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Abstract

The contribution of this paper is the expansion of the
range of possibilities in the analysis, planning, and control
of contact tasks. The successful execution of any contact
task fundamentally requires the application of wrenches
(forces and moments) consistent with the task. We de-
velop an algorithm for computing the entire set of external
wrenches consistent with achieving a given augmented
contact mode (e.g., sliding at contact 1, rolling at contact
2, and approaching potential contact 3) for one fixed and
one moving part in the plane.

Unfortunately, because of the problem of frictional in-
determinacy, it is usually not enough to determine the set
of wrenches consistent with achieving a contact mode.
Some of the computed wrenches may also be consistent
with other undesirable contact modes. However, set oper-
ations on the cones returned by our algorithm can be de-
signed to find the wrenches consistent only with desired
contact modes.

This paper also presents some applications of the algo-
rithm to analysis and planning problems. We show how to
use set operations to compute the set of external wrenches
with respect to which a fixtured part is ‘strongly stable’.
If the applied external wrench is in this set, the part is
guaranteed not to move. We also show how the algorithm
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Fixture

Figure 1: A workpiece nearly seated in a fixture.

may be used to create sensorless plans that guarantee that
a workpiece will be correctly inserted into a fixture.

1 Introduction

One of the most basic operations in manufacturing is
workpiece insertion. Consider the planar assembly task
depicted in figure 1. The workpiece (a ratchet pawl) is to
be fixtured for assembly. The goal is to achieve all three
desired contacts (or fixels), so that the position and ori-
entation of the workpiece will be uniquely determined. If
the workpiece slides on fixels 2 and 3 while rotating coun-
terclockwise, then the workpiece will eventually contact
fixel 1.

This plan requires a device that applies specified
wrenches. If the workpiece is positioned on a tray that is



tilted to achieve the desired workpiece motion, then grav-
ity provides the external wrench. If a spring is used to
push the workpiece, then the deformation of the spring
provides the wrench.

Regardless of the method used to apply the force, it
is fundamental to the above plan that the set of external
wrenches consistent with achieving the desired contact
mode be known. In this paper, we present an algorithm
to determine the set of external wrenches consistent with
achieving any possible contact mode.

Unfortunately, due to the non-uniqueness problem in-
herent in most mathematical models of dynamic rigid
body systems (see Lotstedt [13], for example), it is possi-
ble that the wrenches in a calculated set may be consistent
not only with the desired mode, but also with another, un-
desirable mode. Therefore, we also show how unions and
intersections of the sets of consistent external wrenches
may be used to find wrenches consistent only with desired
interactions between the workpiece and the fixture.

1.1 Relation to previous work

This paper collects and expands upon work by Balk-
com and Trinkle presented in [3, 4]. Our approach is
based on previous theoretical results in rigid body me-
chanics [17, 23] and complementarity theory [7]. In Pang
and Trinkle [17], examples are presented in which the
polyhedral convex cones of external wrenches consistent
with achieving particular contact modes are calculated.
We develop and extend their method into an algorithm
that works with all contact modes. (We will refer to this
algorithm as the wrench cone algorithm.) We represent
polyhedral convex cones by matrices; our primary refer-
ence for operations on matrix representations of cones is
Goldman and Tucker [11]. Hirai’s Ph. D. thesis [12] de-
scribes an algorithm for conversion between representa-
tions of polyhedral convex cones that is somewhat more
compuatationally efficient than that in [11], and we used
Hirai’s software as a component of the implementation of
our work.

Brost [6] and Mason [14] provide good surveys of pre-
vious work on manipulation planning from the perspec-
tive of rigid body dynamics with Coulomb friction. Erd-
mann’s work on generalized friction cones in configura-
tion space [8, 9] provided one of the first methods for
computing the possible motions of contacting rigid bodies

under an applied wrench.

Prattichizzo and Bicchi [19] provides an analysis of the
dynamic equations of rigid body contact problems from
the perspective of linear controllability and observabil-
ity. Like those authors, we consider a linear (and there-
fore local) model, analyzed at the current time. However,
we focus on workpiece insertion (fixturing, or attaining a
grasp), while Prattichizzo and Bicchi focus on the control
of the workpiece after it has been grasped. Therefore, we
consider contact interactions like sliding, separating, and
approaching, which are indispensible for achieving con-
tact, but which may be undesirable when manipulating a
grasped object.

Apart from Pang and Trinkle [17], the work most sim-
ilar to that presented here is probably Mason [14]. Ma-
son describes a graphical method for finding the set of
acceleration centers (and thus wrenches) consistent with
achieving a particular contact mode. Our method is based
on linear algebra rather than geometry; this allows more
flexibility in the definition of contact modes. For example,
the set of external wrenches consistent with maintaining
contact at some point can be found, without specifying
whether the mode involves sliding right, sliding left, or
rolling. Another advantage of our algorithm is ease of im-
plementation: the core of our sample implementation is
about one hundred lines of simple C code.

We also use set operations on the calculated polyhedral
convex cones to derive a set of wrenches consistent only
with fixturing a planar workpiece. There have been many
controller designs for rigid body insertion tasks; we will
mention only a few characteristic approaches. As one ex-
ample, McCarragher’s petri-net controller [2, 15] sensed
contact states by comparing sensor signals to a qualitative
template derived from rigid body dynamic equations un-
der the frictionless assumption. Then the manipulator ap-
plied controls consistent with certain desirable state tran-
sitions, and not with other state transitions.

Unlike McCarragher’s controller, passive (or sensor-
less) controllers rely on a device designed to apply proper
wrenches regardless of the current state. Erdmann and
Mason develop a formal framework for the design of
passive controllers in a paper on sensorless manipula-
tion [10]. Whitney’s remote center of compliance (RCC)
[25] and Schimmels and Peshkin’s accommodative wrist
[22] are both examples of this approach. In the related
problem of fixture clamp placement, Brost and Peters em-



ployed a quasistatic analysis of the clamping process over
the range of motion of the clamp’s plunger with uncertain
contact state [5].

