
Interactive Multi-Modal Robot Programming

Soshi Iba1, Christiaan J.J. Paredis3, and Pradeep K. Khosla1, 2
1) The Robotics Institute, Carnegie Mellon University

2) Electrical and Computer Engineering, Carnegie Mellon University

Pittsburgh, Pennsylvania 15213-3890
3) Systems Realization Laboratory

G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology

Atlanta, Georgia 30332-0405

iba@ri.cmu.edu, chris.paredis@me.gatech.edu, pkk@ece.cmu.edu

December 17, 2003

Abstract

As robots enter the human environment and come in contact with inexperienced users,

they need to be able to interact with users in a multi-modal fashion—keyboard and mouse

are no longer acceptable as the only input modalities. This paper introduces a novel

approach for programming robots interactively through a multi-modal interface. The key

characteristic of this approach is that the user can provide feedback interactively at any

time—during both the programming and the execution phase. The framework takes a

three-step approach to the problem: multi-modal recognition, intention interpretation, and

prioritized task execution. The multi-modal recognition module translates hand gestures

and spontaneous speech into a structured symbolic data stream without abstracting away

the user’s intent. The intention interpretation module selects the appropriate primitives to

generate a task based on the user’s input, the system’s current state, and robot sensor

data. Finally, the prioritized task execution module selects and executes skill primitives

based on the system’s current state, sensor inputs, and prior tasks. The framework is

demonstrated by interactively controlling and programming a vacuum-cleaning robot.

The demonstrations are used to exemplify the interactive programming and the plan

recognition aspect of the research.

 2

Nomenclature

Φp = p-th robot program described in sequence of discrete actions

Np = ||Φp|| = number of actions in Φp

Tp = last time index in Φp

φ p,a = a-th action in Φp

P = number of programs in the library
p
to = robot position and orientation at time t for Φp = (xt, yt, θt)p [m, m, rad]

pO = set of all p
to during the execution of Φp = 1 2{ , }

p

p p p
To o o… = ,,0 ,1{ , , , }pp Np pO O O

pτ = set of all time t = {1…Tp} during the execution of Φp [sec]
,p aτ = set of all time t during the execution of φ p,a, before φ p,a+1 = ON OFF, ,(,)p a p aτ τ [sec]

,p aO = set of all p
to during the execution of φ p,a and before φ p,a+1 = ON OFF, ,(,)p a p aO O

ON,p aO = set of all p
to during the execution of φ p,a = , ONp a

pO
τ

OFF,p aO = set of all p
to after the execution of φ p,a and before φ p,a+1 = , OFFp a

pO
τ

pλ = Continuous Density HMM description of Φp

aij = state transition probability from state i to state j

bij = observation probability from state i to state j = (,) (,)ij ij ij ijN WN Sθ θµ µΣ i

ijµ = mean robot position (x,y) from state i to state j [m, m]

ijΣ = covariance matrix of robot position from state i to state j

ijθµ = mean robot orientation θ from state i to state j [rad]

ijSθ = angular variance (between 0 and 1) of robot orientation from state i to state j

ψij = value of bij at a distance of 3σ from the mean

rij(t) = Mahalanobis distance between to and { ijµ , ijθµ }

δt(i) = token value of state i at time t

Pi,Si,Ti = i-th robot position (x,y) in the set of P, S, or T [m, m]

 3

1. Introduction

An important aspect of a successful robotic system is the human-machine

interaction. As robots enter the human environment and come in contact with

inexperienced users, they need to be able to interact with users in a multi-modal

fashion—keyboard and mouse are no longer acceptable as the only input modalities.

Humans should be able to communicate with robots using methods as similar as possible

to the concise, rich, and diverse means they use to communicate with one another. This

paper introduces a novel approach for programming a robot interactively through a multi-

modal interface. The key elements behind this novice-friendly system are intuitive

interfaces based on speech and hand gesture recognition, and interaction capabilities that

allow the user to take over the control of the robot at any given time. Such interaction

capabilities give a sense of assurance to the users and help them in dealing with loosely

calibrated position sensors by including a human in the control loop. Users are able to

initiate a programming phase through voice commands and move the robot to any desired

location. The sequence of commands turns into a sequential robot program. The user can

then initiate an execution phase and execute the program while taking control at any

given time. The multi-modal human-robot interaction described above is similar to the

WYSIWYG (what you see is what you get) interface introduced in the human-computer

interaction domain. Instead of off-line robot programming, this on-line robot

programming method lets the user see what to expect from the program execution.

Industrial Robotics: In the early years of robotics, a hand-held control box called

a teach pendant connected to a robot controller used to direct and program a robot was

the most common mode of interaction. As software capabilities improved, the ability to

do off-line programming proved to be a significant step forward. Interfaces to

manipulator systems made further progress with the introduction of user friendly

programming paradigms for sensor-based manipulation [27]. The current state-of-the-art

in manipulator interaction is based on iconic programming [9] and/or programming by

human demonstration [13,42]. The goal of these paradigms is to translate the burden of

programming manipulator systems from robot experts to task experts. Task experts have

extensive knowledge and experience with respect to the task, but may only have limited

 4

expertise in robotics. To enable these novice users to interact with the robot, the interface

needs to be intuitive and have the ability to interpret the vague specifications of the user.

An example of such a system is the gesture-based programming interface developed by

Voyles and Khosla [42]. The robot system observes the operator unobtrusively while she

is demonstrating the task. The observations can be based on vision, range sensing, data

gloves, or tactile sensing.

Personal Robotics: Due to the growing field of personal robotics, we come in

contact with more robots than ever before. Examples of such robots include pet robots [8],

tour-guiding robots [40], entertainment robots [14], intelligent wheelchairs [21,25], and

mobile vacuuming robots [28]. Traditionally, mobile robots are controlled via a joystick

or mouse, but increasingly, voice or gestures are included as input modalities [5]. In this

paper, we explore the task of interactively controlling and programming a vacuum-

cleaning robot called Cye [4]. This task requires both interactive multi-modal control and

a certain degree of autonomy. To accommodate novice users, the programming

framework is based on multi-modal interaction (hand gestures and voice commands) and

encompasses preemptive interaction during both programming and execution.

Multi-modal Interface: From the perspective of multi-modal interfaces, (e.g.

gestures, speech) the interaction between the user and the robot systems has many

advantages over conventional interaction modes, such as teach-pendants or joysticks.

Hand gestures have an advantage in specifying geometric objects and spatial (three-

dimensional) data, and are more intuitive for conveying information to robots that exist in

the three-dimensional world [34,37]. The advantage is even more obvious when

interacting with a team of robots, where complicated maneuvers and grouping commands

can be executed by gesturing a set of points, a region of interest, or a group formation

[33]. Hand gestures are convenient for specifying parametric and 3D information, but not

for symbolic gestures. For symbolic information and commands, speech input is a natural

choice. In comparison to the GUI used in personal computers, hand gesture can be a

superset of a mouse, and speech can be a superset of a keyboard.

Intention Interpretation: The most challenging aspect of interactive robot

programming is to interpret the intent of the users, rather than simply mimic their actions.

Intent is the purpose or goal the user has in mind. User input can be vague, inaccurate,

 5

and often contradicting. An intention aware system can be used to reduce unnecessary

and often redundant instructions by being aware of what the user really wants. Intention

interpretation can be thought of as a search for the mapping from the user input and robot

sensory data to the correct set of robot actions. To accomplish such interpretation, the

user needs an intuitive mode of interaction with the robot, while letting the system collect

additional data leading to the correct intention interpretations.

The term intent is often loosely defined since it is very task dependent. In our

framework, intention refers to a set of goal-directed robot actions resulting in a sequential

robot program that the user would like to execute or modify, and the system needs to

determine from inputs given by the user if such a robot program exists in the system’s

database. In other words, the user’s intent is captured in the form of a sequential robot

program, and the flexibility given to the user through real-time interaction and the

framework’s intuitive interface allows the captured intent to be closer to the user’s true

intent. Previous work on intention-aware systems such as [2,42] lacks this flexibility, and

our system is more robust by being aware of a user’s intent and incorporating real-time

alterations based on this information.

Task level programming: The multi-modal interactive programming framework

has several distinct advantages over conventional methods. From the robot programming

perspective, on-line interaction adds a new flavor to the robot programming problem.

• It enables novice users to program robots,

• It enables interactive composition of primitives to create robot programs,

• It enables task model adaptation through continuous interaction.

To some degree, other paradigms such as iconic programming [9], and

programming by demonstration [13] succeed in shifting the burden of robot programming

from robot experts to task experts. However, due to the current lack of understanding of

intention interpretation and of the robotic task itself, such off-line programming methods

are very fragile. The task expert may demonstrate the task to the robot, but the task expert

has no idea how the robot has interpreted his skill, or whether the robot has a sufficient

set of actions to perform the demonstrated task. In contrast, our framework allows the

task expert to “coach” the robot and to make adjustments on-line as it performs the new

task.

 6

2. Related Work

The area of human-robot interaction is a rich and diverse field of study. In order

to understand the work of controlling and programming robots through a multi-modal

interface, this section is divided into two subsections: multi-modal robot control, and

robot programming.

