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Abstract trajectories well modeled by the spring loaded inverted pen-
dulum (SLIP; Altendorfer et al. 2001), depicted in Figure 1.

We present a new stability analysis for hybrid legged locomotiomdeed, this reflects the machine’s bio-inspired origins, since

systems based on the “symmetric” factorization of return maps. Wanimal (Blickhan and Full 1993) and human (Schwind 1998)

apply this analysis to two-degrees-of-freedom (2DoF) and thregunners exhibit sagittal plane COM trajectories similarly well

degrees-of-freedom (3DoF) models of the spring loaded invertetbscribed by the SLIP model. Moreover, the introduction by

pendulum (SLIP) with different leg recirculation strategies. Despit®Raibert (1986) of the first dynamically stable running robots

the non-integrability of the SLIP dynamics, we obtain a necessagmbodied the literal SLIP morphology. Thus, while other in-

condition for asymptotic stability (and a sufficient condition for in-teresting hybrid Hamiltonian models of robotics are likely to

stability) ata fixed point, formulated as an exact algebraic expressidpe amenable, we focus the development of our new analytical

in the physical parameters. We use this expression to characteriggethod on variations of the SLIP running model.

analytically the sensory cost and stabilizing benefit of various feed-

back schemes previously proposed for the 2DoF SLIP model, posited

as a low-dimensional representation of running. We apply the result1. SLIP Model as a Template for RHex

as well to a 3DoF SLIP model that will be treated at greater lengt

in a companion paper as a descriptive model for the robot RHex.Il‘ general framework for “anchoring templates” like the

SLIP mechanics in the far more elaborate morphologies of
KEY WORDS—Iegged locomotion, hybrid system, returrthe bodies of real animals has been introduced in Full and
map, spring loaded inverted pendulum, stability, time-reversBbditschek (1999). Briefly, given a high-dimensional dynam-
symmetry ical system—the “anchor"—which is believed to be a reason-
ably accurate model of an animal or robot, a “template” is
] a low-dimensional dynamical system whose steady state en-
1. Introduction codes the task and is conjugate to the restriction dynamics of
the anchor on an attracting invariant submanifold. Much of
In this paper we introduce a new formalism for studying thene robotics work of Koditschek and colleagues relies upon
stability of dynamical legged locomotion gaits and other perihis sort of construction (Buehler, Koditschek, and Kindl-
odic dynamically dextrous robotic tasks. We are motivated ighan 1990: Rizzi, Whitcomb, and Koditschek 1992; Nakan-
part by the need to explain and control the remarkable perfqghj, Fukuda, and Koditschek 2000; Westervelt, Grizzle, and
mance of RHex, an autonomous hexapedal running machiggditschek 2003).
whose introduction has broken all prior published records for | general, both the anchoring as well as the control of the
speed, specific resistance, and mobility over broken terrag) |p template seem to demand sensing, actuation, and com-
(Saranli, Buehler, and Koditschek 2001). When RHex is propsytation that may be unrealistic relative to the resources that
erly tuned it exhibits sagittal plane center of mass (COMjnimals and practical robots might possess. Indeed, a hierar-
_ . chical controller (Saranli 2002) for a RHex-like simulation
\T/;e ;gt’e,{l’:)"’.‘t'l%’lal'fyoggt‘g:)gi_mo(f’voet'rf]zge;ggfgp. 679.999, model programmed in SimSect (Saranli 2000) that enforces
DOI: 10.1177/0278364904047389 both the anchoring as well as the template control relies on
©2004 Sage Publications sophisticated full-state feedback. Only a portion of the sensor
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suite necessary to implement this feedback control has yeeduced) Poincaré sectide:
(only recently) been installed on the robot (Lin, Komglg _
and Koditschek 2003) and itis currently unknown whether the R:X¥—>X. (1)

stabilizing effect of this controller seen in simulation will per-|, legged locomotion, the iterates of this return mep-

sist in the presence of unavoidable sensor noise and uqm% function relating the body state at a periodically (at each
eled aspects of the mechanics. This motivates the questionsigqe) occurring event—summarizes all properties relevant to

it possible to implement the template-anchor paradigm (Fuie goal of translating the body COM. The return map arises
and Koditschek 1999) with sensor-cheap, low-bandwidtp, general from a controlled plant model

controllers?

In this paper we address that part of the above question xtk+1) = A(x(k),uk))
concerned with terT_\pIa_te control. Namely, givgn that a SI__IP- yk) = Cxk) 2
anchoring mechanismis present, either by deliberate design or
by the interaction of the controlled robot with its environmentwhere the discrete time control input variablek), repre-
can the stability and performance of the controlled template Is€nts the consequences at the integrated stride-by-stride level
assessed methodically (beyond empirical or numerical StudW’COHtI’O”ed influences imposed over continuous time within
for example, as a function of the cost of the sensory feedbagtance or flight. In this paper, physically motivated assump-
required? tions (listed in Section 2.4.1) that we impose upon the allow-
able continuous time influences turn out to yield a discrete
time representativey, that implicitly determines the flight
time for the ballistic phase of the body at each stride. When the
continuous time physical influences imposed within a given

The SLIP model is a hybrid dynamical system formed by thelride are de_termined acco.rding to state ir?format@on gathered
composition of leg—body stance dynamics with ballistic bod{fom t_he av'allable observgtlons of.the previous strld.e, we have
flight dynamics. Control takes place during the flight phas&ffectively introduced a discrete time feedback policy
where the leg angle is set for the next touchdowq event. The u(k) = H(y(k)) 3)
two-degrees-of-freedom (2DoF) SLIP model provides a ubig-
uitous description of biological runners in the sagittal planeshose closed loop yields eq. (1(x) = A(x, H o C(x)).
(Blickhan and Full 1993) and also, as mentioned above, Tdhe controlled plant model for SLIP systems is specified in
broadly useful prescription for legged robot runners such &ection 2.4.3.
RHex (Raibert 1986; Saranli, Buehler, and Koditschek 2001; In this paper we confine our study exclusively to such time-
Altendorfer et al. 2001). The closely related 3DoF lateral lemvariant output feedback law#, (eq. (3)) for two allied rea-
spring (LLS) model has been recently identified as a candsons. First, this restriction focuses attention on the key role
date template for a cockroach running in the horizontal plar@ayed by the output functioit; (eq. (2)), variations of which
(Kubow and Full 1999; Schmitt and Holmes 2000) and seemmge will use to model sensor limitations of the underlying
likely to be relevant for RHex as well (Saranli, Buehler, angbhysical system represented by the SLIP model. Secondly,
Koditschek 2001). asu models the influence of flight phase duration (implic-
However, the limitations of the 2DoF SLIP model (noitly by specifying the leg angle trajectory), this restriction to
pitching dynamics, no lateral dynamics) and the 3DoF LL8me-invariant output feedback (eq. (3)), models the leg re-
model (failure to reproduce some aspects of animal datayrculation policies that have so rightly captured the attention
Schmitt et al. 2002) show that far more sophisticated modets the legged locomotion community in recent years.
will be required to capture more salient features of the anchor. The surprising discovery of “self-stable” legged loco-
In particular, aliteral template of RHex, i.e., amodel conjugatmotion—first in the closely related LLS model (Schmitt and
to the restriction dynamics of an attracting invariant submatdolmes 2000), and subsequently in the SLIP itself (Seyfarth
ifold in RHex, must include a source of dissipation as wekt al. 2002; Ghigliazza et al. 2003)—demands a more sys-
as hip torques. Despite these shortcomings, the 2DoF SlLi#matic account of what is meant by the term “self”. In these
and its extension to 3DoF (introduction of pitch dynamics3tudies, the duration of flight phase is determined by a fixed
are sufficiently well motivated by prior literature, sufficientlyleg angle policy, and “self” connotes the apparent absence of
mathematically challenging (due to their non-integrable nactive sensors. Recently, a more elaborate state-dependent leg
ture) and their analysis sufficiently revealing of RHex-likeretraction policy has been shown numerically to inheritthe sta-
properties (see the companion paper Altendorfer, Koditschdsility properties of the fixed touchdown angle policy while in-
and Holmes 2004) as to motivate our exclusive focus on theoneasing the basin of the stable gait (Seyfarth, Geyer, and Herr
in this paper. 2003). On the other hand, a recirculation policy that initiates
The stability properties of these hybrid dynamical systenafter leg liftoff a constant angular velocity until leg touch-
can be assessed by a Poincaré or return Riggting on a down can induce neutral stability (Altendorfer, Koditschek,

1.2. Output Feedback Stabilization in the SLI1P Model
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and Holmes 2003). These apparently slightly varied policieertained only numerically (Schmitt and Holmes 2000). In
mask significant variation in cost and effort depending upotine case of the sagittal plane 3DoF SLIP in gravity—the sim-
how the sensor suite might be implemented in practice. Waest implementation model for RHex, as we will explain in
seek to shed greater light on when a more or less clever lagendorfer, Koditschek, and Holmes (2004)—no plausible
recirculation strategy can make a difference in the quality afitegrable approximations have been proposed. In summary,
gait stability (e.g., faster transients, larger basin) as a functiad prior formal characterizations of 2DoF and 3DoF locomo-
of the “cost” of sensory data. tion stability conditions have applied to approximations that
Of course, real sensors are not implemented in these teighore stance phase gravity or idealize body morphology, de-
plates at all but in physical machines. Empirically, it is abunpending upon numerical evidence to suggest their relevance to
dantly clear that the leg swing policy plays a central role ithe more general settings. Also, for RHex related models, no
the gait quality of physically useful machines such as RHeformal characterizations have heretofore been possible at all.
(Saranli, Buehler, and Koditschek 2001; Weingarten et al. Incontrast, we now present formal conditions that apply to
2004). Leg recirculation strategies have been shown numéhne full parameter space of all the SLIP templates. We observe
ically to play a key role in the gait quality of independenthat while R cannot be written in closed form, certain phys-
locomotion models inspired by quadrupedal animal trottetisally reasonable assumptions (listed in Section 2.4.1) imply
(Herr and McMahon 2000) and gallopers (Herr and McMathat the determinant of its Jacobian at a symmetric fixed point
hon 2001). (to be defined in Section 2.3) & can be so expressed. The
When the SLIP template is anchored actively (Sarantientral contributions of this paper arising from that observa-
2002) then its stability properties determine those of the ation are as follows.
chor by definition; hence, insight into how to tune the quality
of SLIP gaits transfers directly over to the physical machine
of interest. The implications for gait quality of the physical
machine in consequence of adjustments to leg recirculation
derived from a passively anchored SLIP template are explored
inthe companion paper (Altendorfer, Koditschek, and Holmes

1. A new analytical framework based on a “symmetric”
factorization of the return map, in terms of its non-
hybrid components that yields the closed-form expres-
sion of the determinant at a symmetric fixed poinRof
(Section 3). Necessary conditions for asymptotic stabil-
ity, sufficient conditions for instability, and conditions

