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Abstract 

 

As robots enter the human environment and come in contact with inexperienced users, 

they need to be able to interact with users in a multi-modal fashion—keyboard and mouse 

are no longer acceptable as the only input modalities. This paper introduces a novel 

approach for programming robots interactively through a multi-modal interface. The key 

characteristic of this approach is that the user can provide feedback interactively at any 

time—during both the programming and the execution phase. The framework takes a 

three-step approach to the problem: multi-modal recognition, intention interpretation, and 

prioritized task execution. The multi-modal recognition module translates hand gestures 

and spontaneous speech into a structured symbolic data stream without abstracting away 

the user’s intent. The intention interpretation module selects the appropriate primitives to 

generate a task based on the user’s input, the system’s current state, and robot sensor 

data. Finally, the prioritized task execution module selects and executes skill primitives 

based on the system’s current state, sensor inputs, and prior tasks. The framework is 

demonstrated by interactively controlling and programming a vacuum-cleaning robot. 

The demonstrations are used to exemplify the interactive programming and the plan 

recognition aspect of the research. 
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Nomenclature 
 
Φp = p-th robot program described in sequence of discrete actions 

Np  = ||Φp|| = number of actions in Φp 

Tp = last time index in Φp 

φ p,a = a-th action in Φp 

P = number of programs in the library 
p
to  = robot position and orientation at time t for Φp = (xt, yt, θt)p [m, m, rad] 

pO  = set of all p
to  during the execution of Φp = 1 2{ , }

p

p p p
To o o…  = ,,0 ,1{ , , , }pp Np pO O O  

pτ  = set of all time t = {1…Tp} during the execution of Φp [sec] 
,p aτ  = set of all time t during the execution of φ p,a, before φ p,a+1 = ON OFF, ,( , )p a p aτ τ  [sec] 

,p aO  = set of all p
to  during the execution of φ p,a and before φ p,a+1 = ON OFF, ,( , )p a p aO O    

ON,p aO  = set of all p
to  during the execution of φ p,a  = , ONp a

pO
τ

 

OFF,p aO  = set of all p
to  after the execution of  φ p,a  and before φ p,a+1 = , OFFp a

pO
τ

 

pλ  = Continuous Density HMM description of Φp 

aij = state transition probability from state i to state j 

bij = observation probability from state i to state j = ( , ) ( , )ij ij ij ijN WN Sθ θµ µΣ i   

ijµ  = mean robot position (x,y) from state i to state j [m, m] 

ijΣ  = covariance matrix of robot position from state i to state j 

ijθµ  = mean robot orientation θ from state i to state j [rad] 

ijSθ  = angular variance (between 0 and 1) of robot orientation from state i to state j 

ψij = value of bij at a distance of 3σ from the mean 

rij(t) = Mahalanobis distance between to  and { ijµ , ijθµ } 

δt(i) = token value of state i at time t 

Pi,Si,Ti = i-th robot position (x,y) in the set of P, S, or T [m, m] 
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1. Introduction 

An important aspect of a successful robotic system is the human-machine 

interaction. As robots enter the human environment and come in contact with 

inexperienced users, they need to be able to interact with users in a multi-modal 

fashion—keyboard and mouse are no longer acceptable as the only input modalities. 

Humans should be able to communicate with robots using methods as similar as possible 

to the concise, rich, and diverse means they use to communicate with one another. This 

paper introduces a novel approach for programming a robot interactively through a multi-

modal interface. The key elements behind this novice-friendly system are intuitive 

interfaces based on speech and hand gesture recognition, and interaction capabilities that 

allow the user to take over the control of the robot at any given time. Such interaction 

capabilities give a sense of assurance to the users and help them in dealing with loosely 

calibrated position sensors by including a human in the control loop. Users are able to 

initiate a programming phase through voice commands and move the robot to any desired 

location. The sequence of commands turns into a sequential robot program. The user can 

then initiate an execution phase and execute the program while taking control at any 

given time. The multi-modal human-robot interaction described above is similar to the 

WYSIWYG (what you see is what you get) interface introduced in the human-computer 

interaction domain. Instead of off-line robot programming, this on-line robot 

programming method lets the user see what to expect from the program execution. 

Industrial Robotics: In the early years of robotics, a hand-held control box called 

a teach pendant connected to a robot controller used to direct and program a robot was 

the most common mode of interaction. As software capabilities improved, the ability to 

do off-line programming proved to be a significant step forward. Interfaces to 

manipulator systems made further progress with the introduction of user friendly 

programming paradigms for sensor-based manipulation [27]. The current state-of-the-art 

in manipulator interaction is based on iconic programming [9] and/or programming by 

human demonstration [13,42]. The goal of these paradigms is to translate the burden of 

programming manipulator systems from robot experts to task experts. Task experts have 

extensive knowledge and experience with respect to the task, but may only have limited 
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expertise in robotics. To enable these novice users to interact with the robot, the interface 

needs to be intuitive and have the ability to interpret the vague specifications of the user. 

An example of such a system is the gesture-based programming interface developed by 

Voyles and Khosla [42]. The robot system observes the operator unobtrusively while she 

is demonstrating the task. The observations can be based on vision, range sensing, data 

gloves, or tactile sensing.  

Personal Robotics: Due to the growing field of personal robotics, we come in 

contact with more robots than ever before. Examples of such robots include pet robots [8], 

tour-guiding robots [40], entertainment robots [14], intelligent wheelchairs [21,25], and 

mobile vacuuming robots [28]. Traditionally, mobile robots are controlled via a joystick 

or mouse, but increasingly, voice or gestures are included as input modalities [5]. In this 

paper, we explore the task of interactively controlling and programming a vacuum-

cleaning robot called Cye [4]. This task requires both interactive multi-modal control and 

a certain degree of autonomy. To accommodate novice users, the programming 

framework is based on multi-modal interaction (hand gestures and voice commands) and 

encompasses preemptive interaction during both programming and execution. 

Multi-modal Interface: From the perspective of multi-modal interfaces, (e.g. 

gestures, speech) the interaction between the user and the robot systems has many 

advantages over conventional interaction modes, such as teach-pendants or joysticks. 

Hand gestures have an advantage in specifying geometric objects and spatial (three-

dimensional) data, and are more intuitive for conveying information to robots that exist in 

the three-dimensional world [34,37]. The advantage is even more obvious when 

interacting with a team of robots, where complicated maneuvers and grouping commands 

can be executed by gesturing a set of points, a region of interest, or a group formation 

[33]. Hand gestures are convenient for specifying parametric and 3D information, but not 

for symbolic gestures. For symbolic information and commands, speech input is a natural 

choice. In comparison to the GUI used in personal computers, hand gesture can be a 

superset of a mouse, and speech can be a superset of a keyboard.  

