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Abstract. We present, implement, and analyze a spectrum of closely-related plan-
ners, designed to gain insight into the relationship between classical grid search and
probabilistic roadmaps (PRMs). Building on quasi-Monte Carlo sampling literature,
we have developed deterministic variants of the PRM that use low-discrepancy and
low-dispersion samples, including lattices. Classical grid search is extended using
subsampling for collision detection and also the optimal-dispersion Sukharev grid,
which can be considered as a kind of lattice-based roadmap to complete the spectrum.
Our experimental results show that the deterministic variants of the PRM offer per-
formance advantages in comparison to the original PRM and the recent Lazy PRM.
This even includes searching using a grid with subsampled collision checking. Our
theoretical analysis shows that all of our deterministic PRM variants are resolution
complete and achieve the best possible asymptotic convergence rate, which is shown
superior to that obtained by random sampling. Thus, in surprising contrast to recent
trends, there is both experimental and theoretical evidence that some forms of grid
search are superior to the original PRM.

1.1 Introduction

The main motivation of this paper is to provide insight into fundamental
questions that arise in the development of sampling-based motion planning
algorithms. What factors lead to good computational performance in prac-
tice? Is randomization really important to breaking the curse of dimension-
ality? While the number of samples required for a grid is known to increase
exponentially in dimension, is it true that the probabilistic roadmap (PRM),
which was “primarily developed for robots with many dofs” [19], overcomes
this difficulty through random sampling? By building on existing sampling
literature, developing theoretical analysis, and performing experimental stud-
ies, we conclude that the original PRM does not offer clear advantages over
some forms of grid-based search. Furthermore, we even provide theoretical
and experimental evidence that suggests the superiority of grids and other
deterministic sampling schemes. One theoretical result, which is expressed in
terms of a measure from the sampling literature (dispersion), implies that
neither the PRM, grids, nor other sampling schemes can avoid the need for
an exponential number of samples in dimension.
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This paper builds on our previous work [9], in which well-known deter-
ministic sampling techniques, such as Halton/Hammersley points and low-
discrepancy lattices, were shown to offer advantages as replacements to pseudo-
random sampling in the PRM context. Improved performance using Halton
points was also observed recently in the context of the Visibility PRM [33].
An interesting deterministic alternative to PRMs was also proposed in [5].
Given the tremendous variety of possible path planning examples, and

the fact that algorithm performance often depends greatly on parameter set-
tings, it is a daunting task to compare path planners. Our approach to this
problem is to define a spectrum of planners that has classical grid search and
the original PRM at its ends. Neighboring planners in this spectrum vary
only slightly, which helps us understand and assess how one small variation
affects each algorithm. By chaining these variations together and drawing
conclusions along the way, we provide a clearer understanding of how the
planners at opposite ends are related.
There are important qualifications to the assertions made in this paper:

• We believe that importance sampling is important. Many recent prob-
abilistic roadmap methods [1,2,8,14,23,30,32,36] have demonstrated im-
proved performance by concentrating samples in a nonuniform way, such
as along C-space boundaries [2,8], or the medial axis [14,30,36]. Our work
can be viewed as complementary to importance sampling. In many of
these approaches it may be possible to obtain performance improvements
by replacing random sampling with deterministic schemes; however, given
the variety of methods and heuristics often involved, this task is beyond
the scope of the present paper.

• We are not recommending any of the planners presented here as the
fastest available. Our intent is to gain insight into planning issues, as
opposed to delivering the best planner.

• We believe that randomization is useful in many contexts. Its value, how-
ever, depends greatly on the paradigm within which it is used.

1.2 Grids and PRMs

This section introduces a few influential planners that will be discussed in
detail in this paper, rather than providing a complete survey of techniques.
The path planning problem Let C denote the configuration space (or C-
space) of a d-DOF robot in a 2D or 3D world that contains static obstacles.
For convenience, assume that the configuration space is parameterized so
that C = [0, 1]d ⊂ Rd, and some boundary points are identified to respect
topology. Let Cfree denote the set of all collision-free configurations. A path
planning query is a pair of configurations, 〈qinit, qgoal〉. The path planning
problem is to find a continuous path, τ : [0, 1]→ Cfree such that τ(0) = qinit
and τ(1) = qgoal. It is assumed to be computationally prohibitive to construct
an explicit representation of Cfree; however, a collision detection algorithm
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is available, which can quickly indicate whether a given configuration lies in
Cfree (distance information could also be computed).
Classical grid-based search Grid-based search is considered by many to
be the most straightforward form of path planning. Each component of C is
quantized, and a d-dimensional bitmap representation can be precomputed
by iterating a collision detector over all quantized configuration values. A
neighborhood structure must be defined, such as the set of 2d neighbors for
each interior element of the bitmap (“up”, “down”, “left”, “right” in the case
of d = 2). A given query is quantized, and the bitmap can then be searched
using a classical AI or graph search algorithm, such as dynamic programming,
A∗, best-first, or bidirectional search, to connect qinit to qgoal. In fact, the
bitmap could also be searched using recent path planning methods that are
based on incremental search, such as randomized potential fields [4], Ariadne’s
clew [27,26], RRTs [22], and the planner in [16,31]. It is well-known that only
resolution completeness can be obtained, and that for a fixed resolution, the
number of samples (bitmap size) increases exponentially in d.