2.1. Multi-Modal Robot Control

The area of robot control refers to the problem of efficiently conveying control

signals to the robot system. Every robot system must have a device through which its user

can control the behavior of the robot. The control signal can be in various forms ranging

from low-level joint motor torque to high-level symbolic skill representations. For both

mobile robots and industrial manipulators, the basic level of control is in the joint space,

where the user input often comes from a teach-pendant or a joystick. At the higher level

of abstraction, the control specifications are symbolic and come from either a graphical

user interface or a natural user interface such as eye gaze tracking, finger pointing, or

natural language interpretation.

Several researches have implemented a variety of natural interface to control

mobile robots. The GestureDriver and HapticDriver systems by Fong [6] provide a

teleoperation interface through symbolic hand gestures and force feedback through a

haptic device. Other mobile robot interactions systems are capable of receiving symbolic

gesture commands through an on-board camera [5,19,44]. Kuno et al. [21] have

developed a wheelchair robot controlled by detecting hand gestures with a camera. This

system is capable of dealing with unknown gestures by considering all periodic hand

motions as potential gestures. Another example is Matsumoto’s wheelchair robot [26],

which can detect the user’s gaze and facial direction to navigate.

To move a step closer to the human-human interaction, researchers are currently

exploring multi-modal interaction scenarios. The advantage of working with multi-modal

input mainly lies in its redundancy. For example, the system developed by Perzanowski

et al. [34] combines natural language and hand gestures to interpret both complete and

fragmental commands. The multi-modal interface system by Ghidary et al. [10] makes

use of speech, posture, and object recognition to navigate a mobile robot to an object of

 7

interest. Human-robot interaction can become more intuitive as the level of flexibility in

the human interface increases. However, to achieve a higher level of human-robot

interaction, the human interface and robot programming modules must work together.

A multi-modal interface combines multiple input modalities such as natural

speech, pen-based input, hand gestures, facial gestures, eye gaze, body language, or

tactile input. In the past, before robust multi-modal approaches were available, skeptics

believed that a multi-modal interface incorporating two error-prone recognition

technologies would compound errors and yield even greater unreliability. However,

recent data shows that fusing two or more information sources can effectively reduce

recognition uncertainty, thereby improving robustness [32]. The multi-modal mobile

robot interface by Perzanowski et al. [34] is an example of a successful multi-modal

interface system.

Hand gesture recognition is a popular field due to its broad applicability. Many

successful gesture recognition methods are derived from algorithms in natural language

recognition. They are roughly divided into three approaches: template-based, stochastic,

and neural net based approaches. Nishimura and Oka [29] used template based

continuous dynamic time warping (DTW) for spotting continuous visual gestures. The

mobile robot interaction system by Kuno et al. [21] also used a gesture-spotting strategy

based on DTW. Starner [39] applied Hidden Markov Models (HMM; often used to model

doubly stochastic processes) to visual hand recognition of dynamic American Sign

Language (ASL). Lee and Xu [22] used a similar HMM based method to recognize static

ASL alphabets with a data glove as an input device. Kortenkamp et al. [19] developed a

model-based method which models different parts of the body as a set of proximity

spaces and defines pose gestures by examining the angles between the links that connect

these proximity spaces. Waldherr et al. [44] combined a neural net approach for static

pose gestures with a temporal template matching approach for motion gestures. They all

differ in their assumptions, implementations (vision vs. magnetic spatial sensor,

controlled lighting/background condition vs. mobile robot’s on-board camera), and

capabilities (pose vs. motion gesture, recognition rate), and it is important to keep in

mind that their advantages and disadvantages are task dependent.

 8

2.2. Robot Programming

In addition to using gesture-based interaction for direct control of robots, it can

also be used for robot programming. Position and path-based applications such as arc

welding and machine loading typically employ walk-through or lead-through teaching

[41]. For walk-through teaching the user specifies intermediate points with a teach

pendant. For lead-through teaching, the user performs the required motions manually

while holding some device (the manipulator itself, or a replica) to record the path. While

these forms of teaching are useful for non-contact applications; other methods are needed

for applications that involve contact. Kang and Ikeuchi’s [15] learning-from-observation

system models human behavior as transitions of contact states, by observing a human

demonstration. The system is able to model high-level task specifications but not the

sensor feedback during contact. Voyles et al. [43] proposed a gesture-based programming

paradigm where the system is assumed to have a set of basic skills (also referred to as a

priori control policies [18], or sensori-motor primitives [27]) from which the system can

compose programs. Human demonstration is observed through gesture recognition and

interpretation agents, and the correct skills are selected based on the votes from the

agents. A similar skill-based approach is used in the telerobotics system by Onda et al.

[31] that combines geometric modeling, teaching by demonstration in a virtual

environment, and execution based on manipulation skills.

To achieve robot interaction at elevated conceptual levels, robot programs can be

composed from primitive behaviors. Such composition of skills can either be prepared in

advance or learned from observation. Asada’s human-robot interaction system uses Petri-

nets to model the interaction between the robot and the human, but a plan has to be

prepared in advance by a programmer [24]. Kimura and Ikeuchi [17] model human-robot

cooperation tasks by observing both parties and placing pre- and post-conditions into a

stack to compose a program. For its humanoid application, Kawamura’s DBAM

architecture [16] captures similar pre- and post- conditions into a look-up table.

3. Framework

The programming approach introduced in this paper offers an intuitive interface

for the user and the ability to provide interactive feedback to coach the robot throughout

 9

the programming process. The approach addresses shortcomings apparent in previous

approaches, which are an unfriendly user interface preventing a novice user from using a

service robot, and an inability to teach and program a robot on-the-fly. As input

modalities, we support hand gestures and spontaneous speech. We selected hand gestures

as a modality to convey parametric information such as speed, angles or positions, and

spontaneous speech is selected as a modality to convey symbolic information such as

names, confirmations, or program statements. The selection is made based on

intuitiveness of the modality.

The framework is composed of three functional modules as illustrated in Figure 1.

The first module (multi-modal recognition) translates hand gestures and spontaneous

speech into a structured symbolic data stream without abstracting away the user’s intent.

The second module (intention interpretation) selects the appropriate set of primitives

based on the user input, current state, and robot sensor data. Finally, the third module

(prioritized task execution) selects and executes primitives based on the current state,

sensor inputs, and the task given by the previous step. Each module includes two modes

of operation: a learning and an execution mode. Depending on the mode of operation, the

overall system can provide interactive robot control, adjustment of primitives, or

composition of robot programs.

Action DB

TrainerTrainer

Speech DB

Pr
io

rit
ize

d
ta

sk
 s

ym
bo

l

+
pa

ra
m

et
er

Co
nt

ro
l v

ec
to

r

Prioritized
Execution

Module

Intention
Interpretation

Module

Multi-modal
Recognition

Module

Gesture DB

Task DB

Primitive DB
Motor

Sensori-Motor

Sensor

Info Manager

Trainer

Semantic DB

G
es

tu
re

 S
ym

bo
l +

 p
ar

am
et

er

W
or

d
Sy

m
bo

l +
 p

ar
am

et
er

2x
22

 s
en

so
r i

np
ut

Ac
ou

st
ic

In
pu

t

User Personal robot

Sensor Reading
Robot Parameters
Sensor Reading

Figure 1: Framework for a Multi-Modal Interface

 10

There are three main reasons for implementing the system in a modular fashion as

described in Figure 1. First, the implementation follows a functional decomposition of the

problem: recognition, interpretation, and execution. Second, in a modular architecture,

one can easily replace the implementations of individual modules. For example, if we

were to program an industrial manipulator instead of a vacuum cleaning mobile robot, the

task execution module can be replaced by another implementation. Finally, because the

first and last module can be implemented as slight modification of existing software and

hardware products, a modular implementation allows us to work independently on the

intention interpretation module, which is the main focus of this research.

3.1. Multi-Modal Recognition Module

The function of the multi-modal recognition module (the first block in Figure 1) is

to translate hand gestures and spontaneous speech into a structured symbolic data stream

without abstracting away the user’s intent. The symbols could be gestures, words, or both.

Abstraction of intent can be avoided by ensuring that the robot can cover the entire

configuration space by using the multi-modal interface, since intention is defined as a set

of goal-directed robot actions. We consider two sub-functions. First, the module needs to

translate incoming audio and gesture signals into a structured stream of word and gesture

unit symbols with appropriate parameters. Second, the module needs to be able to adapt

to new users by reinforcing recognition models using new incoming data during

recognition.

 The recognition module generates a parameterized output stream. Examples of

such parameters are the direction and velocity of the hand for a waiving gesture, or the

designated x-y coordinates on the floor for a pointing gesture. The types of input

modalities discussed throughout the paper are human voice and hand gestures

parameterized by two 22-sensor CyberGlove. Other modalities can replace or be added to

the current recognition module.