Intention Interpretation: The most challenging aspect of interactive robot 

programming is to interpret the intent of the users, rather than simply mimic their actions. 

Intent is the purpose or goal the user has in mind. User input can be vague, inaccurate, 
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and often contradicting. An intention aware system can be used to reduce unnecessary 

and often redundant instructions by being aware of what the user really wants. Intention 

interpretation can be thought of as a search for the mapping from the user input and robot 

sensory data to the correct set of robot actions. To accomplish such interpretation, the 

user needs an intuitive mode of interaction with the robot, while letting the system collect 

additional data leading to the correct intention interpretations.  

The term intent is often loosely defined since it is very task dependent. In our 

framework, intention refers to a set of goal-directed robot actions resulting in a sequential 

robot program that the user would like to execute or modify, and the system needs to 

determine from inputs given by the user if such a robot program exists in the system’s 

database. In other words, the user’s intent is captured in the form of a sequential robot 

program, and the flexibility given to the user through real-time interaction and the 

framework’s intuitive interface allows the captured intent to be closer to the user’s true 

intent. Previous work on intention-aware systems such as [2,42] lacks this flexibility, and 

our system is more robust by being aware of a user’s intent and incorporating real-time 

alterations based on this information.  

Task level programming: The multi-modal interactive programming framework 

has several distinct advantages over conventional methods. From the robot programming 

perspective, on-line interaction adds a new flavor to the robot programming problem.  

• It enables novice users to program robots, 

• It enables interactive composition of primitives to create robot programs, 

• It enables task model adaptation through continuous interaction. 

To some degree, other paradigms such as iconic programming [9], and 

programming by demonstration [13] succeed in shifting the burden of robot programming 

from robot experts to task experts. However, due to the current lack of understanding of 

intention interpretation and of the robotic task itself, such off-line programming methods 

are very fragile. The task expert may demonstrate the task to the robot, but the task expert 

has no idea how the robot has interpreted his skill, or whether the robot has a sufficient 

set of actions to perform the demonstrated task. In contrast, our framework allows the 

task expert to “coach” the robot and to make adjustments on-line as it performs the new 

task. 
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2. Related Work 

The area of human-robot interaction is a rich and diverse field of study. In order 

to understand the work of controlling and programming robots through a multi-modal 

interface, this section is divided into two subsections: multi-modal robot control, and 

robot programming. 

2.1. Multi-Modal Robot Control 

The area of robot control refers to the problem of efficiently conveying control 

signals to the robot system. Every robot system must have a device through which its user 

can control the behavior of the robot. The control signal can be in various forms ranging 

from low-level joint motor torque to high-level symbolic skill representations. For both 

mobile robots and industrial manipulators, the basic level of control is in the joint space, 

where the user input often comes from a teach-pendant or a joystick. At the higher level 

of abstraction, the control specifications are symbolic and come from either a graphical 

user interface or a natural user interface such as eye gaze tracking, finger pointing, or 

natural language interpretation. 

Several researches have implemented a variety of natural interface to control 

mobile robots. The GestureDriver and HapticDriver systems by Fong [6] provide a 

teleoperation interface through symbolic hand gestures and force feedback through a 

haptic device. Other mobile robot interactions systems are capable of receiving symbolic 

gesture commands through an on-board camera [5,19,44]. Kuno et al. [21] have 

developed a wheelchair robot controlled by detecting hand gestures with a camera. This 

system is capable of dealing with unknown gestures by considering all periodic hand 

motions as potential gestures. Another example is Matsumoto’s wheelchair robot [26], 

which can detect the user’s gaze and facial direction to navigate.  

To move a step closer to the human-human interaction, researchers are currently 

exploring multi-modal interaction scenarios. The advantage of working with multi-modal 

input mainly lies in its redundancy. For example, the system developed by Perzanowski 

et al. [34] combines natural language and hand gestures to interpret both complete and 

fragmental commands. The multi-modal interface system by Ghidary et al. [10] makes 

use of speech, posture, and object recognition to navigate a mobile robot to an object of 
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interest. Human-robot interaction can become more intuitive as the level of flexibility in 

the human interface increases. However, to achieve a higher level of human-robot 

interaction, the human interface and robot programming modules must work together. 

A multi-modal interface combines multiple input modalities such as natural 

speech, pen-based input, hand gestures, facial gestures, eye gaze, body language, or 

tactile input. In the past, before robust multi-modal approaches were available, skeptics 

believed that a multi-modal interface incorporating two error-prone recognition 

technologies would compound errors and yield even greater unreliability. However, 

recent data shows that fusing two or more information sources can effectively reduce 

recognition uncertainty, thereby improving robustness [32]. The multi-modal mobile 

robot interface by Perzanowski et al. [34] is an example of a successful multi-modal 

interface system. 

Hand gesture recognition is a popular field due to its broad applicability. Many 

successful gesture recognition methods are derived from algorithms in natural language 

recognition. They are roughly divided into three approaches: template-based, stochastic, 

and neural net based approaches. Nishimura and Oka [29] used template based 

continuous dynamic time warping (DTW) for spotting continuous visual gestures. The 

mobile robot interaction system by Kuno et al. [21] also used a gesture-spotting strategy 

based on DTW. Starner [39] applied Hidden Markov Models (HMM; often used to model 

doubly stochastic processes) to visual hand recognition of dynamic American Sign 

Language (ASL). Lee and Xu [22] used a similar HMM based method to recognize static 

ASL alphabets with a data glove as an input device. Kortenkamp et al. [19] developed a 

model-based method which models different parts of the body as a set of proximity 

spaces and defines pose gestures by examining the angles between the links that connect 

these proximity spaces. Waldherr et al. [44] combined a neural net approach for static 

pose gestures with a temporal template matching approach for motion gestures. They all 

differ in their assumptions, implementations (vision vs. magnetic spatial sensor, 

controlled lighting/background condition vs. mobile robot’s on-board camera), and 

capabilities (pose vs. motion gesture, recognition rate), and it is important to keep in 

mind that their advantages and disadvantages are task dependent. 
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2.2. Robot Programming 

In addition to using gesture-based interaction for direct control of robots, it can 

also be used for robot programming. Position and path-based applications such as arc 

welding and machine loading typically employ walk-through or lead-through teaching 

[41]. For walk-through teaching the user specifies intermediate points with a teach 

pendant. For lead-through teaching, the user performs the required motions manually 

while holding some device (the manipulator itself, or a replica) to record the path. While 

these forms of teaching are useful for non-contact applications; other methods are needed 

for applications that involve contact. Kang and Ikeuchi’s [15] learning-from-observation 

system models human behavior as transitions of contact states, by observing a human 

demonstration. The system is able to model high-level task specifications but not the 

sensor feedback during contact. Voyles et al. [43] proposed a gesture-based programming 

paradigm where the system is assumed to have a set of basic skills (also referred to as a 

priori control policies [18], or sensori-motor primitives [27]) from which the system can 

compose programs. Human demonstration is observed through gesture recognition and 

interpretation agents, and the correct skills are selected based on the votes from the 

agents. A similar skill-based approach is used in the telerobotics system by Onda et al. 

