
Square Root SAM
Simultaneous Localization and Mapping

via Square Root Information Smoothing

Frank Dellaert
College of Computing

Georgia Institute of Technology
Technical Report No. GIT-GVU-05-11

April 2005

Abstract

Solving the SLAM problem is one way to enable a robot to explore, map, and
navigate in a previously unknown environment. We investigate smoothing ap-
proaches as a viable alternative to extended Kalman filter-based solutions to the
problem. In particular, we look at approaches that factorize either the associated
information matrix or the measurement matrix into square root form. Such tech-
niques have several significant advantages over the EKF: they are faster yet exact,
they can be used in either batch or incremental mode, are better equipped to
deal with non-linear process and measurement models, and yield the entire robot
trajectory, at lower cost. In addition, in an indirect but dramatic way, column
ordering heuristics automatically exploit the locality inherent in the geographic
nature of the SLAM problem.

In this paper we present the theory underlying these methods, an interpreta-
tion of factorization in terms of the graphical model associated with the SLAM
problem, and simulation results that underscore the potential of these methods
for use in practice.

1



1 Introduction

The problem of simultaneous localization and mapping (SLAM) [1, 2, 3] has received con-
siderable attention in mobile robotics as it is one way to enable a robot to explore, map, and
navigate in previously unknown environments. The traditional approach in the literature is
to phrase the problem as an extended Kalman filter (EKF), with the robot pose and static
landmarks as the evolving filter state [4, 2, 5, 6]. It is well known that the computational
requirements of the EKF become impractical fairly quickly, once the number of landmarks
in the environment grows beyond a few hundred. As a result, many authors have looked at
ways to reduce the computation associated with the EKF, using both approximating [7, 8, 9]
and non-approximating [10] algorithms.

In this paper we propose that square root information smoothing (SRIS) is a funda-
mentally better approach to the problem of SLAM than the EKF, based on the realization
that,

• in contrast to the extended Kalman filter covariance or information matrix, which both
become fully dense over time [8, 9], the information matrix I associated with smoothing
is and stays sparse;

• in typical mapping scenarios this matrix I or, alternatively, the measurement matrix
A, are much more compact representations of the map covariance structure

• I or A, both sparse, can be factorized efficiently using sparse Cholesky or QR fac-
torization, respectively, yielding a square root information matrix R that immediately
yields the optimal robot trajectory and map;

Factoring the information matrix is known in the sequential estimation literature as square
root information filtering (SRIF). The SRIF was developed in 1969 for use in JPL’s Mariner
10 missions to Venus (as recounted by [11]), following the development of covariance square
root filters earlier that decade. The use of square roots of either the covariance or information
matrix results in more accurate and stable algorithms, and, quoting Maybeck [12] “a number
of practitioners have argued, with considerable logic, that square root filters should always
be adopted in preference to the standard Kalman filter recursion”. Maybeck briefly discusses
the SRIF in a chapter on square root filtering, and it and other square root type algorithms
are the subject of a book by Bierman [11]. However, as far as this can be judged by the small
number of references in the literature, the SRIF and the square root information smoother
(SRIS) are not often used.

In this paper we investigate the use of factorizing either the information matrix I or
the measurement matrix A into square root form, as applied to the problem of simultaneous
smoothing and mapping (SAM). Because they are based on matrix square roots, we will refer
to this family of approaches as square root SAM, or

√
SAM for short. They have several

significant advantages over the EKF:

2



• They are much faster than EKF-based SLAM

• They are exact, rather than approximate

• They can be used in either batch or incremental mode

• If desired, they yield the entire smoothed robot trajectory

• They are much better equipped to deal with non-linear process and measurement
models than the EKF

• When using QR, they are more accurate and stable

• They automatically exploit locality in the the way that sub-map [7] or compressed filter
[10] SLAM variants do

However, there is also a price to pay:

• Because we smooth the entire trajectory, computational complexity grows without
bound over time, for both Cholesky and QR factorization strategies. In many typical
mapping scenarios, however, the EKF information matrix will grow much faster.

• As with all information matrix approaches, it is expensive to recover the covariance
matrix governing the unknowns.