2004). equivalent to neutral stability of the closed-loop map,
R, follow.
1.3. Contribution of this paper 2. Closed-form conditions o/ o C yielding rigorous
Notwithstanding its apparent simplicity, the SLIP model is ~ Statements concerning the sensory “cost” of control in
non-integrable: the stance phase trajectory cannot be written ~ POth the 2DoF and 3DoF settings that cannot be estab-
down in closed form—see, for example, Whittaker (1964)  lished by mere numerical study, as follows.
anq Holmes (199(_)) for a discussion of the closely relat_ed re- (2) 2DoF SLIP models: any control with fast tran-
strlc_ted., planar_, cwcylar three-body problem—presentmg us sients (“singular” control—the Jacobian of the
E)n fII’S"t |nspect_|on W|.th a control problem forvyhlch no exact closed-loop return map is globally singular) re-
plgnt modelils available (Schwind anq Kpdltschek 2000). quires velocity sensing and is therefore “costly”
This has motivated authors who seek insight more system- (Section 3.3.1).

atic than numerical simulation can provide to develop var-
ious physically motivated closed-form approximationsrto
instead (Schwind and Koditschek 2000; Bullimore et al., un-
published results; Geyer, unpublished results). For example,
with absent gravity (e.g., assuming that the leg potential forces In the companion paper (Altendorfer, Koditschek, and
far exceed the influence of gravity during stance), the 2DaHolmes 2004) we explore some implications of these results
SLIP becomes formally integrable. Indeed, our proof of théor the analysis of a more detailed model inspired by RHex.
existence of “self-stable” SLIP orbits (Ghigliazza et al. 2003The remainder of this paper is organized as follows. In Sec-
applies only to this approximation. All other conclusions irtion 2 we preface this analysis by introducing the terminol-
that paper (and, of course, in the surrounding literature; Heogy and notation for hybrid systems to be used subsequently,
and McMahon 2000, 2001; Seyfarth et al. 2002; Seyfartffigpllowed by a review of how reversibility symmetries can re-
Geyer, and Herr 2003) devolve from numerical evidence. Iplace the symplectic symmetry in Liouville’s theorem (see,
the case of the horizontal plane 3DoF LLS template, zeréer example, Scheck 1999), which does not generally apply
ing out the offset between the COM and hip sagittal plan® hybrid systems. We then develop the consequences of these
affords a similarly integrable approximation with formallyobservations in Section 3 as heralded in conclusions 2(a) and
characterized stability properties whose applicability to th2(b). In Section 3.4 we preview a new 3DoF SLIP model in-
more interesting “perturbed” general case can again be apired by RHex sagittal plane mechanics that will form the

(b) 3DoF SLIP models: SLIP models that have only
non-inertial (body frame) sensors available can-
not implement singular control (Section 3.4).
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basis of the SLIP runner studied in Altendorfer, Koditschekl, (xo, 1) = 0 will be referred to as the threshold equation.
and Holmes (2004). We conclude with some brief remarks i@witching between charts is effected by transition mappings
Section 4. T/ with domains inX, and ranges int;. The flow mapF,

for theath vector field is defined via the implicit function,

: : F, i xo > fle®(xo).2

2. Theor?tlcal Framework and Modeling In this paper, as in many settings of hybrid dynamical sys-
Assumptions tems, we are interested in the attractive behavior of distin-

. . . _ guished orbits whose appropriate projections are periodic. By
In Section 2.1 we introduce the terminology of hybrid dy“periodic” we mean that the distinguished orbit is defined

namical systems and provide some intuition concerning e, o recyrring sequence of charts along which the projected
machinery used to trim away the awkward and inessentigl,  vie|ds a return to the same projected initial condition. An
details of our hybrid model to yield a conventional d'screteappropriate” projection strips away variables whose values

dynamical control system (eq. (2)) whose closed-100p propge ot descriptive of the locomotion task—here, the con-

erties _(eq. (1) repr_esent the fqrmal Objef:t of study. Ha\_"ngerved total mechanical energy along with the cyclic variable
elstatbhshed a notation for (hybnd) dynamical systems, Lioy elapsed distance. Similarly, “attractive behavior” denotes
ville's theorem, a key tool in the present study, can be statefls Jsymptotic properties of projected orbits relative to the
formally in the next section, Section 2.2. Then an analogyg,iection of the distinguished orbit. These slight variants of

of the local form of Liouville’s theorem for discrete mapsy,q ragitional Poincaré analysis of conventional dynamical
derived from hybrid systems is established in Section 2.3. stems theory will all be introduced formally in the next
Section 2.4 we formally define the SLIP system with its hyzation. and will be seen to yieldsiridemap

brid components as well as its Poincaré section and discrete
time return map. S=S,08 (4)

2.1. Preliminary Definitions and Modeling Considerations  Whose projection (along with those of its factos) that
of Hybrid Dynamical Systems we will denoteR (along with the corresponding facto®,)

Models of legged locomotion are characterized by distinG@Ptures as a discrete time iterated dynamical system the lo-
phases, notably, stance and flight. Formally, the dynamics caW—mIOt'on relevant behavior of our hybrid dynamical system
not be described by a single flow, but require a collection "2l0gous to a Poincare map.
continuous flows and cﬂscrete transformanoTs gO\_/e”rnmg theirz' Liowville's Theorem and Stability
transitions. The resulting model is called a “hybrid” system. . ]
This section makes the notion of a hybrid system more préiformally, Liouville’s theorem states that volume in phase
cise by adapting the definitions in Guckenheimer and Johns8Race of a holonomically constrained conservative dynamical
(1995) to the present setting. system described by a single Hamiltonian flow is preserved,
Let 7 be a finite index set and,, o« € Z with dim(X,,) = i.e., a set of initial conditions at = 0 in phase space will
2N a collection of open Euclidean domains (charts). Assunf® mapped to a set W'th.'dent'cyal symplectic volume for any
a mechanical system whose time evolution is described by= 0- More formally, Liouville’s theorem appears in two

holonomically constrained autonomous conservative vectBfluivalentformulations, the local and the global form (Scheck
fields f,, with configuration space variables x = f,(x) 1999).

withx = (¢ ¢)" € . Assume‘)tha't the vectort fields can  Theorem 1. [Liouville's theorem (local form)] Letf’ (x)
be integrated to obtain the flofi}” with x (1) = £ (xo). Tran-  pe the flow of a vector fielg on a chartt of a Hamiltonian
sitions from one vector field, to another vector field; are system, i.e.3H : X — R with dim(X) = 2N, N e N such
governed by threshold functiortg which specify an event 5t '

at their zero-crossing. The threshold functidgjsdepend on

the initial conditionx, = x(t = 0) € X,, timet; they also Foo) = < 0 1N><N) DHGx) VrcX. (5
depend implicitly on the flowf,”.* We restrict ourselves to —Lyv.w O !

hybrid systems where for each chart there is only one thresh- . . .

ol):j func¥ionh§; hence, the upper indeg will be }c/iropped S'I:'he_n, for allx € X and for all timeg for which the flow is
from now on. We also reset the time to zero at each chart tra efined,
sition. The end time of the evolution on chat} is uniquely D.f'(x) € Spy: det(Dxf’(x)) —1 (6)
defined byt, (x) = min,.ofz : h,(x0, ) = 0}. The equation ’

( Sp,y denotes the group of symplectic matrices of sixex2

1. Note that this i I than the definition in Guckenhei . . T .
ote that This IS mofe general fan e detinfion in isuckenneimer a ). The matrix of partial derivatives of the flow with respect

Johnson (1995), whe#ef only depends oif}, (xp). This added generality is

required because we wish to study more general functional dependence$ Qfjote thatr,, is not the usual constant-time flow map of dynamical systems
hg onxp andt than the functional dependency given ij(xo). theory £} (xp); rather, the time varies depending upon the initial data
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to the initial conditions: is symplectic and its determinant is orem to general hybrid dynamical systems, we present crite-
one. ria in the next section under which, nevertheless, the volume
fpreservation propertyplet(DXS_()E))_| = 1 does indeed holo!.
The result could be called a point Liouville’s theorem for stride
map fixed points, because in distinction to the local form of
DerINITION 1. [Volume preservation] A mag : X —  Liouville’s theorem, which holds for all points of symplectic
X is locally volume preserving at a point € X if phase space, ourtheorem only holds at fixed paintsf S.
|det(D,S(x))| = 1. Its local volume at is defined to be

det(D,S(x)). It is volume preserving (or globally volume 2.3, A Point Liouville's Theorem for Hybrid Dynamical
preserving) iff det(D,S(x)) | = 1Vx € X. Systems

The global form states thagt’ maps a measurable set o
initial conditions to a set of equal measure.

This definition borrows the adjective “local” from Theo-|n order to prove thatdet(D,S(¥))| = 1 at a fixed point

rem 1 atthe expense of a slight degree of imprecisionintermif 5 additional assumptions and an additional structure of

nOIOgy, since it SpeCifies the preservation of an inﬁniteSim%e unde”ying vector fie]dfa are needed. In particu|ar, we

(“local”) volume at a single point. require that the vector fieldg, possess a time reversal sym-
Upon cursory inspection, it might be thought that conmetry (for a survey of time reversal symmetries in dynamical

servative “piecewise holonomic” (Ruina 1998) systems auystems, see Lamb and Roberts 1998; for an extensive review,
tomatically satisfy the hypotheses of Liouville's theoremsee Roberts and Quispel 1992).