[31] that combines geometric modeling, teaching by demonstration in a virtual 

environment, and execution based on manipulation skills. 

To achieve robot interaction at elevated conceptual levels, robot programs can be 

composed from primitive behaviors. Such composition of skills can either be prepared in 

advance or learned from observation. Asada’s human-robot interaction system uses Petri-

nets to model the interaction between the robot and the human, but a plan has to be 

prepared in advance by a programmer [24]. Kimura and Ikeuchi [17] model human-robot 

cooperation tasks by observing both parties and placing pre- and post-conditions into a 

stack to compose a program. For its humanoid application, Kawamura’s DBAM 

architecture [16] captures similar pre- and post- conditions into a look-up table. 

3. Framework 

The programming approach introduced in this paper offers an intuitive interface 

for the user and the ability to provide interactive feedback to coach the robot throughout 
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the programming process. The approach addresses shortcomings apparent in previous 

approaches, which are an unfriendly user interface preventing a novice user from using a 

service robot, and an inability to teach and program a robot on-the-fly. As input 

modalities, we support hand gestures and spontaneous speech. We selected hand gestures 

as a modality to convey parametric information such as speed, angles or positions, and 

spontaneous speech is selected as a modality to convey symbolic information such as 

names, confirmations, or program statements. The selection is made based on 

intuitiveness of the modality. 

The framework is composed of three functional modules as illustrated in Figure 1. 

The first module (multi-modal recognition) translates hand gestures and spontaneous 

speech into a structured symbolic data stream without abstracting away the user’s intent. 

The second module (intention interpretation) selects the appropriate set of primitives 

based on the user input, current state, and robot sensor data. Finally, the third module 

(prioritized task execution) selects and executes primitives based on the current state, 

sensor inputs, and the task given by the previous step. Each module includes two modes 

of operation: a learning and an execution mode. Depending on the mode of operation, the 

overall system can provide interactive robot control, adjustment of primitives, or 

composition of robot programs. 
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There are three main reasons for implementing the system in a modular fashion as 

described in Figure 1. First, the implementation follows a functional decomposition of the 

problem: recognition, interpretation, and execution. Second, in a modular architecture, 

one can easily replace the implementations of individual modules. For example, if we 

were to program an industrial manipulator instead of a vacuum cleaning mobile robot, the 

task execution module can be replaced by another implementation. Finally, because the 

first and last module can be implemented as slight modification of existing software and 

hardware products, a modular implementation allows us to work independently on the 

intention interpretation module, which is the main focus of this research. 

3.1. Multi-Modal Recognition Module 

The function of the multi-modal recognition module (the first block in Figure 1) is 

to translate hand gestures and spontaneous speech into a structured symbolic data stream 

without abstracting away the user’s intent. The symbols could be gestures, words, or both. 

Abstraction of intent can be avoided by ensuring that the robot can cover the entire 

configuration space by using the multi-modal interface, since intention is defined as a set 

of goal-directed robot actions. We consider two sub-functions. First, the module needs to 

translate incoming audio and gesture signals into a structured stream of word and gesture 

unit symbols with appropriate parameters. Second, the module needs to be able to adapt 

to new users by reinforcing recognition models using new incoming data during 

recognition. 

 The recognition module generates a parameterized output stream. Examples of 

such parameters are the direction and velocity of the hand for a waiving gesture, or the 

designated x-y coordinates on the floor for a pointing gesture. The types of input 

modalities discussed throughout the paper are human voice and hand gestures 

parameterized by two 22-sensor CyberGlove. Other modalities can replace or be added to 

the current recognition module.  

The second function of the module is to adapt to the data from new users by 

reinforcing symbols during recognition. Online adaptation of the recognition model to the 

data from new users contributes to a better recognition rate than that achievable without 

adaptation. The multi-modal recognition module is implemented using a Hidden Markov 
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Model [35], a stochastic method in which on-line model adaptation and reinforcement are 

very common. The Maximum Likelihood Linear Regression technique in the Hidden 

Markov Model Toolkit [47] is used to estimate a set of linear transformations for the 

mean and variance parameters of a Gaussian mixture HMM system that reduces the 

mismatch between the current model set and the adaptation data. The technique is used in 

both supervised and unsupervised mode. The supervised mode uses adaptation data of the 

new user from a known gesture sequence transcript. The unsupervised mode uses an 

estimated transcription based on the recognition result to adapt model parameters. 

In our implementation, spontaneous speech is translated into words using 

SPHINX-II, an off-the-shelf speech recognition package [11]. For hand gestures, we 

implemented a word spotting technique using the Hidden Markov Model Toolkit. The 

current system works only with a basic set of words and gestures and does not include 

interactive learning of new gestures. Table 1 lists some of the initial candidate gestures 

and words that such a basic vocabulary could include. For example, the user is able to 

point at a certain position on the floor using a hand gesture coupled with the “Go There” 

command to the “Yellow Robot” via voice. 

In the future, we plan to rely on cross-modal analysis to implement on-line 

learning. There are already attempts to automatically discover new gestures [45] from 

single-modal data; however, it is easier to rely on a redundant input mode to manage the 

learning process. For instance, speech could be used to signal the beginning and end of 

the learning process for gestures, and vice versa. 

3.2. Intention interpretation Module 

The intention interpretation module (The second block in Figure 1) has three 

Input Candidate Symbols 

One-Handed Gestures Point, Waive, Open, Grasp, Turn, Power Grasp, Precision Grasp 
Two-Handed Gestures Relative Position Specification (e.g. two Points) 

Speech Vocabulary 

Go, Move, Goto, Stop, Turn, Forward, Backward, Right, Left 
Deictics (This, That, There) 

Attributes (Yellow, Green), Names (Robot, Cye) 
Numbers (One, Two, Three, etc.) 

Sweep, Vacuum, On, Off, Program, Execute, Complete 

Table 1: Initial Gesture and Speech Vocabularies 
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functions. The first is to recognize and select the appropriate task based on the current 

context. The second is to attach priorities to the task to handle multiple task requests. The 

third is to adapt the task representation used for task recognition and selection to the most 

current observation. 

The problem of intention interpretation can be considered as a mapping problem 

from the stream of user inputs, the current state of the system, and the robot sensor data, 

to the correct robot task. The user input is an incoming stream of structured symbolic data 

(with parameters) from the multi-modal recognition module. The robot sensor data is an 

abstracted version of the robot’s sensor stream. For a mobile robot, the robot sensor data 

could include range sensor data, distance to the closest obstacle, the robot’s global 

position and current velocity. For manipulators, the robot sensor data includes the end-

effector’s position and velocity in the joint space or Cartesian space, and contact data if 

force, torque, or tactile sensors are available.  