We also present an interpretation of the resulting algorithms in terms of graphical models,
following [13, 14, 8, 9]. Doing so yields considerable insight into the workings of otherwise
opaque “black box” algorithms such as Cholesky or QR factorization. It exposes their kinship
with recently developed inference methods for graphical models [15], such as the junction
tree algorithm. In particular, in Section 2 we introduce the SLAM problem in terms of a
directed graph or belief net. However, to understand factorization, the view of smoothing
in terms of an undirected Markov random field (MRF), introduced in Section 5, is more
appropriate. By exploiting the SLAM-specific graph structure, we are able to immediately
speed up factorization by a factor of 2. We believe that even more efficient algorithms can
be developed by viewing the problem as one of computation on a graph.

2 SLAM Background

SLAM refers to the problem of localizing a robot while simultaneously mapping its environ-
ment, illustrated in Figure 1. Below we assume familiarity with EKF-based approaches to
SLAM [4, 2, 5, 6]. In this section we introduce the SLAM problem and the notation we use,
but we do not re-derive the extended Kalman filter. Rather, in Section 3 we immediately
take a smoothing approach, in which both the map and the robot trajectory are recovered.

3



Figure 1: A synthetic environment with 20 landmarks in which we simulated a robot taking
156 bearing and range measurements along a trajectory of 21 poses. Also shown are the
mean and covariance matrices as estimated by an EKF. Note the effects of process and
measurement noise.

x0 x1

z3z1

x2 xM

lNl1

zKz2 z4

...

l2

...

...

Figure 2: Bayesian belief network representation of the SLAM problem. The state x of the
robot is governed by a Markov chain, on top, and the environment of the robot is represented
at the bottom by a set of landmarks l. The measurements z, in the middle layer, are governed
both by the state of the robot and the parameters of the landmark measured.

4



Following the trend set by FastSLAM and others [13, 14, 8], we formulate the problem
by referring to a belief net representation. The model we adopt is shown in Figure 2. Here
we denote the state of the robot at the ith time step by xi, with i ∈ 0..M , a landmark by
lj, with j ∈ 1..N , and a measurement by zk, with k ∈ 1..K. The joint probability model
corresponding to this network is

P (X, M, Z) =

P (x0)
M∏
i=1

P (xi|xi−1, ui)×
K∏

k=1

P (zk|xik , ljk
) (1)

where P (x0) is a prior on the initial state of the robot, P (xi|xi−1, ui) is the motion model,
parameterized by a control input ui, and P (z|x, l) is the landmark measurement model. The
above assumes a uniform prior over the landmarks l. Furthermore, it assumes that the data-
association problem has been solved, i.e., that the indices ik and jk corresponding to each
measurement zk are known.

As is standard in the SLAM literature [4, 2, 5, 6], we assume Gaussian process and
measurement models [12], defined by

xi = fi(xi−1, ui) + wi (2)

where fi(.) is a process model, and wi is normally distributed zero-mean process noise with
covariance matrix Λi, and

zk = hk(xik , ljk
) + vk (3)

where hk(.) is a measurement equation, and vk is normally distributed zero-mean measure-
ment noise with covariance Σk. The equations above model the robot’s behavior in response
to control input, and its sensors, respectively.

For the prior P (x0), we will assume that x0 is given and hence it is treated as a constant
below. This considerably simplifies the equations in the rest of this document. In addition,
this is what is often done in practice: the origin of the coordinate system is arbitrary, and
we can then just as well fix x0 at the origin. The exposition below is easily adapted to the
case where this assumption is invalid.

Below we also need the first-order linearized version of the process model (2), given by

x0
i + δxi = fi(x

0
i−1, ui) + F i−1

i δxi−1 + wi (4)

where F i−1
i is the Jacobian of fi(.) at the linearization point x0

i−1, defined by

F i−1
i

∆
=

∂fi(xi−1, ui)

∂xi−1

∣∣∣∣
x0

i−1

5



Note that ui is given and appears as a constant above. The linearized measurement equations
are obtained similarly,

zk = hk(x
0
ik
, l0jk

) + H ik
k δxik + J jk

k δljk
+ vk (5)

where H ik
k and J jk

k are respectively the Jacobians of hk(.) with respect to a change in xikand
ljk

, and are evaluated at the linearization point (x0
ik
, l0jk

):

