error and satisfies |ǫ(ς)| ≤ ε(ε > 0).

3 Main Results

3.1 FODO

In this subsection, we will propose a FODO to evaluate dn in system (10) as
in [23] and [27]. first, we introduce an auxiliary variable

θ = dn − σxn (18)

where σ > 0 is a constant to be designed. Then, the Caputo derivative of θ is

Dαθ =Dαdn − σDαxn

=− σ (dn + q(u)) +Dαdn

=− σθ − σ (σxn + q(u)) +Dαdn

(19)

The fractional order disturbance observer is suggested as

{

Dαθ̂ = −σθ̂ − σ (σxn + q(u))

d̂n = θ̂ + σxn

(20)
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Define the disturbance estimation error as

d̃n = dn − d̂n (21)

In order to verify the feasibility of the above FODO, we choose the Lyapunov
function cadidate to perform stability analysis of the interference estimation
error.

Vd =
1

2
d̃2n (22)

Based on lemma 3, the Caputo derivative of Vd is

DαVd ≤ d̃nD
αd̃n (23)

According to (20), (10) and assumption 1, we have

DαVd ≤ d̃n

(

Dαdn −Dαd̂n

)

= d̃nD
αdn − σd̃2n

≤ −σd̃2n +
1

2
d̃2n +

1

2
η2

= −

(

σ −
1

2

)

d̃2n +
1

2
η2

= −B0Vd +B1

(24)

Where B0 = 2σ−1 and B1 = 1
2η

2. To ensure the estimated error d̃n is bounded,
the gian σ should be chosen to make 2σ − 1 > 0. Considering the following
design, we choose σ > 1. So, the estimation yielded by the disturbance observer
approaches to the disturbance dn globally exponentially.

3.2 Controller Design

Define the error variables
{

e1 = x1 − yd
ei = xi − τi−1

(25)

Where τi are virtual controllers.
Then, apply the RBF NNs to approximate nonlinear function. We get the

approximate of unknown smooth function fi(x)(i = 1, 2, . . . , n− 1) as follows:

f̂ (x̌i) = Φ̂T
i ξi (x̌i) (26)

Define Φ̃i = Φ∗

i − Φ̂i, where Φ̂∗

i is the optimal parameter vector. As far as

we know, the derivative of parameter Φ̂∗

i is zero, we can obtain

DαΦ̃i = DαΦ∗

i −DαΦ̂i = −DαΦ̂i (27)



8 Chao Cheng et al.

The RBF NNs error is defined by

ǫi (x̌i) = fi (x̌i)− f̂i (x̌i, Φ
∗

i ) (28)

where ǫi (x̌i) ≤ εi (εi > 0). Then, we can get

fi (x̌i)− f̂i (x̌i, Φi)

=fi (x̌i)− f̂i (x̌i, Φ
∗

i ) + f̂i (x̌i, Φ
∗

i )− f̂i (x̌i, Φi)

=Φ∗T
i ξi (x̌i) + ǫi (x̌i)− Φ̂T

i ξi (x̌i)

=Φ̃T
i ξi (x̌i) + ǫi (x̌i)

(29)

The design process of fractional-order backstepping controller will be in-
troduced as the following steps.

Step 1: The Caputo derivative of e1 is

Dαe1 = Dαx1 −Dαyd

= x2 + f1 (x̌1)−Dαyd

= x2 + f1 (x1)− f̂1 (x1) + f̂1 (x1)−Dαyd

= e2 + τ1 + Φ̃T
1 ξ1 (x̌1) + ǫ1 (x̌1) + Φ̂T

1 ξ1 (x̌1)−Dαyd

(30)

The Layapunov function is chosen as

V1 =
1

2
e21 +

1

2γ1
Φ̃T
1 Φ̃1 (31)

Let the virtual control law τ1 be

τ1 = −

(

c1 +
1

2

)

e1 − Φ̂T
1 ξ1(x̌1) +Dαyd (32)

and the fractional-order adaptation law be

DαΦ̂1 = γ1e1ξ1(x̌1)− ρ1Φ̂1 (33)

where c1 > 0, γ1 > 0 and ρ1 > 0 are designed parameters.