The output of the intention interpretation module is a task symbol representing a 

configuration of robot primitives. The usage and detailed definition of the terms primitive 

and task are discussed in the next section. In short, a primitive is an encapsulation of a 

low level robot behavior; that is, a policy π(x,t,α)=u that maps the state x of a system and 

its environment into an appropriate action u at a particular time t, with additional 

parameters α. The task is a robot program composed of various primitives. The semantics 

database (Table 2) is implemented as a look-up table of candidate task symbols and their 

priorities from input symbols from the multi-modal recognition module. Initially, the 

semantics database contains tasks that are composed of single primitives. The primitives 

(Table 3) in our vacuum-cleaning robot scenario are single-purpose controllers. Priorities 

in the semantics database are assigned in a way such that critical and smaller tasks 

receive higher priorities. For example, critical tasks such as Stop() receive highest priority, 

single primitive tasks such as Goto(P), Move(v), etc. receive medium priorities, and 

finally tasks composed of multiple primitives and those associated with program 

composition receive low priorities. Tasks with identical priorities are arbitrated on a first-

come first-serve basis (Section 3.3). 
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Instead of merely mapping the sequence of multi-modal recognition results to the 

set of actions using the semantics database, the intention aware system should suggest 

which task (set of primitives) the user may want to execute based on an incomplete 

sequence of primitives executed by the user.  This recognition ability is similar to the 

auto-completion ability in a text editing program [38]. It is especially helpful when there 

are a large number of programs, and explicitly searching for any particular program may 

be time-consuming. 

In order to perform such recognition in the real world, it is necessary to represent 

tasks in a probabilistic framework rather than as a discrete sequence of commands such 

as {Goto(P1), Vacuum(vacOn), AreaCoverage(P2,P3), Vacuum(vacOff), GoHome()}, 

where the Pi’s describe robot positions in terms of  (x, y). A Hidden Markov Model 

(HMM) provides a way to model the task in a probabilistic framework, where both state 

Input Symbol (“voice” and ‘gesture’) Candidate Task Priority 

“Stop” or two ‘Closed’ fists Stop() High 
“Go” + “This”, “That”, etc + ‘Point’ Goto(P) Medium 

“Go” or “Move” +  
Direction (“Right”, “Forward”, “Left”, “Back”) Move(v) Medium 

‘Waive’ or “Go” + ‘Waive’ Move(v) Medium 
“Go Home” GoHome() Medium 

“Vacuum” + “On” or “Off” Vacuum(vacOn/vacOff) Medium 
“Turn” or “Turn” + direction (“Right”, “Left”) Turn(ω) Medium 

“Cover Area” + two ‘Point’s AreaCoverage(P1,P2) Medium 
“Program” p Program a task p Low 
“Complete” p End of program Low 

“Execute Program” p Execute a task p Low 

Table 2: Semantics Database 

Primitive Parameter Action 
Goto Position P Move to the position, w/path-planning 

Vacuum On/Off Toggle the state of the vacuum cleaner 
AreaCoverage Rectangular Area (P0, P1) Traverse the area specified 

GoHome N/A Move the robot back to the home position 
Move Velocity(v) Apply additional velocity v to the robot 
Turn Angular Velocity(ω) Apply additional angular velocity ω to the robot 
Stop N/A Stops the robot motion 

Table 3: Primitives Database 
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transitions and observations can be expressed stochastically. Since no branching or 

looping is allowed in tasks, each task can be described as a left-right (Bakis) HMM using 

an observation sequence collected at the time of programming. Tasks represented in 

HMMs are organized and compared to the current observation sequence to detect which 

task, if any, the user may want to execute. Other work, such as the human intention 

recognition by Yamada et al. [46] and the online point-based hand writing recognition by 

Bahlmann [3], employs similar strategies.  However, our method has an advantage since 

it is capable of disregarding non-task (garbage) sequences through a garbage collector, 

without prior training of a garbage model. In this work, the garbage sequence refers to a 

sequence of observations that are not previously modeled. Such a sequence could 

therefore occur when the user guides the robot to a new position, and thus needs to be 

disregarded in the system’s task suggestion.  

A second important function of the intention interpretation module is to prioritize 

tasks. Not all tasks are of equal importance. For example, the gesture or word that 

corresponds to an emergency stop has a very high priority, and should be executed even 

if the robot is already engaged in another task. Similarly, a high-level task, like 

navigating to a point (x,y), may require assistance from the user to avoid obstacles and 

dead ends. The task, therefore, has a lower priority than the tasks for interactive user 

assistance. 

A third function of the intention interpretation module is to perform online 

modification and adjustment, which are essential since it is unreasonable to expect the 

system to have prior knowledge of every intended task. The system must be capable of 

adjusting and adding primitives to the program with ease. The system supports these 

adjustments by letting the user interrupt the task while it is running, and by registering the 

interrupts as additional primitives in the task. 

Adaptation of models is necessary to reflect changes in the environment and 

modifications to a program made by the user while interacting with the system. Also, 

observation sequences collected from subsequent executions of the same task can be 

combined to improve stochastic parameters used in the HMM representation of the task.  
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In the remainder of this section, we explain how HMM representations of tasks 

are constructed and used for intention recognition, and how they can be updated in real-

time during execution. 

3.2.1. Construction 

The aim in this section is to create λp, a Continuous-Density HMM (CDHMM) 

description of a program p, from Φp, a command sequence of the program and to 

combine the λp’s into a network CDHMM, λnet, that can be used for real-time program 

recognition.  This process is illustrated in Figures 2 and 3. 
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Φp = {Goto(P1), Vacuum(vacOn) , AreaCoverage(P3, P4), Vacuum(vacOff) , GoHome()}
= {    φ p,1 ,           φ p,2 ,             φ p,3 ,           φ p,4 ,        φ p,5 }

Robot Program Φp:

1) Markov Chain Description of Φp:

φ p,4:
Vacuum(vacOff)

s4

φ p,5:
GoHome()

s5

φ p,e:
end Φp

se

2) Association of Observations Generated by Φp with CDHMM:

3) Generated CDHMM description λp of Φp:

φ p,0:
start Φp

s0

φ p,1:
Goto(P1)

s1

φ p,2:
Vacuum(vacOn)

s2

φ p,3:
AreaCoverage(P3,P4)

s3

s5 ses0 s1 s2 s3 s4

0101 , ba 1212 , ba

1111 , ba 2222 , ba

2323 , ba
s5 ses1 s2 s3 s4s0

0000 , ba

λp = {πp, Ap, Bp}, where Ap is the set of a’s, Bp the set of b’s
πp = initial state probability
aij = state transition probability from si to sj
bij = observation probability during transition from si to sj