The second function of the module is to adapt to the data from new users by

reinforcing symbols during recognition. Online adaptation of the recognition model to the

data from new users contributes to a better recognition rate than that achievable without

adaptation. The multi-modal recognition module is implemented using a Hidden Markov

 11

Model [35], a stochastic method in which on-line model adaptation and reinforcement are

very common. The Maximum Likelihood Linear Regression technique in the Hidden

Markov Model Toolkit [47] is used to estimate a set of linear transformations for the

mean and variance parameters of a Gaussian mixture HMM system that reduces the

mismatch between the current model set and the adaptation data. The technique is used in

both supervised and unsupervised mode. The supervised mode uses adaptation data of the

new user from a known gesture sequence transcript. The unsupervised mode uses an

estimated transcription based on the recognition result to adapt model parameters.

In our implementation, spontaneous speech is translated into words using

SPHINX-II, an off-the-shelf speech recognition package [11]. For hand gestures, we

implemented a word spotting technique using the Hidden Markov Model Toolkit. The

current system works only with a basic set of words and gestures and does not include

interactive learning of new gestures. Table 1 lists some of the initial candidate gestures

and words that such a basic vocabulary could include. For example, the user is able to

point at a certain position on the floor using a hand gesture coupled with the “Go There”

command to the “Yellow Robot” via voice.

In the future, we plan to rely on cross-modal analysis to implement on-line

learning. There are already attempts to automatically discover new gestures [45] from

single-modal data; however, it is easier to rely on a redundant input mode to manage the

learning process. For instance, speech could be used to signal the beginning and end of

the learning process for gestures, and vice versa.

3.2. Intention interpretation Module

The intention interpretation module (The second block in Figure 1) has three

Input Candidate Symbols

One-Handed Gestures Point, Waive, Open, Grasp, Turn, Power Grasp, Precision Grasp
Two-Handed Gestures Relative Position Specification (e.g. two Points)

Speech Vocabulary

Go, Move, Goto, Stop, Turn, Forward, Backward, Right, Left
Deictics (This, That, There)

Attributes (Yellow, Green), Names (Robot, Cye)
Numbers (One, Two, Three, etc.)

Sweep, Vacuum, On, Off, Program, Execute, Complete

Table 1: Initial Gesture and Speech Vocabularies

 12

functions. The first is to recognize and select the appropriate task based on the current

context. The second is to attach priorities to the task to handle multiple task requests. The

third is to adapt the task representation used for task recognition and selection to the most

current observation.

The problem of intention interpretation can be considered as a mapping problem

from the stream of user inputs, the current state of the system, and the robot sensor data,

to the correct robot task. The user input is an incoming stream of structured symbolic data

(with parameters) from the multi-modal recognition module. The robot sensor data is an

abstracted version of the robot’s sensor stream. For a mobile robot, the robot sensor data

could include range sensor data, distance to the closest obstacle, the robot’s global

position and current velocity. For manipulators, the robot sensor data includes the end-

effector’s position and velocity in the joint space or Cartesian space, and contact data if

force, torque, or tactile sensors are available.

The output of the intention interpretation module is a task symbol representing a

configuration of robot primitives. The usage and detailed definition of the terms primitive

and task are discussed in the next section. In short, a primitive is an encapsulation of a

low level robot behavior; that is, a policy π(x,t,α)=u that maps the state x of a system and

its environment into an appropriate action u at a particular time t, with additional

parameters α. The task is a robot program composed of various primitives. The semantics

database (Table 2) is implemented as a look-up table of candidate task symbols and their

priorities from input symbols from the multi-modal recognition module. Initially, the

semantics database contains tasks that are composed of single primitives. The primitives

(Table 3) in our vacuum-cleaning robot scenario are single-purpose controllers. Priorities

in the semantics database are assigned in a way such that critical and smaller tasks

receive higher priorities. For example, critical tasks such as Stop() receive highest priority,

single primitive tasks such as Goto(P), Move(v), etc. receive medium priorities, and

finally tasks composed of multiple primitives and those associated with program

composition receive low priorities. Tasks with identical priorities are arbitrated on a first-

come first-serve basis (Section 3.3).

 13

Instead of merely mapping the sequence of multi-modal recognition results to the

set of actions using the semantics database, the intention aware system should suggest

which task (set of primitives) the user may want to execute based on an incomplete

sequence of primitives executed by the user. This recognition ability is similar to the

auto-completion ability in a text editing program [38]. It is especially helpful when there

are a large number of programs, and explicitly searching for any particular program may

be time-consuming.

In order to perform such recognition in the real world, it is necessary to represent

tasks in a probabilistic framework rather than as a discrete sequence of commands such

as {Goto(P1), Vacuum(vacOn), AreaCoverage(P2,P3), Vacuum(vacOff), GoHome()},

where the Pi’s describe robot positions in terms of (x, y). A Hidden Markov Model

(HMM) provides a way to model the task in a probabilistic framework, where both state

Input Symbol (“voice” and ‘gesture’) Candidate Task Priority

“Stop” or two ‘Closed’ fists Stop() High
“Go” + “This”, “That”, etc + ‘Point’ Goto(P) Medium

“Go” or “Move” +
Direction (“Right”, “Forward”, “Left”, “Back”) Move(v) Medium

‘Waive’ or “Go” + ‘Waive’ Move(v) Medium
“Go Home” GoHome() Medium

“Vacuum” + “On” or “Off” Vacuum(vacOn/vacOff) Medium
“Turn” or “Turn” + direction (“Right”, “Left”) Turn(ω) Medium

“Cover Area” + two ‘Point’s AreaCoverage(P1,P2) Medium
“Program” p Program a task p Low
“Complete” p End of program Low

“Execute Program” p Execute a task p Low

Table 2: Semantics Database

Primitive Parameter Action
Goto Position P Move to the position, w/path-planning

Vacuum On/Off Toggle the state of the vacuum cleaner
AreaCoverage Rectangular Area (P0, P1) Traverse the area specified

GoHome N/A Move the robot back to the home position
Move Velocity(v) Apply additional velocity v to the robot
Turn Angular Velocity(ω) Apply additional angular velocity ω to the robot
Stop N/A Stops the robot motion

Table 3: Primitives Database

 14

transitions and observations can be expressed stochastically. Since no branching or

looping is allowed in tasks, each task can be described as a left-right (Bakis) HMM using

an observation sequence collected at the time of programming. Tasks represented in

HMMs are organized and compared to the current observation sequence to detect which

task, if any, the user may want to execute. Other work, such as the human intention

recognition by Yamada et al. [46] and the online point-based hand writing recognition by

Bahlmann [3], employs similar strategies. However, our method has an advantage since

it is capable of disregarding non-task (garbage) sequences through a garbage collector,

without prior training of a garbage model. In this work, the garbage sequence refers to a

sequence of observations that are not previously modeled. Such a sequence could

therefore occur when the user guides the robot to a new position, and thus needs to be

disregarded in the system’s task suggestion.

A second important function of the intention interpretation module is to prioritize

tasks. Not all tasks are of equal importance. For example, the gesture or word that

corresponds to an emergency stop has a very high priority, and should be executed even

if the robot is already engaged in another task. Similarly, a high-level task, like

navigating to a point (x,y), may require assistance from the user to avoid obstacles and

dead ends. The task, therefore, has a lower priority than the tasks for interactive user

assistance.

A third function of the intention interpretation module is to perform online

modification and adjustment, which are essential since it is unreasonable to expect the

system to have prior knowledge of every intended task. The system must be capable of

adjusting and adding primitives to the program with ease. The system supports these

adjustments by letting the user interrupt the task while it is running, and by registering the

interrupts as additional primitives in the task.

Adaptation of models is necessary to reflect changes in the environment and

modifications to a program made by the user while interacting with the system. Also,

observation sequences collected from subsequent executions of the same task can be

combined to improve stochastic parameters used in the HMM representation of the task.

 15

In the remainder of this section, we explain how HMM representations of tasks

are constructed and used for intention recognition, and how they can be updated in real-

time during execution.

3.2.1. Construction

The aim in this section is to create λp, a Continuous-Density HMM (CDHMM)

description of a program p, from Φp, a command sequence of the program and to

combine the λp’s into a network CDHMM, λnet, that can be used for real-time program

recognition. This process is illustrated in Figures 2 and 3.

 16

Φp = {Goto(P1), Vacuum(vacOn) , AreaCoverage(P3, P4), Vacuum(vacOff) , GoHome()}
= { φ p,1 , φ p,2 , φ p,3 , φ p,4 , φ p,5 }

Robot Program Φp:

1) Markov Chain Description of Φp:

φ p,4:
Vacuum(vacOff)

s4

φ p,5:
GoHome()

s5

φ p,e:
end Φp

se

2) Association of Observations Generated by Φp with CDHMM:

3) Generated CDHMM description λp of Φp:

φ p,0:
start Φp

s0

φ p,1:
Goto(P1)

s1

φ p,2:
Vacuum(vacOn)

s2

φ p,3:
AreaCoverage(P3,P4)

s3

s5 ses0 s1 s2 s3 s4

0101 , ba 1212 , ba

1111 , ba 2222 , ba

2323 , ba
s5 ses1 s2 s3 s4s0

0000 , ba

λp = {πp, Ap, Bp}, where Ap is the set of a’s, Bp the set of b’s
πp = initial state probability
aij = state transition probability from si to sj
bij = observation probability during transition from si to sj

= (,) (,)ij ij ij ijN WN Sθ θµ µΣ ⋅

,,0 ,1{ , , , }pp Np p pO O O O=
ON OFF

, ,ON OFF
, ,, (,) (,)p a p a

p a p a p pp aO O O O O
τ τ

= =
(, ,) (, ,) of program at time index p p p

t t t tO x y x y tθ θ= = Φ
, ,ON { : robot at time executing an action }p a p p at tτ τ φ= ∈
, , , 1OFF { : robot at time after execution of an action , before executing }p a p p a p at tτ τ φ φ += ∈

{set of all time during execution of program }p ptτ = Φ

ON,0pO ON,1pO ON,2pO ON,3pO ON,4pO ON,5pO

OFF,0pO OFF,1pO OFF,2pO OFF,3pO OFF,4pO OFF,5pO

44 44,a b 55 55,a b33 33,a b

34 34,a b 45 45,a b 5 5,e ea b

Figure 2: Conversion of a sample program Φp to Continuous Density HMM λp

 17

A program Φp consists of a set of sequential program actions φ p,0, φ p,1,…, φ p,n .