Our fixturing method makes use of the presented
wrench cone algorithm and is a passive controller. Gen-
erating the insertion strategy only requires taking unions
and complements of some computed wrench cones, and
is thus quite easy to implement. Like McCarragher, we
assume that the state transitions are determined by a dy-
namic rather than a quasistatic rigid body model. Our
approach to the well-known non-uniqueness problem of
rigid body dynamics (for example, see [23, 24]) is to find
a set of external wrenches consistent only with seating the
workpiece. Although we assume that workpiece veloci-
ties are small, our method is also robust to sign changes
in the tangential contact velocities.

1.2 Structure of the paper

Section 2 presents a mathematical model of our system
of two planar rigid bodies, and makes necessary defini-
tions. The model is composed of two parts: the Newton-
Euler equations, and a set of constraints imposed by the
choice of contact mode. It turns out that the set of ex-
ternal wrenches consistent with the equations and con-
straints is a polyhedral convex cone; section 3 reviews ma-
trix representations of polyhedral convex cones. In sec-
tion 4, we consider a simple example of a desired contact
mode, and show (by hand) how the implied constraints
and the Newton-Euler equations may be combined to de-
termine the consistent cone of external wrenches. Sec-
tion 5 presents the complete wrench cone algorithm, and
examples are given in section 6. Section 7 discusses the
problem of frictional indeterminacy. We then show how
the wrench cone algorithm may be used to find the cone
of wrenches with respect to which a fixtured workpiece is
strongly stable; that is, guaranteed not to move even in the
presence of indeterminate contact forces. Sections 8 and 9
present an additional application of the wrench cone algo-
rithm: a fixture insertion strategy that takes into account
the problem of frictional indeterminacy.

Fixture

Figure 2: A local frame attached to fixel s.

2 Mathematical model

The instantaneous dynamic model of a system of rigid
bodies with unilateral, frictional contacts can be formu-
lated as a linear complementarity problem (LCP) [23] and
solved by Lemke’s algorithm [1]. The model consists
of five components: the Newton-Euler equations, kine-
matic non-penetration constraints, a friction law, and nor-
mal and tangential complementarity conditions. Given
the configurations and velocities of the moving bodies,
the current set of contacts, the coefficients of friction, the
inertia properties, and the applied external wrenches, the
solution of the LCP yields contact forces and body accel-
erations satisfying all five components of the model.

Our problem may be seen as an inverse LCP. Given
the rigid body configurations and a set of constraints on
contact forces and accelerations imposed by the choice of
contact mode, we want to find the set of consistent exter-
nal wrenches. The derivation of our mathematical model
therefore parallels that derived for LCP formulations. We
begin by assuming that the workpiece is either touching
or infinitesimally distant from each fixel, and that veloci-
ties are small enough that velocity product terms may be
neglected from the dynamic equations.

2.1 Variables and definitions

Let f; be the location of fixel i. Let p; be the unique
closest point on the workpiece to f;. We attach a right
handed frame (n; (), t;(¢)) to each fixel such that the first
axis points at p; (see figure 2). The signed distance, or
gap, between the workpiece and fixel i is (n;(t), (p; —f;))
where the angle brackets denote the usual inner product of
vectors.

Let v;, (t) and v () denote the components of the ve-



locity of p(4) in frame i:

Vin (t)
Vit (f) =

We now state four definitions. A contact state is the
set of indices of fixels where contact has been achieved.
A contact interaction is the relative motion at a point of
contact: separating, rolling, sliding left, sliding right. A
contact mode is the set of interactions at all the contacts.
Because we are interested in insertion tasks, we define an
additional contact interaction, ‘approach’. We also extend
the definition of a contact mode — an augmented contact
mode is the extension of a contact mode that allows spec-
ification that the workpiece is approaching a nearby fixel.
For example, the workpiece separates from fixel 1 and ap-
proaches fixel 2.

We may enumerate the possible contact interactions at
fixel ¢ based on the distance of the fixel from the work-
piece, and the normal and tangential components of the
velocity of the closest point on the workpiece. For exam-
ple, if the interaction at fixel 4 is left sliding, then the gap
is zero, v;, = 0, and v;x > 0. Table 1 enumerates the
cases.

| Interaction [ Abbrev. [ gap [ vin | vit |

left sliding I 0 0 | >0

right sliding r 0 0 | <0
rolling n 0 0 0
approaching a >0 <0 -
separating S =0|>0| -
>0 >0 -

Table 1: Contact interactions.

Right sliding, left sliding, and rolling can occur only if
contact has been achieved. Approaching can only occur if
there is no contact, and would correspond to penetrating if
contact had already been achieved. Separating may occur
regardless of whether or not contact has been made.

We assume that the fixels have been ordered, and de-
scribe the augmented contact mode by a string, using the
abbreviations from table 1. For example, the string ‘als’
should be read: the workpiece is approaching fixel 1, slid-
ing left over fixel 2, and separating from fixel 3.

2.2 Newton-Euler equations

The Newton-Euler equations describe the dynamics of the
system regardless of the contact mode. In this section we
rearrange the these equations into a form that will be use-
ful in later sections.

The net wrench w applied to the workpiece and the
generalized acceleration v of the workpiece are related
through the three-by-three inertia matrix M:

w = M. 3)

Let ¢;, and c;; be the normal and tangential components
of the force applied to the workpiece by contact . Assume
there are n contacts, and define ¢ = [c1y...Coin C15---Cnt] T

We partition w into the contribution of the contact
forces Jc and that of external wrenches g, and solve for
the generalized acceleration of the workpiece:

=M 1(TJc+g), 4)

where 7 is the Jacobian matrix (also known as the wrench
matrix) that transforms the contact forces into the inertial
frame and sums their moments about the center of mass
of the workpiece.