By applying Lemma 3, (32) , (33), and Young’s inequality, the Caputo
derivative of V1 is such that

DαV1 ≤e1D
αe1 +

1

γ1
Φ̃T
1 D

αΦ̃1

=e1

(

e2 + τ1 + Φ̃T
1 ξ1 (x̌1) + ǫ1 (x̌1)

+Φ̂T
1 ξ1 (x̌1)−Dαyd

)

−
1

γ1
Φ̃1D

αΦ̂1

≤− c1e
2
1 −

1

2
e21 + e1e2 +

ρ1

γ1
Φ̃T
1

(

Φ∗

1 − Φ̃1

)

+ e1ε1

≤− c1e
2
1 + e1e2 +

1

2
ε21 +

ρ1

2γ1
Φ∗

1
T
Φ∗

1 −
ρ1

2γ1
Φ̃T
1 Φ̃1

(34)
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Step i(2 ≤ i ≤ n− 1): The Caputo derivative of ei is

Dαei =Dαxi −Dατi−1

=xi+1 + fi (x̌i)−D2τi−1

=xi+1 + fi (xi)− f̂i (xi) + f̂i (xi)−Dατi−1

=xi+1 + τi + Φ̃T
i ξi (x̌i) + ǫ1 (x̌1)

+ Φ̂T
1 ξ1 (x̌1)−Dατi−1

(35)

The Layapunov function is chosen as

Vi = Vi−1 +
1

2
e2i +

1

2γi
Φ̃T
i Φ̃i (36)

Let the virtual control law τi be

τi = −

(

ci +
1

2

)

ei − Φ̂T
i ξi(x̌i)− ei−1 +Dατi−1 (37)

and the fractional-order adaptation law be

DαΦi = γieiξi(x̌i)− ρiΦ̂i (38)

where γi > 0, ρi > 0, ci > 0 are designed parameters.
By applying Lemma 3, (37) , (38), and Young’s inequality, the Caputo

derivative of Vi can be described as

DαVi ≤DαVi−1 + eiD
αei +

1

γi
Φ̃T
i D

αΦ̃i

=DαVi−1 + ei

(

ei+1 + τi + Φ̃T
i ξi (x̌i) + ǫi (x̌i)

+Φ̂T
1 ξ1 (x̌1)−Dατi−1

)

−
1

γi
Φ̃T
i D

αΦ̂i

≤DαVi−1 − cie
2
i −

1

2
e2i + eiei+1

+
ρk

γk
Φ̃i

(

Φ∗

i − Φ̃T
i

)

+ eiεi

≤−
i

∑

k=1

cke
2
k +

i
∑

k=1

1

2
ε2k + eiei+1

+

i
∑

k=1

ρk

2γk
Φ∗

k
T
Φ∗

k −

i
∑

k=1

ρk

2γk
Φ̃T
k Φ̃k

(39)

Step n: The Caputo derivative of en is

Dαen = Dαx̌n −Dατn−1

=q(u) + dn −Dατn−1

=h(u)u+ g + dn −Dατn−1

(40)
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The Layapunov function is chosen as

Vn =Vn−1 +
1

2
e2n +

1

2
d̃2n

=
n
∑

k=1

1

2
e2k −

n−1
∑

k=1

ρk

2γk
Φ̃T
k Φ̃k +

1

2
d̃2n

(41)

The disturbance observer is designed as
{

Dαθ̂ = −σθ̂ − σ (σxn + q(u))

d̂n = θ̂ + σxn

(42)

where cn > 0 is designed parameter.
Let the input control law u be

u =
1

1− δ

(

− (cn + 1) en − en−1 − d̂n +Dατn−1

)

(43)

where σ > 0 is designed parameter.
According to (13), we have

h(u)u ≤ − (cn + 1) en − en−1 − d̂n +Dατn−1 (44)

By applying Lemma 3, (42) , (43), and Young’s inequality, the Caputo
derivative Vn can be described as

DαVn ≤DαVn−1 + enD
αen + d̃nD

αd̃n

=DαVn−1 + en (h(u)u+ g + dn −Dατn−1)

+ d̃nD
αdn − d̃nD

αd̂n

≤DαVn−1 − cne
2
n − e2n − en−1en

+ end̃n + eng(u) + d̃nη − σd̃2n

≤−
n
∑

k=1

cke
2
k −

n−1
∑

k=1

ρk

2γk
Φ̃T
k Φ̃k − (σ − 1) d̃2n

+

n−1
∑

k=1

ρk

2γk
Φ∗

k
T
Φ∗

k +

n−1
∑

k=1

1

2
ε2k +

1

2
η2 +

1

2
u2
min

(45)

We can rewrite (45) as

DαVn ≤ −cVn + k (46)

in which c = min {2ci, ρi, 2 (σ − 1) , i = 1, 2, · · · , n} and k =
∑n−1

k=1
ρk

2γk

Φ∗

k
TΦ∗

k+
∑n−1

k=1
1
2ε

2
k + 1

2η
2 + 1

2u
2
min are two positive constants.