H ik
k

∆
=

∂hk(xik , ljk
)

∂xik

∣∣∣∣
(x0

ik
,l0jk

)

J jk

k

∆
=

∂hk(xik , ljk
)

∂ljk

∣∣∣∣
(x0

ik
,l0jk

)

3 Smoothing SLAM and Least Squares

We investigate smoothing rather than filtering, i.e., we are interested in recovering the maxi-

mum a posteriori (MAP) estimate for the entire trajectory X
∆
= {xi} and the map L

∆
= {lj},

given the measurements Z
∆
= {zk} and control inputs U

∆
= {ui}. Let us collect all unknowns

in X and L in the vector θ
∆
= (X,L). Under the assumptions made above, we obtain the

MAP estimate

θ∗
∆
= argmax

θ
P (X,L|Z) = argmax

θ
P (X, L,Z)

= argmin
θ

− log P (X, L,Z)

by solving the following non-linear least-squares problem:

M∑
i=1

‖xi − fi(xi−1, ui)‖2Λi
+

K∑
k=1

‖zk − hk(xik , ljk
)‖2Σk

(6)

Here ‖e‖2Σ
∆
= eT Σ−1e is defined as the squared Mahalanobis distance given a covariance

matrix Σ.
In practice one always considers a linearized version of this problem. If the process

models fi and measurement equations hk are non-linear and a good linearization point is not
available, non-linear optimization methods such as Gauss-Newton iterations or Levenberg-
Marquardt will solve a succession of linear approximations to (6) in order to approach the
minimum [16]. This is similar to the extended Kalman filter approach to SLAM as pioneered
by [17, 4, 18], but allows for iterating multiple times to convergence.

In what follows, we will assume that either a good linearization point is available or that
we are working on one of these iterations. In either case, we have a linear least-squares

6



problem that needs to be solved efficiently. Using the linearized process and measurement
models (4) and (5), respectively, we obtain

θ∗ = argmin
θ

M∑
i=1

‖F i−1
i xi−1 + Gi

ixi − ai‖2Λi
+

K∑
k=1

‖H ik
k xik + J jk

k ljk
− ck‖2Σk

(7)

where we define ai
∆
= x0

i − fi(x
0
i−1, ui) and ck

∆
= zk − hk(x

0
ik
, l0jk

). To avoid treating xi in a
special way we also introduce the matrix Gi

i = −Id×d , with d the dimension of the robot
state, and we drop the δ notation as implied.

Below we assume, without loss of generality, that the covariance matrices Λi and Σk are
all unity. Because of

‖e‖2Σ
∆
= eT Σ−1e = (Σ−T/2e)T (Σ−T/2e) =

∥∥Σ−T/2e
∥∥2

2

with Σ−1/2 the matrix square root of Σ, we can always eliminate Λi from (7) by pre-

multiplying F i−1
i , Gi

i, and ai in each term with Λ
−T/2
i . A similar story holds for the matrices

Σk, where for scalar measurements this simply means dividing each term by the measurement
standard deviation. Below we assume that this has been done and drop the Mahalanobis
norm in favor of the regular 2-norm.

Finally, after collecting the Jacobian matrices into a matrix A, and the vectors ai and
ck into a right-hand side (RHS) vector b, we obtain the following standard least-squares
problem,

θ∗ = argmin
θ

‖Aθ − b‖22 (8)

which is our starting point below. A can grow to be very large, but is quite sparse, as shown
in Figure 3. If dx, dl, and dz are the dimensions of the state, landmarks, and measurements,
A’s size is (Ndx + Kdz) × (Ndx + Mdl). In addition, A has a typical block structure, e.g.,
with M = 3, N = 2, and K = 4:

A =



G1
1

F 1
2 G2

2

F 2
3 G3

3

H1
1

H1
2

H2
3

H3
4

J1
1

J2
2

J1
3

J2
4


Above the top half describes the robot motion, and the bottom half the measurements. A
mixture of landmarks and/or measurements of different types (and dimensions) is easily
accommodated. Note that the non-zero blocks pattern of the measurement part is also the
adjacency matrix for the measurement part of a belief net like the one in Figure 2.