Let v = [U1n...VUnn V1t...0nt] T = J T v be the vector of
normal and tangential components of the contact veloci-
ties. Then the contact acceleration vector can be written
as [18, 21]:

- %v - %(JTV) — 7T+ T,

Premultiplying equation 4 by 77, assuming velocity
product terms are negligible, and combining with equa-
tion 5 yields the Newton-Euler equations mapped into the
contact frames:

®)

a

a= Ac + Bg,

where A = J"TM~17and B= JTM 1.

We rearrange equation 6 to find a relation between ex-
ternal wrenches and the accelerations and forces at the
contacts:

(6)

Cy = Bg, (7
where
C= [IQnX2n - A] (8)
is (2n x 4n) and
y=(2) ©



has 4n elements. Equation 7 will be the starting point for
our algorithm to find the set of external wrenches consis-
tent with a given contact mode.

2.3 Constraints due to contact modes

In this section we will discuss how the current contact
state and the goal contact mode imply a set of constraints
on y, the vector of contact accelerations and forces.

Non-penetration Assume there is contact at fixel .
Then a;, > 0; otherwise the fixel and the workpiece
would interpenetrate.

Unilateral force Contact forces are unilateral: c¢;;, > 0.

Coulomb friction We denote the static and kinetic coef-
ficients of friction by ps and py. If the workpiece is slid-
ing to the right, then the frictional force will be on the left
edge of the friction cone: ¢;; = pxcin. If the workpiece
is sliding to the left, then the frictional force will be on
the right edge of the friction cone: ¢;; = —pxcin. If the
workpiece is not moving with respect to the fixture, then
the friction force may fall anywhere in the static friction
cone: |cit| < psCin-

Separation If there is no contact between the workpiece
and fixel ¢ or contact is breaking. Fixel 4 cannot support
aload, so ¢;, = ¢z = 0.

There are also constraints on the contact accelerations
imposed by the choice of desired contact interaction at
a fixel. If contact has been achieved, and we want the
interaction to be left sliding, then we should choose a;, =
0 and a;y < 0. We have collected the constraints on y
implied by various contact interactions in table 2.

| Abbrev. | Ain | At | Cin | Cit |

S >0 - 0 0

a <0 - 0 0

u - - 0 0

| 0 >0 >0 —lkCin

r 0 <0 >0 UkCin

n 0 0 | >0 | |eit] < psCin
m 0 - | >0 |eiw| < pstin

Table 2: Constraints on elements of y due to contact in-
teraction.

If the initial velocity of the workpiece is zero, then the
constraints s, I, r, and n correspond to the usual definition
of contact modes. For example, assume we have a work-
piece that is contacting three fixels, and initially at rest.
If we apply an external wrench consistent with the con-
straints lls, we expect the contact mode to be “sliding left
over fixel 1, sliding left over fixel 2, and separating from
fixel 3’ at the next time instant.

It is useful to define other constraints as well. Con-
straint a, ‘approaching’ is similar to s, but can only occur
if there is no contact. Constraint u implies that there is no
contact, but does not constrain the part to accelerate to-
wards or away from the fixel in question. The constraint
m, ‘maintain’, describes the situation where the normal
acceleration is constrained so as to maintain contact, and
the contact force is constrained to lie within the friction
cone.

We will use G and a subscript to denote the set of ex-
ternal wrenches g satisfying a set of constraints. For ex-
ample, the notation Ggg would describe the set of external
wrenches consistent with the constraint that a given work-
piece separates from two fixels. The algorithm we will
describe in this paper can calculate a matrix describing
the set of external wrenches consistent with the impend-
ing contact mode.

We will describe the current contact state by a binary
number. State 00 describes the case where zero of two
contacts have been achieved, and state 10 describes the
case where contact had been achieved at the first fixel but
not at the second.

3 Matrix representations of polyhe-
dral convex cones

In this section, we review matrix representations of poly-
hedral convex cones. Our discussion is based on Gold-
man and Tucker [11]. Assume matrix F is given. The
polar of F is defined as the set of solutions to the matrix
inequality Fg < 0, where the inequality applies element-
by-element:

polar(F) = {g : Fg < 0}. (10)
Any g € polar(F) makes a non-positive dot product with
each row of F. Each row of F may be interpreted as the



normal to the plane bounding a half-space. This plane
contains the origin and is included in the half-space de-
scribed by the corresponding inequality. Thus solutions
lie in the intersection of the half-spaces, and polar(F') is
therefore a polyhedral convex cone with apex at the ori-
gin. We say that the inequality Fg < 0 is a face normal
representation of the cone.

Similarly, assume matrix G is given and define the pos-
itive linear span of G:

pos(G) = {g : g = Gz for some z > 0}. (12)

Any vector g € pos(G) is in the positive linear span of
the columns of G, and we say that the equation g = Gz
together with the inequality constraint z > 0 is a span
representation of a polyhedral cone. The columns of G
are referred to as generators.

3.1 Converting between representations

According to [11], Minkowski and Farkas first showed
that for any face normal representation of a polyhedral
convex cone, there is a corresponding span representa-
tion, and Weyl showed that the converse is true. If F or
G is non-singular, then conversion between the two rep-
resentations is easy and may be accomplished by matrix
inversion. Goldman and Tucker [11] and Hirai [12] de-
scribe methods for performing the conversion if the ma-
trix is rectangular or otherwise singular.

We introduce some new notation, and use the super-
script F' to denote conversion from a span representa-
tion of a cone to a face normal representation. If we
are given a matrix H, then H refers to a matrix such
that pos(H) = polar(H*"). This notation is particularly
useful because it allows algebraic manipulation of a ma-
trix equation and set of constraints, even in the case that
the matrices involved are singular. The following theorem
makes use of our notation.