By fixing ¢ at a particular but arbitrary time, a “degen- ] .
erate” hybrid dynamical system can be defined on a sif?EFINITION 2. [Time reversal symmetry] A vector field
gle chartx; = X with one vector fieldf, = f and the ©ON@ chartX admllts atime reversa}I symmetg/: X — X
threshold functionz;(xo,7) = ¢ — 7. The resulting stride With G aninvolutiorf (G o G = id) if
map S = F, = f(-) with 1, = 7 then obviously satisfies DG -f=—foG 7)
det(D,S(x)) =1 Vx e X. However, for a threshold equa-
tion that is not purely time-dependent but also depends
f"(x0) andx,, the evolution time, is dependent upon the ini- Gof'=f"0G. (8)
tial condition,r; = #,(xo), and de{ D, f*?(xo)) # 1in gen-
eral. Hence, for a general hybrid dynamical system in which We next introduce a further property of the stride map fac-
the threshold functions are not purely time-dependent, the de¥s,S., of S = S,0.5;, namely that they can be written as time
terminant of the Jacobian of the stride mfafeq. (4)) cannot reversed flow mapS§, = G, o F, or S, = F, o G,. \We restrict
be expected to be of absolute value one, even if all the vectaur investigation to a subset of fixed pointssohamely those
fields are Hamiltonian and all transition functions are volumthat are also fixed points of the time reversed flow m&ps
preserving. Such fixed points we will call symmetric in analogy to certain
Liouville's theorem precludes the asymptotic stability ofixed points of reversible diffeomorphisms (see Definition 6
a Hamiltonian system, since an asymptotically stable equi* Appendix C1). Fixed points of this kind will be shown to
librium point reduces a finite phase space volume to a sitie on distinguished orbits termed symmetric (Devaney 1976).
gle point. This would require lim, ., det(D, f*(x)) = 0 for ~ Such orbits have been recognized in the prior legged locomo-
all x in the basin of attraction of the asymptotically stabldion literature as useful steady-state target trajectories in the
equilibrium point. However, because Liouville’s theorem igontrol of one-legged hoppers (Raibert 1986) and also serve
not guaranteed to apply, asymptotic stability of piecewises steady-state target trajectories in this paper.
defined holonomi_cally corjstrained c_onservative Har_niltoniaBEF"\lITION 3. (Symmetricorbit of atime reversiblevec-
systems Whose_dlsprete time l_)ehawor can be described bytgp field) The orbit of a vector fieldf with time reversal
_approp_rlate projection of a §tr|de map has been opserved symmetryG is called symmetric if it is invariant undes
in the I|t(_—:‘ratur.e. Examples mc}ude a discrete version of t}éevaney 1976). This definition of symmetric orbits coin-
Chaplyglq slelgh (Ruina 1998; Coleman and Howes 199 des with the notion of neutral orbits introduced in Raibert
gnd Iow-dlmens_lonal models of Ieg_ged locomotion in the hor(1986) and formalized in Schwind and Koditschek (1997).
izontal and sagittal planes (Schmitt and Holmes 2000; Sey-
farth et al. 2002; Ghigliazza et al. 2003). In all of those caseSHEOREM?2. Letx be a fixed point of, = G, o F,, where
some threshold functions are not solely time-dependent ail is the flow map of a vector field, with time reversal
the stride map is not volume preserving—a necessary congdirmmetryG,. Thenx lies on a symmetric orbit of,.

tion for asymptotic stability. In particular, atan asymptotically _ , . . .
stable fixed poing, | det(D, S(¥))| < 1. Proof. If x is a fixed point ofS, then there exists a time

Having established the non-applicabilityofLiouville’sthe-SUCh thatG, o f,(¥) = ¥.If ¥ lies on a symmetric orbit

4. In this paper, we restrict ourselves to involutive time reversal symmetries,
3. The term “piecewise holonomic system” was introduced in Ruina (19983though a more general definition can be found in Lamb and Roberts (1998).

fole equivalently, if
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thenvt € [0,7] 3" € [0,7] : f/'(X) = G, o f!(X). Let For applications of Theorem 4, the condition of Lemma 1

t =f—t.Thenf' ) = & 2 G, 0 f70G,(x) = Seemstobetoogeneral to be of practical use. A more explicit
Guo flo f7o0Gy(F) ® Guo f10Gyo fi(F) = Gyo f1(F). condition for thesS, invariance oft, is now given, in turn, as
O follows.

Clearly, S locally preserves volume at a symmetric fixe
point x if its time reversed flow maps do. On the other hand,
involutions are known to be volume preserving at their fixe®roof. ¢, (xo) = min,.o{t : h,(x0, ) = 0} andt, o S,(xo) =
points. min,.o{t : h,(S,(x0), ) = 0}. A necessary condition fag,

. . . being S,-invariant ist, (xo) € {t : ho(S,(x0), t) = 0}, which
THEOREM3. The determinant of the Jacobian of an 'nVOIuTmpIiesha(Sa(xo), 1,(xo)) = 0. Using the definition of,,, this

tonG : X - X; X C RY at afixed pointt € X of G
whereX contains a neighborhood &fis plus or minus one.

Pr oof. ho(Gy o f199(xo), 1, (x0)) = 0. (12)

EMMA 2. A necessary condition for th# invariance of,
S ha(Gu o f‘ja(«fo)(xo)’ ta(xo)) = OV-XO € Xha'

equation becomes

GoG = id O

D.(G o G)(x) vy Vxed Assuming that, (x,) is also the minimal solution of the
D.G(G(x))-D,G(x) = 1yw. (9) threshold equation fa$, (xo), it follows that the condition of
Lemma 2 is also sufficient, and we conclude thas invari-
ant unders,. Lemma 2 essentially checks that the threshold
D,GF)-D,GF) = ly.n functionh, “preserves” the time reversal symmetry ff

~ def(D.G(F) = 1 (10) The generalization to a stride map composed of more than
! ’ two time reversed flow maps, is straightforward. As a final
] observation that we will require below (in Appendix A), note
that if Theorem 3 has been shown to hold$pr= G, o F,; it
Hence a criterion fof, being an involution is needed. 350 holds for reverse time flow maps of the faSm= F, oG,
LEMMA 1. If¢z, is S, invariant, thatisf, o S, = #, onaset | guma 3.
X, thensS, is an involution ont), .

SinceG(x) = &, eq. (9) implies that:

If S, = G, o F, is an involution, thenS’, =
F, o G, is an involution, too.

Proof. Letx, € &), . Proof.
o (;?a OJS;(XO) = S,0S8, = F,0G,0F,oG,
. fata<su(joi OaG ° Oaf f(o)gz; - a (G,0G,)oF, ° G,oF,oG,
JC o frO(xg) = xo. = GuoG,=1id ~:ld
O

By combining Lemma 1 and Theorem 3 we can formulate
the following theorem. 2.4. SLIP Dynamics

THEOREM 4. (Point Liouville'stheorem) Let x € &), be
a fixed point ofS, = G, o F,, whereF, is the flow map of
a vector fieldf, with time reversal symmetrg,. If z, is S,  In this section we establish the specifics of the SLIP models
invariant on;,, andx;,, contains a neighborhood &f then considered in this paper. They are listed in terms of the cate-
S, is locally volume preserving at. gories: geometry, trajectories, control, and potential forces.

2.4.1. Modeling Assumptions

Proof. By Lemma 1., is aninvolution ont),,. By Theorem3 Geometry. The 3DoF sagittal plane SLIP model is shown in
|det(D,S,(x))| = 1. O Figure 1. It shows arigid body of magsand moment of iner-

Sj this th in distinction to Liouville’s th tia / with a massless springy leg with rest lenggfattached at
ince this theorem (|_n Istinction 1o Liouville s eorem_)a hip joint that coincides with the COM. The strength of grav-
only holds at (generally isolated) fixed points, finite volume

A dunder. d th v of local vol 'ﬁy is g. The approximation of a leg with zero mass avoids
notpreserveadun & However, € property otiocalvolume impact losses at touchdown and simplifies the control. For
preservation can be used to determine the local asymptojic

behavior of discrete systems with stride maps of the fort, nvenience, all of the following expressions are formulated
S = S, 0 §; at symmetric fixed points (Section 3.1.3). in dimensionless quantities, i.e.+= f\/% Y=gV = \/):Tg
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1 decompression cycle, hence the only designable control au-
4 thority consists in specifying the flight time, which can be im-
. plicitly parametrized by the free leg angle trajectery, xo),
i, I'Z;"] wherex, are the state variables taken at a certain event, e.g.,
o leg liftoff. Because of the massless assumption, the leg can be
arbitrarily placed during flight at no energetic cost.

Potential forces.
P1 The potential energy is givenly, =z + V(y, z, 6).

P2 The non-gravitational potentidl is analytic and satis-
fies the symmetry relatioVi(y, z, 0) = V(—y, z, —6).
This condition does not seem to severely restrict our
choice of potentials, and it includes the often-used ra-
dial spring potentiaV (y, z, 8) = V,(¢) for the 2DoF
model.

Fig. 1. Coordinate convention of SLIP with pitching dynam-
ics. In the text, the COM coordinates are parametrized q_y3 V factorizes asV(y, z, )
Cartesian coordinates, i.e.,= ¢ sin(y) andz = ¢ cogy).
In flight, the leg angle is in general a function of time and
of the SLIP’s liftoff stateip (¢, xo).

= V.(©)V,(y,z,0) with
V.(1) = 0. This ensures that is zero at touchdown
and liftoff. Because of the masslessness of the leg,
remains zero during flight.

After having listed SLIP’s modeling assumptions, we define
the stance and flight components of the hybrid SLIP system
i= Ei— i 9—§6= é\/z andl = L. Also gnd identify time reversal symmetries present in its vector
% Zod g g fields.
shown are the pitch angtewith respect to the horizontal and
the parametrization of the COM in terms of Cartesianzj

and polar ¢ = /32 ¥ 22, ¥ = arctar(y/z)) coordinates with 2.4.2. Definition of the Hybrid SLIP System

the coordinate origin at the foothold. The body is assumed fthe S|P system consists of two phases, stance and flight;
remain in the sagittal plane; hence its configuration can hancez = {1, 2} with 1 referring to stance and 2 referring to
parametrized by £(2) coordinate3 (y, z, ) or (£, v, 0) of  flight. In both phases, we choose the same parametrization of
a rigid body restricted to a two-dimensional plane. the configuration space: by the Cartesian coordinates of the
Trajectories. A full stride consists of a stance and a flight™ass center relative to the fixed taez, and the orientation
phase: in stance, we assume the foothold is fixed, the leg cofif-the body in the inertial frame}. Hence, both charts are
pressed and the body moves in the positieéirectiony > 0; €qual,. &y = &, = Iiz x St x R® =: X with phase space

in flight, the body describes a ballistic trajectory under the soRfements denoted by= (y, z, 6, 3,2, 6)".

influence of gravity. The stance phase starts with the leg UBrance. The stance vector field reads

compressed and ends when the leg has reached its rest length

¢ again. Then the flight phase begins and ends when the mass- y

less leg (appropriately placed) touches the ground. Stability b4

investigations in this paper are confined to trajectories that -~ 6

are in the vicinity of symmetric trajectories in both stance and h@ = —0,V(y,z,0) (13)
flight, where for example the liftoff and touchdown vertical -1-9,V(y,z,9)

heights are equal. —10,V(y,z.6)

Control. No continuous control is exerted during stance anWith P2 this vector field is also analytic ihand hence its flow

ﬂ'g.zt; the c_(;rre_sr;r)]ondu;g vectorl f'elﬂs glo not (_:han_gedfro 1(x) is analytic ins andx. UsingP3ﬁadmits the linear time
stride to stride. The only control authority consists in deter, oo symmetry

mining the transitions between flight and stance by specify-
ing the stance and flight time. The stance time is implicitly G, = diag—1,1, 1,1, -1, 1) (14)
determined by requiring the leg to undergo a compression— T

5. SE(2) denotes the Special Euclidean group in two dimensions, consistitg1€ "n_ear time reversal Symm_etry Qf €dq. (13) without pit_ching
of translations and rotations. dynamics was already recognized in Schwind and Koditschek
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1997). With the “radius” functiort : ¥ — /y2+ 22, the time reversal symmetrg:
threshold function is given by

hy(Ro, 1) = £ (Fi(Ro)) — £(Ro). (15)

Note thatz is G,-invariant, i.e.l o G, = Z.