7



Figure 3: Measurement matrix A associated with the problem in Figure 1, along with the

information matrix I ∆
= AT A, and its Cholesky triangle R. Here the state is 3D and both

landmarks and measurements are 2D, hence the size of A is (20×3+156×2)×(20×3+20×2) =
372× 100.

8



4 Cholesky and QR Factorization

In this section we briefly review Cholesky and QR factorization and their application to the
full rank linear least-squares (LS) problem in (8). The exposition closely follows [19], which
can be consulted for a more in-depth treatment.

For a full-rank m× n matrix A, with m ≥ n, the unique LS solution to (8) can be found
by solving the normal equations :

AT Aθ∗ = AT b (9)

This is normally done by Cholesky factorization of the information matrix I, defined and
factorized as follows:

I ∆
= AT A = RT R (10)

The Cholesky triangle R is an upper-triangular n×n matrix1 and is computed using Cholesky
factorization, a variant of LU factorization for symmetric positive definite matrices. It runs
in n3/3 flops. After this, θ∗ can be found by solving

first RT y = AT b and then Rθ∗ = y

by back-substitution. The entire algorithm, including computing half of the symmetric AT A,
requires (m + n/3)n2 flops.

For the example of Figure 1, both I and its Cholesky triangle R are shown alongside A
in Figure 3. Note the very typical block structure of I when the columns of A are ordered
in the canonical way, i.e., trajectory X first and then map L:

I =

[
AT

XAX IXL

IT
XL AT

LAL

]
Here IXL

∆
= AT

XAL encodes the correlation between robot states X and map L, and the
diagonal blocks are band-limited.

An alternative to Cholesky factorization that is both more accurate and numerically sta-
ble is to proceed via QR-factorization without computing the information matrix I. Instead,
we compute the QR-factorization of A itself along with its corresponding RHS:

QT A =

[
R
0

]
QT b =

[
d
e

]
Here Q is an m × m orthogonal matrix, and R is the upper-triangular Cholesky triangle.
The preferred method for factorizing a dense matrix A is to compute R column by column,
proceeding from left to right. For each column j, all non-zero elements below the diagonal

1Some treatments, including [19], define the Cholesky triangle as the lower-triangular matrix G = RT ,
but the other convention is more convenient here.

9



are zeroed out by multiplying A on the left with a Householder reflection matrix Hj. After
n iterations A is completely factorized:

Hn..H2H1A = QT A =

[
R
0

]
(11)

The orthogonal matrix Q is not usually formed: instead, the transformed RHS QT b is com-
puted by appending b as an extra column to A. Because the Q factor is orthogonal, we
have:

‖Aθ − b‖22 =
∥∥QT Aθ −QT b

∥∥2

2
= ‖Rθ − d‖22 + ‖e‖22

Clearly, ‖e‖22 will be the least-squares residual, and the LS solution θ∗ can be obtained by
solving the square system

Rθ = d (12)

via back-substitution. The cost of QR LS is dominated by the cost of the Householder
reflections, which is 2(m− n/3)n2.

Comparing QR with Cholesky factorization, we see that both algorithms require O(mn2)
operations when m� n, but that QR-factorization is a factor of 2 slower. However, this is
only for dense matrices: if A is sparse, as is the case in the SLAM problem, QR factorization
becomes quite competitive.

5 A Graphical Model Perspective

Cholesky or QR factorization are most often used as “black box” algorithms, but in fact they
are surprisingly similar to much more recently developed methods for inference in graphical
models [15]. Taking a graphical model view on SLAM exposes its sparse structure in full,
and shows how sparse factorization methods in this context operate on a graph.

When examining the correlation structure of the problem it is better to eliminate Z and
consider the undirected graph that encodes the correlations between the unknowns θ only. In
[8, 9] this view is taken to expose the correlation structure inherent in the filtering version of
SLAM. It is shown there that inevitably, when marginalizing out the past trajectory X1:m−1,
the information matrix becomes completely dense. Hence, the emphasis in these approaches
is to selectively remove links to reduce the computational cost of the filter, with great success.

In contrast, in this paper we consider the graph associated with the smoothing information

matrix I ∆
= AT A, which does not become dense, as past states are never marginalized out.