Theorem 1 Assume we have a matrix equation and a set
of constraints of the form:
Kz = Pg
z > k
where K and P are constant matrices, k is a constant

vector, and inequalities between vectors apply element-
by-element. For a given vector g, there exists z satisfying

the equation and the inequality if and only if
KPg < K'Kk.

Proof: Define a change of variables x = z — k. Then

z = x+k
Kx+k) = Pg
Pg — Kk Kx

x > 0.

The last two lines tell us that the vector Pg — Kk lies ina
polyhedral convex cone; this is the span representation of
the cone. Therefore, we may convert to the face normal
representation:

K" (Pg — Kk)

< 0
Ki'pg <

K Kk.

Verification of the “only if” condition is similar. O

4 A simple example

Before presenting the complete algorithm, we present a
simple example. Consider a disc-shaped workpiece (see
figure 3) with unit radius, and inertia matrix M equal to
the identity matrix. Fixel 1 is at the position (0, —1),
touching the workpiece (indicated by a small filled cir-
cle), and fixel 2 is slightly to the right of (1, 0), not quite
touching the workpiece (indicated by a small unfilled cir-
cle). We want the workpiece to roll on fixel 1, and ap-
proach fixel 2; that is, the contact mode is ‘na’. What
external wrenches are consistent with this mode?

We first construct the Jacobian 7. Each column of 7
may be thought of as the wrench corresponding to a unit
force applied to the workpiece at a point near a fixel, in a
local coordinate direction.

T = n; ns ty to
P1 XNy Pp2Xng p; Xty p2 Xt
0 -1 -1 0
=11 0 0 -1
0 0o -1 -1



g

Workpiece

Figure 3: A simple example.

We calculate C and B and rewrite equation 7:

1000-1 0 0 1 0 1 0
0100 0-1-1 0 1 0 0
0010 0-1-2-1|Y7 ] -1 0-1]8
0001 1 0 —1-2 0 -1 -1

(12)

We now turn to the constraints on y. Table 2 gives
constraints on four elements of y for each interaction; we
collect the constraints in table 3.

y uncon | ineq roll slide | zero
QA1n =0
[ <0
alt =0
aot X
Cin Z 0
Con =0
lc1i] < PsCin
Cot =0

Table 3: Constraints on y for contact mode ‘na’.

We will take equation 12, together with the constraints
listed in table 3, and find a new equation and simpler con-
straints of the form:

Gz =g, z>0
1. Since a1, = a1y = con = coy = 0, We remove
these elements from y, and we remove the first, third,

sixth, and eighth columns of C.

2. Since ao, is constrained to be less than zero, we
change the signs of the elements of the second col-
umn of C, replace as, by —aoy, in y, and constrain
—agy > 0. (For now, we ignore the issue posed by
the strict inequality. This will be resolved in sec-
tion 5.6.)

3. Presuming that pus > 0, we replace the con-
straints |c1¢| < pscin Dy two equivalent constraints:
(pscin + c1t) /2 > 0 and (pscin — c11)/2ps > 0.
We make a variable substitution in y, and take the
appropriate linear combinations of columns five and
seven of C.

4. Since ag is unconstrained, we drop the equation in-
volving it; we remove the fourth row of C and B.
Once this has been done, the fourth column of C
is comprised only of zeros; we remove the column
from C and ay; fromy.

After applying the above steps to equation 12, we have
a new equation and set of constraints of the form used in

theorem 1:
0 -1 -1 —AQa2n 010
—1 Ms —Us (,uscln + Clt)/Q,LLs —-10 0 g
0 2#5—21% (Nfscln - Clt)/QNs —-10-1

—Qa2n
((usqn + 01t)/2us> >0
(,uscln — Clt)/2,us
where the matrices on the left and right sides of the equa-
tion are K and P, respectively, and the vector on the left
hand side is z. If us = 0.2, and we solve for g by invert-

ing P and premultiplying both sides of the equation, we
arrive at the desired form:

\

1.0 —-0.2 0.2
00 -10 —-10 |z = g
-1.0 -0.2 0.2

z > 0.

This result is recognizable as a span representation of
a polyhedral convex cone. A geometric interpretation is
shown in figure 3. The generators of G (its columns)
will be denoted by g1, g2, and gs. Each generator cor-
responds to a wrench, which we may view as a directed
line of force. The lines of force corresponding to g5 and
g3 lie on the edges of the friction cone of fixel 1; the posi-
tive linear combinations of these generators are the exter-
nal wrenches that may be balanced by the contact force



at fixel 1. The line of force corresponding to g points to
the right and is at the top of the disc; forces along this line
will cause the disc to approach fixel 2, without breaking
contact or generating a load at fixel 1.

5 The wrench cone algorithm

We may generalize the procedure used in the example into
an algorithm that works for any contact mode. First, we
calculate the matrices C and B. Once a contact mode has
been chosen, table 2 may be used to determine the set of
constraints on y. We then build a series of matrices that
may be used to transform the equation and constraints into
a face representation of a polyhedral convex cone.

5.1 Eliminate equations (Matrix E)

Some elements of y may be unconstrained by the choice
of augmented contact mode. We may eliminate the equa-
tions involving these variables by premultiplying C and
B by a row selection matrix E.

Let £ be the set of indices of unconstrained elements
of y. We form E by removing the rows of I, «2,, corre-
sponding to elements of &.

For the example problem discussed above, we exam-
ine the first column of table 3; the fourth variable ao; is
unconstrained. Therefore, £ = {4}, and we form E by
removing the fourth row of I44.

5.2 Negative variables (Matrix N)

The choice of augmented contact mode may constrain
some elements of y to be negative. We change the sign
of columns of C so that all inequalities may be expressed
using > or >.