The original PRM The Probabilistic Roadmap (PRM) was introduced in
[19] as a way to overcome the well-known curse of dimensionality that exists
in grid search. The primary philosophy behind the PRM was to perform
substantial preprocessing so that multiple queries for the same environment
could be handled efficiently. This is analogous to the bitmap precomputation
in classical grid based search. First, a roadmap encoded as an undirected
graph, G, is constructed in a preprocessing phase. In a query phase, G is
used to solve a particular path planning question for a given qinit and qgoal.
Each vertex in G represents an element of Cfree, and each edge represents a
collision-free path between two configurations.

The algorithm outlined in Figure 1.1 constructs a PRM with N vertices.
In Step 3, a random configuration in Cfree is found by repeatedly picking a
random configuration until one is determined by a collision detection algo-
rithm to be in Cfree.

1 The NBHD function in Line 5 is a range query in which
all vertices within a specified distance of q are returned, sorted by distance
from q. Other variations are possible, of course. The variant considered here
is the original PRM algorithm described in [18], page 25. The CONNECT
function in Line 7 uses a fast local planner to attempt a connection between
q and v. Usually, a “straight line” path in Cfree is evaluated between q and
v by stepping along incrementally with a collision detection algorithm. A
heuristic, node-enhancement phase, described in [19], is not considered here.

Once the PRM has been constructed, the query phase attempts to solve
planning problems. Essentially, qinit and qgoal are treated as new nodes in
the PRM, and connections are attempted. Then, standard graph search is
performed to connect qinit to qgoal. If the method fails, then either more
vertices are needed in the PRM, or there is no solution. This is analogous to
the problem of insufficient resolution in classical grid search.

1 In practice, of course, pseudo-random samples are generated.
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BUILD PRM
1 G.init();
2 for i = 1 to N

3 q ←RAND FREE CONF(q);
4 G.add vertex(q);
5 for each v ∈ NBHD(q,G)
6 if CONNECT(q, v) then

7 G.add edge(q, v);

Fig. 1.1. The preprocessing phase: build a PRM.

The Lazy PRM A recent PRM variant called the Lazy PRM has been
proposed for the problem of answering single planning queries efficiently, as
opposed to building an extensive roadmap prior to consideration of a planning
query [6]. The resulting planner is sometimes very efficient in comparison to
the original PRM. This represents a shift from the multiple query philosophy
of the original PRM [19], and returns to the single query philosophy which
was used in some earlier planners [4,13,27].
The key idea in the Lazy PRM is to build the roadmap initially without

the use of a collision detector. The difference with respect to the algorithm in
Figure 1.1 is that the condition in Line 6 is dropped, and Line 7 is executed
every time. This allows the PRM to be constructed quickly; however, more
burden is placed on searching in the query phase. Once an initial-goal query
is given, the planner performs A∗ search on the roadmap to find a solution. If
any of the solution edges are in collision, they are removed from the roadmap,
and the A∗ search is repeated. Eventually, all edges may have to be checked
for collision, but often the problem is solved well before this happens. Al-
ternatively, it might be preferable to run the search only once on the initial
graph, while validating edges during the search (instead of waiting for a so-
lution and then validating it) [9]. If no solution is found, then more nodes
may need to be added to the roadmap. The advantage of the Lazy PRM is
that the collision checking is only performed as needed. Thus, all edges do
not have to be collision checked as in the case of the original PRM. In classi-
cal grid search, this philosophy implies that the bitmap is not precomputed;
collision checking is performed only as needed during the search.

1.3 A Spectrum of Sampling Techniques

A first step toward constructing a spectrum of planners from PRMs to classi-
cal grid search is to characterize a spectrum of sampling techniques to cover
C, from pseudo-random sampling to grids. A brief introduction to sampling is
given here. See [9,25,28] for more details. The key philosophy is that sampling
is viewed as an optimization problem in which a finite point set or infinite
sequence is designed that minimizes some performance criterion relevant to
a particular application.
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Motivated by applications in numerical integration and optimization, the
most common criteria are discrepancy and dispersion. Let X = [0, 1]d ⊂
Rd define a space over which to generate samples. Consider evaluating the
uniformity of a set, P , of N d-dimensional sample points {p0, . . . , pN−1}. The
discrepancy is defined as

