
D-SLAM: A Decoupled Solution to Simultaneous Localization and

Mapping

Zhan Wang Shoudong Huang Gamini Dissanayake
ARC Centre of Excellence for Autonomous Systems (CAS)

Faculty of Engineering, University of Technology, Sydney, Australia
{zwang, sdhuang, gdissa}@eng.uts.edu.au

http://www.cas.edu.au

Abstract

The main contribution of this paper is the refor-
mulation of the simultaneous localization and map-
ping (SLAM) problem for mobile robots such that
the mapping and localization can be treated as two
concurrent yet separated processes: D-SLAM (decou-
pled SLAM). It is shown that SLAM with a range
and bearing sensor in an environment populated with
point features can be decoupled into solving a non-
linear static estimation problem for mapping and a
low-dimensional dynamic estimation problem for lo-
calization. This is achieved by transforming the mea-
surement vector into two parts: one containing infor-
mation relating features in the map and another with
information relating the map and robot. It is shown
that the new formulation results in an exactly sparse
information matrix for mapping when it is solved us-
ing an Extended Information Filter (EIF). Thus a
significant saving in the computational effort can be
achieved for large-scale problems by exploiting the
special properties of sparse matrices. An important
feature of D-SLAM is that the correlation among fea-
tures in the map are still kept and it is demonstrated
that the uncertainty of the feature estimates mono-
tonically decreases. The algorithm is illustrated and
evaluated through computer simulations and experi-
ments.

Keywords: Decoupled SLAM, Extended In-
formation Filter, Sparse Matrix, Computa-
tional Complexity

1 Introduction

The process of building a map of an environment
while concurrently generating an estimate for the lo-
cation of an autonomous vehicle is known as simulta-
neous localization and mapping (SLAM). The SLAM
problem has been the subject of extensive research in
the past few years with a number of robotics research
groups contributing to make substantial progress in
this area (see for example [8], [14], [30] and the ref-
erences therein). In these publications, among many
others, the fact that the estimation of the robot loca-
tion and the map needs to be simultaneous has been
well demonstrated and issues ranging from proofs of
convergence to computational efficiency have been
addressed.

The structure of the estimation-theoretic formula-
tion of SLAM makes it possible to observe a feature
in the map and use the information present in this
observation to improve the estimation of the location
of all features in the map, whether these features are
in the current neighborhood or very far way. This
is quite a powerful effect in the sense that when the
robot revisits parts of the map that are more accu-
rately known, strong corrections to the location es-
timates of the features in less well defined regions
of the map occur, leading to a perfect map in the
limit. In traditional SLAM, this effect comes from
maintaining the correlations among the estimates of
the robot location and all the feature locations. It
is well known that maintaining a state vector con-

1

sisting of locations of the robot and all the features
and the associated full covariance matrix leads to a
heavy computational burden when solving large-scale
SLAM problems.

In this paper, a decoupled solution to the SLAM
problem (D-SLAM) is provided. It is demonstrated
that the SLAM problem can be reformulated such
that the state vector for mapping only contains the
locations of all the features while the state vector for
localization only contains the locations of the robot
and local features. It is shown that although localiza-
tion and mapping processes are decoupled, the corre-
lations among the feature location estimates are still
maintained, and when formulated in the information
form, the estimation problem can be solved at a cost
of O(N), where N is the total number of features in
the environment.

1.1 Related work

A variety of attempts have been made to remove the
robot location from the state vector in order to reduce
the computational complexity of SLAM. For exam-
ple, Newman [24] introduced a relative map in which
the map state contains the relative locations among
the features. Csorba et al. [5], Deans and Herbert
[6], Pradalier and Sekhavat [25] and Martinelli [19]
have made use of relative maps where the map state
contains relative distances and/or angles among the
features, which are invariants under shift and rota-
tion. The structure of the covariance matrix is kept
sparse by maintaining a state vector with redundant
elements. As the relationships between the map ele-
ments are not enforced, for large-scale problems the
map becomes complex and difficult to use. However,
if the constraints that enforce these relationships are
applied, the simple structure of the covariance matrix
is destroyed, leading to an increased computational
complexity.

Use of an Extended Information Filter (EIF) to
solve SLAM in order to gain a computational sav-
ing has also been demonstrated by a number of re-
searchers. A notable result has been that from Thrun
et al. [30] where a sparsification process is used to
reduce the number of non-zero elements in the infor-
mation matrix resulting in significant computational

savings. Although Frese [13] provided a proof for
the approximate sparseness of the information ma-
trix, Eustice et al. [10] demonstrated that the pro-
cess of sparsification of the information matrix leads
to inconsistent estimates.