= ( , ) ( , )ij ij ij ijN WN Sθ θµ µΣ ⋅

,,0 ,1{ , , , }pp Np p pO O O O=  
ON OFF

, ,ON OFF
, ,, ( , ) ( , )p a p a

p a p a p pp aO O O O O
τ τ

= =  
( , , ) ( , , ) of program  at time index  p p p

t t t tO x y x y tθ θ= = Φ  
, ,ON { : robot at time  executing an action }p a p p at tτ τ φ= ∈  
, , , 1OFF { : robot at time  after execution of an action , before executing }p a p p a p at tτ τ φ φ += ∈  

{set of all time  during execution of program }p ptτ = Φ  

ON,0pO ON,1pO ON,2pO ON,3pO ON,4pO ON,5pO

OFF,0pO OFF,1pO OFF,2pO OFF,3pO OFF,4pO OFF,5pO

44 44,a b 55 55,a b33 33,a b

34 34,a b 45 45,a b 5 5,e ea b

Figure 2: Conversion of a sample program Φp to Continuous Density HMM λp 
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A program Φp consists of a set of sequential program actions φ p,0, φ p,1,…, φ p,n . 

When a robot is programmed interactively, the system collects an observation sequence 

1 2{ , }
p

p p pp
TO o o o= …  where p

to  = (xt, yt, θt)p correspond to the robot position and orientation 

at time t for program p.  The sequence pO  of the program Φp is the collection of all 

observations ,p aO  resulting from program actions φ p,0, φ p,1,… φ p,a. The robot program 

Φp is then converted into a CDHMM λp through the process illustrated in Figure 2. The 

program is first converted into a Markov chain (top of Figure 2) whose states correspond 

to each programmed action. The number of states in the chain is the number of actions in 

the program plus two (the start and end states). Observations of the robot’s position (x, y, 

θ) are collected during the task execution and are associated with each of the arcs in the 

state transition diagram. For each arc, the observation sequence is encoded in an 

observation density function, bij.  

The observation density function, bij, is an expression for the likelihood of 

observing a given robot position p
to  = (xt, yt, θt)p given that the robot is moving from state 

i to state j.  bij (Equation 1) is modeled as a combination of a normal distribution, 

( , )ij ijN µ Σ  (Equation 4) and a wrapped normal distribution ( , )ij ijWN Sθ θµ  (Equation 9).  

spi= state i of program p = {1…P}, 
where P = # of program models

Np =

HMM Network for Task Recognition:

• • • • • • s1es10

λ 1

• • • • • • s2es20

• • • • • • sPesP0

•••••••••

s00

1
1P +

λ 2

λ net

12s11s
11Ns

22s21s
22Ns

2Ps1Ps PNP
s

1
1P +

1
1P +

1
1P +

λ P

# of actions in program p pΦ = Φ

 
Figure 3: HMM Network with Shared Initial State 
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Observed positions are assumed to be correlated but orientations are assumed to be 

independent from the positions (i.e. ( , )ij ijWN Sθ θµ  is independent from ( , )ij ijN µ Σ ) since the 

robot motion tends to be either unidirectional or equally varying throughout the 

configuration space. We should point out that extra care is needed to calculate the sample 

mean and variance of orientation data, which are expressed in circular rather than 

Cartesian coordinates. A wrapped normal distribution ( , )ij ijWN Sθ θµ  is approximated in 

one of two methods (Equation 9) depending on its angular variance, 2
ijθ

σ . Refer to 

Mardi’s text [23] for justification of the approximation. 
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In addition to the observation probabilities, bij, the CDHMM for program λp is 

also characterized by state transition probabilities, aij.  The state transition probability aij 

is determined by taking the ratio of the number of observations used at recurring and 

transition arcs. ON OFF
, ,ON OFF

, ,, ( , ) ( , )p a p a
p a p a p pp aO O O O O

τ τ
= =  is an observation sequence for 

program action φ p,a, where , ONp aτ  is a set of time index t while action φ p,a is being 

executed, and , OFFp aτ  is a set of time index t after execution of φ p,a and before execution of 

φ p,a+1
.  The state transition probability aij is defined as follows: 

ON

ON OFF

OFF

ON OFF

,

, ,

,

, ,

            for 

     

            for 

p a

p a p a

ij p a

p a p a

i j

a

i j

τ

τ τ

τ

τ τ

⎧
⎪ =⎪ +⎪= ⎨
⎪
⎪ ≠
⎪ +
⎩

      (10) 

After converting all programs pΦ  to pλ  for p = 1…P, where P is the number of 

program models, the pλ  are combined into one netλ for recognition purposes. Figure 3 

describes how netλ  is constructed from the CDHMMs λ1, λ2 … λP. All the transition 

probabilities from s00 (
00 00 00 10 00 0

, ,
Ps s s s s sa a a ) are assumed to be equal with a value of 

1/(P+1). Observation probabilities for these arcs 
00 00 00 10 00 0

, ,
Ps s s s s sb b b  are undetermined at 

this point.  They are assigned dynamically inside the recognition algorithm described in 

the following section. 

3.2.2. Recognition 

During recognition, the current sequence of position observations is evaluated and 

compared to all the robot program CDHMMs stored in the network λnet. It is necessary 

not only to detect in real-time which program the user may be interested in, but also to 

reject observations that are not part of any existing program. The goal here is to find the 

most likely state qt at the current time t, given observations up to time t, and the 

CDHMMs λ1, λ2 … λP, constructed from P robot programs organized into λnet as 

described in Figure 3. 
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To find the single most likely state qt out of all states in the shared CDHMM 

network for the current observation sequence, we use a modified Viterbi Algorithm 

described in Figure 4.  The Viterbi algorithm, based on the Token Passing paradigm [9], 

has been modified by adding dynamic garbage collection, that is, recognizing the state, 

s00, in which none of the programs is being executed. The modification involves the 

dynamic computation of the observation probabilities for state s00, as is illustrated in 

Figure 5. 

Consider a sample CDHMM network (Figure 5.a) constructed from a shared 

garbage state s00, and two member CDHMMs each with only one state, s10 and s20. The 

member CDHMMs have observation density functions 
10 10s sb  and 

20 20s sb  (Figure 5.b/c).  If 

the observation ot is close to either 
10 10s sµ  or 

20 20s sµ , the algorithm will consider the 

observation to indicate that the corresponding state s10 or s20, respectively, should be 

promoted.  However, if the observation is far removed from both 
10 10s sµ  and 

20 20s sµ , then 

the shared garbage state, s00, should be promoted.  This is achieved by introducing a 

Initialization: 
Assign a token with value of 1 to the initial shared state s00. 
Assign a token with value of 0 to all other states. 
For all arcs not originating from state s00, compute and store the value ψij. 