D(P,R) = sup
R∈R

|µ(R)− |P ∩R|/N | (1.1)

in which | · | of a set denotes its cardinality, µ denotes the Lebesgue measure,
and R is a range space, which will be taken by default in this paper to be the
set of all axis-aligned rectangular subsets of X. The dispersion is defined as

δ(P, ρ) = sup
x∈X

min
p∈P

ρ(x, p), (1.2)

in which ρ denotes any metric; unless otherwise stated, the default metric in
this paper will be `∞. Dispersion can also be considered as the “radius” of the
largest empty ρ-ball, among all balls whose centers lie in X. Both discrepancy
and dispersion seem very relevant in the PRM context because range queries
are repeatedly performed, and these criteria ensure that either the appropri-
ate number of samples (discrepancy) or at least one sample (dispersion) will
fall within a range.
A low-discrepancy point set or sequence is one that yields the best-possible

asymptotic discrepancy, which is O(N−1 logd N) for infinite sequences and
O(N−1 logd−1 N) for finite point sets. The simplest low-discrepancy point
sets and sequences are Hammersley and Halton points, respectively, which
were applied to motion planning in [9]. Other low-discrepancy techniques
exist that produce smaller constants in the asymptotic convergence rate. The
best family of methods are the (t,m,s)-nets and (t,s)-sequences [28], and the
current best within this family are the Niederreiter-Xing sequences [29].
Regarding `∞ dispersion, the Sukharev sampling criterion [34] states that

for any point set P , δ(P ) ≥ 1
2bN

1

d c. Thus, to keep dispersion fixed, it is im-
possible to avoid exponentially-many samples in dimension. A low-dispersion
point set or sequence is one that produces the best possible asymptotic disper-
sion, which is O(N−1/d). For a fixed N , if N

1

d is an integer, k, the Sukharev
grid yields the best possible dispersion, which is precisely 1

2N
−1/d. In this

case, the grid is constructed by partitioning [0, 1]d into N cubes of width
1/k so that a tiling of k × k × · · · × k is obtained, and a sample is placed at
the center of each cube. Nongrid, low-dispersion infinite sequences exist that
have 1

ln 4 as the constant in the asymptotic convergence rate [28].
Grids fall under a more-general class of sample sets known as lattices,

which have a regular neighborhood structure (they are essentially grids that
may have nonorthogonal alignments). Most low-discrepancy sequences, such
as Halton points, are not lattices. Surprisingly, lattices exist that have very
low discrepancy; one was used in the PRM context in [9]. These offer the
additional advantage of avoiding nearest-neighbor computations in the PRM.
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1.4 A Spectrum of Planners

We take a bidirectional approach to relating grid search to PRMs. Section
1.4.1 extends and adapts grid search, and Section 1.4.2 presents variations
of the PRM. Section 1.4.3 discusses the overlap between the two families of
planners, which includes a planner based on the Sukharev grid.

1.4.1 Extensions of Grid Search

Let CGS refer to classical grid search, as described in Section 1.2; for sim-
plicity, assume that A∗ search is used. As a simple first extension, consider
making a Lazy CGS planner. The grid implicitly encodes a roadmap because
the location of all samples and the neighborhood structure is implied in its
definition. A Lazy CGS planner is simply obtained by not precomputing the
collision bitmap, and deferring all collision checks until each is required in
the search (either the multi-iteration searching approach in [6], or the single-
iteration approach in [9] can be used). This straightforward idea (undoubtedly
considered previously) avoids performing unnecessary collision checks. Just
as in the case of a PRM, the original CGS is best suited for multiple queries,
and the Lazy CGS is suitable for single-query problems.
The next extension may be applied to either the CGS or Lazy CGS. Con-

sider allowing two different sampling resolutions: one is the grid resolution,
and the other is the sampling rate required for collision checking. We assume
that the latter sampling rate is much higher than the grid resolution. If we
consider a motion from one grid point, q, to an adjacent grid point, q′, then
collision checking must be performed along a sequence of points obtained by
linear interpolation (respecting topology) between q and q′. The grid can now
be interpreted as a kind of trellis of paths. A similar idea was applied long
ago for grid search in [10]. The advantage of this approach is that we might
be able to solve a query using a low resolution for the grid, yet still be able
to check for collisions at the required level of resolution. Good performance
can be obtained if there are no narrow corridors in the configuration space. If
qinit and/or qgoal do not lie on the grid points, then attempts can be made to
connect them (again by interpolation) to a set of nearby grid points. We will
refer to this extension as subsampled grid search. If a bitmap is precomputed,
then the approach will be called SGS; otherwise, it is called a Lazy SGS.
One final point of concern is: where should the grid be placed? It seems

reasonable to align the grid axes with the coordinate axes, but the translation
remains to be chosen. Typically, the “origin” of a grid is at the coordinate
origin (i.e, a sample appears at (0, 0, . . . , 0) ). Let k denote the number of
points per axis, and let d denote the dimension. Suppose k = 3 and d =
2. A classical grid would place one point in the center and the rest along
the boundary (assuming no topological identifications). The maximum `∞