In particular, the objective function in Equation 6 corresponds to a pairwise Markov random
field (MRF) [20, 21] through the Hammersley-Clifford theorem [20]. The nodes in the MRF
correspond to the robot states and the landmarks, and links represent either odometry or
landmark measurements. The resulting bipartite graph corresponding to the example of
Figure 1 is shown in Figure 4.

10



(a) (b)

(c)

Figure 4: a) The graph of the Markov random field of the associated SLAM problem from
Figure 1. b) The triangulated graph: each edge corresponds to a non-zero in the Cholesky
triangle R. c) The corresponding elimination tree showing how the state and landmarks
estimates will be computed via back-substitution: the root is computed first - in this case a
landmark near the top left - after which the computation progresses further down the tree.

11



Both QR and Cholesky factorization eliminate one variable at a time, starting with θ1,
corresponding in the leftmost column of either A or I. The result of the elimination is that
θ1 is now expressed as a linear combination of all other unknowns θj>1, with the coefficients
residing in the corresponding row R1 of R. In the process, however, new dependencies are
introduced between all variables connected to θ1, which causes edges to be added to the graph.
The next variable is then treated in a similar way, until all variables have been eliminated.
This is exactly the process of moralization and triangulation familiar from graphical model
inference. The result of eliminating all variables is a chordal graph, shown for our example
in Figure 4b.

The single most important factor to good performance is the order in which variables are
eliminated. Different variable orderings can yield dramatically more or less fill-in, defined
as the amount of edges added into the graph. As each edge added corresponds to a non-
zero in the Cholesky triangle R, both the cost of computing R and back-substitution is
heavily dependent on how much fill-in occurs. Unfortunately, finding an optimal ordering
is NP-complete. Discovering algorithms that approximate the optimal ordering is an active
research area in linear algebra. A popular method for medium-sized problems is colamd [22].
However, as we will show in Section 7, using domain knowledge can do even better.

A data structure that underlies many of these approximate column ordering algorithms
is the elimination tree. It is defined as a depth-first spanning tree of the chordal graph after
elimination, and is useful in illustrating the flow of computation during the back-substitution
phase. The elimination tree corresponding to our example, for a good column ordering, is
shown in Figure 4c. The root of the tree corresponds to the last variable θn to be eliminated,
which is the first to be computed in back-substitution (Equation 12). Computation then
proceeds down the tree, and while this is typically done in reverse column order, variables
in disjoint subtrees may be computed in any order. In fact, if one is only interested in
certain variables, there is no need to compute any of the subtrees that do not contain them.
The elimination tree is also the basis for multifrontal QR methods [23], which we have also
evaluated in our simulations below.

12



6 Square Root SAM

A batch-version of square root information smoothing and mapping is straightforward and a
completely standard way of solving a large, sparse least-squares problem:

Algorithm 1 Batch
√

SAM

1. Build the measurement matrix A and the RHS b as explained in Section 3.

2. Find a good column ordering p, and reorder Ap
p← A

3. Solve θ∗p = argmin θ ‖Apθp − b‖22 using either the Cholesky or QR factorization method
from Section 4

4. Recover the optimal solution by θ
r← θp, with r = p−1

In tests we have obtained the best performance with sparse LDL factorization [24], a
variant on Cholesky factorization that computes I = LDLT , with D a diagonal matrix and
L a lower-triangular matrix with ones on the diagonal.

We have also experimented with finding better, SLAM specific column re-orderings. A
simple idea is to use a standard method such as colamd, but have it work on the sparsity
pattern of the blocks instead of passing it the original measurement matrix A. This amounts
to working directly with the bipartite MRF graph from Section 5, making accidental zeros
due to the linearization invisible. Surprisingly, as we will show, the symbolic factorization
on this restricted graph yields better column orderings.