~ o~

S=FoGoGoF,. (21)

However, S does not formally constitute a return map for
the Poincaré sectioR, because as detailed in Section 2.4.1,

Flight. The flight vector field reads trajectories of relevance to forward locomotion have a mono-
R ) . tonically increasing fore-aft component(s), hence, cannot
L@ = (y.2,6,0,—1,0) (16) be periodic. On the other hand, there is an effective projection

informally builtinto the SLIP modeling assumpti®3. At the

whose analytic flow is trivially computed as beginning of stance, thecoordinate of the coordinate origin

Yo + Yol must be reset to the new foothold in order to interpieas a
Zo+ 2of — 2 radial leg potential (or, more awkwardly, one could reset the
0T 2ol — 3 o . .
~ 6o + ot definition of the potential function at each new touchdown).
f2(x0) = % (17)  Bothissues can be resolved by projecting outtetry of .
0 —1 A further dimensional reduction is possible because of con-

6, servation of energy in both stance and flight phase. Formally,
the total energy
Solving eq. (7) withf,, the diagonal linear involutive time

PN ~ 1. . :
reversing symmetrg, of eq. (16) is not uniquely defined and EX(t) = E(yz(t) +23(t) + 16%(t)) +
's given by 20 + V), 20), (1)
Gi = diagF1, 1, 71, +1, —1, £1) . (18) — E,

As willbecome clear later inthe next section, in order to defingan pe interpreted as a constant parameter of the SLIP sys-
astride map as in eg. (4), the time reversal symmetries ShOWﬁn and can then be used to eliminate theariabley (1) =
match for stance and flight, hen@ = G, =: G is chosen, E.(Eo),® with x being the projection of onto its “non-

The threshold functiorkz, for a general leg placementy " componentsiT : X X T x= (2,6,%,6)T.

parametrized by the angular traject@rit, Xo) (see Figure 1) A Yetyrn map R acting on the reduced Poincaré section

becomes zero when the toe touches the ground ¥ — R x S x K2 with independent coordinatescan then
hy(Xo, 1) = z(t) — OS¢ (t, Xo)) (19) Dbewritten as
and implicitly defines the control input(x,). If ¢ depends R=ToFoGoGoF,oXx (22)

on Xy, the liftoff coordinates, feedback control is employed.
The design of the functio# constitutes the control authority
in our SLIP model.

with

o~ 1 - ZZ

X:P—->X; x| ENEy
2.4.3. Discrete Time Behavior of SLIP Locomotion: Poincaré X
Section, Return Map, and Controlled Plant Model

(23)

They andy components of’, andG are completely decou-
Poincar € section. A SLIP stride consists of stance and flight,pled from the other components, hence the projeftaran
therefore its stride map should be writtensas: F, 0 F;. The  be pulled to the right in order to define two return map factors
end of the stance phase is characterized by the liftoff eveR,
detected by the threshold equationthe end of flight is char-

acterized by the touchdown event, detected by the threshold R=F,0GolloGoFi0X, (24)
. . . I~ . - ~——— N————— o ———
equationi,. The factorization ofS suggests a Poincaré sec- =Ry =R,

tion P that is the surface of the touchdown event, where the
leg length is one and the COM is to the left of the foothold: where F;, and G are the obvious restrictions @ andG to
the reduced Poincaré sectiah If S are involutions, we want
=(FeX:)y?+7-1=0y <0} (20) ' the involutive character to persist f@;,. This is obvious for
R, = S,. For Ry it reguirgsE o IT1 = id on the range of
Return map. We would like to factorS into time reversed G o Fio X. Letx; = G o Fy o E(xo) With xo € P. y, is the

flow mapss, in order to satisfy a prerequisite of Lemma 14. Given an equatiog(y, x) = g, the corresponding implicit function will
This is accomplished by inserting the square of the comma written asy = g3 (o).
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G-reflectedy-coordinate at liftoff, hencey, = —/1—z2  Other definitions

andy, = E_'(Eo). Thereforey, = ¥ o I(y1) andR; is an G, involutive time reversal symmetry
involution if S; is one. X,, setwhere partial stride map is an involution
Controlled plant model. Having defined the closed-loop re- str!de map factor ow,

stride map

turn map on the reduced Poincaré section, we clarify the re-
lation of this closed-loop return map to the controlled plant

model formalism introduced in Section 1.2. Since the control

parameter of our SLIP model is the flight time and quantities

used for feedback are the liftoff coordinates, the controlled

plant model, introduced conceptually above (eq. (2)), can nod Stability and Control of SLIP Models
be written in touchdown coordinates as

projector from/”\,’\a to X,
map fromX,, to X,
conservative SLIP potential without gravity

<M wn

In this section we analyze the stability and control of SLIP
120 6 G o Ry(x(k)) mpdgls via the return maR and its factor.fRa. In Section 3.1
it is first shown that the stance fact® is locally volume
preserving at a fixed point, independent of the specific form
ofthe potentiaV aslong asthe conditio®i—P3 are satisfied.
Using a leg angular trajectory to implement feedback coe then derive an expression for the local volumekefis a
trol, the threshold equation implicitly defines the flight timefunction of the leg angle trajectoky. Combining these two
t,(k) by results will give a necessary condition for stability of a SLIP
model in terms of the controlled leg angle trajectgryNote
t,(k) = min{t : ho(G o Ry(x(k)), t) = O}. (26) thatby different SLIP models we mean SLIP models that have
>0 potentials satisfying the conditio®l-P3 but that differ in
their leg angle trajectoriep.
Using the explicit form of:,, eq. (19), this expression forthe | the remaining portions of this section, we use the pre-

x(k+1)
yk)y = C(G o Ry(x(k))). (25)

flight time, in turn, is a function of the control input ceding analysis to explore an informal relation between the
“degree of stability” as manifest in the singularity of the lin-
uk) = Hiy (k) = ¢ (-, y(k)) (27) earized discrete return map and the “cost of feedback”. The

latter is judged with respect to a nhumber of quantitative and
whereg parametrizes the leg angle trajectory in terms of thguglitative featgres of kn“own ,r’elevance in robqtic implemen-
output vectory (k) and the “dummy” variable, denoted by. tathns. These mformal cost” measures are mtrod'u.ced and

motivated in Section 3.2 and are shown to be quantifiable us-

ing the preceding analysis. Next, in Section 3.3 we apply the
2.4.4. Notation results of Section 3.2 to the study of several 2DoF SLIP mod-
FHS (i.e., SLIP models without pitching dynamics) that have
appeared in the literature, classifying them with respect to
the “cost” properties previously introduced. Finally, in Sec-

The salient symbols used in this paper are next listed, wi
brief explanations of their meanings.

General hybrid system definitions tion 3.4 we introduce a new 3DoF SLIP model that offers
7 finite index set, enumerated by a more realistic description of the physical robot RHex op-
X, chart: phase space of a dynamical system erating under the influence of its open loop gait generating
t,Af time, chart element (dimensionless) “clock” (Saranli, Buehler, and Koditschek 2001). We apply
Su vector field of a dynamical system at), the analytical methods of Section 3.1, characterizing sensory
i flow of £, on A, “cost” and control benefit laid out in Section 3.2, and are able
F, flow map to give for the first time conditions on the RHex clock param-
! transition function eters, some necessary for gait stability, and others sufficient
h, threshold function: triggers chart transition ~ for gait instability.

t,(Xxp) evolution time on char(t’?d starting afr, .

P Poincaré section (surface i) 3.1. Computation of the Local Return Map Volume

X, reduced Poincaré section 3.1.1. Stance

R return map fact9r o, In this section we apply the results of Section 2.3 to show that
R return, Poincaré map

R, is an involution by showing theffl is an involution for a

In general, an element or a map without the diacfitic SLIP model satisfying the assumptions of Section 2.4.1. We
denotes an element of the reduced Poincaré sedfjoor a firstapply Lemma 2. Given = 1 (x,), the threshold equation
map onk,. in Lemma 2 reads
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hi(G o Ji* (o), 1) = det(D, (Fy)(xo)) =
Z( 71(56\0) oGo /zl(fo)) —¢(Go /Zl (X)) = 1 — 0strp(x0) + 200;0t7p (X0) + Oo0gytrp(X0). (30)
_~ Dy
£(G(x0)) _/f(G o fi'(x0)) = This expression exemplifies the remarks in Section 2.2, since
¢ (Xo) — ¢(f1 (Xo))- (28) it will reduce to one, in general, only if , is independent of

the initial conditionsc,. Hence, using implicit differentiation
However, since this is just the negative of the original threslyt eq. (19) the determinant can be written in terms of partial
old equationi; (%, 1,) = ¢(fi* (X)) — ¢ (Xo) = 0,115 alS0@  gerivatives ofp (£, xo)
solution of eq. (28). Assuming thatx,) is indeed the minimal )
solution of the threshold equation f6y(x,) for all %, € X, _ 2
Lemma 2 can be applied to prove tftis an involution on det(D. Falxo)) = 1+ AlLden (31)
X,, = X. Bythe arguments in Section 2.4B,isalsoanin-
volution and Theorem 3 now implies th&t is locally volume ~ With
preserving at its fixed poinfdet(D, R, (x))| = 1.

t=tTp

A™M™ = sin(¢ (¢, xo)) -
(35047(?, Xo) — 200:,¢ (£, Xo) — Oy (7, xo))
+t—2

We now derive a formula for the Qeterm|nant of the J.acoblan AL = Sin(@ (1, x0)) 3 (1, x0) —  + Zo .
of the flow mapF, given an arbitrary leg angle trajectory
¢ (1, x0). This is used to compute the determinant of the Jacédbeit 7, cannot be computed in closed form in general be-
bian of the partial return maR, = F, o G at a fixed point of cause of the transcendental natureigfwe know that at a
R,. fixed pointx of F, o G with X, := G (x) the liftoff and touch-

Note that, in contrast t®,, | det(D, R,(X))| can be com- down heights are identical and hengg = 2z,. Therefore,
puted directly for any specific leg angular trajectgrusing  sin(¢ (t;p, Xo)) = —/1— 2% andé(t;,) = —6,. The eigen-
the closed-form expression of the flight phase flow eq. (17yalues of the partial return malg, o G at such a fixed point
Nevertheless, in Appendix A, Lemma 2 is applied to a partiaare{1, 1, —1, — det(D, (F, o G(x)))}.
ular family of leg angle trajectories in order to classify which Because5 = diag(1, —1, —1, 1), the determinants of the
of the resulting flight phase return maps are involutions.  Jacobian ofR, and F, are related as

The threshold functiom, for a general leg angle trajec-
tory ¢ is ha(xo, 1) = z(t) — O (7, o)) (eq. (19)). Setting det(D, Ry(x)) = det(D, F>(G (x))). (32)
h, = 0 determines the time from leg liftoft,(, = 0) to leg
touchdownt;, = t,. Becauser, is a transcendental map, a2DoF SLIP model. For the 2DoF SLIP model without pitch-
closed-form expression fes(xo) cannot be found in general. ing dynamics, the, 6 variables are absent arfd, G, and

It should be pointed out that the dependence ¢f xo) R, are two-dimensional maps. The determinant of the flight
on the flight timez is redundant in the sense that the leghase flow map simplifies to
angle is irrelevant to the dynamics of the system except at
the touchdown time; , (x,). Specifically, a given flight time  det(D, F2(xo)) = 1+ (33)
trp(xo) = t(xo) can be enforced by a purely state dependent sin(¢ (¢, x,)) (amgb(t, X0) — 200, (¢, xo)) +1t—20
leg angle “trajectory’¢ (x,) = arccoSz(t,(xg))) or by any SIN( (1, x0)) 3,0 (£, o) — £ + Zo
time-dependent trajectogy (¢, x,) that satisfies 1=trp

, The eigenvalues of the partial return mBpo G at its fixed
¢'(12(x0), Xo) = ¢ (xo) - (29)  pointx are(L, — det(D, (F,oG (¥)))}. With G = diag(1, —1),

g}e determinants of the JacobiansRyfand F, are related as

3.1.2. Flight

The advantage of including time as an additional argument
¢ will be pointed out in Section 3.3.1. det(D, Ry(x)) = — det(D, F,(G(x))) (34)

The flow mapF, takes the state vectag from its value
at leg liftoff to that at touchdownF,(xy) = x(¢;p)- A fixed
point of a symmetric flight trajectory satisfigs= S,(x) =
F, 0 G(X).