distance possible from a point x ∈ [0, 1]d to a grid point is 1/4 (in a unit cube).
Now, consider the Sukharev grid, which provides optimal dispersion. In this
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case, the maximum distance is only 1/6. Using only two points per axis (k =
2), the Sukharev grid yields a maximum distance of 1/4, which is equivalent
to that of a classical grid for which k = 3. These differences might appear
small; however, for high-dimensional problems for which only low-resolution
sampling is possible, the difference is dramatic. For example, suppose d = 10.
In this case, a Sukharev grid with 210 = 1024 points provides the same quality
coverage (in terms of dispersion) as a classical grid with 310 = 59049 points.
Of course, as k becomes large, the improvement diminishes; however, for large
d, it is impractical to make k large. Thus, the difference remains significant.
Note also that the improvement diminishes in other topological spaces. In
fact, on a toroidal manifold, the two grids are equivalent. That said, the
Sukharev grid is never worse than the classical grid, and it is usually much
better. Careful grid placement, as opposed to naive grids, is a theme also
evident in kinodynamic planning [11].

1.4.2 Variations of the PRM

This section briefly reviews some of the PRM variants and experiments from
[9], and also presents new experiments that use the Sukharev grid. For any
sampling method, we can consider two variations: 1) a version that precom-
putes the roadmap, G, and is suitable for multiple queries, and 2) a lazy
version that performs collision checking during the search, and is suitable for
single-query problems.
First, consider constructing a quasi-random roadmap, QRM, by using the

d-dimensional low-discrepancy sequence (such as Halton) instead of points
generated from a pseudo-random number generator. The operation of the
QRM should appear identical to that of the PRM; there are no new require-
ments. If the samples happen to form a lattice, costly neighborhood range
queries can be avoided because the neighborhood structure is implicitly de-
fined by the lattice rules. For many problems this can result in substantial
performance improvement, particularly for lazy planners (because the time
required to precompute the initial graph in the Lazy PRM represents a siz-
able fraction of the total running time for some problems [6,9]). Let LRM
refer to a roadmap in which lattice points are used.
The experiments presented here can be considered as a continuation of

those in [9]. Section 3 of [9]2 showed improvement factors between 1.02 and
4.08 for a series of “bent corridor” examples (see Figure 1.2 from dimension
2 to 10, using Hammersley points in the place of pseudo-random samples
(obtained from a nonlinear congruential generator). We recently performed
hundreds of new experiments based on the Sukharev grid that consider many
different radii, corridor thicknesses, dimensions, and random rotations of sam-
ples. We generally observed that the Sukharev grid performs better than

2 Regrettably, the original figure of bent corridor experiments contains a typo-
graphical error: the width values given are actually 1/2 of the actual width used.
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Bent Corridor Cup Elbow Truck

Fig. 1.2. The first frame shows a 2D rendering of the bent corridor series of ex-
periments. The cup, elbow, and truck are 6-DOF problems that were solved using
a Sukharev grid with 3, 4, and 5 points per axis, respectively, which is an improve-
ment over PRM performance, and comparable to the low-discrepancy lattices used
in [9].

pseudo-random sampling, especially in the case of a narrow corridor and
small radius. As the radius increases, the pseudo-random samples are able to
overcome much of their high-dispersion flaws; however, Suhkarev grids still
remain advantageous. The following table

Dim. Width Rad Min Max Mean Sukh-1st Last-fail

2 0.02 0.5 65 652 461.97 25 400
3 0.05 0.6 131 1861 757.52 125 1000
6 0.15 0.6 195 1444 1237.85 729 64

shows a summary of the experiments for large radius values; with smaller
values the results were even more in favor of Sukharev grids. The columns
marked Min, Max, and Avg, give the number of nodes used in the PRM. The
“Sukh-1st” column gives the smallest Sukharev grid that solved the problem.
In some cases, the next-largest Sukharev grid does not solve the problem;
thus, the last column gives the largest grid that failed to solve the problem.
To avoid problems of axis alignment, we performed numerous experiments
in which the Sukharev grid was rotated at random. This had no significant
effect on the outcomes. For example, for 5 random rotations of the Sukharev
grid, the same number of points, 729 (3 points per axis), was sufficient to
solve the 6D problem listed in the table. Several other 6-DOF examples were
solved using Sukharev grids, as indicated in the caption of Figure 1.2.