Incremental
√

SAM

In a robotic mapping context, an incremental version of the above algorithm is of interest.
It is well known that factorizations can be updated incrementally. One possibility is to use
a rank 1 Cholesky update, a standard algorithm that computes the factor R′ corresponding
to a I ′ = I + aaT , where aT is a new row of the measurement matrix A. However, these
algorithms are typically implemented for dense matrices only, and it is imperative that we
use a sparse storage scheme for optimal performance. While sparse Cholesky updates exist
[25], they are relatively complicated to implement. A second possibility, easy to implement
and suited for sparse matrices, is to use a series of Givens rotations (see [19]) to eliminate
the non-zeros in the new measurement rows one by one.

A third possibility, which we have adopted for the simulations below, is to update the
matrix I and simply use a full Cholesky (or LDL) factorization. QR factorization is more
accurate and has better numerical properties, but a Cholesky or LDL factorization can be
corrected with one linear update step to achieve the same accuracy, if required.

13



Figure 5: A synthetic environment with 500 landmarks along with a 1000-step random walk
trajectory, corresponding to 14000 measurements taken.

Importantly, because the entire measurement history is implicit in I, one does not need
to factorize at every time-step. In principle, we can wait until the very end and then com-
pute the entire trajectory and map. At any time during an experiment, however, the map
and/or trajectory can be computed by a simple factorization and back-substitution, e.g., for
visualization and/or path planning purposes.

7 Initial Findings and Simulation Results

7.1 Batch
√

SAM

We have experimented at length with different implementations of Cholesky, LDL, and QR
factorization to establish which performed best. All simulations were done in MATLAB
on a 2GHz. Pentium 4 workstation running Linux. Experiments were run in synthetic
environments like the one shown in Figure 5, with 180 to 2000 landmarks, for trajectories of
length 200, 500, and 1000. Each experiment was run 10 times for 5 different methods:

• none: no factorization performed

• ldl : Davis’ sparse LDL factorization [24]

• chol : MATLAB built-in Cholesky factorization

14



M N none ldl chol mfqr qr
200 180 0.031 0.062 0.092 0.868 1.685

500 0.034 0.062 0.094 1.19 1.256
1280 0.036 0.068 0.102 1.502 1.21
2000 0.037 0.07 0.104 1.543 1.329

500 180 0.055 0.176 0.247 2.785 11.92
500 0.062 0.177 0.271 3.559 8.43

1280 0.068 0.175 0.272 5.143 6.348
2000 0.07 0.181 0.279 5.548 6.908

1000 180 0.104 0.401 0.523 10.297 42.986
500 0.109 0.738 0.945 12.112 77.849

1280 0.124 0.522 0.746 14.151 35.719
2000 0.126 0.437 0.657 15.914 25.611

Figure 6: Averaged simulation results over 10 tries, in seconds, for environments with various
number of landmarks N and simulations with trajectory lengths M . The methods are
discussed in more detail in the text. The none method corresponds to doing no factorization
and measures the overhead.

Figure 7: Original information matrix I and its Cholesky triangle. Note the dense fill-in on
the right, linking the entire trajectory to all landmarks.

15



Figure 8: Information matrix I after reordering and its Cholesky triangle. Reordering of
columns (unknowns) does not affect the sparseness of I, but the number of non-zeroes in R
has dropped from approximately 2.8 million to about 250 thousand.

Figure 9: By doing the reordering while taking into account the special block-structure of
the SLAM problem, the non-zero count can be eliminated even further, to about 130K, a
reduction by a factor 20 with respect to the original R, and substantially less than the 500K
entries in the filtering covariance matrix.

16



• mfqr : multifrontal QR factorization [23]

• qr : MATLAB built in QR factorization

The results are summarized in Figure 6. We have found that, under those circumstances,

1. The freely available sparse LDL implementation by T. Davis [24] beats MATLAB’s
built-in Cholesky factorization by about 30%.

2. In MATLAB, the built-in Cholesky beats QR factorization by a large factor.

3. Multifrontal QR factorization is better than MATLAB’s QR, but still slower than
either Cholesky or LDL.

4. While this is not apparent from the table, using a good column ordering is much more
important than the choice of factorization algorithm.

The latter opens up a considerable opportunity for original research in the domain of SLAM,
as we found that injecting even a small amount of domain knowledge into that process yields
immediate benefits. To illustrate this, we show simulation results for a length 1000 random
walk in a 500-landmark environment, corresponding to Figure 5. Both I and R are shown
in Figure 7 for the canonical (and detrimental) ordering with states and landmarks ordered
consecutively. The dramatic reduction in fill-in that occurs when using a good re-ordering is
illustrated by Figure 8, where we used colamd [22]. Finally, when we use the block-oriented
ordering heuristic from Section 6, the fill-in drops by another factor of 2.