In a recent development, Eustice et al. [9] show
that the inclusion of the robot trajectory in the form
of past robot poses in the state vector leads to an
exactly sparse information matrix. The resulting Ex-
actly Sparse Delayed State Filter (ESDSF) provides
clear computational advantages when a view-based
map representation is used, where a sequence of robot
poses are used to describe the map. In the example
presented in [9], the map is not represented within
the state vector and is therefore not directly updated.
When both features and robot poses are included in
the state vector, the EIF also provides an exactly
sparse information matrix [7], [15]. However, in this
scenario the sparseness of the information matrix is
achieved through increasing the state dimension. The
state dimension keeps increasing even when robot is
revisiting previous explored regions. This limitation
has been overcome by Walter et al. [31] who achieve
an exactly sparse information matrix with just the
last robot pose included in the state vector. The in-
formation matrix is controlled to be sparse by delib-
erately “kidnapping” and “relocating” the robot from
time to time. Further comments on the relationship
between this work and D-SLAM is presented in Sec-
tion 7.

1.2 Contributions

This paper provides a novel decoupled solution to
SLAM, where the state vector for mapping contains
the absolute locations of the features (2N dimension
for N features in a 2D environment). The main con-
tributions of this paper are the following.

• It is shown that the decoupling of mapping and
localization is possible using an absolute map
with no redundant elements in the state vec-
tor. This is achieved by recasting the range and
bearing observation into a new equivalent obser-
vation containing information about the relative
locations among the features.

2

• It is demonstrated that the new formulation nat-
urally results in an exactly sparse information
matrix for mapping. Approximating near zero
elements is not required to achieve sparseness.
Furthermore, it is shown that the information
matrix retains its sparseness even after loop clo-
sures and that the extent of sparseness is related
to the range of the sensor on board the robot
and feature density in the environment.

• Using a new iterative preconditioning algorithm
to reduce the computational cost of state vector
and (part of) the covariance matrix recovery, it
is demonstrated that the overall computational
cost of D-SLAM algorithm is of O(N) where N is
the total number of features in the environment.

The paper is organized as follows. In Section 2,
the process of recasting the observations and the key
idea of D-SLAM are stated. The details of the map-
ping and localization processes in the D-SLAM al-
gorithm are provided in Section 3. Section 4 ad-
dresses some implementation issues in D-SLAM in-
cluding data association, state recovery and admissi-
ble measurements. The computational complexity is
analyzed in Section 5. Experimental and simulation
results are presented in Section 6 to evaluate the algo-
rithm. Section 7 concludes the paper and addresses
future research directions.

2 Extracting map information
from observations

Observations made from a sensor mounted on the
robot contain the relative location of the features
with respect to the robot. Using these observations
directly in SLAM makes the robot and feature loca-
tion estimates correlated. In order to decouple map-
ping and localization in SLAM, a key step is to ex-
tract map information from the observations. This
can be achieved by transforming the measurement
vector into one consisting of two parts: one part
containing distances and angles among features; the
other relating the features and the robot location. It
is important to formulate the information extraction

process in order to (1) minimize information loss to
maintain efficiency, and (2) avoid information reuse.

To maintain notational simplicity and improve
clarity, it is assumed that all observations contain
measurements to at least two features that are previ-
ously seen and already present in the map. A strategy
to overcome this limitation by combining a number
of measurements into one admissible measurement is
described in Section 4.3.

2.1 Partitioning the measurement
vector

Suppose the robot observes m features f1, · · · , fm at
a particular time, among which f1 and f2 have been
previously seen.

2.1.1 The original measurements

The original measurement vector contains the mea-
sured range and bearing of each observed feature:

zold =
[

r1, θ1, · · · , rm, θm

]T
, (1)

which contains noise, assumed to be Gaussian with
zero mean and covariance matrix

Rold = diag
[

σ2
r1

, σ2
θ1

, · · · , σ2
rm

, σ2
θm

]
. (2)

2.1.2 Distances and angles w.r.t. f1 and f2

The measurement vector can be transformed to znew

written as




αr12

d1r

αφ12

−−−
d12

α312

d13

...
αm12

d1m




=




atan2
(
−ỹ1
−x̃1

)
− atan2

(
ỹ2−ỹ1
x̃2−x̃1

)
√

(−x̃1)2 + (−ỹ1)2

−atan2
(

ỹ2−ỹ1
x̃2−x̃1

)

−−−√
(x̃2 − x̃1)2 + (ỹ2 − ỹ1)2

atan2
(

ỹ3−ỹ1
x̃3−x̃1

)
− atan2

(
ỹ2−ỹ1
x̃2−x̃1

)
√

(x̃3 − x̃1)2 + (ỹ3 − ỹ1)2
...

atan2
(

ỹm−ỹ1
x̃m−x̃1

)
− atan2

(
ỹ2−ỹ1
x̃2−x̃1

)
√

(x̃m − x̃1)2 + (ỹm − ỹ1)2




(3)

3

where

x̃i = ri cos θi, ỹi = ri sin θi, i = 1, · · · ,m. (4)

The physical meaning of the new measurement vec-
tor is shown in Figure 1(b) while that of the original
measurement vector shown in Figure 1(a).