When a robot is programmed interactively, the system collects an observation sequence

1 2{ , }
p

p p pp
TO o o o= … where p

to = (xt, yt, θt)p correspond to the robot position and orientation

at time t for program p. The sequence pO of the program Φp is the collection of all

observations ,p aO resulting from program actions φ p,0, φ p,1,… φ p,a. The robot program

Φp is then converted into a CDHMM λp through the process illustrated in Figure 2. The

program is first converted into a Markov chain (top of Figure 2) whose states correspond

to each programmed action. The number of states in the chain is the number of actions in

the program plus two (the start and end states). Observations of the robot’s position (x, y,

θ) are collected during the task execution and are associated with each of the arcs in the

state transition diagram. For each arc, the observation sequence is encoded in an

observation density function, bij.

The observation density function, bij, is an expression for the likelihood of

observing a given robot position p
to = (xt, yt, θt)p given that the robot is moving from state

i to state j. bij (Equation 1) is modeled as a combination of a normal distribution,

(,)ij ijN µ Σ (Equation 4) and a wrapped normal distribution (,)ij ijWN Sθ θµ (Equation 9).

spi= state i of program p = {1…P},
where P = # of program models

Np =

HMM Network for Task Recognition:

• • • • • • s1es10

λ 1

• • • • • • s2es20

• • • • • • sPesP0

•••••••••

s00

1
1P +

λ 2

λ net

12s11s
11Ns

22s21s
22Ns

2Ps1Ps PNP
s

1
1P +

1
1P +

1
1P +

λ P

of actions in program p pΦ = Φ

Figure 3: HMM Network with Shared Initial State

 18

(,) (,)ij ij ij ij ijb N WN Sθ θµ µ= Σ ⋅ (1)

1 ijT
ij tt

ij
x

T
µ = ∑ (2)

1 [][]ijT T
ij t ij t ijt

ij
x x

T
µ µΣ = − −∑ (3)

1[] []1(,)= exp()
22

T
ij ij ij

ij ij
ij

x x
N

µ µ
µ

π

−− Σ −
Σ −

Σ
 (4)

arctan sin cos
ij ijT T

ij t t
t t

θµ θ θ
⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠
∑ ∑ (5)

cos sin
1

ij ijT T
t tt t

ij
ij

S
Tθ

θ θ+
= −

∑ ∑
 (6)

2 2 log(1)ij ijSθ θσ = − − (7)

(,)ij ijWN Sθ θµ =
2

t
22

(2)1 1exp
22 ijij

k

k

θθ

θ π
σπσ

∞

=−∞

⎛ ⎞+⎜ ⎟−
⎜ ⎟
⎝ ⎠

∑ (8)

≅
2 2

2
2t

22

13
22

1

1 1exp , for
22

1 2 cos 2 , for

ij

ijij

ij

ij

p
t

p

e p

θ

θθ

θ

θ

σ

θ σ π
σπσ

θ π σ π
−

=

⎧ ⎛ ⎞
⎪ ⎜ ⎟− ≤
⎪ ⎜ ⎟

⎝ ⎠⎪
⎨
⎛ ⎞⎪
⎜ ⎟⎪ + >
⎜ ⎟⎪⎝ ⎠⎩

∑
 (9)

Observed positions are assumed to be correlated but orientations are assumed to be

independent from the positions (i.e. (,)ij ijWN Sθ θµ is independent from (,)ij ijN µ Σ) since the

robot motion tends to be either unidirectional or equally varying throughout the

configuration space. We should point out that extra care is needed to calculate the sample

mean and variance of orientation data, which are expressed in circular rather than

Cartesian coordinates. A wrapped normal distribution (,)ij ijWN Sθ θµ is approximated in

one of two methods (Equation 9) depending on its angular variance, 2
ijθ

σ . Refer to

Mardi’s text [23] for justification of the approximation.

 19

In addition to the observation probabilities, bij, the CDHMM for program λp is

also characterized by state transition probabilities, aij. The state transition probability aij

is determined by taking the ratio of the number of observations used at recurring and

transition arcs. ON OFF
, ,ON OFF

, ,, (,) (,)p a p a
p a p a p pp aO O O O O

τ τ
= = is an observation sequence for

program action φ p,a, where , ONp aτ is a set of time index t while action φ p,a is being

executed, and , OFFp aτ is a set of time index t after execution of φ p,a and before execution of

φ p,a+1
. The state transition probability aij is defined as follows:

ON

ON OFF

OFF

ON OFF

,

, ,

,

, ,

 for

 for

p a

p a p a

ij p a

p a p a

i j

a

i j

τ

τ τ

τ

τ τ

⎧
⎪ =⎪ +⎪= ⎨
⎪
⎪ ≠
⎪ +
⎩

 (10)

After converting all programs pΦ to pλ for p = 1…P, where P is the number of

program models, the pλ are combined into one netλ for recognition purposes. Figure 3

describes how netλ is constructed from the CDHMMs λ1, λ2 … λP. All the transition

probabilities from s00 (
00 00 00 10 00 0

, ,
Ps s s s s sa a a) are assumed to be equal with a value of

1/(P+1). Observation probabilities for these arcs
00 00 00 10 00 0

, ,
Ps s s s s sb b b are undetermined at

this point. They are assigned dynamically inside the recognition algorithm described in

the following section.

3.2.2. Recognition

During recognition, the current sequence of position observations is evaluated and

compared to all the robot program CDHMMs stored in the network λnet. It is necessary

not only to detect in real-time which program the user may be interested in, but also to

reject observations that are not part of any existing program. The goal here is to find the

most likely state qt at the current time t, given observations up to time t, and the

CDHMMs λ1, λ2 … λP, constructed from P robot programs organized into λnet as

described in Figure 3.

 20

To find the single most likely state qt out of all states in the shared CDHMM

network for the current observation sequence, we use a modified Viterbi Algorithm

described in Figure 4. The Viterbi algorithm, based on the Token Passing paradigm [9],

has been modified by adding dynamic garbage collection, that is, recognizing the state,

s00, in which none of the programs is being executed. The modification involves the

dynamic computation of the observation probabilities for state s00, as is illustrated in

Figure 5.

Consider a sample CDHMM network (Figure 5.a) constructed from a shared

garbage state s00, and two member CDHMMs each with only one state, s10 and s20. The

member CDHMMs have observation density functions
10 10s sb and

20 20s sb (Figure 5.b/c). If

the observation ot is close to either
10 10s sµ or

20 20s sµ , the algorithm will consider the

observation to indicate that the corresponding state s10 or s20, respectively, should be

promoted. However, if the observation is far removed from both
10 10s sµ and

20 20s sµ , then

the shared garbage state, s00, should be promoted. This is achieved by introducing a

Initialization:
Assign a token with value of 1 to the initial shared state s00.
Assign a token with value of 0 to all other states.
For all arcs not originating from state s00, compute and store the value ψij.

Algorithm:
for each time t do

for each state i ≠ s00 do
Compute and store the Mahalanobis distance between ot and µij;
Pass a copy of the token in state i to each connecting state j, multiplying its
value by aijbij(ot).
If the new token value underflows to 0, let the value be ε;

end;
Pass a copy of the token in state s00 to each connecting state j, multiplying its
value by aij•ψmn. Choose the ψmn for which the Mahalanobis distance between
µmn and ot is the smallest;
Discard the original tokens;
for each state i do

Find the token in state i with the largest value and discard the others;
end;
Normalize all tokens such that their sum equals 1;
Find the state qt with the largest token value;

end;
Figure 4: Viterbi Algorithm with Dynamic Garbage Collection

 21

threshold ψij for each bij below which the garbage state will be given preference. The

value of ψij is chosen as the value of bij at a distance of 3σ from the mean, that is:

23 2 4.5

2 2
ij

ij ij

e eψ
π π

− −
= =

Σ Σ
 (11)

Since this value is different for every bij, the algorithm uses the value for the state that is

closest to the current observation according to the Mahalanobis metric [7]:

1() [] []T
ij t ij ij t ijr t o oµ µ−= − Σ − (12)

This is illustrated in Figure 5.d. The lines for
00 00s sb ,

00 10s sb , and
00 20s sb can be thought of as

classification boundaries below which the algorithm gives preference to the garbage state.