1.4.3 Sukharev Grid: Closing the Gap

Good performance was obtained using the Sukharev grid, but what kind of
method is this? It can be considered as an extension of subsampled grid
search that uses subsampling and Sukharev samples. The Sukharev grid is
also a kind of lattice; therefore, the method can be considered as a special
kind of LRM, and the spectrum of planners appears as:

CGS − SGS − LRM −QRM − PRM
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Alternatively, the “Lazy” term could be added to each of these, to make
single-query versions. The entire spectrum can be considered as families of
sampling-based motion planning algorithms.
We now describe some basic relationships between the planners in the

spectrum; additional conclusions and insights are derived from the theory in
Section 1.5 and the discussion in Section 1.6. Two problems with classical
grid search (CGS) were: high sampling density were required, and too many
points were concentrated along the boundary. The first problem was fixed
by subsampling (SGS), and the second was fixed by using a Sukharev grid.
Once these changes are made, grid search appears to be comparable to other
lattice-based roadmaps (LRM). Based on our experiments presented here
and in [9], the LRMs (including grids) yield performance that is comparable
to that of QRMs; however, LRMs have the additional advantage of known
neighborhood structure. Finally, the deterministic planners appear superior
to the original PRM in performance because they avoids the clumpiness and
sparseness that must occur for a set of pseudo-random samples. This will be
captured theoretically by Proposition 6 in Section 1.5.

1.5 Theoretical Considerations

We provide some theoretical analysis for all of the deterministic planners
presented in Section 1.4, which includes the QRM, LRM, CGS, and SGS,
and their Lazy counterparts. Let DRM refer to this collection of planners (for
deterministic roadmaps), under the condition that they use asymptotically
dispersion-optimal samples. This includes Halton, Hammersley, and many
other low-discrepancy samples, and also the Sukharev grid.
Deterministic sampling enables the DRM planners to be resolution com-

plete, in the sense that if it is possible to solve the query at a given sampling
resolution, they will solve it. The resolution can be increased arbitrarily to
ensure that any problem can be solved, if a solution exists. This is in contrast
to the original PRM and other randomized variants, which are only proba-
bilistically complete [21] (the probability tends to one that a solution will be
found as the number of samples grows to infinity).
We exploit dispersion bounds to characterize the set of configuration

spaces over which all queries can be correctly answered. This characteriza-
tion is in terms of a parameter that measures the narrowest corridor width,
in a manner similar to that of [3,7,15]. We define a cylindrical tube, and the
“width” of Cfree is expressed in terms of the largest possible cross section of
the tube, over all possible queries. Measuring this parameter may be as diffi-
cult as the planning problem; however, the expression of planner performance
in terms of parameters that are difficult to measure is common in randomized
planning analysis [3,6,15,16,20]. If a solution does not exist, our deterministic
planners are able to declare that either the solution path must travel through
a narrow passage that has a width smaller than a specified value, or there
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is no solution. Such a result might be useful in applications because once
the corridor is known to be narrower than a reasonable precision level, the
solution might be impractical anyway.
We assume that for any PRM-like method, the radius parameter used to

select neighbors in the NBHD function from Line 5 of Figure 1.1 is always
sufficiently large. In theory, the radius can be made large enough so that an
attempt is made to connect every vertex to every other vertex. In practice,
this often becomes inefficient; therefore, a smaller value is typically used.
Let γ = 〈qinit, qgoal〉 denote a query. The set, Γ (Cfree), of all queries in

which qinit ∈ Cfree, qgoal ∈ Cfree, and qinit 6= qgoal, for a given Cfree is
called the query space of Cfree. Let Γs(Cfree) ⊆ Γ (Cfree) denote the set of
all queries for which a solution exists.
Let C represent any d-dimensional configuration space, parameterized to

yield C = [0, 1]d\ ∼, in which \ ∼ denotes appropriate topological identifi-
cations along the boundary of the unit cube. Let Ψ represent the subset of
the power set of C corresponding to all open subsets that can be constructed
with algebraic constraints, as formulated in [21].
Let a tube, B, represent an uncountable collection of balls of equal radius

whose centers are generated by a continuous path, τ : [0, 1]→ Cfree. For each
s ∈ [0, 1] there exists an open ball B ∈ B that is centered at τ(s) and has
radius r, which is fixed for all B ∈ B; let B(s) denote the ball centered at
τ(s). We call 2r the width, w(B), of the tube.
Let V (q) denote the set of all points visible from a set q ∈ Cfree (i.e.,

for each q′ ∈ V (q), λq + (1 − λ)q′ ∈ Cfree for all λ ∈ [0, 1], assuming that
topology is respected in the interpolation).
Suppose that a query γ ∈ Γs(Cfree) is given. Among all possible tubes,

let B(γ) denote the tube with the largest width such that B(0) ⊂ V (qinit)
and B(1) ⊂ V (qgoal). In other words, the entire first ball is visible from qinit,
and the entire last ball is visible from qgoal. Denote this largest-width tube
as the B(γ), and call its width the width, w(γ), of the query. For any query
γ ∈ Γ (Cfree)\Γs(Cfree), we say that its width is zero because no tube exists.
Define the width of Cfree as

w(Cfree) = inf
γ∈Γs(Cfree)

w(γ). (1.3)