7.2 Incremental
√

SAM

We also compared the performance of an incremental version of
√

SAM, described in Sec-
tion 6, with a standard EKF implementation by simulating 500 time steps in a synthetic
environment with 2000 landmarks. The results are shown in Figure 10. The factorization
of I was done using sparse LDL [24], while for the column ordering we used symamd [22], a
version of colamd for symmetric positive definite matrices.

Smoothing every time step becomes cheaper than the EKF when the number of landmarks
N reaches 600. At the end, with N = 1, 100, each factorization took about 0.6 s., and the
slope is nearly linear over time. In contrast, the computational requirements of the EKF
increase quadratically with N , and by the end each update of the EKF took over a second.

As implementation independent measures, we have also plotted N2, as well as the number
of non-zeros nnz in the Cholesky triangle R. The behavior of the latter is exactly opposite to
that of the EKF: when new, unexplored terrain is encountered, there is almost no correlation
between new features and the past trajectory and/or map, and nnz stays almost constant.

17



0 50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1000

1200

(a) number of landmarks N seen

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12
x 105

(b) N2 and nnz in R

50 100 150 200 250 300 350 400 450 500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) average time per call, in sec-
onds

Figure 10: Timing results for incremental SAM in a simulated environment with 2000 land-
marks, similar to the one in Figure 5, but 10 blocks on the side. As the number of landmarks
seen increases, the EKF becomes quadratically slower. Note that the number of non-zeros
nnz increases faster when large loops are encountered around i = 200 and i = 350.

18



In contrast, the EKF’s computation is not affected when re-entering previously visited areas
-closing the loop- whereas that is exactly when R fill-in occurs.

We have reason to belief that these results can be further improved: profiling of our
implementation showed that roughly 2/3 of the time is spent updating I, which is an artifact
of our sparse matrix representation. A compressed row scheme would probably increase the
speed by another factor of 2. In addition, incremental QR updating methods should be much
faster than doing full factorizations every time.

8 Conclusion

In conclusion, we believe square root information smoothing to be of great practical inter-
est to the SLAM community. It recovers the entire trajectory and is exact, and even the
decidedly sub-optimal incremental scheme we evaluated behaves much better than the EKF
as the size of the environments grows. In addition, we conjecture that the possibility of
re-linearizing the entire trajectory will make

√
SAM cope better with noisy measurements

governed by non-linear measurement equations. In contrast, non-optimal linearization can-
not be recovered from in an EKF, which inevitably has to summarize it in a quadratic
(Gaussian) approximation.

In this paper we only reported on our initial experiences with this approach, and the
following leaves to be desired:

• We have not yet established any tight or amortized complexity bounds that predict
the algorithm’s excellent performance on problems of a given size.

• The performance results we present are based on simulations. More work is needed to
establish that the algorithm performs as well in practice as it does in simulation.

• We have only compared
√

SAM against the EKF-based stochastic map algorithm.
Comparison of our approach to more recent and faster SLAM variants, both approxi-
mate [7, 8, 9] and exact [10], is the object of future work.

Also, we concentrated on the large-scale optimization problem associated with SLAM. Many
other issues are crucial in the practice of robot mapping, e.g. the data-association problem.
In addition, the techniques exposed here are meant to complement, not replace methods that
make judicious approximations in order to reduce the asymptotic complexity of SLAM.

References

[1] R. Smith and P. Cheeseman, “On the representation and estimation of spatial uncer-
tainty,” Intl. J. of Robotics Research, 1987.

19



[2] J. Leonard, I. Cox, and H. Durrant-Whyte, “Dynamic map building for an autonomous
mobile robot,” Intl. J. of Robotics Research, vol. 11, no. 4, pp. 286–289, 1992.

[3] S. Thrun, “Robotic mapping: a survey,” in Exploring artificial intelligence in the new
millennium. Morgan Kaufmann, Inc., 2003, pp. 1–35.