Algorithm: 
for each time t do 

for each state i ≠ s00 do 
Compute and store the Mahalanobis distance between ot and µij; 
Pass a copy of the token in state i to each connecting state j, multiplying its 
value by aijbij(ot). 
If the new token value underflows to 0, let the value be ε; 

end; 
Pass a copy of the token in state s00 to each connecting state j, multiplying its 
value by aij•ψmn. Choose the ψmn for which the Mahalanobis distance between 
µmn and ot is the smallest; 
Discard the original tokens; 
for each state i do   

Find the token in state i with the largest value and discard the others; 
end; 
Normalize all tokens such that their sum equals 1; 
Find the state qt with the largest token value; 

end; 
Figure 4: Viterbi Algorithm with Dynamic Garbage Collection 
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threshold ψij for each bij below which the garbage state will be given preference.  The 

value of ψij is chosen as the value of bij at a distance of 3σ from the mean, that is: 

23 2 4.5

2 2
ij

ij ij

e eψ
π π

− −
= =

Σ Σ
            (11) 

Since this value is different for every bij, the algorithm uses the value for the state that is 

closest to the current observation according to the Mahalanobis metric [7]: 

1( ) [ ] [ ]T
ij t ij ij t ijr t o oµ µ−= − Σ −         (12) 

This is illustrated in Figure 5.d.  The lines for 
00 00s sb , 

00 10s sb , and 
00 20s sb  can be thought of as 

classification boundaries below which the algorithm gives preference to the garbage state.  

The advantage of the above algorithm is that, unlike the garbage models used in 

large vocabulary state-spotting systems, this algorithm requires no previous training or 

batch processing of the garbage model.  It also requires little additional computation 

during the recognition phase because the ψ values only need to be computed once, during 

initialization, and the Mahalanobis distances, used to select the appropriate ψ values, are 

calculated and stored when the observation density functions are evaluated for a 

particular observation.  
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Figure 5: (a) sample CDHMM network (b) pdf for bs10s10 (c) pdf for bs20s20 
(d) dynamically generated bs00s00, bs00s10, bs00s20 
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Since we are only interested in the most likely state, we only need to keep track of 

the CDHMM trellis of token scores as a starting point for the processing of additional 

observations. Each token value corresponds to the likelihood of being in the particular 

state after going through the most likely state sequence.  Based on the assumption that the 

model λnet fully explains all observation sequences, the entire trellis is normalized to 1.0 

for every observation.  The initial “garbage” state becomes the most likely state if the 

observation sequence can not be explained by any of the other models λ1…λP. After 

finding the current CDHMM node, the system can determine the action that should be 

taken according to the most probable robot program. 

3.2.3. Model Update 

Online seamless adjustments of the statistics (aij, bij) that describe the robot 

program are essential for keeping the system healthy. For example, an additional obstacle 

on the path between via-points can change the trajectory of the mobile robot, requiring 

that the program description be adjusted. Parameter adaptation can be used to improve 

the CDHMM parameters over multiple executions of the same task. This can be done by 

first partitioning the observation sequence and merging statistics derived from new 

samples with the old statistics.  nadd additional samples with mean vector, µadd, and 

covariance matrix, Σadd, can be merged with nold old samples with statistics µold and Σold to 

derive the combined statistics, nnew, µnew, Σnew as follows: (Appendix A) [20]: 

oldaddnew nnn +=                                                          (13) 

newoldoldaddaddnew nnn  / )( µµµ +=                                             (14) 

( ) /  ( 1)
( 1)

( )( )
             

( 1)

( )( )

new new

add add
T

add add new add new

old old
T

old old new old new

A B C D n
A n

B n
C n

D n

µ µ µ µ

µ µ µ µ

Σ = + + + −

= − Σ⎧
⎪

= − −⎪
⎨ = − Σ⎪
⎪ = − −⎩

                                   (15) 

Using the above equations, one can compute the statistics for adapted observation 

probabilities without having to keep the entire observation history. For implementation 

purposes, we always set nold = nnew, so that the effects from old samples will eventually 

decay with additional adaptation cycles. 
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3.3. Prioritized Task Execution Module 

The prioritized task execution module (the third block in Figure 1) has two 

functions. The first is to arbitrate and execute primitives based on the current state, the 

sensor inputs, and the prioritized task given by the previous module. The second is to 

generate a robot program (task) by configuring primitives. 

Before going into the details of each function, we distinguish tasks from 

primitives based on their level of abstraction. Primitives are encapsulations of low-level 

robot behaviors and serve as building blocks of high-level behaviors. They consist of 

motor (M), sensor (S), or sensori-motor (SM) primitives. Motor primitives generate open 

loop behaviors that do not depend on sensor feedback. For mobile robots, motor 

primitives include sensor independent acceleration, stop, turn, beep, and directional 

motions. Sensor primitives provide the system with observable sensor signals, such as the 

current robot position, range sensor data, and bumper switch data. Sensori-motor 

primitives generate closed loop behaviors, such as wall following or navigation towards a 

particular destination. The sensori-motor primitives can be thought of as pre-tailored 

configurations of motor and sensor primitives.  

A task is a configuration of primitives—either a sequence of primitives, or a 

single primitive. Tasks are stored in a database in the form of a state buffer [17], Markov 

chain [36] or finite state machine [27]. Because the intention interpretation module 

requires access to some of the task data also, it shares the semantic, primitive, and task 

databases with the task execution module, as is shown in Figure 1.  

The first important function of the task execution module is task arbitration. As is 

explained in the section on intention interpretation, not all tasks are equally important. 

When tasks with different priorities are passed to the prioritized task execution module, 

the module orders the tasks and executes them according to their priority. The scheme 

can be described as event driven preemption, where the event (a request from the 

intention interpretation module to execute a task) triggers an active switch from the 

running task with lower priority to another with higher priority. This allows the user to 

handle situations such as making an emergency stop or avoiding an obstacle during the 

execution of other tasks. Figure 6 describes the first function, where the task T2 with low 

priority (3) is preempted by the task T1 with medium priority (5) during the execution of 
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primitive P3. The task T2 can be thought of as a program (task) that consists of primitives 

P1, P3, and P7, while the task T1 is a single primitive task. 

The second function of the task execution module is to generate a robot program 

(task) interactively.  The basic approach is to take a coaching strategy using a redundant 

input mode. The user sets the module to a learning mode and executes primitives 
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Figure 6: HMM Arbitration Based on Task Priority with T1 (priority=5), T2 (priority=3) 
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sequentially; the system remembers the sequence as a task. There are two obvious 

problems with this approach. The first problem is that the robot programs include 

conditional branching and looping. Forcing the user to remember a special gesture 

command to indicate branching and looping conditions would make the system counter 

intuitive. A tool to convey a program structure and an intuitive interface to edit the 

program are necessary, unless the system can infer such conditions from multiple 

examples. In the current implementation, iconic programming is used to convey and edit 

non-sequential program structures. 