The last 2m− 3 elements in the measurement vec-
tor shown in (3) contain information about distances
and angles among features that are independent of
the coordinate system. The first three elements de-
pend on the robot pose and features f1, f2. This part
carries information about the robot location. Thus
the measurement vector can be naturally partitioned
into two vectors denoted as

zrob =




αr12

d1r

αφ12


 , zmap =




d12

α312

d13

...
αm12

d1m




. (5)

There is a one to one correspondence between zold

and znew =
[
zT
rob, z

T
map

]T . Furthermore, znew is con-
structed such that it contains the minimum number
of elements required to completely capture the to-
tal information content contained in zold. It is im-
portant, however, to note that the two measurement
vectors zrob and zmap are not independent. Thus the
proposed transform does not completely divide the
information contained in the original measurements
into two parts. Therefore the estimation process that
exploits these new measurement vectors needs to be
structured appropriately in order to avoid statistical
inconsistency.

2.1.3 Measurement noise covariances

For a Gaussian random (vector) variable x with a
mean x̄ and a covariance matrix Rx, any (vector)
function of x, g(x), can be approximated by a Gaus-
sian provided x is near x̄. Mean of this Gaussian
is g(x̄) and its covariance matrix is ∇gRx∇gT where
∇g is the Jacobian of g with respect to x evaluated at

x̄. This relationship can be used to compute the co-
variance matrix of the noise on the new measurement
vector zmap from (2), (3), (4) and (5).

2.2 The key idea of D-SLAM

In D-SLAM, the key idea is to use zmap to estimate
a state vector containing only the locations of fea-
tures in the environment. As shown in the following
sections, the absence of the robot location from the
state vector results in an estimator structure that of-
fers significant computational advantages.

As zrob and zmap are not independent, zrob also
contains some information about the map which is
not exploited during the mapping process, resulting
in some information loss. Furthermore, this depen-
dency makes it important that the localization pro-
cess is formulated carefully in order to avoid informa-
tion reuse. The details of the mapping and localiza-
tion algorithms in D-SLAM are described in the next
section.

3 Decoupled estimators for lo-
calization and mapping

3.1 Mapping in D-SLAM

3.1.1 State vector

The state vector used for mapping only contains the
locations of the features:

X = (X1, · · · , Xn)T = (x1, y1, x2, y2, · · · , xn, yn)T ,
(6)

where X1, · · · , Xn are the states of features f1, · · · , fn.
For convenience, the initial robot pose is used to

define the coordinate system, where the origin is the
robot position and the x-axis is along the initial robot
heading. The information vector i(k) is defined as

i(k) = I(k)X̂(k) (7)

where I(k) is the information matrix which is the in-
verse of the state covariance matrix P (k) and X̂(k) is
the estimate of the state. As the features are station-
ary, mapping reduces to a static non-linear estima-
tion problem which can be efficiently formulated in

4

(a) Original range and bearing measurements. (b) Geometric interpretation of the measurement
vector given by equation (3) — d12, α312, d13 are
distances and angles among features, which contain
information about the map only, and are used in
D-SLAM mapping.

Figure 1: Relationship between the original measurement vector and the recast measurement vector

the information form using an Extended Information
Filter (e.g. [20], [30]).

3.1.2 Measurement model

Suppose the robot observes m features f1, · · · , fm,
where two of these features f1, f2 have been previ-
ously seen. The recast measurement used for map-
ping is

zmap = [d12, α312, d13, · · · , αm12, d1m]T

= Hmap(X) + wmap
(8)

where

Hmap(X) =




√
(x2 − x1)2 + (y2 − y1)2

atan2
(

y3−y1
x3−x1

)
− atan2

(
y2−y1
x2−x1

)
√

(x3 − x1)2 + (y3 − y1)2
· · ·

atan2
(

ym−y1
xm−x1

)
− atan2

(
y2−y1
x2−x1

)
√

(xm − x1)2 + (ym − y1)2




(9)

and wmap is the measurement noise whose covariance
matrix Rmap can be computed by (2), (3), (4) and
(5).

3.1.3 Feature initialization and map update

Current location estimates of the previously seen fea-
tures can be used together with d1i, αi12 in zmap to
compute the initial location of a new feature, fi, as
follows:

α12 = atan2(ŷ2−ŷ1
x̂2−x̂1

)
x̂i = x̂1 + d1i cos(α12 + αi12)
ŷi = ŷ1 + d1i sin(α12 + αi12).