The determinant of the Jacobian Bf(xo) = f37°“”(x,) Having derived expressions for det(D,R,(x))| and
can easily be computed from the expression for the flightdet(D, R,(x))| in the two previous sections at fixed points
phase flow (17), bearing in mind that the flight timg (x,)  x of R, andR,, the composition of of those two partial re-
also depends on the initial conditions: turn mapsk = R, o R, can be used to factor the determinant

3.1.3. Local Volume of the Return Map at a Symmetric Fixed
Point
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| det(D, R(x))| at a symmetric fixed poirt, i.e., a fixed point sensing. Note that the common approach to assess different

that is common to botl®, and R, (see Section 2.3): feedback laws by their energetic cost to control the system is
not applicable here: according to the modeling assumptions
| det(D, R(x))| = |det(D,R; (R.(x)))| | det(D, Ry(x))| in Section 2.4.1, the model is energy conserving and feedback
-1 control is accomplished at no energetic cost by specifying the

= | det(D, R, (X))]|. (35) angle trajectory (¢, xo) of the massless SLIP leg.

N _ o Intuitively, three different aspects of sensory cost can be
A necessary condition for local asymptotic stability/oatx  readily distinguished.

is therefore det(D, R(x))| < 1, whereas a sufficient condi-
tion for local asymptotic instability isdet(D, R(x))| > 1.7 S1 Detection of the event where the feedback variables are

If for a certain leg angle trajectory | det(D, R, (x))| = 1, taken

no conclusion about the asymptotic stability®ft x can be (i) easy for liftoff: can be implemented in a SLIP hopper
drawn. If, on the other han®, satisfies the point Liouville’s by a simple switch at the toe

theorem aft, too, i.e., if it is an involution (see Appendix A) (i) difficult for flight phase apex: requires measurement
and if R and R; satisfy additional conditions, then neutral of vertical velocityz, either at apexz(= 0), or at liftoff
stability can be concluded as detailed in Appendix C. How-  (detect;, and measure time to apex= zo).

ever, the point Liouville’s theorem does not allow conclusion
about the preservation of a finite volume aroundghderR or
R;.

The factol det(D, R, (x))| is governed by the time of flight
eg. (30) which in turn depends upon the functional form of
the leg angle trajectory (eq. (31)). Demanding stability a¢
at a symmetric fixed point therefore imposes conditiong.on S3 Sensing of the feedback variablgby the output ma

82 Enforcement of the angle trajectapy a leg angle trajec-
tory ¢ specified with respect to an inertial frame re-
quires inertial sensing for enforcement (i.e., feedback
control), as opposed to a leg angle trajectory specified
with respect to the body franfe.

or, using the formalism of controlled plant models, Bro C (eq. (2)):

specified in eq. (27). (i) dimension of the domain (number of arguments) of
C;

3.2. Deadbeat Control and Singular Return Map Jacobians (ii) position versus velocity measurement: positions are

in general easier to measure than velocities;

(i) “quality”: inertial versus non-inertial (body frame)
For discrete systems, three different degrees of local stability ~ duantities.

can be distinguished, which are characterized by the eigen-

; -~ Because we exploit in this paper the factorizationRof
values of the Jacobian of the closed-loop return map at a fixe . L e
T . - o into stance and flight phase, it is natural to work in “liftoff
point: (i) all eigenvalues are within the unit circle; (ii) all . . . .
) L . ._.coordinates”, i.e., on the Poincaré sectirhence, the feed-
eigenvalues are within the unit circle and some are zero (“s

o e . " 'Back variables are naturally assumed to be taken at the “easily
gular control); (iii) all eigenvalues are zero (“deadbeat CONgtected” liftoff event as noted iBL. We appraise in Sec-

:;(2 ) tlr?egel:li?:rkael} EEE tnr?rr.gi;rt‘gbuelﬁraé?gufﬁseeﬂ;Iohoepr :E;urﬂon 3.3.1 the alternative choice of working formally in apex
P, q g coordinates (not to be confused with the physically unattrac-

“cost” of control and the more vulnerable to modeling errors; : .

. . . : ive choice of taking the sensory feedback measurements at
Although we are not interested in pursuing formal optimal; . .
. . : .~ the apex event). Critera2 andS3 can be addressed by rewrit-
ity conditions, assessing the overall sensory cost of various

control alternatives is of central concern in physical roboti g the leg angular trajectory that is defined in an inertial

C .
applications. One reasonable approach that we adopt herﬁ%me (see Figure 1) as

to count thg number gnd characterize the “quality” of the (1, x0) = pe(t, C(xo)) — 6(2). (36)
sensed variables required to complete the feedback loop of _ o _ - _
the controlled plant model eq. (2). Here, “quality” refers tol he second term in eq. (36) indicates #pais specified with
the frame of reference of the feedback variables, since botgspect to the SLIP’s body frame, as will be the case in all
frame sensing is generally easier to accomplish than inert@POF SLIP models in this paper. For 2DoF SLIP modgls,
N PR —————— " “is not defined and this term is absent.

. Note that necessary ana suticient conaitions ror stability woula require H H fot H HRAN T H _
the knowledge of the eigenvalues®fat k. However, eigenvalues of a com- . Itis not pOSS.Ible t_O dlStIthISﬁ3(III)_, qua“ty (I'e" I_ner .
position of two maps do not factorize into eigenvalues of the two individudidl versus non-inertial frame based) in the 2DoF setting, since
maps unless the maps commute, i.e., both are diagonalizable via the sddyeits very geometry, body frame coordinates cannot be in-

similarity transformation. troduced. On the other hand, the additional body pitch degree
8. This is motivated by the fact that a function frak? to RY whose Ja-
cobian has rankk < N everywhere maps aN-dimensional volume to a 9. Note that this feedback control cannot be modeled straightforwardly in our
K-dimensional volume. simplified SLIP system because of the masslessness of the leg.

3.2.1. Control and Sensor Modeling
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of freedom of the 3DoF SLIP model allows this distinction td3.2.3. General Solution of Leg Angle Trajectory With Singular
be made. A leg angle trajectory that only uses sensing witketurn Map Jacobians
respect to the body reference fral8& can be modeled by

the following output mayts As will be reviewed in Section 3.3.1, 2DoF SLIP models with

globally singular return map Jacobians have featured promi-
nently in the literature, both deadbeat and non-deadbeat. In
(‘?Bo) _ (arccgfzo):é%) = Cp(xo) (37) this section we derive the general form of leg angle trajec-
Do iz P tories that render the return map Jacobian globally singular.
In general, the matrixD, F, will have full rank. If, under the
where ¢y, is the leg liftoff angle with respect to the bodyinfluence of a particular leg angle trajectopyy, x,), the sec-
normal (see Figure 1) angk, is the leg’s angular velocity at ond factor of the closed-loop return map is rank deficient for
liftoff measured in the body frame. Specifying this trajectony|| state vectors, deb, R,(x,)) = 0 = det(D, Fy(x,)), and if

in the body frame yields a stable fixed point exists, then, as discussed in Section 3.2.1,
. we would expect a “more rapid” convergence to this fixed
@ (t, x0) = ¢, (1, gy, P5,) — O(2). (38)  point than if the matrix had full rank. Since eq. (31) is valid

S for arbitrary flight times, not just at a fixed point &8, a par-
In summary, the 3DoF SLIP model allows the distinction ofjal differential equation for globally singular leg angle tra-

the “quality” of sensing required for a particular control inpujectories¢ (, x,) can be obtained by setting eq. (31) to zero:
which in turn enables an assessment of the “cost” of contrdet D F,(x,)) = 0. This yields

: : 0,9 (1, xo) + 0:,0 (1, X0)
3.2.2. Deadbeat Control Requires Singular Return Map o 6 _0 40
Jacobians =200, (1, Xo0) — o4, (1, x0) = 0. (40)

In this section, we observe that deadbeat control of a 2DdF'€ general solution of this linear, homogeneous, first-order
or 3DoF SLIP model requires the Jacobian of a real-analthf’irtial differential equation by the method of characteristics
return map to be globally singular, not just at the control targéourant and Hilbert 1989) is given by

fixed pointx but in a neighborhood/ > x of the reduced

: ; . t,x0) = ®(t —t4,24,0,,0 41
Poincaré sectioi’.X° P, xo) = B — 14, 24, 64, 04) (41)
For the full nonlinear closed-loop plant model the returfyhere is an arbitrary differentiable function of its four ar-
mapR is deadbeat if there existska € N such that guments. The new variables with subscripturn out to be
apex coordinates
Ro---oRx)=xVxeX (39)
D e — .
K h = 2o
g . . éA e éo
for a specified target. Assumek is the smallest integer for 22
which R is deadbeat. Define 4 = zo+ EO
0:X - X 0, = 6o+ oo (42)
X > Ro---oR(x+x) —x specifying the time from liftoff to apex, the pitching velocity
k-1 at apex, the apex height, and the apex pitch angle. The corre-

_ . ) sponding “singularity” condition on the touchdown time
and; := {R(x) — X : x € X}. Q is obtained by a com- ig gptained by setting eq. (30) to zero. The general solution

position of the real-analytic return map and is therefore p, the method of characteristics is again given by apex coor-
also real-analytic. Sinc® is deadbeatQ(x) = 0 Vx € X1.  (gipates

By tojasiewicz’s structure theorem for real-analytic varieties

(see Lojasiewicz 1959, chapter 15), the €et(0) N i/ with trp(20, 20, B0, B0) = 14 + T(24, 64, 6,4) (43)

U c X aneighborhood containing the origin is a finite, dis-

joint union of real-analytic subvarieties with dimensions les¥ith = being an arbitrary differentiable function of its three
than or equal to dirgt’) — 1 = 2N — 1. Sincex; ¢ Q~*(0), arguments.