Let Ψ(x) for x ∈ (0,∞) denote the set of all Cfree ∈ Ψ such that w(Cfree) ≥ x.
Intuitively, this can be considered as the set of problems for which the width
of the narrowest corridor is at least x.
Suppose that the roadmap, G, is constructed for a particular Cfree. Then,

the algorithm is said to be complete for Cfree if all queries in Γ (Cfree) are
answered correctly in the query phase. A solution path must be reported if
one exists; otherwise, failure is reported.
Our first two results establish the resolution completeness and complexity

of all of the DRM planners. Therein, we only assume that sampling is accom-
plished using a set P of low-dispersion points, for which δ(P, ρ) < b(d)N−1/d,
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in which b(d) is a constant that may depend on the dimension d. For Hal-
ton/Hammersley points, b is a function of the largest prime used in the
construction. For many low-dispersion sequences, including a multiresolu-
tion Sukharev grid, b(d) ≡ 1, which is a small constant that is independent
of dimension. If N is restricted to values such that N 1/d is an integer, then
b(d) ≡ 1/2. A low-dispersion sequence for which b(d) ≡ 1

ln 4 and no restriction
is placed on N is given in [28] (surprisingly, it is not uniform).

Propositions 1 through 3 below hold for any metric, provided that both
tube width and dispersion are measured using the same metric, ρ. Proposi-
tions 4 through 6 hold for norms (which are all related by constants in subsets
of Rd) under the same provision.

Proposition 1 After N iterations, the DRM planners are complete for all
Cfree ∈ Ψ(4b(d)N−1/d), in which N is the number of points, d is the dimen-
sion of C, and b(d) is a factor that depends on the sampling method.

Proof: Suppose first that C = [0, 1]d (ignoring any identifications). As-
sume that Cfree ∈ Ψ(2b(d)N−1/d). To show completeness, we establish that
for any solvable query, a solution path will be found; let γ ∈ Γs(Cfree) be such
a query. Because Cfree ∈ Ψ(2b(d)N−1/d), there exists a tube, B, of width at
least 2b(d)N−1/d, such that B(0) ⊂ V (qinit) and B(1) ⊂ V (qgoal).

Let P denote the set of sample points, which is also the set of vertices
in the roadmap, G. Each ball B ∈ B must contain at least one q ∈ P . This
follows from the fact that N samples were generated, and the asymptotic
dispersion bound is δ(P, ρ) < b(d)N−1/d. If any ball of radius b(d)N−1/d is
empty, then the dispersion would violate this upper bound.

First, consider connecting qinit and qgoal to the roadmap. Since B(0) ⊂
V (qinit), all configurations found by linear interpolation between qinit and
any point in B(0) are collision free. Therefore, qinit will be connected to a
configuration in P (either one contained in B(0), or at least one in the same
connected component of G as a configuration of P that lies in B(0)). Using a
similar argument for B(1), qgoal will also be connected to a roadmap vertex.

It finally remains to show that there exists a path in G between the
two configurations in P to which qinit and qgoal are connected. Consider
the balls of B as parameterized using B(s) for s ∈ [0, 1]. We construct a
sequence, q0, . . ., qk−1 of k configurations as follows. Let q0 be any element
of P ∩ B(0). Let s1 ∈ [0, 1] denote the last point at which the ball B(s)
contains q0, by starting with B(0) and increasing s continuously. Let q1 be
any element of P ∩ B(s1) \ {q0}. Note that the B(s1) must contain at least
two points in P because q0 lies on its boundary. Inductively, let qi be any
element of P ∩B(si) \ {qi−1}, where si is the first point at which B(s) does
not contain qi−1. Note that the induction is finite, and let qk−1 denote the
final configuration in the sequence.

We argue that there must exist a path in G between each pair, qi, qi+1, of
configurations for i ∈ {0, . . . , k − 2}. The point qi must lie on the boundary
of B(si+1); therefore, B(si+1) contains two points of P . Furthermore, all
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points between qi and qi+1 via linear interpolation must be collision free.
The algorithm in Figure 1.1 would either have produced an edge between
them, or failed to because both were already part of the same connected
component of G. Either way, there exists a path in G between qi and qi+1.
By applying this for each configuration in the sequence, there exists a path
in G between q0 and qk−1. Furthermore, q0 is connected to qinit, and qk−1 is
connected to qgoal. Therefore, the query is correctly answered by returning a
solution path.
We now turn to the case in which C = [0, 1]d\ ∼, in which ∼ denotes

boundary identifications needed to appropriately reflect the topology of trans-
formation groups that arise in motion planning: S1, P 3, etc. For the dis-
persion measurements in [0, 1]d, balls near the boundary have to be con-
tained entirely inside the unit cube. Once identifications are considered,
some balls are allowed to overflow as long as their center lies in [0, 1]d. Since
δ(P, rho) < b(d)N−1/d for [0, 1]d, these overflowing empty balls cannot have
radius larger than 2b(d)N−1/d. Thus, the dispersion in the part of the proof
for [0, 1]d is simply scaled by two for the case of [0, 1]d\ ∼ by assuming
Cfree ∈ Ψ(4b(d)N−1/d) in the first step, which establishes the proposition.