(10)

As part of the initialization process, the dimension
of the information vector and the information matrix
are also increased by adding an appropriate number
of zeros.

The information vector and the information matrix
can now be updated using the measurement zmap as

5

follows:

I(k + 1) = I(k) +∇HT
mapR

−1
map∇Hmap

i(k + 1) = i(k) +∇HT
mapR

−1
map[zmap(k + 1)−

Hmap(X̂(k)) +∇HmapX̂(k)]
(11)

where ∇Hmap is the Jacobian of the function Hmap

with respect to all the states evaluated on the current
state estimate X̂(k).

3.1.4 Exactly sparse information matrix

In the matrix ∇HT
mapR

−1
map∇Hmap in (11), all the

elements relating to features that are not present in
the measurement vector are exactly zero. This can
be easily seen by the fact that

∇Hmap =
[
∂Hmap

∂X1
, · · · , ∂Hmap

∂Xm
, 0, · · · , 0

]
. (12)

In a typical sensor where the sensor range is lim-
ited, only the features that are in the close proximity
will be simultaneously observed. Therefore, if fea-
ture i and feature j are far away from each other, the
measurement zmap will never contain both fi and fj .
As the information matrix update involves a simple
addition, the off-diagonal elements relating to i and
j in the information matrix will remain exactly zero.
Therefore, for a large-scale map, a significant por-
tion of the information matrix will be exactly zero,
resulting in an exactly sparse information matrix.

In general, each column (row) of the information
matrix will contain at most a constant number of non-
zero elements (this constant depends on the density
of features and the sensor range), independent of the
size of the environment and/or the total number of
features.

3.2 Localization in D-SLAM

Given the current map, the robot location can be eas-
ily obtained by solving a “kidnapped robot problem”
using the current observation. This, however, dis-
cards all knowledge of the previous robot location.

On the other hand, localization can also be done ef-
ficiently by an EKF-based local SLAM process where

only the features in the vicinity of the robot are re-
tained in the state vector. Features are removed from
the state vector once they are not visible from the
robot. This is effectively SLAM-aided dead reckon-
ing which provides much better robot location esti-
mate than that obtained using dead reckoning alone.
However, the localization results will be far inferior
to that obtained from a complete SLAM process as
information contained in the features removed from
the state vector are unrecoverable and thus the robot
location estimate will not improve during loop clo-
sures.

In this work, it is proposed to combine the location
estimates from these two approaches to achieve an
improved estimate of robot location. The following
subsections describe the localization process in more
detail. Figure 2 shows a flow chart illustrating the
localization process in D-SLAM.

3.2.1 State vector

At steps A and B of the flow chart in Figure 2,
the state vector contains the robot and all the fea-
tures observed at time k. Suppose the robot ob-
serves features f1, · · · , fm at time k+1, among which
f1, · · · , fm1 ,m1 ≤ m are features that have been pre-
viously seen and are already included in Map(k) (step
F). The state vector at steps C, G and D contains the
robot and those features observed at time k+1 which
are in Map(k), (Xr(k + 1), X1, · · · , Xm1). The state
vector at step E contains the robot and all the fea-
tures observed at time k+1, (Xr(k+1), X1, · · · , Xm).

3.2.2 Robot location estimate 1: SLAM
with local features

In Figure 2, A to B is the prediction step based on the
robot process model. Between B and C, the features
that are not observed at time k + 1 are deleted, pre-
viously deleted features that are reobserved at time
k + 1 are initialized and the state vector is updated.
From D to E, the new features observed at time k+1
are initialized. Traditional EKF SLAM equations are
used in these steps.

6

Figure 2: Flow chart of the localization and the mapping processes in D-SLAM

3.2.3 Robot location estimate 2: solution to
the kidnapped robot problem

The process from F to G in Figure 2 is to solve the
kidnapped robot problem which can be formulated in
information form and solved as a linearized minimum
mean square error estimation problem. The observa-
tions to features f1, · · · , fm1 , m1 ≤ m that have been
previously seen are given by

zloc = (r1, θ1, · · · , rm1 , θm1)
T

= Hloc(Xr(k + 1), X1, · · · , Xm1) + wloc,
(13)

where wloc is the corresponding measurement noise.
Using a process similar to that presented in Sec-
tion 3.1.3, the location of the robot Xr(k + 1) to-
gether with an update for the rest of the state vector
X1, · · · , Xm1 can be computed.