X1 NU is also of dimension less than or equal 2 1 and by

continuity of R there exists a neighborhodfl> x such that 3.3.2DoF SLIP Models: Sensor Requirementsand Stability

det(D,R(x)) =0 Vx € . . . :
( (x)) T e In this section we focus on 2DoF SLIP models with respect to

10. We are indebted to D. Viswanath for pointing out the requirement gt€NSOr requirements in their_fEEdbaCk |0(_)p- First, it is shown
analyticity of the return map. that all 2DoF SLIP models with globally singular return map
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Jacobians require a measurement of the vertical velocity, ei- A Poincaré section volume and the embedded one-
ther explicitly through the arguments ¢for implicitly. Then dimensional return map domain is plotted in Figure 2(a),
the dimensional reduction of the return map that follows frorwhere the return map imag&’ := R(X) with X =
the globally singular return map Jacobians is illustrated witf0.8, 0.99] x [—1.5, —0.1] is depicted by solid points joined
four different 2DoF SLIP models that have already appearday a black line. The color of the points matches the color of
in the literature. A stable 2DoF SLIP model with full rankthe inverse imageg~! (X’(ZA,)) of these points. The color
return map Jacobian is also presented to illustrate the powaarresponds to a parametrization of the return map image
of our analysis in the low-dimensional setting. Since the rén terms of the resulting apex heighis . Since a constant
duced Poincaré sectios;, is only two-dimensional for the leg touchdown angle is prescribed, the touchdown height
2DoF model, the presence of complex conjugate eigenvalussconstant and the return map image is a vertical line in
of the linearized return map at a given fixed point strengtheris,, z,)-coordinates. The curved black line denotes the one-
our stability criteria to the point that the determinant magnidimensional manifold of all possible fixed points for arbitrary
tude condition is both necessary and sufficient for asymptotieg angle trajectorie®. Although ¢ is a constant and does
stability. Thus, as we demonstrate, by varying one parametant explicitly depend on the velocity measuremenipier-
asymptotically stable, neutrally stable, and unstable behavitical velocity sensing is implicit in the derivation of the re-
can be exactly assigned. turn maps in Altendorfer et al. (2002), Geyer, Blickhan, and
Seyfarth (2002), Seyfarth et al. (2002) and Ghigliazza et al.
3.3.1. All Singular 2DoF SLIP Models Require Velocity (2003), because the'Ieg angle is not held constqnt throughout
Sensing _the flight phase, but is assgmed to be setto-28 in a_ltlme
interval (zo— /22 + 2(z0 — SINB), Zo++/23 + 2(z0 — SINB))
In this section several previously proposed (Raibert 198 which the COM is above the touchdown height 8irBe-
Geyer, Blickhan, and Seyfarth 2002; Seyfarth and Geyer 200@ye this time interval is reached, the leg is assumed to be at
Seyfarth et al. 2002; Ghigliazza et al. 2003) 2DoF SLIP coran angle where it does not interfere with the ground.
trol strategies are reviewed with emphasis on their globally
singular return map Jacobians. The general solution for a gloRaibert controller. The leg placement strategy proposed by
ally singular leg angle trajectory for the 2DoF SLIP modeRaibert (1986) for a 2DoF SLIP reads
is obtained from eq. (41) by omitting the pitch coordinates, )
hencey (¢, xo) =.<I>(t — 14, z'A). Howeyer, both conFroI input b1, x0) = 27 — arcsin(yits 4k (o — §)> (45)
arguments require the vertical velocity measuremgnthen 2 :
expressed in liftoff coordinates eq. (42), which leaves the con- i i )
stant trajectory (7, x,) = const as the only globally singular Wherer, is the duration of the stance phasejs a feedback
leg angle trajectory without explicit velocity sensing. We re9@in, andy is the desired forward speed. In Raibert's physical
view four 2DoF SLIP models with globally singular leg ang|émplementatlons, the duration of the current stance_phase was
trajectories, pointing out that even the leg angle trajectO@pproxmated by the measured duration of the previous stance
(1, xo) = const requires velocity sensing for its implemenphase- Here, we considerl co_nstan_t. In eq. (45) the average _
tation as highlighted in criterios2. forward stance speed used in Raibert (1986) was approxi-
mated byy,. Now y, can be expressed sg = /2(E — z,).
Constant leg touchdown angle policy. The constant leg Hence, eq. (45) is of the form (41) and the return map do-
touchdown angle policy, proposed in Altendorfer et al. (2002}pain is a one-dimensional manifold which is depicted in Fig-

Geyer, Blickhan, and Seyfarth (2002), Seyfarth et al. (2002)e 2b). The output map for this leg angular trajectory reads
and Ghigliazza et al. (2003), has the simple form C(xo) = 2.

G(t,x0) =2mr—B t>1y (44)

introduced in this paper can be applied to this model also to show that its

Where,B is a constant angle for all strides. No sensing of thefance phase is locally volume preserving at a symmetric fixed point whereas
} its flight phase has a globally singular return map.

feedback variable$3 is requ”edv' hence the output map 12. By Theoren 2 a fixedpoint of the time reversed stance flow mgplies
can be taken to be a constant. Since the return map Jacohian symmetric orbit of its vector fieldy. Symmetric orbits must contain
of this SLIP model is globally singular, the return map is fixed point ofG (Schwind and Koditschek 1997) and can therefore be

effectively one-dimensional. In Seyfarth etal. (2002) this onéharacterized for the 2DoF SLIP model by the two-dimensional fixed point
. . . . set FixG = {x € X : y = 0,z = 0}. Fixing the energyEg removes one
dimensional variable was taken to be the apex height, wherggension, hence the set of all possible fixed points of the return map factor
in Ghigliazza et al. (2003) the angle of the touchdown velocitg, forms a one-dimensional manifold . Given that anyt = (z, z) | with
was chosert z > 0 lies on a symmetric orbit of the flight phase vector figjdon the
reduced Poincaré sectiot, the set of all possible fixed points of the return
11. A similar leg angular trajectory for a 3DoF SLIP model was shown imapR is identical to the one-dimensional manifold of possible fixed points
Ghigliazza et al. (2003) to yield asymptotically stable behavior for certainf R1. The fixed points ofR are then given by the intersection of this line
parameter values. Although not presented here, the return map factorizatwith the return map image.
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Leg retraction and “optimized self-stabilization”. In the  z,, requiring the sensing of both liftoff variables and the online
leg retraction schemes proposed in Seyfarth, Geyer, and Heamputation or storage of a lookup table for a function from a
(2003) and Seyfarth and Geyer (2002), the leg is set at a fixeglo-dimensional to a one-dimensional space. In eq. (47) only
anglea, at the apex of the flight phase and then starts rotatirtge sensing of, = 7, and a clock is required, andis a func-
towards the ground. Before reaching the apex, the leg angien from a one-dimensional to a one-dimensional space. In
can be arbitrarily placed as long as its toe does not touthis context, “self-stability” seems to refer to the fact that the
the ground. In Seyfarth, Geyer, and Herr (2003), a constaleqy angle is a function of time (starting at apex) only and does

angular velocityw is used (leg retraction), i.e., not explicitly depend upon the liftoff variablg; it does not
mean that no sensing (e.g., detection of the apex) is required.
(1, x0) =as ot —1y) 1>1 (46)  In the next paragraph we address the explicit parametrization

whereas in Seyfarth and Geyer (2002) a nonlinear angul%frth's one-dimensional return map manlf_old and show how
trajectory that is constant over all strides It can be used to reduce the sensory requirements of control.
Sensory requirements of globally singular control. Given
Pt xo) =alt —t,) t>1y (47) a globally singular 2DoF SLIP return map with leg angle
trajectory¢ (z, xo), this leg angle trajectory can be rewritten

is employed. In both cases, the output maisy) = #,4. - : )
Clearly, these two leg placement schemes are also of the foi';}%q> (U, x0) = DU — 1y, 24) a}ccordlng to the results in Sec-
ign 3.2.3. The corresponding output map can be chosen to

(41) and therefore the return map image is a one-dimensio ;ﬂc o T This d i titut d
manifold. These return map images are plotted in Figures 2 (Xo) = (2, 24) - This 0€s not constitte a sensory ad-
and (d), respectively. Both return maps converge to the sa ntage overo becaus_e still one position and one velocity
point; however, the second trajectory (Seyfarth and Geylg}easurement are required. The threshold function reads

2002) achieves convergence to a desired apex height within

one strideé? Since the apex Poincaré section in Seyfarth and ha(xo, 1) = 2(t) = cos(d>2(t ~ 1 24)) (48)
Geyer (2002) is only one-dimensional and one control param- = z,— M —COS(D(r — 14, 24)) -
eter (the touchdown time or rather the leg touchdown angle) 2

is available, the desired apex height can be reached Wit@étting h, to zero implicitly defines a functiomz, with

one stride. On the other hand, the touchdown Poincareé sgGa supstitutiony — 7, — Ar,(z4). At(z,) encodes the
tion parametrized byz, 2) is two-dimensional and deadbeatyjrect control parameter during flight, the total flight time
control can only be achl_e\{ed W|_th|n at Iea;t two strldes. This 1 Az, (z,). Adifferent angular trajectory enforcing the same
seems to be a contradiction, since the discrete time behqye, flight time for all initial conditions;, Z, can then be de-
ior of identical physical systems parametrized by differerjqq bythe inversar;: &t —1,) := Bt —14, A7t —1,))
Poincare sections must be conjugate, i.e., related by a coorghith 5 new output mag (x,) = 7, whose only output is the
nate transformation. Particularly, the dimension of the rétusilght time measured from apex. Hence a leg angle trajectory
maps of bot_h parametr_izations must agree. In AppendixBitis; . )that initially required the sensing &f,, z,) T and time
_shown that if all coordinates of the dynamical flow are t.akegan be replaced by one that only requires sensing of the apex,
into account, the apex and touchdown return maps are indeed ; — : and time. This rewriting of the angular trajectory
conjugate. However, because the open-loop system is dynaifskes use of the invariance of the flight time with respect
ically decoupled in apex coordinates (i.e., the second variale certain parametrizations ¢f (eq. (29)) and demonstrates

does not influence the evolution of the first in these coord@Nhy deadbeat control for SLIP models can be achieved with
nates), restricting the feedback to depend upon the first vafisq,ced feedback sensisy(i).