Theorem 1 Consider fractional order system 10 under Assumption 1, and
the design of disturbance observer 42, the controller 43, the virtual controller
32, 37, and adaptive law 33 and 38, then all the signals in the closed-loop sys-
tem remain semiglobally uniformly bounded, and the tracking error eventually
converge to an arbitrary small region.
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Proof According to (45), there exists a nonnegative function m such that

DVn = −cVn + k +m (47)

Taking Laplace transform on (47), we obtain

Vn(s) =
sα−2

sα + a
Vn(0) +

L(m+ k)

sα + a
(48)

where Vn(0) is initial condition. Using definition 1, we can solve (48) as follows

Vn =Vn(0)Eα,1(−atα)

+

∫ t

0

(t− τ)α−1Eα,α(−a(t− τ)α)(m(τ) + b)dτ
(49)

which yields that

||Vn|| ≤ ||Vn(0)||Eα,1(−atα)

+ b

∫ t

0

(t− τ)α−1Eα,α(−a(t− τ)α)dτ
(50)

Using Lemma5, we can obtain

||Vn|| ≤ ||Vn(0)||Eα,1(−atα) + btαEα,α+1(−aτα) (51)

According to [13], we can get that there is a constant t0 > 0 for all t ∈
(t0,∞)

||Vn|| ≤
2k

c
. (52)

Therefore, from (52) and Vn, we can conclude that all signals in system (10)
keep bounded and tracking error e gradually approach arbitrary small range.

4 Simulation results

In this paper, a fractional-order backstepping controller design method with
FODO and RBF NNs is proposed. In this section, we use a fractional-order
nonlinear system to verigy the effectiveness of the design method.

{

Dαx1 = x2 − 0.6x2
1

Dαx2 = q(u) +
x2−x2

1

1+x2

1

(53)

Let the fractional-order be α = 0.8, and the initial condition be x(0) =
[0.3, 0.5]T . The design parameters are chosen as σ = 30, ρ1 = 1, c1 = 20, c2 =
30, δ = 0.2 and umin = 0.02.

Assume there exist an external disturbances d(t) = 0.5(1+sin(t)) in system

(53), so we can rewritten (53) as system (10). So we can get dn =
x2−x2

1

1+x2

1

+

0.5(1 + sin(t)).
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On the corresponding compact sets, select the certers and widths of RBF
NNs on a regular lattice. In this simulation, a three-layer neural network with
five nodes per layer is used, and the ceter of each of them spaced evenly in the
interval [−5, 5]. Therefore, neural network ΦT

1 ξ1 contains 125 nodes and the
widths of Gaussian functions equal to 2. The simulation results are shown in
Figs.2-7.

Fig. 2 The trajectory of y(t), yd(t)

Fig. 3 The trajectory of x2(t), τ1(t)

Figs.2 displays output signal y and desired reference signal yd. Figs.3 shows
the state x2 and the virtual control law τ1. Fig.4 shows that the quantized in-
put signal is bounded. From Fig.5 and Fig.6, we can see that the disturbance
estimation error is bounded. Therefore, the FODO designed above can esti-
mate the unknown disturbance and uncertain parameters well. The tracking
error of e is shown in Fig.7. It is concluded that the simulation system 53
is bounded synchronization under the designed FODO based fractional-order
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Fig. 4 The input u(t) and hysteretic quantized input q(u(t))

Fig. 5 The disturbance dn(t) and the approximation output of d̂n(t)

Fig. 6 The disturbance observation error d̃n(t)

backstepping controller. Therefore, the proposed adaptive neural backstepping
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Fig. 7 The tracking error e

controller for fractional-order systems with disturbance and input quantization
is effective.

5 conclusion

In this paper, the adaptive neural backstepping control scheme has been stud-
ied for fractional-order nonlinear systems with disturbance and quantized in-
put. RBF NNs are used to approximate the unknown nonlinear smooth func-
tions. A hysteretic type of quantizer was designed to evaluate the unknown
disturbances and uncertain parameters. The RBF NNs, disturbance estima-
tion and hysteresis quantization were used to construct backstepping control
law. Under the designed controller, it has been proved that all the signals in
the systems are bounded and convergent. Simulation results demonstrate the
effectiveness of the proposed adaptive backstepping control scheme.
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