3.2.4 Fusing the two robot location estimates

The local SLAM estimate is optimal, until the robot
closes a loop by revisiting a previously traversed re-
gion of the map. The kidnapped robot solution will
be superior when loop closures are present. These
two estimates make use of the information from the
same measurements, and thus are correlated. Main-
taining the correlations is possible but requires sig-
nificant computational effort. Covariance intersec-
tion (CI) (see [4] and [18]), that facilitates combining

two correlated pieces of information, when the extent
of correlation itself is unknown is, therefore, used to
fuse these two estimates. The criteria used in com-
puting the CI solution is selected to be minimizing
the trace of the submatrix related to the robot pose
in the covariance matrix. This process is illustrated
by the links between C, G and D in Figure 2. The
state vectors at steps C and G should contain the
same features in the same order. Thus the state vec-
tor needs to be reordered between B and C. It is
important to note that the kidnapped robot solution
carries information from the mapping component of
D-SLAM, and that this information will flow through
to the estimate of the state vector used by the local
SLAM. Thus the errors in the robot location estimate
from the local SLAM process will stay bounded.

3.3 Consistency of D-SLAM

The information matrix in D-SLAM is exactly sparse.
Therefore, further sparsification that have been
shown to lead to inconsistencies [10], is not required
to efficiently solve the mapping problem. Using CI
to combine the two robot location estimates avoids
possible inconsistency due to information reuse. Al-
though the robot location computed by the process
described in Section 3.2.4 is correlated to the map,
this correlation does not affect the mapping process
as the information about the robot location is not

7

exploited during mapping. Thus the D-SLAM algo-
rithm does not contain any approximations that can
lead to estimator inconsistency. As the case with all
EKF/EIF based estimation algorithms, however, it
is possible that inconsistencies can occur during D-
SLAM due to errors introduced by the linearization
process.

4 Implementation issues

4.1 Data association

In the context of SLAM, data association refers to the
process of associating the observations to the features
in the map. Many data association algorithms have
been proposed for use with SLAM. Generally speak-
ing, batch data association algorithms (e.g. [1], [23])
are more robust than the standard maximum likeli-
hood approach [8], but have a higher computational
cost.

In D-SLAM, data association is required at two in-
stances. One is for the local SLAM (Section 3.2.2);
the other is for the mapping process in D-SLAM. For
the local SLAM, the standard maximum likelihood
approach is adequate. During the D-SLAM mapping
process, the correlations between the robot and fea-
tures are not maintained. Therefore, maximum like-
lihood hypotheses of possible associations, assuming
that the correlations between the robot and features
are zero, are first generated. These hypotheses are
then evaluated using a chi-square test that compares
the relative distances and angles between features
computed using the measurement vector and the map
state vector. While this does not require the correla-
tion between the robot location and the features, it
still needs the location estimates and the associated
covariance matrix of the set of features that are po-
tentially being observed. This feature set can be ex-
tracted from the current map using the current robot
location estimate and the sensor range.

4.2 Recovery of feature locations and
associated covariances

Recovery of the feature location estimates and the
covariances associated with the features in the vicin-
ity of the robot is needed for data association, map
update and robot localization. When the number of
features is small, these can be simply obtained by (7)
using the inverse of the information matrix. How-
ever, when the number of features is large, the com-
putational cost of the inversion will be unacceptable.
Therefore, it is crucial to find an efficient method for
state and covariance recovery.

For mapping, the locations of features that are be-
ing observed are required to compute ∇Hmap and
∇HmapX̂(k). The locations of previously seen fea-
tures that are being observed and the associated co-
variance matrix are required for the localization step.
For data association, location estimates and the as-
sociated covariance matrix of all the features that are
within the sensor range are required.

Feature locations can be recovered by solving the
sparse linear equation (7). Covariance recovery can
also be done in a similar manner. Note that

I(k)Pi = [0 · · · 0 1 0 · · · 0]T (14)

where Pi is the ith column of the covariance matrix.
Solving several linear equations of this form, columns
of the covariance matrix which correspond to the fea-
tures that are potentially being observed can be re-
covered. An efficient algorithm for this process is
presented in Section 5.4.

4.3 Construction of admissible mea-
surements

The D-SLAM algorithm described in the previous
sections requires that the sensor observes multiple
features, including at least two previously seen fea-
tures at a given instant. This condition, while com-
mon with a high rate sensor such as a laser, may
not be true when the feature density is low. In such
situations, it is possible to combine a sequence of ob-
servations to construct an admissible measurement.