able yields effectively a one-dimensional closed-loop return
map. This one-dimensional nature is illustrated in Figure Zd%, i ,
where the one-dimensional manifold := R(X) is plotted 32A NO”-SlngUlar, Stable 2DoF SLIP Model Without
together with color-coded inverse imagRs! (X7(z,,)). As Velocity Sensing

can be seen in Figure 2(d}’ is aligned with one of the in- e now investigate a 2DoF SLIP model with a full rank return
verse images, hence in the first stride an arbitrary p@in) map Jacobian where we address t&8fi) andS3(ii) in that no
is mapped onta”’, whereas in the second stride all points 0Rye|ocity sensing is required for the feedback loop. For certain
this manifold are mapped to the target point. parameter values, this model does exhibit asymptotic stability.
Seyfarth and Geyer (2002) call this control scheme “optin, the previous 2DoF examples of Section 3.3.1, once singu-
mized self-stabilization”, indicating a computational or S€Ntrity has been imposed, the determinant of the return map
sory advantage over regular deadbeat control. Inregular deagrobian vanishes and the factor analysis can contribute no
beat control, the leg angdewould be a function of botth and  more information to the stabilization problem. However, as

13. The angular trajectorywas obtained by numerical inversion of the apex_this example _ShOWSv _Since the return map has dimension two,
height-to-apex height return map in order to implement deadbeat control.if we operate in a regime where the eigenvalues are known to
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2o Zp
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0.8 0.9 % 1 0.8 0.9 2 1
c) d)

Fig. 2. One-dimensional return map domains and their inverse images for rank-deficient SLIP-controllers: (a) fixed leg angle
touchdown; (b) Raibert; (c) leg retraction; (d) two-step deadbeat. All elements of a colored line (i, thg-plane are
mapped to the point with identical color. The union of all these points constitutes the return map image. The color corresponds
to a parametrization of the return map image in terms of the resulting apex hejghithe range of apex heights considered
isz, € [0.92,1.8]. The curved black line identical in all four figures denotes the set of all possible fixed points, as explained
in Footnote 12.

have non-zero imaginary components, then _the properties of <1 - w«/ilfiz k<1
the determinant completely determine stability. We can then -1 - k=1
dictate the stability properties through a closed form expres- -1 - k> 1
sion and this is indeed how the present example has been
adjusted. . -
The leg angle trajectory for this model reads In order to illustrate the predictive power of eq. (50), we nu-
merically approximate the determinant detR(x)) of the
@ (1, x0) = wt + k arccoszo) + a, (49)  full return map for fixed SLIP parametel = Eo/mgl, =

wherew, k, anda, are constants. Note thag does not ap- 21, ¥ = 13, and fixed recirculation parameters = r,
pear in eq. (49), hence the output map could be written 45 = 14 for differentk € {1/6,0.5,1, 2, 3.3}. Here, E, is
C(xo) = zo. Fork = 1 anda, = 0, the leg rotates clockwise the dimensionless total conserved energy of the system and

at a constant rate starting with the liftoff angle arccas,). e dimensionless spring potentialigs) = (y/2)(¢ — D?.
This can be considered a crude 2DoF SLIP version of ti{de then compare these values to the values of the determinant

leg angle profile specified by RHex’s open-loop controllePbtained by inserting the numerically determined fixed points
I . C
(Saranli, Buehler, and Koditschek 2001). A more elaborate= (Z 2)" into €q. (50). The determinants obtained in those
3DoF SLIP version of RHex’s open-loop controller is prefWo different ways are plotted in Figure 3(a) and agree to
sented in Altendorfer, Koditschek, and Holmes 2004. Usin? high precision |(det(D, R(x))| — | det(D, F,(G())Il <

eq. (33) the determinant of the Jacobiarkot a symmetric 10 )- In Figures 3(b)—(d) iterations of the return map in
fixed point becomes (20 2o)-Space are shown fare {1/6, 1, 3.3} and initial con-

ditions off the fixed point. The eigenvalues are complex con-
|det(D,R(x))| = |det(D,F,(G(x)))] jugate pairs in all three cases; hence, the magnitude of the
—Z(k — 1) eigenvalues computed in eq. (50) specifies sufficient as well

= N+ =l (50)  as necessary conditions for stability and instability in this case.

—Ztwv1-7?

Downloaded from http://ijr.sagepub.com at UNIV OF PENNSYLVANIA on February 23, 2008
© 2004 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.


http://ijr.sagepub.com

994 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / October—November 2004

ﬁ \\\ -0.07

4 ‘\
4 \ .
0.99_¢_ : 9
0.98 \l o
2) \ \ b) k=33

-012 -0.11

Zp

| det(DxR(X))|, | det(Dx F2(G(X))) |
é

-0.09 _I_

=]
‘N
o o
N ‘. \
-0.06 . E
te . .o 1-0.04
0.87 0.874 0.878 0.87 0.88
z _ z
c) k=1/6 0 d) k=1 0

Fig. 3. (&) Comparison of the numerically computed determindet(D,R(x))| (+) of the return map Jacobian to the
determinantdet(D, F>(G (x)))| (o) obtained by using the numerically determined fixed points in eq. (50). (b)—(d) Trajectories
around a fixed point. Because of slow convergence, only every ninth iteration in plot (b) and every fifth iteration in plot (c)
are shown.

For k = 3.3, eq. (50) specifies an unstable fixed pointsensor model (37) required to achieve singular control and
and, indeed, the plot of a numerical simulation in Figure 3(l)haracterize the resulting globally singular return map Jaco-
depicts a typical trajectory spiraling away from a small neighbian. Secondly, comparing the number of available design
borhood as required. Far= 1/6, eq. (50) specifies asymp- parameters of this SLIP model to the dimension of the re-
totic stability, and trajectories spiral towards the fixed pointluced Poincaré section, we exclude the possibility of deadbeat
as depicted in Figure 3(c). Fbr= 1, eq. (50) suggests neutralcontrol.
stability and numerical simulation verifies that all trajectories We want to investigate the possibility of deadbeat con-
lie on deformed circles around the fixed point as plotted itrol with a leg angle trajectory of the form (38)(z, xo) =
Figure 3(d). bc, (t, sy P5,) — (1), 1.€., Using only body frame sensor in-

Figure 3(d) is reminiscent of KAM-tori of area-preservingformation in the feedback loop and specifying the leg angle
two-dimensional mappings (see Moser 1973). However, asjectory in the body frame.
can be seen in Figure 4, the phase space volume is notAs shown in Section 3.2.2, deadbeat control requires sin-
preserved away from the fixed poiftfor k = 1. In Ap- gular return map Jacobians in a neighborhood of the fixed
pendix C we invoke reversibility (Sevryuk 1986) in place ofoint and hence for deadbeat control the leg angle trajectory
area-preservation to show that the numerically observed nebt, (¢, ¢, ¢Bo) 6(r) mustbe of the forn® (t—t,, z4, 0.4, 64)
tral stability for the leg recirculation scheme with= 1is (41). While
expected. .

() = 6+ 6ot
O + éoio + éo(l‘ — Zo)
= 0, +0,(t — 1)

3.4. 3DoF SLIP Models: Body Frame Sensing and Stability

In this final example application, we address the full 3DoF

SLIP model with pitching dynamics depicted in Figure 1 thatloes satisfy this functional formgc, (, ¢s,. $5,) does not,
will be the basis for a RHex inspired running monoped in Alexcept for¢>c,,(t,¢>30,¢'>30) = const. This can be shown
tendorfer, Koditschek, and Holmes (2004). We develop twoy rewriting the differentials in eq. (40) in terms of body
central results. First, we characterize the (unique) body frangeordinates:

Downloaded from http://ijr.sagepub.com at UNIV OF PENNSYLVANIA on February 23, 2008
© 2004 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.


http://ijr.sagepub.com

Altendorfer, Koditschek and Holmes / Stability Analysis of Legged Locomotion 995

" Asyriptotically stable
fixed point

-05/
0.89 05/ i -0.01894:

o
D

Zg
—
\

0.87 -0.0194

o | x10°
. 9/0 10

: : 0
0833 -0.08 -0.06 0 -0.1331
2o Fig. 5. A sample discrete trajectory on the three-dimensional
Fig. 4. Contour plot of det(D, R (x))| for the leg angle trajec- Poincaré section parametrized bj, 6, 6,) converging to
tory (49) withk = 1. Thefixed poinf ~ (0.8772 —0.0764T an asymptotically stable fixed point. Because of the rank-

-2.54 ‘ Z.0

lies on the|det(D,R(x))|] = 1 contour, whereas volume deficient nature of the leg placemeny,is a function of the
(area) is not preserved away from the fixed point. other Poincaré section variables = cog6, + 7/2 — B).
The values of the dimensionless variables characterizing this
system arecy, = 400,cpy = —12,¢yy = 0, E; = 2.1,

y = 13.25,1 = 0.489, ands = 1.0562.
Z(Z) -1+ Z%Zo

at¢CB - ¢308¢30¢C8 + (l _ Z0)3/2

9y, 6c, = 0. (51)

The coefficient )
4. Conclusions

75— 14 Z5z0

(1—z9)%2 In this paper we use the example of the SLIP locomotion
model to show how factored analysis of the return map may
be a useful new tool in the stability analysis of hybrid Hamil-
onian systems. Specifically, we derive a necessary condition
Qr the asymptotic stability of SLIP for an arbitrary leg angle

ajectory as well as a sufficient condition for its instability.

hese conditions are formulated as an exact algebraic expres-
sion despite the non-integrability of the SLIP system. Hence,
o(t,x0) =2 —B—0(). (52) leg recirculation strategies that violate the above condition

. can be discarded without recourse to cumbersome numerical
This 3DoF SLIP model bears close resemblance to the Lisgmylations. We also use the closed-form expressions to char-

model (Schmitt and Holmes 2000) of horizontal legged locoscterize the “cost” of sensing required for the imposition of
motion, where at the end of each stance phase the new stafggt” transients in a variety of 2DoF SLIP models that have
leg is set at a fixed angle with respect to the non-inertial bodyppeared in the recent legged locomotion literature. Finally,
axis, thus implementing a similar leg angular trajectdry.  we give a preview of the application of this analysis to a par-
A sample discrete trajectory on the three-dimensiongkyjar 3DoF SLIP model with pitching dynamics that will
Poincaré section is shown in Figure 5 for a potential ofe ysed in the companion paper (Altendorfer, Koditschek,
the formP3 with V,(¢) = (v/2)(¢ — D* andV,(¥,0) =  and Holmes 2004) as the stance phase component of a SLIP
1+ cost® + oy + cyy®. The motivation for this poten- rynner designed to shed light on the purely open-loop stable
tial will be discussed in Altendorfer, Koditschek, and H0|me%peration of the robot RHex.
(2004). Given that the only design parameter of eq. (52) IS The present paper provides a new tool to assess the sta-
B, a target pointz, 6, ) in the reduced three-dimensionalbility properties of hybrid models of legged locomotion. It
Poincaré space cannot be specified a priori. Hence the posgio paves the way for a more principled investigation of de-
bility of deadbeat control for the 3DoF SLIP model with thetailed, biologically-motivated leg placement strategies in the
body frame sensor model (37) must be discarded. LLS model (Schmitt and Holmes 2000) which captures many
14. Note, however, that the flight duration is zero. aspects of insect locomotion (Schmitt et al. 2002).

cannot be written in terms of ¢, andgs,, hence;, ¢c, =
0. Equation (51) then implies,, ¢c, = 0= 9,¢c, .