The advantage of the above algorithm is that, unlike the garbage models used in

large vocabulary state-spotting systems, this algorithm requires no previous training or

batch processing of the garbage model. It also requires little additional computation

during the recognition phase because the ψ values only need to be computed once, during

initialization, and the Mahalanobis distances, used to select the appropriate ψ values, are

calculated and stored when the observation density functions are evaluated for a

particular observation.

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

s10

s20

s00

a)

b) c) d)

00 00s sb
00 10s sb

00 20s sb
20 20s sb

10 10s sb

10 10s sb
20 20s sb

00 00 00 10 00 20
, ,s s s s s sb b b

10 10s sψ
20 20s sψ

Figure 5: (a) sample CDHMM network (b) pdf for bs10s10 (c) pdf for bs20s20
(d) dynamically generated bs00s00, bs00s10, bs00s20

 22

Since we are only interested in the most likely state, we only need to keep track of

the CDHMM trellis of token scores as a starting point for the processing of additional

observations. Each token value corresponds to the likelihood of being in the particular

state after going through the most likely state sequence. Based on the assumption that the

model λnet fully explains all observation sequences, the entire trellis is normalized to 1.0

for every observation. The initial “garbage” state becomes the most likely state if the

observation sequence can not be explained by any of the other models λ1…λP. After

finding the current CDHMM node, the system can determine the action that should be

taken according to the most probable robot program.

3.2.3. Model Update

Online seamless adjustments of the statistics (aij, bij) that describe the robot

program are essential for keeping the system healthy. For example, an additional obstacle

on the path between via-points can change the trajectory of the mobile robot, requiring

that the program description be adjusted. Parameter adaptation can be used to improve

the CDHMM parameters over multiple executions of the same task. This can be done by

first partitioning the observation sequence and merging statistics derived from new

samples with the old statistics. nadd additional samples with mean vector, µadd, and

covariance matrix, Σadd, can be merged with nold old samples with statistics µold and Σold to

derive the combined statistics, nnew, µnew, Σnew as follows: (Appendix A) [20]:

oldaddnew nnn += (13)

newoldoldaddaddnew nnn /)(µµµ += (14)

() / (1)
(1)

()()

(1)

()()

new new

add add
T

add add new add new

old old
T

old old new old new

A B C D n
A n

B n
C n

D n

µ µ µ µ

µ µ µ µ

Σ = + + + −

= − Σ⎧
⎪

= − −⎪
⎨ = − Σ⎪
⎪ = − −⎩

 (15)

Using the above equations, one can compute the statistics for adapted observation

probabilities without having to keep the entire observation history. For implementation

purposes, we always set nold = nnew, so that the effects from old samples will eventually

decay with additional adaptation cycles.

 23

3.3. Prioritized Task Execution Module

The prioritized task execution module (the third block in Figure 1) has two

functions. The first is to arbitrate and execute primitives based on the current state, the

sensor inputs, and the prioritized task given by the previous module. The second is to

generate a robot program (task) by configuring primitives.

Before going into the details of each function, we distinguish tasks from

primitives based on their level of abstraction. Primitives are encapsulations of low-level

robot behaviors and serve as building blocks of high-level behaviors. They consist of

motor (M), sensor (S), or sensori-motor (SM) primitives. Motor primitives generate open

loop behaviors that do not depend on sensor feedback. For mobile robots, motor

primitives include sensor independent acceleration, stop, turn, beep, and directional

motions. Sensor primitives provide the system with observable sensor signals, such as the

current robot position, range sensor data, and bumper switch data. Sensori-motor

primitives generate closed loop behaviors, such as wall following or navigation towards a

particular destination. The sensori-motor primitives can be thought of as pre-tailored

configurations of motor and sensor primitives.

A task is a configuration of primitives—either a sequence of primitives, or a

single primitive. Tasks are stored in a database in the form of a state buffer [17], Markov

chain [36] or finite state machine [27]. Because the intention interpretation module

requires access to some of the task data also, it shares the semantic, primitive, and task

databases with the task execution module, as is shown in Figure 1.

The first important function of the task execution module is task arbitration. As is

explained in the section on intention interpretation, not all tasks are equally important.

When tasks with different priorities are passed to the prioritized task execution module,

the module orders the tasks and executes them according to their priority. The scheme

can be described as event driven preemption, where the event (a request from the

intention interpretation module to execute a task) triggers an active switch from the

running task with lower priority to another with higher priority. This allows the user to

handle situations such as making an emergency stop or avoiding an obstacle during the

execution of other tasks. Figure 6 describes the first function, where the task T2 with low

priority (3) is preempted by the task T1 with medium priority (5) during the execution of

 24

primitive P3. The task T2 can be thought of as a program (task) that consists of primitives

P1, P3, and P7, while the task T1 is a single primitive task.

The second function of the task execution module is to generate a robot program

(task) interactively. The basic approach is to take a coaching strategy using a redundant

input mode. The user sets the module to a learning mode and executes primitives

P2T1

P1 P3 P7T2

Intention
Interpretation

A
rbitration

stack

P2T1

P1 P3 P7T2

Intention
Interpretation

A
rbitration

stack

Intention
Interpretation

A
rbitration

stack

P2T1

P1 P3 P7T2

Intention
Interpretation

A
rbitration

stack

P2T1

P1 P3 P7T2

Intention
Interpretation

A
rbitration

stack

P3

P7 3

3
P1 3

P7 3
P3 3

P2T1

P1 P3 P7T2 P3

P7 3

3
P2 5

P7 3
P3 3

P7 3

step 1)

step 2)

step 3)

step 4)

step 5)

Figure 6: HMM Arbitration Based on Task Priority with T1 (priority=5), T2 (priority=3)

 25

sequentially; the system remembers the sequence as a task. There are two obvious

problems with this approach. The first problem is that the robot programs include

conditional branching and looping. Forcing the user to remember a special gesture

command to indicate branching and looping conditions would make the system counter

intuitive. A tool to convey a program structure and an intuitive interface to edit the

program are necessary, unless the system can infer such conditions from multiple

examples. In the current implementation, iconic programming is used to convey and edit

non-sequential program structures.

The second problem is the lack of generality. The task would be useless if it

would only work for the particular parameter value for which it was trained. Somehow,

the user must let the module know that some attributes can be generalized while others

need to be retained as important features of the task. For the point and navigate task, the

goal coordinates should be variable, while the sequence of primitives used to navigate

needs to be retained. Making this distinction is the subject of future research.

Table 4 summarizes the functions offered by each of the three modules in the

framework. The three modules work synchronously in a continuous flow of data for

providing intuitive multi-modal interaction and programming of robots.

Module Input Function (Execution and/or Learning mode) Output

Multi-modal
Recognition

CyberGlove-R
Polhemus-R

CyberGlove-L
Polhemus-L

Acoustic (8bit-16KHz)

• Translate incoming audio and gesture
signals into a structured stream of word
and gesture unit symbols with appropriate
parameters. (E)

• Reinforce models during recognition
(exec. & learn)

Gesture Symbol-R + param.
Gesture Symbol-L + param.

Word Symbol + param

Intention
Interpretation

Gesture Symbol-R + param
Gesture Symbol-L + param

Word Symbol + param
Robot Data

Robot Position
Robot Velocity

Sensor Readings
Knowledge of its current state

• Select the appropriate primitives based on
the user input, current state, and robot
sensor data. (E)

• Prioritization of tasks, according to the
database (E)

• Adapt task model used for selections
using the most current observations (exec.
and learn)

Task symbol + priority + param

Prioritized Task
Execution

Robot Status
Sensor Readings

Task symbol + priority + param

• Arbitrate and execute primitives based on
current state, sensor input, and the
prioritized task given by the previous
module. (E)

• Generate a robot program (task) by
configuring primitives. (E & L)

Control vector

Table 4: Functional Summary

 26

4. Demonstration

We have conducted two demonstrations to exemplify the interactive programming

and the plan recognition aspect of the research. The first demonstration is to verify the

operation of overall system through sequential programming and adjustment of a mobile

vacuum cleaning robot. The second is to demonstrate intention awareness by letting the

system detect the most likely program the user wants to execute, and have the intention

model adapt to the current observations.

4.1. Sequential programming and adjustment

The first demonstration was conducted to verify the connections between all three

modules and to illustrate the overall operation of the framework with a basic interactive

programming example. The framework is implemented using a Cye vacuum cleaning

robot [4], two 22-sensor CyberGloves [1], and a microphone. We modified the graphical

user interface provided with the vacuum cleaning robot, to accept hand gestures and

speech input, while retaining its original functionality: mapping, iconic programming,

and path-planning. As a result, Cye can be controlled via mouse, speech, and hand

gestures.