Figure 3 shows an example where the robot ob-
serves two previously seen features f1, f2 and two new

8

Figure 3: Construction of admissible measurements

features f3, f4 at point P1, observes one new feature
f5 at point P2, and one new feature f6 at point P3.
Later on at point P4, it observes features f5, f6, f7.
Thus the measurements at P2 and P3 are not admissi-
ble. It is, however, possible to combine the measure-
ments made from different points to generate new ad-
missible measurements as follows. Once it is detected
that the observation at point P2 is not admissible, the
update to the map using the observation information
from P1 is removed. Then a virtual observation from
P2 to f1, f2, f3, f4 is constructed using the observa-
tion from P1 to f1, f2, f3, f4 and an estimate of the
relative motion of the robot from P1 to P2 (Figure
3). The uncertainty associated with this composite
observation is computed using the relevant observa-
tion equations and the process and observation uncer-
tainties. The mapping process can now proceed as if
features f1, f2, f3, f4, f5 are observed from P2 and no
observation is made at P1. This process is repeated
wherever an inadmissible observation is encountered,
for example at P3. This strategy allows D-SLAM to
function where features are sparse or one cluster of
features are separated from another cluster of fea-
tures by a region of “featureless” terrain.

5 Computational complexity

Let N be the number of features in the map.

5.1 Storage

In two dimensional D-SLAM, storage is required for
the information vector with dimension 2N , the recov-
ered state vector with dimension 2N , the sparse in-
formation matrix with non-zero elements O(N), and
the columns of the covariance matrix corresponding
to the features in the vicinity of the robot O(N). The
overall storage requirement is therefore O(N).

5.2 Localization

Localization step in D-SLAM requires updating a
state vector containing at most a constant number
of elements, thus the computational cost is O(1).

5.3 Mapping

Mapping in D-SLAM is formulated in the information
form where the update step is an O(1) time process.
The prediction step, the computationally demanding
stage of an information filter, does not exist.

5.4 State vector and covariance ma-
trix recovery

The major computational cost of D-SLAM is, there-
fore, due to the need for recovering the feature loca-
tion estimates and certain columns of the associated
covariance matrix by solving a set of linear equations
as discussed in Section 4.2.

5.4.1 Preconditioned Conjugated Gradient
(PCG) for solving linear equations

When solving a linear equation An×nxn×1 = bn×1 us-
ing the Conjugated Gradient (CG) method, the com-
putational cost of each iteration is dominated by a
matrix-vector product, An×ndn×1, where d is an ar-
bitrary vector updated in each iteration. Normally
the product requires O(nz) operations, where nz is
the number of non-zero entries in matrix An×n (see
[27]). In D-SLAM the matrix A is the sparse infor-
mation matrix with each column (row) containing at
most a constant number of non-zero elements (see
Section 3.1.4), which means matrix A contains O(N)

9

non-zero elements. Thus, the matrix-vector multipli-
cation that is necessary at each iteration of CG re-
quires O(N) operations, and the computational cost
of each iteration in CG is O(N).

In general, CG requires N iterations to converge,
resulting in a total computational cost of O(N2).
However, the number of iterations required for con-
vergence can be substantially reduced using the pre-
conditioned CG (PCG) method. With a good pre-
conditioner, only a few (constant number) iterations
are sufficient for PCG to converge. A good precon-
ditioner itself requires significant amount of compu-
tation in general. However, the system matrix in the
D-SLAM algorithm is the sparse information matrix
and two consecutive information matrices are very
similar due to the gradual evolution of the map. This
special structure of the D-SLAM information matrix
leads to an efficient method for the recursive compu-
tation of a good preconditioner based on approximate
Cholesky Factorization.

5.4.2 Iterative procedure for preconditioning

Let ∇HT
mapR

−1
map∇Hmap in equation (11) be ex-

pressed in the form

∇HT
mapR

−1
map∇Hmap =

[
0 0
0 HR

]
. (15)

The dimension of the square matrix HR depends
on which features are observed at time k+1. If all the
observed features are present near the bottom of the
current state vector, the dimension of HR is of O(1).
On the other hand, if the observed feature set also
contains a feature near the top of the state vector,
the dimension of HR is of O(N).

The preconditioning process proposed is a function
of the dimension of HR.

Case (i). When the dimension of HR is less than a
threshold n0 (n0 = 100 is used in the simulation pre-
sented in Section 6.2 where the dimension of the fi-
nal map state vector is 2N = 1192), the approximate
Cholesky Factorization of I(k) is used to construct
an approximate Cholesky Factorization of I(k+1) as
follows. Suppose the approximate Cholesky Factor-
ization of I(k) is L̃k.

Let L̃k and I(k) be partitioned based on (15) as

L̃k =
[

L̃11 0
L̃21 L̃22

]
, (16)

in which L̃11 and L̃22 are lower triangular matrices,
and

I(k) =
[

I11 IT
21

I21 I22

]
. (17)

Let I(k + 1) be partitioned as

I(k + 1) =
[

I11 IT
21

I21 Ik+1
22

]
=

[
I11 IT

21

I21 I22 + HR

]
.