Proposition 1 can be reworked to bound the width of the query:
Proposition 2 After N iterations, the DRM planners, for a query γ, either
report a solution path or correctly declare that one of the following is true:
there is no solution path, or w(γ) < 4b(d)N−1/d.

Proof: This follows directly from Proposition 1. Since the DRM is com-
plete for Ψ(4b(d)N−1/d), if no solution is found after N iterations, then
w(Cfree) < 4b(d)N

−1/d and w(γ) < 4b(d)N−1/d.
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Fig. 1.3. A narrow corridor in Cfree, used in the proof of Proposition 3.

The next proposition indicates that if the dispersion is at least δ, then a
DRM or PRM planner might miss solutions in corridors of width δ.
Proposition 3 For any sample set, P , that has dispersion at least δ, no
roadmap constructed using the algorithm in Figure 1.1 can be complete for
Ψ \ Ψ(δ).

Proof:We argue that completeness is lost by producing a Cfree and query
γ ∈ Γs(Cfree) that will be answered incorrectly. If the dispersion is δ, then
there exists a ball, B ⊂ [0, 1]d with radius δ such that P ∩ B = ∅. Consider
the corridor shown in Figure 1.3. Assume that no tube greater than width
δ can be placed in the corridor. If Cfree is chosen so that B is located as



1 Grid Search and Probabilistic Roadmaps 13

shown in the shaded area, then there will be no path in G that traverses the
corridor. For any point on one side of the corridor outside of B, the straight-
line path to any point on the other side of the corridor outside of B will
intersect C \ Cfree. Thus, a solution path will not be found.

From this the next proposition follows, which establishes that any PRM
approach will require an exponential number of samples. It is assumed that
the sampling scheme generates samples independently of the obstacle region.

Proposition 4 Under any sampling scheme (including pseudo-random), a
roadmap requires a number of samples exponential in dimension, d, to be
complete for Ψ(δ).

Proof: This follows immediately from Proposition 3 and the Sukharev
sampling criterion [34].

We now consider asymptotic bounds for DRM planners. The next propo-
sition indicates that the DRM planners do the best possible, asymptotically.

Proposition 5 The number of samples required by each DRM planner to be
complete for Ψ(δ) is asymptotically optimal.

Proof: By Proposition 3, to be complete for Ψ(δ), the dispersion must
be less than δ. Thus, the goal of a DRM algorithm should be to reduce δ
using as few samples as possible. The low-dispersion sequences achieve the
best possible asymptotic dispersion. Therefore, the number of samples used
in the DRM planners is asymptotically optimal.

The following proposition gives some indication that random sampling
does not yield the best possible asymptotic convergence in the PRM; in fact,
it is significantly worse than using deterministic sampling.

Proposition 6 For a fixed dimension, d, the PRM with random sampling
requires O((logN)

1

d ) times as many samples (with probability one) as the
DRM planners to achieve the same `∞ dispersion.

Proof: It was shown by Deheuvels [28] that `∞ dispersion for random

samples is O((logN)
1

d N−
1

d ) with probability one. The asymptotic disper-

sion in a DRM achieves O(N−
1

d ). The factor difference between the two is

O((logN)
1

d ).

Relating the PRM to grid search We now discuss the implications of
the previous propositions. Consider Propositions and 1 and 2. If we use `∞

dispersion and select N such that N 1/d is an integer, then the Sukharev grid
yields b(d) ≡ 1/2, which is the best possible performance that can be ob-
tained. An exponential number of samples in d is required, but according to
Proposition 4, this is unavoidable. Note that the PRM cannot even provide
these deterministic guarantees. The PRM at least has asymptotic analysis
that establishes probabilistic completeness and convergence [3,19]. However,
Propositions 5 and 6 indicate that the asymptotic rate of convergence ob-
tained by the best deterministic sequences (including the Sukharev grid)
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is asymptotically optimal, and the use of random samples is a significant
factor worse (with probability one). Proposition 6 quantifies the problems
with random sampling. To satisfy statistical tests for uniformity, a pseudo-
random number generator must clump too many points in some places, and
not enough in others. If the distribution of points is “too uniform,” then it
will fail statistical tests. The deterministic samplers, on the other hand, are
able to carefully disperse the points without this wasteful concern. Thus, in
addition to the experimental advantages discussed in Section 1.4, there are
strong theoretical indications that deterministic sampling methods, including
grids, offer advantages over the original PRM.