The multi-modal recognition module is implemented using the Sphinx-II speech

recognition engine [11] and the Hidden Markov Toolkit (HTK) [47] that has been

customized to recognize gestures at 60Hz with 92% recognition accuracy. A discussion

of the gesture recognition methodology is outside the scope of this article; however, the

method is similar to the one in [30], where parameters of Hidden Markov models for each

gesture are obtained from known strings of gesture examples. Each gesture consists of

gesture phonemes that take into account finger-joint positions, joint velocities, and the

hand’s Cartesian position and velocity. The vocabulary of gestures is listed in Table 1.

The on-line addition of vocabulary is not implemented at this point although the system is

capable of adapting model parameters for new users with very few additional training

samples, using capabilities offered by HTK.

The intention interpretation module is implemented with a semantic database

(Table 2). The semantic database connects inputs such as gesture and speech symbols, the

robot’s sensor readings, and the current state to the most likely robot task. A task, which

 27

can be considered as a robot program, is a set of one or more primitives. Each task has

predefined priorities attached to specify the importance of the task over the others in the

event of preemption. At this point, the semantic database is fixed and does not support

the on-line addition of entries.

The prioritized task execution module ensures that the primitives are executed

according to their assigned priorities. The primitives used in the current scenarios are

listed in Table 3. Primitives such as GoHome and AreaCoverage provide high-level

navigation, whereas primitives such as Move, Turn, and Vacuum give low-level control

of the robot. Primitives are executed in order of arrival except when a high-priority task is

introduced; such tasks pre-empt the current task and execute immediately.

For the current implementation, we have considered two interactive programming

scenarios. The first scenario is to have a user register numerous via-points to which the

robot should navigate using its path planning capability. The second scenario is to use a

two-handed gesture to specify an area that the robot should vacuum; the robot then

vacuums the area using its area coverage primitive. In both scenarios, the robot can

accept the user’s preemptive speech and hand gesture commands to deal with unforeseen

events. Figure 7 and Figure 8 illustrate the sequences of the first and second scenario.

Each figure contains a sequence of camera snapshots with the corresponding conceptual

illustrations of the framework, and the cropped images of the GUI. Refer to Multimedia

Extension 1 for the video of the programming phase and Extension 2 for the execution

phase of the first scenario.

 28

In the first scenario, the user first verbally commands that the subsequent actions

be stored as “Program One”. The user then executes the Goto primitive by combining the

voice command “Go There” with the gestural command ‘Point’ to indicate the destination.

In general, deictic terms such as “This”, “That”, and “There” must be accompanied by a

referential gesture to specify the corresponding task parameters. For the Goto primitive,

the Cartesian coordinates are extracted from the intersection between the extension of the

index finger and the ground [12]. In step 2, the user enters another Goto primitive but

P
rogram

m
ing

Action DB

Trainer
Speech DB

Prioritized
Execution

Module

Intention
Interpretation

Module

Multi-modal
Recognition

Module

Gesture DB
Task DB
Program 1 =

GoTo(P0)
+ GoTo(P1)

Primitive DB
GoTo()

Semantic DB
Execute

→
Program 1

Speech: “Execute Program 1”
Gesture: “”

Action DB

Trainer
Speech DB

Prioritized
Execution

Module

Intention
Interpretation

Module

Multi-modal
Recognition

Module

Gesture DB
Task DB
Program 1 =

GoTo(P0)

Primitive DB
GoTo()

Semantic DB
Go +

There & Point
→

GoTo(P0)

Speech: “Go There”
Gesture: Point(P0)

Action DB

Trainer
Speech DB

Prioritized
Execution

Module

Intention
Interpretation

Module

Multi-modal
Recognition

Module

Gesture DB
Task DB
Program 1 =

GoTo(P0)
+ GoTo(P1)

Primitive DB
GoTo()

Semantic DB
Go +

There & Point
→

GoTo(P1)

Speech: “Go There”
Gesture: Point(P1)

Step 1

Step 2

Step 3

E
xecution

Action DB

Trainer
Speech DB

Prioritized
Execution

Module

Intention
Interpretation

Module

Multi-modal
Recognition

Module

Gesture DB
Task DB
Move(v)
Program 1 =

GoTo(P0)
+ GoTo(P1)

Primitive DB
Move()
GoTo()

Semantic DB
Waive(v)

→
Move(v)

Speech: “”
Gesture: Waive(v)

Action DB

Trainer
Speech DB

Prioritized
Execution

Module

Intention
Interpretation

Module

Multi-modal
Recognition

Module

Gesture DB
Task DB
Program 1 =

GoTo(P0)
+ GoTo(P1)

Primitive DB
GoTo()

Semantic DB

Speech: “”
Gesture: “”

Step 4

Step 5

Figure 7: Demonstration Scenario 1

 29

with a different end-position. After having saved these two primitives in “Program One”

with the “Complete” command, the user can re-execute the program through with the

voice command “Execute Program One”. However, in step 4, when the robot navigates to

the second position from the first, it encounters an unknown obstacle. At this point, the

user gestures the ‘Waive’ command, which has a higher task priority and can be used to

control the robot around the obstacle. When the obstacle has been cleared and the user

stops waiving, the robot returns to the execution of “Program One” (Step 5).

Action DB

Trainer
Speech DB

Prioritized
Execution

Module

Intention
Interpretation

Module

Multi-modal
Recognition

Module

Gesture DB
Task DB
Program 2 =

Vac(ON)
+ AreaCov(A0)

Primitive DB
AreaCov ()

Semantic DB

Speech: “”
Gesture: “”

Action DB

Trainer
Speech DB

Prioritized
Execution

Module

Intention
Interpretation

Module

Multi-modal
Recognition

Module

Gesture DB
Task DB
Program 2 =

Vac(ON)

Primitive DB
Vac()

Semantic DB
Vacuum + On

→
Vac(ON)

Speech: “Vacuum ON”
Gesture:””

Action DB

Trainer
Speech DB

Prioritized
Execution

Module

Intention
Interpretation

Module

Multi-modal
Recognition

Module

Gesture DB
Task DB
Program 2 =

Vac(ON)
+ AreaCov(A0)

Primitive DB
AreaCov()

Semantic DB
Cover +

Area & Point &
Point
→

AreaCov(A0)

Speech: “Cover Area”
Gesture: Point(P0) & Point(P1)

Action DB

Trainer
Speech DB

Prioritized
Execution

Module

Intention
Interpretation

Module

Multi-modal
Recognition

Module

Gesture DB
Task DB
Program 2 =

Vac(ON)
+ AreaCov(A0)

Primitive DB
AreaCov()

Semantic DB

Speech: “”
Gesture: “”

Action DB

Trainer
Speech DB

Prioritized
Execution

Module

Intention
Interpretation

Module

Multi-modal
Recognition

Module

Gesture DB
Task DB
Program 2 =

Vac(ON)
+ AreaCov(A0)

Primitive DB
AreaCov()

Semantic DB

Speech: “”
Gesture: “”

Step 5

Step 4

Step 3

Step 2

Step 1

P
rogram

m
ing

Figure 8: Demonstration Scenario 2

 30

In the second scenario, illustrated in Figure 8, the user defines the task “Program

Two.” After turning on the vacuum attachment with the voice command “Vacuum On”

(step 1), the user issues the AreaCoverage command with one two-handed gesture; each

hand performs a ‘Point’ gestures to specify the diagonally opposite corners of the area

(with the direction aligned along the axes of the GUI). Steps 3 to 5 show the execution of

the AreaCoverage command. As in the first scenario, at any point can the user re-execute

“Program Two”, interrupt the execution, or interactively adjust the execution with higher-

priority commands.

4.2. Plan recognition

The second demonstration was conducted to verify the system’s intention

awareness. Assume that the database of robot programs contains three test programs:
1Φ = {Goto(P1), Vacuum(vacOn), AreaCoverage(P2, P3), Vacuum(vacOff), GoHome()}
2Φ = {Vacuum(vacOn), Goto(S1), Goto(S2), AreaCoverage(S3, S4), GoHome()}
3Φ = {Goto(T1), Goto(T2), Goto(T3)}

where Pi, Si, Ti all represent positions on the map in (x, y), as described on Figure

Figure 9: Positions used for the test programs λ1, λ2, λ3

 31

9.

For each test program, a CDHMM representation was created through the method

described in section 3.2.1. The trajectories and the resulting observation probability

densities are illustrated in Figure 10. Each program was executed four times while

collecting observation sequences with a 5Hz sample frequency. There was variability in

the path in λ1 and λ2 to test adaptation.

Recognition was performed on the constructed CDHMM network λnet using three

test observation sequences, illustrated in Figure 11 shows three test sequence in different

columns, and each row correspond to the observations sequence, log(δt(i)) to enhance

small scores, and δt(i) to show which state i had the best score in each time step t.

The first test sequence is one of the training sequences used for the first program

λ1. Its δt(i) image (3rd row, 1st column) shows that the algorithm follows the states in λ1

that are between s10 and s1e. The second test sequence used Goto() commands to move in

the order of {Home, S1, S2, T3, T1, T2, T3}. The test result shows what is expected: the

recognition algorithm starts by selecting the states in the program λ2 and jumps to the

states in program λ3. In the third test sequence, the robot follows a random trajectory that

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x (meter)

y
(m

et
er

)

Observations used to create λ1

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x (meter)

y
(m

et
er

)

Observations used to create λ3

Figure 10: Observations used to construct the programs λ1, λ2, λ3 (from left to right)
and the resulting observation probability densities (arrow = mean orientation)

 32

does not include any of the three programs in the database. Since this trajectory does not

resemble any of the pre-defined programs, the recognition algorithm selects the shared

garbage state almost the entire time. This is shown in the right-most graphs in Figure 11

where the top row of the figure is white, indicating that state zero has the highest

probability value.