(18)
As shown in the appendix, an approximate

Cholesky Factorization of I(k + 1) can be obtained
by

L̃k+1 =
[

L̃11 0
L̃21 L̃k+1

22

]
(19)

where L̃k+1
22 is an approximate Cholesky Factoriza-

tion of the submatrix HR + L̃22L̃
T
22, which can be

computed using incomplete Cholesky Factorization.
Case (ii). When the dimension of HR is larger or

equal to n0, the state vector is reordered based on
the distance from each feature to the current robot
location. The feature that is furthest from the robot
is placed at the top of the reordered state vector.
The dimension of HR that corresponds to the new
state vector is now O(1) and is a function of the
sensor range. Once the information vector and the
information matrix are reordered accordingly, an ap-
proximate Cholesky Factorization of the whole infor-
mation matrix need to be computed to produce the
appropriate preconditioner. This is because the pre-
conditioner of the last step can not be used due to re-
ordering. The process of computing the approximate
Cholesky Factorization can also be implemented as
incomplete Cholesky Factorization.

The computational cost in Case (i) is O(1) since
the size of the submatrix HR + L̃22L̃

T
22 is less than

a constant n0 × n0. Case (ii) involves reordering the
state vector, the information vector and the associ-
ated information matrix, together with an approx-
imate Cholesky Factorization of the newly ordered
sparse information matrix. Therefore Case (ii) will

10

be more computationally expensive as the iterative
process described previously can not be used to com-
pute the preconditioner. However, Case (ii) only oc-
curs occasionally 1 as the state vector is reordered
according to distance and Case (i) will apply until
the robot travels a large distance and observes a fea-
ture near the top of the state vector.

Although the approximate Cholesky Factorization
may introduce fill-in, simulation results show that the
reordering of the state vector according to distance as
described in Case (ii) significantly reduces the num-
ber of fill-in. This reordering has a similar effect as
shown in [7]. Simulation results presented in Section
6.2 demonstrate that the computational cost of PCG
is O(N) (Figure 6(d)).

5.4.3 Recovery of the covariance matrix

Columns of the covariance matrix, which correspond
to the features in the vicinity of the current robot
location, are required. A column of the covariance
matrix can be computed with a cost similar to that
of computing the state vector as the same precon-
ditioner can be used in this process. Therefore the
computational cost of recovering a constant number
of columns of the covariance matrix is still O(N).

5.4.4 Initial guesses

Linear equation solvers require initial guess of the so-
lution vector. Once the preconditioner is well chosen,
initial guesses do not significantly influence the num-
ber of iterations necessary. In the extreme case when
exact Cholesky Factorization is used as the precon-
ditioner, PCG converges in one step from any initial
guess. As the features are stationary, the previous
estimates provide good initial guesses for the feature
locations. During the experiments and computer sim-
ulations, it was seen that zeros appear to be adequate
as initial guesses for the elements of the covariance
matrix.

1The number of times Case (ii) can occur depends on the
parameter n0, the sensor range, the density of features and
the robot trajectory. If there is no loop closure, Case (ii) will
never happen. In the simulation presented in Section 6.2 which
contains many loop closures, Case (ii) occurs in 73 out of total
7876 loops.

6 Evaluation of D-SLAM

6.1 Experimental evaluation with an
indoor robot

The Pioneer 2 DX robot was used for the experimen-
tal evaluation. This robot is equipped with a laser
range finder with a field of view of 180 degrees and
an angular resolution of 0.5 degree. Test site was in
our laboratory where twelve laser reflector strips were
placed in an 8 × 8m2 area. The Player software [16]
was used to collect the control and sensor data from
the robot. A Matlab (Mathwork inc., U.S.A.) imple-
mentation of D-SLAM was used to process the data
and compute the robot and feature locations.

Figure 4(a) shows the map obtained from D-
SLAM. Figure 4(b) shows the error in the robot lo-
cation estimate from D-SLAM with respect to that
from the traditional SLAM algorithm, which is used
as baseline in the comparison. Figures 4(c) and 4(d)
show the 2σ error bounds obtained from D-SLAM
and traditional SLAM for the estimates of robot lo-
cation and feature 9 respectively.

Figure 4(b) shows that the localization error in D-
SLAM falls within the 2σ error bounds, and thus the
estimation is consistent. The map (Figure 4(a)) is
almost as good as that of the traditional SLAM in
this small area, as can be seen more clearly in Figure
4(d). In this figure, the 2σ error bounds from D-
SLAM are very close to that from traditional SLAM.

It can be seen from Figure 4(c) that the localiza-
tion result using CI is conservative compared with
that from traditional SLAM, as expected. The dif-
ference between the 2σ error bounds from D-SLAM
and those from traditional SLAM in robot location
and orientation estimation are less than 0.05 m and
0.02 rad respectively. Compared with the size of the
environment, this is small and acceptable.