1.6 Discussion

We have provided a spectrum of planners that ranges from classical grid
search to the probabilistic roadmap. Surprisingly, the original PRM does
not appear to be advantageous over deterministic approaches, including grid
search, according to our experiments and theoretical analysis.3 Based on our
work, we believe one of the main factors for the success of the original PRM
was the excellent use of subsampling, which for grid sampling, enables chal-
lenging problems to be solved with only a few points per axis. In the original
PRM, this idea also contributed greatly to the performance. Although there
appears at first to be no exponential dependency on dimension because N is
chosen directly, the exponential dependency reveals itself once again if we try
to hold dispersion fixed. The notion of fixing the dispersion is general enough
to mean keeping the resolution the same for a grid, while also applying to
any sampling scheme. Using the Sukharev sampling criterion, N

1

d can be
considered as the best possible “points per axis” for any sampling scheme,
whether or not it is a grid, and also whether it is random or deterministic.

Very high dimensionsWe note that our experiments focused mostly on six
dimensions, with some examples in [9] up to ten dimensions. This includes
many problems of interest in robotics, but examples exist in robotics and
computational biology in which there are dozens or hundreds of dimensions.
Obviously, even a Sukharev grid with two points per axis would be impossible
to manage for some problems, while pseudo-random samples would appear
to have no trouble. One straightforward way to use deterministic sampling
would be to use non-lattice sequence in the place of pseudo-random samples.
In very high dimensional problems we expect, however, that the performance
differences between using pseudo-random sampling and deterministic sam-
pling would be negligible for most problems. This is due primarily to the fact
that spaces of this dimension will be severely undersampled, regardless of the

3 Since the “probabilistic” theme of PRMs does not seem advantageous, it is per-
haps better to refer to these, grid search, and other related planners as instances
of sampling-based motion planning.
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sampling scheme used (i.e., the “points per axis” for any sampling scheme
would be approximately one).

Search issues Searching is one of the oldest and most fundamental issues
in motion planning. Although most PRM-based planners use A∗ search, it
is important to revisit some of the basic search issues in this context. Given
the close connection drawn between classical grid search and the PRM in
this paper, it should be clear that classical search issues which apply to
grids should also apply to PRMs, QRMs, Sukharev grids, etc. that have
a large number of samples. If a PRM has thousands of nodes in a high-
dimensional space, then the common local minima problems most likely exist.
Since optimality is not important in this context, many motion planning
ideas that are based directly on incremental search could be used to search
the roadmaps obtained in the family of planners described in this paper.
Potential field approaches have improved search by using heuristics to escape
local minima [4,13,17]. For the randomized potential field planner in [4], the
search is even performed over an implicit grid. Thus, it can be considered
as a Lazy CGS, with A∗ search replaced by the potential field method. The
planner in [10] can also be considered as a Lazy CGS planner. Of course many
other planning approaches can be considered. Incremental searching methods,
such as Ariadne’s clew [27], bidirectional RRTs [22], or the planners in [16,31],
can be considered as alternatives to A∗ search in any roadmap approach. As
the implicit grid resolution in a Lazy CGS planner becomes higher, it is
clear that the sampling itself is not important. The key is how to search in a
bounded metric space.

Multiresolution approaches One disadvantage of the Sukharev grid is
that for each increment of the points per axis, the total number of points
increases dramatically for higher-dimensional problems. In general, for sam-
ple sets that require N to be specified, what happens when N needs to be
increased? Many planning algorithms involve a repeated alternation between
path searching and improving the sampling resolution. Of course, numerous
multiresolution approaches have been considered in planning literature. For
example, in [12], the sampling can be improved locally. For the Lazy LRM,
the number of lattice points could be iteratively doubled, while still remain-
ing low discrepancy [9]. In [5], a trellis is iteratively maintained (similar to
SGS), and a hyperplane of samples is added in each iteration before search
is performed again. In the original PRM, multiresolution issues appear to be
equivalent to the problem of determining how many samples are necessary
before a solution can be found. Any number of points can be easily added
before search is performed again. A similar behavior can be obtained for
grid-based sequences by adding points one at a time and maintaining low
discrepancy along the way [24].

Bringing back randomization A recent trend in quasi-Monte Carlo lit-
erature is to consider randomized versions of Halton sequences, lattices,
and (t,s)-sequences. There exist simple techniques that preserve the low-
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discrepancy/low-dispersion properties of deterministic sequences while at the
same time each sample is uniform randomly distributed.4 An elegant exam-
ple of this work appears in [35], in which a randomized Halton sequence is
obtained by cleverly constructing the first element at random, and computing
the appropriate continuations of classical van der Corput sequences for each
coordinate. Such sequences can be used in motion planning to obtain both
probabilistic analysis and the deterministic guarantees from Section 1.5!
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