Let V' be the indices of the elements of y constrained
to be negative, and let ¢;; be the (z, j) element of an ap-
propriately sized identity matrix. We postmultiply C by
the diagonal 4n x 4n matrix N defined as follows:
ifi=jandie N
otherwise

Ni; = -1

nij = iij

For the example, we examine the second column of ta-

ble 3, and see that A/ = {2}, since only as,, < 0. We form

N by changing the sign on the second diagonal element
of Igyxs.

5.3 Rolling friction (Matrix R)

If the augmented contact mode involves ‘rolling’ interac-
tions, some elements of y must satisfy constraints of the
form |c;t| < pscin. We replace the variables ¢;,, and ¢;; by
(usCin + c11)/2us and (pscin — c1t)/2us, both of which
are constrained to be non-negative. The variable substitu-
tion requires that we take appropriate linear combinations
of columns of C. We take the linear combination by post-
multiplying C by a square matrix R.

Let R be the indices of the elements ¢;; of y that must
satisfy rolling friction constraints. Define R to be the
4n x 4n matrix with:

Tij = s ifieRandi=j

ri; =1 ifjeRandi=j—n
ri; =—ps ifi€Randi=j+n
Tij = Ui otherwise

For our example, we examine the third column of ta-
ble 3, and find that the seventh element is subject to a
rolling friction constraint. We build R from an 8 x 8 iden-
tity matrix, but set r75 = —0.2, r57 = 1, and r77 = 0.2.

5.4 Sliding friction (Matrix S)

If the augmented contact mode involves ‘sliding’ interac-
tions, some elements of y must satisfy constraints of the
form ¢y = +puxc;,n. We may eliminate ¢y by replacing
a column of C by an appropriate linear combination of
columns, and removing a column of C. These operations
may be accomplished by postmultiplying by a square ma-
trix S and a column selection matrix V defined below.

Let S, be the indices of the elements of y constrained
to be a positive multiple of another element. Let S; be the
indices of the elements of y constrained to be a negative
multiple of another element. Define S to be the 4n x 4n
matrix with:

Sij = Mk ifieSlandvl:j+n
Sij = —Hk ifieSrandi:j+n
Sij = l4j otherwise

For our example, we examine the fourth column of ta-
ble 3, and find that there are no sliding friction constraints,
S0 S = Igys.



5.5 Eliminate variables (Matrix V)

We need to remove the columns of C corresponding to the
variables c;; subject to sliding friction constraints. Sim-
ilarly, some elements of y will be constrained to be 0,
and we may remove the corresponding columns of C. Fi-
nally, since the unconstrained variables are accelerations
appearing only in equations removed by the matrix E, we
may eliminate them. We may eliminate variables by post-
multiplying by a column selection matrix V.

Let Z be the indices of the elements of y constrained
to be zero. Then defineV = ZU S, U S UE. We form
'V by removing any columns of 14, « 4., that have an index
contained in V.

For our example, we examine the first column of ta-
ble 3, and find that the fourth element of y is uncon-
strained and may be eliminated. The fourth column of
the table tells us that there are no sliding constraints, and
the fifth column tells us that elements one, three, six, and
eight are constrained to be zero and may be eliminated.
We build V by removing the first, third, fourth, sixth, and
eighth columns of Igys.

5.6 Cone form

We apply all of the above matrices in order to equation 7
to find an equation and set of constraints of the form:

Kz = Pg
z > 0

(13)
(14)

where the inequality in 14 applies element-by-element
and K, z, and P are defined as:

K = ECNRSV (15)
z = VISTIR !N ly (16)
P = EB. 17)

We may calculate K and P; then equation 13 and in-
equality 14 “almost’ give the cone containing the external
wrench. In special cases, we may either take an inverse or
pseudoinverse to find a cone form, as we did in the simple
example. In general, we apply theorem 1, choose k = 0
and define F = K¥P. Then

Fg <o0. (18)

This is the face normal representation of the polyhedral
convex cone containing the external wrench g.

So far, we have ignored the distinction between strict
and non-strict inequalities in our discussions. Fortunately,
theorem 1 allows strict inequalities to be converted to non-
strict inequalities by choosing k to have small positive
elements, and considering limits as k — 0.

A related issue is that in the definitions of augmented
contact modes in which the workpiece approaches fixels,
we only required that accelerations towards fixels be non-
negative. For these modes, some solutions in the calcu-
lated cone may have zero or very small accelerations. This
means that it could take a very long time for contact to be
achieved. Minimum bounds on accelerations can be cho-
sen if desired by setting appropriate elements of k.

We summarize the algorithm as follows:

Calculate the Jacobian 7 and the matrices C and B.
Determine the constraints on y implied by the mode.
Calculate the matrices E, N, S, R,and V.
Calculate the matrices K and P.

Find K ¥, as discussed in Section 3.

Calculate F = KFP.

© 0k~ whpeE

A given wrench g is consistent with the contact mode
if it satisfies Fg < 0.

6 Implementation and examples

We implemented the algorithm in C, and used software
described in Hirai [12] for the conversion between face
normal and span representations of convex cones. Four
example problems are shown in figure 4. For each exam-
ple, the output of the algorithm was a matrix F' of the form
described above. In each case, we converted from face
normal form to span form to find and display the wrench
cone generators. Generators usually (but not always) de-
scribe degenerate or boundary solutions in the sense that
a contact force or acceleration is zero that will be strictly
positive when a force from inside the cone is applied.
Figure 4a shows an example for the contact mode ‘lla’.
The goal is to achieve contact at fixel 3, while maintaining
contact at fixels 1 and 2. The generators g; and g5 satu-
rate the right edges of the friction cones, and g3 provides
the negative torque about the center of rotation to cause
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Figure 4: Four examples.

contact to be achieved at fixel 3. This example suggests
how our algorithm might be used as part of a manipulation
planner; one approach is described in section 8.