We will present numerical evidence in the form of a
asymptotically stable trajectory at particular parameter valu
of a 3DoF SLIP model in order to show that stable behavi
is possible with the leg angle trajectory

Downloaded from http://ijr.sagepub.com at UNIV OF PENNSYLVANIA on February 23, 2008
© 2004 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.


http://ijr.sagepub.com

996 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / October—November 2004

Appendix A: Time Reversal Symmetry of Appendix B: Equivalence of Apex and
RHex-LikeLegAngle Trajectories Touchdown Poincaré Sections

In this appendix we apply the condition in Lemma 2 to dn Section 3.3.1 it was noted that, in Seyfarth et al. (2002) and
particular family of leg recirculation schemes, thus provingeyfarth, Geyer, and Herr (2003), one-dimensional Poincaré
the involutive nature of the corresponding time reversed flomaps characterized by the apex event during flight phase
map. In particular, we prove that the solutigp (x,) of the were used to illustrate the asymptotic behavior of the con-
threshold equation (19) f&f, = G o F, atx, € X for a par- stant leg touchdown, leg retraction, and “optimized self-
ticular leg angle trajectory also solves the threshold equatistabilization” strategies for the 2DoF SLIP model. On the
at S,(xp). We focus on the family of leg angle trajectories  other hand, straightforward counting of dimensions shows
: that the Poincaré section of a two-dimensional SLIP model
(1, xo) = (1) + k (arecoszo) + o) — o — ot (53) should be two-dimensional: the dimensionless phase space
whereax (¢) is an arbitrary analytic function of time. This fam- ¥ := R x R* x R? with elementst = (y, z, y, 2)" is four-

ily has the form of a RHex-like recirculation strategy used ifimensional; conservation of energyx) = E, and the def-
Altendorfer et al. (2004). The threshold functibs(xo, t) for  inition of the Poincaré sectioB := {¥ e X p(x) =0,y <

a 3DoF SLIP model reads 0} should reduce the dimension by two. For the Poincaré sec-
hy(xe, 1) = 2(1) — COLP (1, Xg)) . (54) tion denoting the togchd(?wn e\_/er)i(x) = VyrP+z2 -1

_ ) whereas for the Poincaré section denoting the apex event,
Then, usingG (xo) = (20, —6o, —Z0, 60) " and pa(x) = z. Using conservation of energy to eliminage

the reduced Poincaré sections can then be parametrized by

x = (z,2)" € X for the touchdown event and by, =

Go f/"(x)) = | — (99 + 6otro) (55)  (ya,z4)" € &, for the apex event. While for some singular
—(o =) leg placement strategies the reduction to a one-dimensional

2
p

20 + Zotrp —

O Poincaré section at the touchdown event is obvious, e.g., for
the threshold function in Lemma 2 reads the constant leg touchdown angle strategy illustrated in Fig-
ha(G o £ (x0), trp) = ure 2(a), there is a priori no reason why the apex Poincaré

. section should only be parametrized by one variable.
%o — COS(O{(ITD) — Gotrp + k arccoszo + Zolrp— In order to illustrate the equivalence of the discrete dynam-
2, ) ical systems defined by the two different Poincaré sections,
5~ (6o + Ootrp) (k — 1)) = 0. we give an explicit coordinate transformation between the

. . . . . ) coordinates of the two reduced Poincaré sectirend X,.
For a solution of this equation with the leg recirculating onl3f_DJeCause of the reset of thecoordinate at touchdown, this
onkce ‘?'“””9 ﬂ'ghw’(IThD’ x‘,’) < (.(3/2%”’ 2”),' This must be coordinate transformatiofi, relates the touchdown variables
taken into account when Inverting the cosine x to the next apex variables, and not to the previous apex

arccoszo) = _<a(tTD) - éofTD + variables. It has the form
2 T, : X —> X,
. Irp
karccoszo + zotrp — —=-)
2 Z . Ya
Z A

(0 + botrp)k = D)) + 27
wherey, = /1—2%, + (vV2(Eo — 2) — 22) Z10 @andz, =

& cos(karccoSz(trp))) — cos(arcco$zO) + a(trp) i i )
Zro + L2 and(z.0,210)" = G o Ry(x). In the notation of

—Botrp — (O + Ootrp) (k — 1)) =0 the controlled plant model (2), the control inputs—the apex
to touchdown timer, = u, and liftoff to touchdown time
k=1
< z(trp) — coS(@(trp, X0)) =0 trp = u—are related by
with ¢ (¢, xo) as in eq. (53). Fok = 1 this equation is equal u (k) = u(k) — 2,0(k) . (56)

to the original threshold equation (54 )gtand hence; (x)

also solves the threshold equation ftx,). Assuming that The difference between the two parametrizations arises in the
trp(x0) is also the minimal solution of the threshold equatiostructure of the controlled plant model mapsthe apex con-
atS,(xo) forall x, € X, we can conclude that the time reversedrolled plant model mapi, can be written as two separate
flow map of the flight phase with a leg angle trajectory defineapsA. andA, that are independent of, (k) because of the

by eq. (53) withk = 1isaninvolutionont,, = X’.According  coordinate reset at touchdowh:

to Lemma 3 this means thEEO_G = R? is also an involution. 15. The formal expressions far, andA, can easily be derived and are not
Then| det(D, F,(x)| = 1 at a fixed poink. given here.
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to be of type(p, ¢) with p + g = N atx if the characteristic
polynomial of the Jacobian @f atx reads—1)" (A +1)? (A —

(zatk + 1), yatk +1)" = A(zak), ya() ", ua(k)) 1) This is the general form of the characteristic polynomial
= z24k+1) = A.(zsk),usk)) at the fixed point, since any involution can be written in a
S+ = A2k, usk)). neighborhood of its fixed point as a partial reflection (Bochner

’ ’ 1945).

Hence, the only way that, (k) can enter the apex return MaAPDERNITION 5. [Reversible diffeomorphism] A diffeomor-

gA ft'thr(zﬁgh fgeg::)aclzf,(kr)]' =h éA(k) t= f[?l(z?](k)', Y A(tk)l)d' phismR : R¥ — RY is called reversible with respect to the
mitting the variabley, (k) which denotes the horizonta 'S'inevolutionG fGoRoG =R

tance between the toe pivot and the flight phase apex, a on
dimensional return mag, (k +1) = A.(z4(k), t.(z4(k))) =: LEMMA 4. [Composition of involutions] The composition
R.(z4(k)) results. For the 3DoF SLIP model with pitching,R = Rz o R, of two involutionsR; and R; is reversible with
the apex return map without, (k) dependence reduces therespect to each of them, i.&, o Ro R0 R = id = R;oRo
dimension from four to three. R, o R. Likewise, a diffeomorphisn® that is reversible with
Hence, the apex Poincaré section can be a convenigfgpect to the involutioR, can be written aR = R, o R,
parametrization since the one-dimensional character of tWdereR; is another involution (Birkhoff 1915, section 14).

return map is explicit in apex coordinates if feedback is reyec i\ rion6.  [Symmetric fixed point of a reversible diffeo-

stricted to a subset of the Poincaré section coordinates QﬂBrphism] By Lemna 4 a diffeomorphisn® reversible with
containingy, (k). The two Poincaré sections, on the OtheFeSpeCt to the involutio®, can be written a® = R, o R,.

hand, are only equivalent mathematical descriptions of theg, o g pointx € RY of R is called symmetric if it is also a

same physical system and do not pose any restrictions on e, 4 point of R, (Roberts and Quispel 1992).
leg angle trajectories. However, the touchdown Poincaré sec-

tion seems to be a more natural choice for the description of The reduced Poincaré map for SLIP models in this paper
physical systems, as discussed in Section 3.2.1. was factorized a® = R, o R, (24). If R, andR; are involu-
tions, then the following abridged version of theorem 2.9 in

Appendix C: Invariant Tori Near a Fixed Point Sevryuk (1986, pp. 147-152) can be applied.

of 2DoF SLIP Models THEOREM 5. (Invariant tori near a fixed point of a re-
ersible diffeomorphism (Sevryuk 1986)) Let R and R;

In this section we establish criteria for the neutral stabilit uiff hi Y RV tic |
of fixed points of the return mag of a legged locomotion e diffeomorphismsR, R, - , analytic in a

. . . N
model. The closed circles in Figure 3(d) suggest the existengg'ghborhmd (_)f a common fixed poifte R a_nd letR
of one-dimensionak-invariant tori, on whichR acts quasi- be reversible with respect #®,. Assume that the eigenvalues

periodically. This is reminiscent of area-preserving mappin i )"}":1’-“’1”/2 of the Jacgbian atthe fixed ppiD.LR(j.) sat-
which can possess KAM-tori (see Moser (1973) and refel? A € ST\ {—1, 1} and{A;}i1..v,2 Are pairwise distinct.

ences therein); however, as indicated in the determinant cd _addltlon*a?sumzt?'a 'S nor]:-d*egenerate, I.I(::Mle N Slfr%h
tour plot for the stance phase alone (Figure 4), area is in ge atR € Wy (for a definition of W see Sevryuk 1986). Then

eral not preserved in a neighborhood of the fixed poink pf the following hold.

unless the leg placement policy is designed to exactly com-(a) |n any neighborhood of € RY there existN/2-
pensate for the determinant deviations of the stance phase. It = gimensional tori invariant unde® and R,. The action
is well known, on the other hand, that reversible dynamical of R on these tori is quasi-periodic, and the frequencies
systems can mimic the behavior of Hamiltonian systemsinthe  f this action are constant on those tori.

sense that they can also exhibit KAM-tori (Arnol'd 1984; for

a review, see Roberts and Quispel 1992). We will show how, (b) There exist neighborhoods). of ¥ e R"
under certain assumptions, a theorem on reversible mappings ~ (lim._odiam@,) = 0, 0., C O, if & < &) such
(Sevryuk 1986) can be applied to establish the existence of ~ that lim._, 7322 = 1 whereg, denotes the union of
R-invariant tori in a neighborhood of a fixed point. invariant tori inO...

C1. Theorem on Invariant Tori Near a Fixed Point of () Ry s aninvolution of type(N'/2, N'/2).

Reversible Diffeomorphisms C2. Application to 2DoF SLIP Models

Before stating the main theorem, several definitions and

lemma must be provided, We now argue that this theorem can be applied to the 2DoF

SLIP model with a RHex-like leg recirculation (49) with
DEeFINITION 4.  [Involution of type(p, ¢)] Let x € R¥ be a & = 1 as suggested by Figure 3(d). The recirculation strategy
fixed point of the involutionG (x) = x. Aninvolution is said (eq. (49)) is clearly of the form (53), hen®g is an involution
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by the result of Appendix A. In Section 3.1.1 it was showr{PH). Helpful discussions with D. Viswanath, R. Ghigliazza,
that the partial stance return ma is also an involution. and R. Groff are gratefully acknowledged.
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