The second problem is the lack of generality. The task would be useless if it 

would only work for the particular parameter value for which it was trained. Somehow, 

the user must let the module know that some attributes can be generalized while others 

need to be retained as important features of the task. For the point and navigate task, the 

goal coordinates should be variable, while the sequence of primitives used to navigate 

needs to be retained. Making this distinction is the subject of future research. 

Table 4 summarizes the functions offered by each of the three modules in the 

framework. The three modules work synchronously in a continuous flow of data for 

providing intuitive multi-modal interaction and programming of robots. 

Module Input Function (Execution and/or Learning mode) Output 

Multi-modal 
Recognition 

CyberGlove-R 
Polhemus-R 

CyberGlove-L 
Polhemus-L 

Acoustic (8bit-16KHz) 

• Translate incoming audio and gesture 
signals into a structured stream of word 
and gesture unit symbols with appropriate 
parameters. (E) 

• Reinforce models during recognition 
(exec. & learn) 

Gesture Symbol-R + param. 
Gesture Symbol-L + param. 

Word Symbol + param 

Intention 
Interpretation 

Gesture Symbol-R + param 
Gesture Symbol-L + param 

Word Symbol + param 
Robot Data 

Robot Position 
Robot Velocity 

Sensor Readings 
Knowledge of its current state 

• Select the appropriate primitives based on 
the user input, current state, and robot 
sensor data. (E) 

• Prioritization of tasks, according to the 
database (E) 

• Adapt task model used for selections 
using the most current observations (exec. 
and learn) 

Task symbol + priority + param 

Prioritized Task 
Execution 

Robot Status 
Sensor Readings 

Task symbol + priority + param 

• Arbitrate and execute primitives based on 
current state, sensor input, and the 
prioritized task given by the previous 
module. (E) 

• Generate a robot program (task) by 
configuring primitives. (E & L) 

Control vector 

Table 4: Functional Summary 
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4. Demonstration 

We have conducted two demonstrations to exemplify the interactive programming 

and the plan recognition aspect of the research. The first demonstration is to verify the 

operation of overall system through sequential programming and adjustment of a mobile 

vacuum cleaning robot. The second is to demonstrate intention awareness by letting the 

system detect the most likely program the user wants to execute, and have the intention 

model adapt to the current observations. 

4.1. Sequential programming and adjustment 

The first demonstration was conducted to verify the connections between all three 

modules and to illustrate the overall operation of the framework with a basic interactive 

programming example. The framework is implemented using a Cye vacuum cleaning 

robot [4], two 22-sensor CyberGloves [1], and a microphone.  We modified the graphical 

user interface provided with the vacuum cleaning robot, to accept hand gestures and 

speech input, while retaining its original functionality: mapping, iconic programming, 

and path-planning. As a result, Cye can be controlled via mouse, speech, and hand 

gestures. 

The multi-modal recognition module is implemented using the Sphinx-II speech 

recognition engine [11] and the Hidden Markov Toolkit (HTK) [47] that has been 

customized to recognize gestures at 60Hz with 92% recognition accuracy. A discussion 

of the gesture recognition methodology is outside the scope of this article; however, the 

method is similar to the one in [30], where parameters of Hidden Markov models for each 

gesture are obtained from known strings of gesture examples.  Each gesture consists of 

gesture phonemes that take into account finger-joint positions, joint velocities, and the 

hand’s Cartesian position and velocity. The vocabulary of gestures is listed in Table 1. 

The on-line addition of vocabulary is not implemented at this point although the system is 

capable of adapting model parameters for new users with very few additional training 

samples, using capabilities offered by HTK. 

The intention interpretation module is implemented with a semantic database 

(Table 2). The semantic database connects inputs such as gesture and speech symbols, the 

robot’s sensor readings, and the current state to the most likely robot task. A task, which 
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can be considered as a robot program, is a set of one or more primitives. Each task has 

predefined priorities attached to specify the importance of the task over the others in the 

event of preemption. At this point, the semantic database is fixed and does not support 

the on-line addition of entries. 

The prioritized task execution module ensures that the primitives are executed 

according to their assigned priorities. The primitives used in the current scenarios are 

listed in Table 3. Primitives such as GoHome and AreaCoverage provide high-level 

navigation, whereas primitives such as Move, Turn, and Vacuum give low-level control 

of the robot. Primitives are executed in order of arrival except when a high-priority task is 

introduced; such tasks pre-empt the current task and execute immediately.  

For the current implementation, we have considered two interactive programming 

scenarios. The first scenario is to have a user register numerous via-points to which the 

robot should navigate using its path planning capability. The second scenario is to use a 

two-handed gesture to specify an area that the robot should vacuum; the robot then 

vacuums the area using its area coverage primitive. In both scenarios, the robot can 

accept the user’s preemptive speech and hand gesture commands to deal with unforeseen 

events. Figure 7 and Figure 8 illustrate the sequences of the first and second scenario. 

Each figure contains a sequence of camera snapshots with the corresponding conceptual 

illustrations of the framework, and the cropped images of the GUI. Refer to Multimedia 

Extension 1 for the video of the programming phase and Extension 2 for the execution 

phase of the first scenario. 
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In the first scenario, the user first verbally commands that the subsequent actions 

be stored as “Program One”. The user then executes the Goto primitive by combining the 

voice command “Go There” with the gestural command ‘Point’ to indicate the destination. 

In general, deictic terms such as “This”, “That”, and “There” must be accompanied by a 

referential gesture to specify the corresponding task parameters. For the Goto primitive, 

the Cartesian coordinates are extracted from the intersection between the extension of the 

index finger and the ground [12]. In step 2, the user enters another Goto primitive but 

P
rogram

m
ing

Action DB

Trainer
Speech DB

Prioritized 
Execution 

Module

Intention 
Interpretation

Module

Multi-modal 
Recognition 

Module

Gesture DB
Task DB
Program 1 = 

GoTo(P0)
+ GoTo(P1)

Primitive DB
GoTo()

Semantic DB
Execute

→
Program 1

Speech: “Execute Program 1”
Gesture: “”

Action DB

Trainer
Speech DB

Prioritized 
Execution 

Module

Intention 
Interpretation

Module

Multi-modal 
Recognition 

Module

Gesture DB
Task DB
Program 1 = 

GoTo(P0)

Primitive DB
GoTo()

Semantic DB
Go + 

There & Point
→

GoTo(P0)

Speech: “Go There”
Gesture: Point(P0)

Action DB

Trainer
Speech DB

Prioritized 
Execution 

Module

Intention 
Interpretation

Module

Multi-modal 
Recognition 

Module

Gesture DB
Task DB
Program 1 = 

GoTo(P0)
+ GoTo(P1)