Figure 4b illustrates the problem of determining where
a frictionless finger should be placed to achieve force clo-
sure. The problem can be solved using Reuleaux’s graph-
ical method [20]. Our algorithm finds the solution if we
choose the contact mode ‘nnn’. The thick black line on
the surface of the workpiece shows places where the fin-
ger could be placed.

Figures 4c and 4d show an example of the frictional in-
determinacy problem that arises in a peg-in-hole insertion.
There is a cone of wrenches consistent with seating the
workpiece through mode ‘Ira’, but all of these wrenches
are also consistent with the mode “nn’, in which jamming
occurs. (The wrench cone for figure 4d has six genera-
tors. The two that are pure moments are drawn as arcs
about the center of gravity.)

For a typical problem with three fixels, the average
CPU time on a Pentium 111 system at 800 MHz was about
one millisecond, measured over one thousand executions
of the algorithm. Table 4 shows the average CPU time for
1000 executions for problems with between one and six

CPU time
0.00003 s
0.00018 s
0.00101 s
0.00610s
0.0363 s

0.2190s

o U WN R3

Table 4: Average CPU time, measured over 1000 execu-
tions.

fixels.

Profiling showed exponential algorithmic complexity
underlying our cone computations (note the 6™ trend in
the table). This was expected, because in the worst case,
the number of cones to be considered when converting
from span form to face normal form is known to be ex-
ponential in the number of contacts. (See Hirai [12] and
Goldman and Tucker [11] for details of the conversion al-
gorithm.) In the case of three fixels, ~ 99.98% of the
CPU time was spent on conversions between forms.

7 Strong stability of a fixtured
workpiece

In the previous section, we discussed some examples
where individual wrench cones consistent with achieving
or maintaining a contact mode were derived. However,
as we saw in figures 4c and 4d, wrench cones for differ-
ent contact modes may overlap, causing an indeterminacy
problem. In this section, we present an example of how
set operations on wrench cones may be used to make guar-
antees about the interaction between the workpiece and
the fixture.

Pang and Trinkle [17] make the following defini-
tions:

Weak stability: There exists a solution to the rigid
body dynamics model for which the acceleration of the
workpiece is zero.

Strong stability: The acceleration of the workpiece is
zero for all solutions of the rigid body dynamics model.

We say that a workpiece is weakly stable with respect
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to a set of external wrenches if for each wrench there is a
solution with zero acceleration. Thus, weak stability is a
generalization of force closure:

Force closure: The positive linear span of possible
contact wrenches is all of wrench space.

The workpiece is in force closure if it is weakly stable
with respect to all of wrench space.

The weak stability problem has been well studied. Take
the set of unit wrenches corresponding to the edges of the
friction cones; these wrenches are the edges of a polyhe-
dral convex cone in wrench space. If the negative of the
external wrench is included in this cone, then the part is
weakly stable with respect to that wrench. Weak stability
corresponds to the constraints nn (for two fixels) and nnn
for three fixels. In figure 5, u is large enough that each
fixel is included in the friction cone of the other. Nguyen’s
condition for force closure is satisfied ([16]), and thus it is
possible that any external wrench will be balanced by the
contact forces. The weakly stable cone is all of wrench
space.

If we want the part to be motionless in a rigid grasp or
fixture, it is necessary that any applied external wrench be
in the weakly stable cone. It is sufficient that the external
wrench be in the strongly stable cone. We may calculate
the strong stability cone by the following method:

1. Determine the kinematically feasible contact modes.
(See Mason chapter 8 [14] for an algorithm based on
Reuleaux’s method [20].)

2. For each contact mode except n...n calculate the set
of consistent wrenches. Take the complement of the
union.

The workpiece is then strongly stable with respect to
the calculated wrenches. Figure 5 shows an example. The
workpiece is a disc touching two fixels. The kinematically
feasible contact modes are ss, sl, sr, sn, Is, rs, ns, Il, and
rr; some corresponding rotation centers are shown on the
figure. (Representative rotation centers corresponding to
all kinematically consistent modes fall either on the lines
tangent to the contacts, normal at the contacts, or in the
cells created by the intersections of the half-spaces de-
fined by these lines, as described in Mason [14].)

We calculate

Gstrong = Uss UGg U GsrU...UGr  (19)

Figure 5: Computing strong stability.

Figure 5 shows the places where pushing with a friction-
less finger would exert an external wrench in the strongly
stable cone. The workpiece will not move if the finger
pushes along the dark line. As shown in the figure, if pg
is large enough, each fixel will be included in the fric-
tion cone of the other: the weakly stable cone will be
all of wrench space. The workpiece might not move if
it is pushed somewhere other than along the dark line, but
there are no guarantees!

Computation of the strongly stable cone also allows
an analysis of situations where immobilization is to be
achieved by a combination of external forces and geo-
metric constraints (fixels). If Gstrong has non-zero vol-
ume, and we apply a biasing wrench from the interior of
Gstrong. then the workpiece will not move under small
disturbance wrenches of arbitrary direction.

We also point out that the first step of the algorithm, in
which the kinematically feasible contact modes are deter-
mined, is only necessary from the standpoint of compu-
tational efficiency. There are four possible interactions
at each contact: I, r, s, or n. So if we do not calcu-
late the feasible contact modes, we must calculate 4™ — 1
wrench cones corresponding to each possible mode ex-
cept n..n. For kinematically infeasible modes, the wrench
cones computed will simply turn out to be empty, assum-
ing the correct analysis has been done to preserve strict
inequalities, as discussed in section 5.6.

The computation of strong stability involves finding the
set of wrenches consistent only with the modenn...n. A
similar approach can be used to find all wrenches consis-
tent only with any other mode (for example I .. .|, sliding

11



left on all fixels), or to find wrenches consistent only with
a given contact task. The next section will describe how
unions and complements of wrench cones can be used to
find the set of wrenches consistent only with workpiece
insertion.