[4] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial relationships in
Robotics,” in Autonomous Robot Vehicles, I. Cox and G. Wilfong, Eds. Springer-
Verlag, 1990, pp. 167–193.

[5] J. Castellanos, J. Montiel, J. Neira, and J. Tardos, “The SPmap: A probabilistic frame-
work for simultaneous localization and map building,” IEEE Trans. Robot. Automat.,
vol. 15, no. 5, pp. 948–953, 1999.

[6] M. Dissanayake, P. Newman, H. Durrant-Whyte, S. Clark, and M. Csorba, “A solution
to the simultaneous localization and map building (SLAM) problem,” IEEE Trans.
Robot. Automat., vol. 17, no. 3, pp. 229–241, 2001.

[7] J. J. Leonard and H. J. S. Feder, “Decoupled stochastic mapping,” IEEE Journal of
Oceanic Engineering, pp. 561–571, October 2001.

[8] M. Paskin, “Thin junction tree filters for simultaneous localization and mapping,” in
Intl. Joint Conf. on Artificial Intelligence (IJCAI), 2003.

[9] S. Thrun, Y. Liu, D. Koller, A. Ng, Z. Ghahramani, and H. Durrant-Whyte, “Simul-
taneous localization and mapping with sparse extended information filters,” Intl. J. of
Robotics Research, vol. 23, no. 7-8, pp. 693–716, 2004.

[10] J. Guivant and E. Nebot, “Optimization of the simultaneous localization and map
building algorithm for real time implementation,” IEEE Trans. Robot. Automat., vol. 17,
no. 3, pp. 242–257, June 2001.

[11] G. Bierman, Factorization methods for discrete sequential estimation, ser. Mathematics
in Science and Engineering. New York: Academic Press, 1977, vol. 128.

[12] P. Maybeck, Stochastic Models, Estimation and Control. New York: Academic Press,
1979, vol. 1.

[13] K. Murphy, “Bayesian map learning in dynamic environments,” in Advances in Neural
Information Processing Systems (NIPS), 1999.

[14] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM: A factored solu-
tion to the simultaneous localization and mapping problem,” in AAAI Nat. Conf. on
Artificial Intelligence, 2002.

20



[15] R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter, Probabilistic
Networks and Expert Systems, ser. Statistics for Engineering and Information Science.
Springer-Verlag, 1999.

[16] J. Dennis and R. Schnabel, Numerical methods for unconstrained optimization and non-
linear equations. Prentice-Hall, 1983.

[17] R. Smith, M. Self, and P. Cheeseman, “A stochastic map for uncertain spatial relation-
ships,” in Int. Symp on Robotics Research, 1987.

[18] J. Leonard and H. Durrant-Whyte, “Simultaneous map building and localization for an
autonomous mobile robot,” in IEEE Int. Workshop on Intelligent Robots and Systems,
1991, pp. 1442–1447.

[19] G. Golub and C. V. Loan, Matrix Computations, 3rd ed. Baltimore: Johns Hopkins
University Press, 1996.

[20] G. Winkler, Image analysis, random fields and dynamic Monte Carlo methods. Springer
Verlag, 1995.

[21] J. Yedidia, W. Freeman, and Y.Weiss, “Generalized belief propagation,” in Advances in
Neural Information Processing Systems (NIPS), 2000, pp. 689–695.

[22] P. R. Amestoy, T. Davis, and I. S. Duff, “An approximate minimum degree ordering
algorithm,” SIAM Journal on Matrix Analysis and Applications, vol. 17, no. 4, pp.
886–905, 1996.

[23] P. Matstoms, “Sparse QR factorization in MATLAB,” ACM Trans. Math. Softw.,
vol. 20, no. 1, pp. 136–159, 1994.

[24] T. A. Davis, “Algorithm 8xx: a concise sparse Cholesky factorization package,” Univ.
of Florida, Tech. Rep. TR-04-001, January 2004, submitted to ACM Trans. Math.
Software.

[25] T. Davis and W. Hager, “Modifying a sparse Cholesky factorization,” SIAM Journal
on Matrix Analysis and Applications, vol. 20, no. 3, pp. 606–627, 1996.

21