5. Summary

Human-Robot interaction needs to be intuitive, interactive, and intention aware.

In this paper, we have described the overall framework for interactive multi-modal robot

programming and have illustrated the framework using two demonstrations. The

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x (meter)

y
(m

et
er

)

Trajectory Otest1

s00s10

s1es20

s2es30

s3e

time

st
at

es
 in

 λ
ne

t

log(δ t(Otest1
|λnet

))

100 200 300 400 500 600

5

10

15

20

25

30

35

40

s00s10

s1es20

s2es30

s3e

time

st
at

es
 in

 λ
ne

t

δ t(Otest1
|λnet

)

100 200 300 400 500 600

5

10

15

20

25

30

35

40

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x (meter)

y
(m

et
er

)

Trajectory Otest2

s00s10

s1es20

s2es30

s3e

time

st
at

es
 in

 λ
ne

t

log(δ t(Otest2
|λnet

))

50 100 150 200 250 300 350 400 450 500

5

10

15

20

25

30

35

40

s00s10

s1es20

s2es30

s3e

time

st
at

es
 in

 λ
ne

t

δ t(Otest2
|λnet

)

50 100 150 200 250 300 350 400 450 500

5

10

15

20

25

30

35

40

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x (meter)

y
(m

et
er

)

Trajectory Otest3

s00s10

s1es20

s2es30

s3e

time

st
at

es
 in

 λ
ne

t

log(δ t(Otest3
|λnet

))

50 100 150 200 250 300 350 400 450

5

10

15

20

25

30

35

40

s00s10

s1es20

s2es30

s3e

time

st
at

es
 in

 λ
ne

t

δ t(Otest3
|λnet

)

50 100 150 200 250 300 350 400 450

5

10

15

20

25

30

35

40

Figure 11: observation sequences Otest1, Otest2, Otest3, with their corresponding log(δt(i)) and δt (i)

 33

programming approach offers, through an intuitive interface using hand-gestures and

speech recognition, the ability to provide interactive feedback to the robot to coach it

throughout the programming and execution phases. The user’s intent is captured in the

form of a sequential robot program, and the flexibility given to the user by the framework

through real-time interaction and intuitive interface allows the captured intent to be closer

to the user’s true intent.

The framework is composed of three functional modules. The first module (multi-

modal recognition) translates hand gestures and spontaneous speech into a structured

symbolic data stream without abstracting away the user’s intent. The second module

(intention interpretation) selects the appropriate set of primitives based on the user input,

current state, and robot sensor data. Finally, the third module (prioritized execution)

selects and executes primitives based on the current state, sensor inputs, and the task

given by the previous step.

The first demonstration verified interactive multi-modal programming and

execution of two sequential programming scenarios: point-to-point navigation and area

coverage, which clearly illustrates the usefulness of multi-modal interaction, including

the capability to interrupt commands preemptively. The second demonstrated that the

system can determine the most likely high-level goal the user is trying to achieve, given a

limited, initial sequence of task primitives. A set of user intentions, expressed as a robot

program, was converted to HMM representations, and was used to recognize the most

likely action that could be suggested to the user. Furthermore, we suggested a way to

incorporate new observations to adapt the statistical model to previously unknown

situations.

To obtain a comprehensive multi-modal interactive robot programming system,

several elements still need to be added in the future. Although the programs generated by

the current system can be re-executed, they are limited to fixed task sequences. To

expand the generality of the paradigm, we need to add the ability to re-configure the task

parameters interactively and define non-sequential flow structures such as conditional

branching and looping. Lastly, the system performance needs to be quantitatively

evaluated through user studies, to determine the benefits provided by multi-modal

programming, interactivity, and intention interpretation.

 34

6. Acknowledgements

This research was funded in part by DARPA under contract DAAD19-02-1-0389

and ABB under contract 1010068. Additional support was provided by the Robotics

Institute at Carnegie Mellon University.

 35

Appendix A: Merging Sampled Statistics without Prior Samples

The following is the derivation of the method used to merge p-dimensional

sampled statistics of set X and set Y without using samples themselves. In other words,

solve for Z and 2
ZS from Xn , X , 2

XS , Yn , Y , and 2
YS (without X and Y).

Sample Set Size Mean Variance

()1, ,
XnX X X= Xn X 2

XS

()1, ,
YnY Y Y= Yn Y 2

YS

()1 1, , , , ,
X Yn nZ X X Y Y= Z X Yn n n= + Z 2

ZS

Given samples:

()Xp n

X
×

 ()1 XnX X=
11 1

1

X

X

n

p n p

X X

X X

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

…

()Yp n

Y
×

 ()1 YnY Y=
11 1

1

Y

Y

n

p n p

Y Y

Y Y

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

…

 where
111

1

1

X

X

X

n

n

p n p

XX
X X

X X

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 and
111

1

1

Y

Y

Y

n

n

p n p

YY
Y Y

Y Y

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

Merged sample mean:

(1)p
Z
×

 X Y

Z

n X n Y
n
+

=

 where
1

(1)p

p

X
X

X
×

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

 and
1

(1)p

p

Y
Y

Y
×

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

Merged sample variance:

 2

()
Z

p p
S
×

 { 21 (1) ()()
1

T
X X X

Z

n S n X Z X Z
n

= − + − −
−

 36

 }2(1) ()()T
Y Y Yn S n Y Z Y Z+ − + − −

 given

 2

()
X

p p
S
×

 1
1

T
X X

X

W W
n

=
−

 where
()X

X
p n
W
×

11 1 1 1

1

1
X

X

n
T

p n p p p

X X X X
X X

X X X X

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − ⋅ = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

… …

 and

 2

()
Y

p p
S
×

 1
1

T
Y Y

Y

W W
n

=
−

 proof

 2

()
Z

p p
S
×

 1
1

T
Z Z

X Y

W W
n n

=
+ −

 where
()Z

Z
p n
W
×

11 1 11 1 1 1

1 1

 columns

X Y

X Y

Z

n n

p n p p n p p p

n

X X Y Y Z Z

X X Y Y Z Z

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

… …

 { } { }
1 1

1 ()() ()()
1

X Yn n
T T

i i j j
i jZ

X Z X Z Y Z Y Z
n = =

⎧ ⎫
= − − + − −⎨ ⎬− ⎩ ⎭

∑ ∑

 whose { }
1

()()
Xn

T
i i

i
X Z X Z

=
− −∑

 { }
1

()()
Xn

T
i i

i
X X X Z X X X Z

=

= − + − − + −∑

{ } { }

{ } { }
1 1

1 1

()() ()()

 ()() ()()

X X

X X

n n
T T

i i
i i

n n
T T

i i
i i

X X X X X Z X Z

X X X Z X Z X X

= =

= =

= − − + − −

+ − − + − −

∑ ∑

∑ ∑

 37

{ }

{ }
1

1 1

0 0

()() ()()

 () () () ()

X

X X

n
T T

i i X
i

n n
T T

i i
i i

X X X X n X Z X Z

X X X Z X Z X X

=

= =

= =

= − − + − −

+ − − + − −

∑

∑ ∑

{ }
1

2

()() ()()

()()

(1) ()()

Xn
T T

i i X
i

T T
X X X

T
X X X

X X X X n X Z X Z

W W n X Z X Z

n S n X Z X Z

=

= − − + − −

= + − −

= − + − −

∑

 similarly,

 { }
1

()()
Yn

T
j j

j
Y Z Y Z

=

− −∑ 2(1) ()()T
Y Y Yn S n Y Z Y Z= − + − −

 2
ZS∴ { 21 (1) ()()

1
T

X X X
Z

n S n X Z X Z
n

= − + − −
−

 }2(1) ()()T
Y Y Yn S n Y Z Y Z+ − + − −

 38

References

[1] "CyberGlove Reference Manual." Virtual Technologies Inc., 1998.
[2] Agah, A. and Tanie, K., "Human-Machine Interaction Through an Intelligent User

Interface Based on Contention Architecture," IEEE International Workshop on
Robot and Human Communication RO-MAN'96, Tsukuba, Japan, pp. 537-42, 1996.

[3] Bahlmann, C. and Burkhardt, H., "Measuring HMM similarity with the Bayes
probability of error and its application to online handwriting recognition," Sixth
International Conference on Document Analysis and Recognition, Seattle, WA,
USA, pp. 406-11, 2001.

[4] Batavia, P. H. and Nourbakhsh, I., "Path planning for the Cye personal robot,"
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 15-20,
2000.

[5] Boehme, H. J., et al., "Neural architecture for gesture-based human-machine-
interaction," Gesture and Sign Language in Human-Computer Interaction,
Bielefeld, Germany, pp. 219-32, 1997.