8 Fixturing a workpiece

The algorithm for calculating Gstrong presented above is
most useful as a tool for analysis of motionless rigid bod-
ies. In this section, we consider the problem of planning
an insertion task.

Consider figure 6a. The problem is to seat a disc-
shaped workpiece of uniform density against the two fix-
els. The insertion process can be thought of as a finite
state graph whose nodes represent the set of desired con-
tacts that have been achieved. For example, if we call the
desired contacts fixels 1, 2, and 3 (see figure 1), then one
of the nodes of the transition graph will correspond to the
case where contact has been achieved at fixels 2 and 3, but
not at fixel 1. The goal state corresponds to the case where
there is contact at all desired points. Transitions between
the states occur when contacts are achieved or broken. We
assume that the workpiece is quite close to both fixels ini-
tially and impacts can be ignored in the sense that they are
dissipative, so that the workpiece may bounce off a fixel
several times, but will eventually achieve steady contact
with zero normal velocity.

By choosing constraints on contact forces and accelera-
tions we may enable or disable state transitions. Consider
the state transition graph shown in figure 7b. If there is
no contact, then the initial state is 00. If additionally the
constraint au is satisfied, then the state transition 00 —
10 is likely, since the constraint au ensures that the work-
piece will accelerate towards the first fixel. Similarly, the
constraints ua, aa, na, and an are all desirable, since they
are consistent with state transitions that bring the system
closer to the goal state.

It might seem that choosing an external wrench from
the set

Gau N Gua N Gaa N Gna N Gan N Gnn (20)
would guarantee that the goal would be reached. How-
ever, the the wrench cone algorithm presented above only
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Figure 6: Finding the cone of wrenches that will cause a
disc-shaped workpiece to contact two fixels, regardless of
initial state.

finds the set of external wrenches consistent with con-
straints on the contact forces and accelerations. Due to
the rigid body non-uniqueness problem (see [13] for ex-
ample), it is possible that a single external wrench may
be consistent with more than one vector of contact forces
and accelerations, if contact has been achieved.
Therefore, instead of attempting to enable forwards
transitions, we disable the backwards and self transitions
by ensuring that the external wrench is not consistent with
the constraints shown in figure 7c. Consider the state 00,
where no contact has been achieved. If we apply a wrench
not in the set Gsy, then the workpiece will accelerate to-



Figure 7: State transition graphs, two fixels.

wards the first fixel, and we expect the workpiece to even-
tually contact either fixel 1 or fixel 2. Analysis of the
remaining state transitions is similar. If we choose an ex-
ternal wrench from the set

Ggoal = Isu U Gus U Gsm U Gms (21)
then the number of contacts achieved will increase until
the goal is achieved, regardless of the initial state.
Figures 6b, 6¢, 6d, and 6e show the external wrenches
consistent with each of the backwards and self transitions.
Since the workpiece is a disc, arbitrary torques may be
applied about the center without causing the workpiece to
approach or separate from the fixels. The consistent exter-
nal forces are positive linear combinations of forces acting
along the vectors shown. The thick gray lines show places
on the surface of the part where pushing with a frictionless
finger would generate these forces. Figure 6f shows the
union of these undesirable places to push (gray), and the
complement of the union (black). Pushing on the black
region will seat the workpiece, regardless of initial state.
It may seem surprising that we consider wrench sets

13

Figure 8: Spinning disc example.

involving the constraint m, rather than the constraints |, r,
and n, corresponding to contact modes. It may also seem
surprising that the pushing region shown in figure 6 is
smaller than the strongly stable pushing region that could
be calculated for this workpiece and fixture configuration.
(In this case, the workpiece would be strongly stable with
respect to any wrench generated by pushing with a fric-
tionless finger anywhere in the third quadrant.)

The reason for these differences from what we might
expect is that in the analysis of strong stability, we as-
sumed that all velocities were zero, while for the fix-
ture insertion strategy we only assume velocities are
small enough to neglect velocity product terms from the
Newton-Euler equations. Even if velocities are small, we
must still consider the possibility that sign changes in the
tangential velocities may change the direction of frictional
forces.

The constraint m implies that the normal component of
acceleration be zero for the fixel in question, but does not
constrain the direction of the tangential acceleration or of
the tangential contact force. Therefore, for a single fixel
with positive friction coefficient,

9m D G UGrugn. (22)

Calculating Gsm and Gms rather than G|, Gsr, Gsn,
Gis» Grs, and Gns saves some computation. There is an
additional advantage: using the constraint m makes the
algorithm robust to sign changes in the tangential veloci-
ties. As a concrete example, consider figure 6¢. It might
seem that a force applied along g; would ensure that con-
tact would be made at fixels 1 and 2, since

¢ GgUGsrUGsn
€ Gstrong-

(23)
(24)
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However, if there are non-zero velocities, then there is a
case where applying a force g will not cause acceleration
of the workpiece towards fixel 1. Figure 8 shows an exam-
ple, constructed from figure 6¢. The workpiece is initially
spinning clockwise slowly. Therefore the force applied
by fixel 2 is along an edge of the friction cone, labelled
f in the figure. If we apply a force along g, the total
wrench may be just a positive torque n around the cen-
ter of the disc; the workpiece will not accelerate towards
fixel 1. Since calculating the sets Gsm and Gms does not
require an assumption about what side of the friction cone
the contact force will lie on, this case is correctly handled
and the sensorless plan described above is robust to sign
changes in the tangential contact velocities.