Primitive DB
GoTo()

Semantic DB
Go + 

There & Point
→

GoTo(P1)

Speech: “Go There”
Gesture: Point(P1)

Step 1

Step 2

Step 3

E
xecution

Action DB

Trainer
Speech DB

Prioritized 
Execution 

Module

Intention 
Interpretation

Module

Multi-modal 
Recognition 

Module

Gesture DB
Task DB
Move(v)
Program 1 = 

GoTo(P0)
+ GoTo(P1)

Primitive DB
Move()
GoTo()

Semantic DB
Waive(v)

→
Move(v)

Speech: “”
Gesture: Waive(v)

Action DB

Trainer
Speech DB

Prioritized 
Execution 

Module

Intention 
Interpretation

Module

Multi-modal 
Recognition 

Module

Gesture DB
Task DB
Program 1 = 

GoTo(P0)
+ GoTo(P1)

Primitive DB
GoTo()

Semantic DB

Speech: “”
Gesture: “”

Step 4

Step 5

Figure 7: Demonstration Scenario 1 



 29

with a different end-position.  After having saved these two primitives in “Program One” 

with the “Complete” command, the user can re-execute the program through with the 

voice command “Execute Program One”. However, in step 4, when the robot navigates to 

the second position from the first, it encounters an unknown obstacle.  At this point, the 

user gestures the ‘Waive’ command, which has a higher task priority and can be used to 

control the robot around the obstacle. When the obstacle has been cleared and the user 

stops waiving, the robot returns to the execution of “Program One” (Step 5).  
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Figure 8: Demonstration Scenario 2 
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In the second scenario, illustrated in Figure 8, the user defines the task “Program 

Two.” After turning on the vacuum attachment with the voice command “Vacuum On” 

(step 1), the user issues the AreaCoverage command with one two-handed gesture; each 

hand performs a  ‘Point’ gestures to specify the diagonally opposite corners of the area 

(with the direction aligned along the axes of the GUI). Steps 3 to 5 show the execution of 

the AreaCoverage command. As in the first scenario, at any point can the user re-execute 

“Program Two”, interrupt the execution, or interactively adjust the execution with higher-

priority commands. 

4.2. Plan recognition 

The second demonstration was conducted to verify the system’s intention 

awareness.  Assume that the database of robot programs contains three test programs: 
1Φ  = {Goto(P1), Vacuum(vacOn), AreaCoverage(P2, P3), Vacuum(vacOff), GoHome()} 
2Φ  = {Vacuum(vacOn), Goto(S1), Goto(S2), AreaCoverage(S3, S4), GoHome()} 
3Φ  = {Goto(T1), Goto(T2), Goto(T3)} 

where Pi, Si, Ti all represent positions on the map in (x, y), as described on Figure 

Figure 9: Positions used for the test programs λ1, λ2, λ3 
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9. 

For each test program, a CDHMM representation was created through the method 

described in section 3.2.1. The trajectories and the resulting observation probability 

densities are illustrated in Figure 10.  Each program was executed four times while 

collecting observation sequences with a 5Hz sample frequency. There was variability in 

the path in λ1 and λ2 to test adaptation.  

Recognition was performed on the constructed CDHMM network λnet using three 

test observation sequences, illustrated in Figure 11 shows three test sequence in different 

columns, and each row correspond to the observations sequence, log(δt(i)) to enhance 

small scores, and δt(i) to show which state i had the best score in each time step t.  

The first test sequence is one of the training sequences used for the first program 

λ1. Its δt(i) image (3rd row, 1st column) shows that the algorithm follows the states in λ1 

that are between s10 and s1e. The second test sequence used Goto() commands to move in 

the order of {Home, S1, S2, T3, T1, T2, T3}. The test result shows what is expected: the 

recognition algorithm starts by selecting the states in the program λ2 and jumps to the 

states in program λ3. In the third test sequence, the robot follows a random trajectory that 
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and the resulting observation probability densities (arrow = mean orientation) 
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does not include any of the three programs in the database. Since this trajectory does not 

resemble any of the pre-defined programs, the recognition algorithm selects the shared 

garbage state almost the entire time. This is shown in the right-most graphs in Figure 11 

where the top row of the figure is white, indicating that state zero has the highest 

probability value. 

5. Summary 

Human-Robot interaction needs to be intuitive, interactive, and intention aware. 

In this paper, we have described the overall framework for interactive multi-modal robot 

programming and have illustrated the framework using two demonstrations. The 
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programming approach offers, through an intuitive interface using hand-gestures and 

speech recognition, the ability to provide interactive feedback to the robot to coach it 

throughout the programming and execution phases. The user’s intent is captured in the 

form of a sequential robot program, and the flexibility given to the user by the framework 

through real-time interaction and intuitive interface allows the captured intent to be closer 

to the user’s true intent. 

The framework is composed of three functional modules. The first module (multi-

modal recognition) translates hand gestures and spontaneous speech into a structured 

symbolic data stream without abstracting away the user’s intent. The second module 

(intention interpretation) selects the appropriate set of primitives based on the user input, 

current state, and robot sensor data. Finally, the third module (prioritized execution) 

selects and executes primitives based on the current state, sensor inputs, and the task 

given by the previous step.  

The first demonstration verified interactive multi-modal programming and 

execution of two sequential programming scenarios: point-to-point navigation and area 

coverage, which clearly illustrates the usefulness of multi-modal interaction, including 

the capability to interrupt commands preemptively. The second demonstrated that the 

system can determine the most likely high-level goal the user is trying to achieve, given a 

limited, initial sequence of task primitives. A set of user intentions, expressed as a robot 

program, was converted to HMM representations, and was used to recognize the most 

likely action that could be suggested to the user. Furthermore, we suggested a way to 

incorporate new observations to adapt the statistical model to previously unknown 

situations. 

To obtain a comprehensive multi-modal interactive robot programming system, 

several elements still need to be added in the future. Although the programs generated by 

the current system can be re-executed, they are limited to fixed task sequences. To 

expand the generality of the paradigm, we need to add the ability to re-configure the task 

parameters interactively and define non-sequential flow structures such as conditional 

branching and looping. Lastly, the system performance needs to be quantitatively 

evaluated through user studies, to determine the benefits provided by multi-modal 

programming, interactivity, and intention interpretation. 
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Appendix A: Merging Sampled Statistics without Prior Samples 

The following is the derivation of the method used to merge p-dimensional 

sampled statistics of set X and set Y without using samples themselves. In other words, 

solve for Z  and 2
ZS  from Xn , X , 2

XS , Yn , Y , and 2
YS  (without X and Y). 

Sample Set Size Mean Variance
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( )1, ,
YnY Y Y=  Yn  Y  2

YS  
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