[6] Fong, T., Conti, F., Grange, S., and Baur, C., "Novel Interfaces for Remote Driving:
Gesture, Haptic and PDA," SPIE Telemanipulator and Telepresence Technologies
VII, Boston, MA, 2000.

[7] Forsyth, D. and Ponce, J., "Computer Vision : A Modern Approach." Upper Saddle
River, N.J.: Prentice Hall, 2003.

[8] Fujita, M. and Kitano, H., "Development of an autonomous quadruped robot for
robot entertainment," Autonomous Robots 5, no. 1, pp. 7-18, 1998.

[9] Gertz, M., Stewart, D., and Khosla, P. K., "A software architecture-based human-
machine interface for reconfigurable sensor-based control systems," IEEE
International Symposium on Intelligent Control, Chicago, IL, USA, pp. 75-80, 1993.

[10] Ghidary, S. S., et al., "Multi-Modal Human Robot Interaction for Map Generation,"
International Conference on Intelligent Robot and Systems, Maui, Hawaii, USA, pp.
2246-51, 2001.

[11] Huang, X., et al., "The SPHINX-II speech recognition system: an overview,"
Computer Speech and Language, vol. 7, no. 2, pp. 137-48, 1993.

[12] Iba, S., Vande Weghe, J. M., Paredis, C. J. J., and Khosla, P. K., "An Architecture
for Gesture-Based Control of Mobile Robots," IEEE/RSJ International Conference
on Intelligent Robots and Systems, Kyongju, Korea, pp. 851-57, 1999.

[13] Ikeuchi, K. and Suehiro, T., "Toward an Assembly Plan from Observation, Part I:
Task Recognition with Polyhedral Objects," IEEE Transactions Robotics and
Automation, vol. 10, no. 3, pp. 368-85, 1994.

[14] Ishida, T., et al., "Motion entertainment by a small humanoid robot based on
OPEN-R," IEEE/RSJ International Conference on Intelligent Robots and Systems,
Piscataway, NJ, pp. 1079-86, 2001.

[15] Kang, S. B. and Ikeuchi, K., "Toward automatic robot instruction from perception-
mapping human grasps to manipulator grasps," IEEE Transactions on Robotics and
Automation, vol. 13, no. 1, pp. 81-95, 1997.

[16] Kawamura, K., Alford, A., Hambuchen, K., and Wilkes, M., "Towards a Unified
Framework for Human-Humanoid Interaction," First IEEE-RAS International
Conference on Humanoid Robots, Boston, MA, 2000.

 39

[17] Kimura, H., Horiuchi, T., and Ikeuchi, K., "Task-Model Based Human Robot
Cooperation Using Vision," IEEE/RSJ International Conference on Intelligent
Robots and Systems, Kyongju, Korea, pp. 701-06, 1999.

[18] Kortenkamp, D., Bonasso, R. P., and Subramanian, D., "Distributed, Autonomous
Control of Space Habitats," IEEE Aerospace Conference, Piscataway, NJ, USA, pp.
2751-62, 2001.

[19] Kortenkamp, D., Huber, E., and Bonasso, R. P., "Recognizing and interpreting
gestures on a mobile robot," National Conference on Artificial Intelligence,
Portland, OR, USA, pp. 915-21, 1996.

[20] Koyama, T., "On Combining Sampled Statistics without Prior Samples," Personal
Communication to Author, September 27, 2002.

[21] Kuno, Y., Murashima, T., Shimada, N., and Shirai, Y., "Interactive gesture interface
for intelligent wheelchairs," International Conference on Multimedia and Expo,
New York, NY, USA, pp. 789-92, 2000.

[22] Lee, C. and Xu., Y., "Online, Interactive Learning of Gestures for Human/Robot
Interfaces," IEEE International Conference on Robotics and Automation,
Minneapolis, MN, pp. 2982-87, 1996.

[23] Mardia, K. V., "Statistics of directional data." London and New York: Academic
Press, 1972.

[24] Mascaro, S. and Asada, H. H., "Hand-in-glove human-machine interface and
interactive control: task process modeling using dual Petri nets," IEEE International
Conference on Robotics and Automation, Leuven, Belgium, pp. 1289-95, 1998.

[25] Matsumoto, Y., Ino, T., and Ogasawara, T., "Development of Intelligent
Wheelchair System with Face and Gaze Based Interface," 10th IEEE International
Workshop on RObot and Human Commnunication (ROMAN 2001), Bordeaux-Paris,
France, pp. 262-67, 2001.

[26] Matsumoto, Y. and Zelinsky, A., "An algorithm for real-time stereo vision
implementation of head pose and gaze direction measurement," Fourth
International Conference on Automatic Face and Gesture Recognition, Grenoble,
France, pp. 499-504, 2000.

[27] Morrow, J. D. and Khosla, P. K., "Manipulation task primitives for composing
robot skills," IEEE International Conference on Robotics and Automation,
Albuquerque, NM, USA, pp. 3354-9, 1997.

[28] Musser, G., "Robots That Suck," Scientific American, vol. 288, no. 2, pp. 84-6,
2003.

[29] Nishimura, T., Mukai, T., Nozaki, S., and Oka, R., "Adaptation to gesture
performers by an on-line teaching system for spotting recognition of gestures from
a time- varying image," Transactions of the Institute of Electronics, Information
and Communication Engineers D-II, vol. J81D-II, no. 8, pp. 1822-30, 1998.

[30] Ogawara, K., et al., "Acquiring hand-action models in task and behavior levels by a
learning robot through observing human demonstrations," IEEE-RAS International
Conference on Humanoid Robots, Boston, 2000.

[31] Onda, H., et al., "A Telerobotics System using Planning Functions Based on
Manipulation Skills and Teaching-by-Demonstration Technique in VR," Journal of
the Robotics Society of Japan, vol. 18, no. 7, pp. 979-94, 2000.

 40

[32] Oviatt, S., "Taming recognition errors with a multimodal interface,"
Communications of the ACM, vol. 43, no. 9, pp. 45-51, 2000.

[33] Perzanowski, D., et al., "Communicating with Teams of Cooperative Robots," in
Multi-Robot Systems: From Swarms to Intelligent Automata, A. C. Schultz and L. E.
Parker, Eds. The Netherlands: Kluwer, 2002, pp. 185-93.

[34] Perzanowski, D., et al., "Building a multimodal human-robot interface," IEEE
Intelligent Systems, vol. 16, no. 1, pp. 16-21, 2001.

[35] Rabiner, L. R., "A tutorial on hidden Markov models and selected applications in
speech recognition," Proceedings of the IEEE, vol. 77, no. 2, pp. 257-86, 1989.

[36] Rybski, P. E. and Voyles, R. M., "Interactive task training of a mobile robot
through human gesture recognition," IEEE International Conference on Robotics
and Automation, Detroit, MI, USA, pp. 664-9, 1999.

[37] Skubic, M., Perzanowski, D., Schultz, A., and Adams, W., "Using Spatial Language
in a Human-Robot Dialog," International Conference on Robotics and Automation,
Washington, DC, pp. 4143-48, 2002.

[38] Stallman, R. M., "Emacs: The extensible, customizable, selfdocumenting display
editor," in Interactive programming environments, D. R. Barstow, H. E. Shrobe,
and E. Sandewall, Eds. New York: McGraw-Hill, 1984, pp. 300-25.

[39] Starner, T. and Pentland, A., "Real-time American Sign Language recognition from
video," IEEE International Symposium on Computer Vision, pp. 265-70, 1995.

[40] Thrun, S., et al., "MINERVA: a second-generation museum tour-guide robot,"
IEEE International Conference on Robotics and Automation, Piscataway, NJ, USA,
pp. 1999-2005, 1999.

[41] Todd, D. J., "Fundamentals of robot technology : an introduction to industrial
robots, teleoperators, and robot vehicles." New York: Wiley, 1986.

[42] Voyles, R. M., Agah, A., Khosla, P. K., and Bekey, G. A., "Tropism-Based
Cognition for the Interpretation of Context-Dependent Gestures," IEEE
International Conference on Robotics and Automation, Albuquerque, NM, USA, pp.
3481-6, 1997.

[43] Voyles, R. M., Morrow, J. D., and Khosla, P. K., "Gesture-based programming for
robotics: human-augmented software adaptation," IEEE Intelligent Systems, vol. 14,
no. 6, pp. 22-31, 1999.

[44] Waldherr, S., Romero, R., and Thrun, S., "A gesture based interface for human-
robot interaction," Autonomous Robots, vol. 9, no. 2, pp. 151-73, 2000.

[45] Wren, C. R., Clarkson, B. P., and Pentland, A. P., "Understanding purposeful
human motion," Fourth IEEE International Conference on Automatic Face and
Gesture Recognition, pp. 378 -83, 2000.

[46] Yamada, Y., Morizono, T., Umetani, Y., and Yamamoto, T., "Human error
recovery for a human/robot parts conveyance system," International Conf. on
Robotics and Automation, Washington, DC, USA, pp. 2004-9, 2002.

[47] Young, S. J., et al., "HTK: Hidden Markov Model Toolkit V3.0." Redmond,
Washington, USA: Microsoft Corporation, 2000.