What will happen once the goal has been reached? Ex-
amining the component polyhedral convex cones of gg0a|
and Gstrong shows that for any number of fixels

Ygoal C Ystrong- (25)

Therefore, a wrench from the interior of gg0a| can act
as a biasing wrench that will guarantee that the workpiece
will not move after fixturing. If the workpiece is seated by
a constant wrench (applied by gravity or a spring-loaded
finger, for example), then disturbance wrenches of less
than a certain magnitude will not move the workpiece af-
ter it has been seated. The magnitude of the permitted
disturbance wrench may be calculated from the biasing
wrench applied and the shape of the strongly stable cone.
A conservative estimate of the magnitude might be cal-
culated by considering the radius of the largest ball that
would fit in the cone, centered on the biasing wrench.

9 Achieving three contacts

A similar strategy may be applied if three contacts are to
be achieved. Figure 9 shows a state transition graph that
guarantees that the workpiece will be seated. In order to
ensure that the wrench applied is consistent only with this
state transition graph and with no others, we consider all
possible state transitions. We summarize the results in
tabular form:

Figure 9: State transition graph, three fixels.

State Constraints

000 SSS

100 suu, mss

010 usu, sms

001 uus, ssm

110 SSuU, msu, smu, mms

101 sus, mus, sum, msm

011 uss, ums, usm, smm

111 | sss, mss, sms, mss, mms, smm, msm

Some of the constraints listed are redundant. For exam-
ple, if awrench is in the set Gsyy, then it is also in the set
Gsss. In all, twelve sets must be computed, correspond-
ing to the constraints shown in bold. Wrenches in the
complement of the union of these sets ensure that the goal
will be reached. Figure 10 shows two examples generated
by our sample implementation of the algorithm. The fric-
tion coefficient . was chosen to be 0.2 in each case. As
long as the velocity product terms in the dynamic equa-
tions are negligible, pushing along the thick black curve
with a frictionless finger will seat the workpiece, regard-
less of initial state.

Figure 11 shows the dependency of gg0a| on the fric-
tion coefficient. For this example, gg0a| is fairly large
when = 0.01, but quite small when p = 0.6. This is
what we might expect, since the workpiece seems more
likely to become jammed in the fixture in the presence
of high friction. Unfortunately, since the conversion be-
tween span and face representations of polyhedral convex
cones used in the last step of the wrench cone algorithm
is numerical, it is difficult to determine the dependence
analytically unless either K or P is non-singular.
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Figure 10: A frictionless finger seating a workpiece
against three fixels.

(0] (@)

Figure 11: Sensorless plans for friction coefficients 0.01,
0.20, 0.40, and 0.60.

Finally, we point out that the fixturing approach de-
scribed is quite conservative. The state transition graphs
shown in figures 7 and 9 are not the only state transi-
tion graphs that guarantee that all desired contacts will
be achieved. A complete approach would enumerate all
acyclic state transition graphs with one sink (the goal
state) and 2™ — 1 sources (the non-goal states). The cor-
responding wrenches would be calculated for each graph
and the result would be the union of the wrenches.

10 Limitations and future work

In this section, we describe some of the limitations of
the algorithms presented, and discuss how they might be
addressed by future work. We discuss three primary is-
sues: the worst-case computational complexity, assump-
tions that may cause the algorithms to be overly conser-
vative, and other limiting assumptions.

The wrenchcone algorithm has exponential complexity,
since the underlying conversion between representations
of polyhedral convex cones is exponential. This funda-
mentally limits the number of fixels. From the perspec-
tive of fixture design and other similar problems, this may
not be a significant limitation. If there are more than three
fixels in the planar case, or more than six fixels in a 3D
case (not discussed in this paper), then the system is over-
constrained, and it is not possible to guarantee that all
contacts are simultaneously achieved without a model of
compliance.

Nonetheless, more efficient algorithms might be useful
for an analysis of general contact problems. One possible
approach might be to calculate whether specific individual
wrenches were contained in a desired polyhedral convex
cone. Such an algorithm could probably be made partic-
ularly efficient in the case where K or P were sparse and
non-singular. Although the wrenchcone algorithm is it-
self exponential, we point out that the number of wrench
cones that must be calculated to find the strongly stable
cone is only polynomial in the number of contacts. (See
Mason [14], for example.)

Another limitation is the possibly over-conservative na-
ture of the sensorless insertion strategy. The intended use
of our algorithm was fixture design; the goal was to design
fixtures in such a way that a very simple control strategy
could be applied to insert parts in a robust fashion. There
are many workpiece shapes and fixel locations for which
ggoal is in fact empty. More complicated control strate-
gies involving sensing or time-varying wrenches could
probably also be designed or analyzed using the wrench-
cone algorithm.

Finally, we point out that our algorithm is only suitable
for local, instantaneous analysis of planar contact tasks.
We neglected velocity product terms for simplicity. It
turns out that velocity product terms only shift the cones
computed, and could be easily handled by the wrenchcone
algorithm. The extension to three dimensions is more dif-

15



ficult, since the friction cones become non-linear. The
typical approach (used in LCP formulations, for example)
is to linearize the friction cones. Although a slight ex-
tension of the wrenchcone algorithm could calculate the
wrenches consistent with a linearized contact mode, the
large number of modes would make computing Gstrong
computationally infeasible. Finding computationally effi-
cient ways to calculate a conservative subset of Gstrong is
a possible direction of future work.

11 Conclusion

We developed an algorithm to find the polyhedral con-
vex cone of external wrenches consistent with achieving
a contact mode between two rigid bodies, one fixed and
one moveable. The formulation of the model closely fol-
lows the formulation of the rigid body dynamics problem
as a linear complementarity problem, and we also used
results from the theory of polyhedral convex cones. We
implemented the algorithm and presented some example
results.

Additionally, we showed how to compute the cone of
external wrenches with respect to which two contacting
rigid bodies are strongly stable. Finally, we presented a
method to determine a set of external wrenches consis-
tent only with state transitions that increase the number
of contacts. This method explicitly avoids the problem of
non-uniqueness of solutions to the rigid body dynamics
problems with Coulomb friction. The wrench set derived
to seat the workpiece is a subset of the strongly stable
cone.
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