6.2 Evaluation using a large-scale sim-
ulation

A more complex simulation experiment using a large
number of features was conducted to further evalu-
ate D-SLAM and demonstrate its properties. The
environment used is a 100 meter square with 1225

11

features arranged in uniformly spaced rows and
columns. The robot starts from the bottom left cor-
ner of the square and follows a random trajectory, re-
visiting many features and closing many loops as seen
in Figures 5(a) and 5(b). A sensor with a field of view
of 180 degrees and a range of 6 meters is simulated
to generate relative range and bearing measurements
between the robot and the features.

Figures 5(a) and 5(b) show the robot trajectory
and feature location estimates from traditional EKF
SLAM and D-SLAM respectively. The difference be-
tween the feature location estimates from the two al-
gorithms are not distinguishable in the figures. Fig-
ures 5(c) and 5(d) show robot location estimates from
traditional EKF SLAM and D-SLAM respectively.
The D-SLAM result is consistent in the sense that
most of the estimation errors fall within the 2σ er-
ror bounds. It can also be noticed that the D-SLAM
result is conservative.

Figure 5(e) shows the estimation error and the as-
sociated 95% confidence levels for feature 7. It is
clear that the estimates are consistent. Figure 5(f)
demonstrates the standard deviation of the location
estimates for a set of randomly selected features. It
shows that the uncertainty of the feature location es-
timates decreases monotonically. At around 600 sec-
onds, all feature location estimates are improved as
a loop is closed.

Figure 6(a) shows the links among the features in
the final information matrix. Figure 6(b) shows all
the non-zero elements of the information matrix in
black. This information matrix is obtained without
using the iterative preconditioning technique in Sec-
tion 5.4.2. It is clear that this matrix is sparse as
there are 44692 non-zero elements and 1376172 ex-
actly zero elements. The block diagonal areas are
due to features in close vicinity observed together
and the off-diagonal terms are due to loop closures
where a previously seen feature is reobserved some
time later. The information matrix in Figure 6(c)
is obtained using the iterative preconditioning tech-
nique in Section 5.4.2. The information matrix is
banded because of the reordering of the state vec-
tor. This matrix demonstrates the fact that only the
nearby features are linked in the information matrix.

In the simulation, the approximate Cholesky Fac-

torization of the submatrix HR + L̃22L̃
T
22 in Case

(i) and that of the reordered information matrix in
Case (ii) in Section 5.4.2 is implemented as incom-
plete Cholesky Factorization using MATLAB build-
in function “cholinc” with the drop tolerance 10−7.
Figure 6(d) shows the time required to recover the
state vector and one column of the covariance ma-
trix using PCG together with the time required to
compute the preconditioner using the iterative pro-
cess described in Section 5.4.2 as a function of the
number of features. Average of the computational
time is used in cases where there are many steps for
which the number of features is identical. The ratio
between the computational cost and the number of
features is seen to be a constant when the number of
features is large. This indicates that the computa-
tional cost of PCG (recovering the state and/or one
column of the covariance matrix) and precondition-
ing are both O(N) for large maps. Figure 6(e) shows
the average number of PCG iterations as a function
of the number of features. In general it takes at most
2 iterations to converge.

Figure 6(f) compares the average time for Cholesky
Factorization using direct method used in [7] for in-
cremental

√
SAM and the average time for Cholesky

Factorization using the iterative method described in
Section 5.4.2. Both times are shown as a function of
the number of features. It is clear that the compu-
tational saving achieved by the iterative method is
significant.

6.3 Outdoor experimental evaluation
using Victoria Park data set

This large-scale outdoor data set, available from Aus-
tralian Centre of Field Robotics (ACFR) [22], is col-
lected by a standard utility vehicle which is fitted
with dead reckoning sensors and a laser range finder.
Information from the laser is processed to extract lo-
cation of the trees in the park. Ground truth for this
dataset is not available. Therefore it is only possible
to comment on the outputs of the two algorithms. It
is important to note that during this practical exam-
ple, D-SLAM and traditional SLAM behave slightly
differently as feature validation and data association
strategies are specific to the algorithm being imple-

12

mented. Therefore some features present in the tra-
ditional SLAM map are not present in the D-SLAM
map and vice versa.

The estimates of the feature positions and the ve-
hicle trajectories obtained by the D-SLAM algorithm
and the traditional EKF SLAM algorithm are shown
in Figure 7(a). The maximal difference between the
two trajectories is around 3m.

Figures 7(b) shows the standard deviations of the
vehicle position estimates obtained from D-SLAM
and traditional SLAM. It is seen, as expected, that
the estimates of the errors from D-SLAM are always
higher than those from traditional SLAM but the dif-
ferences are clearly not very significant.

Figure 7(c) compares the uncertainties of the loca-
tion estimates for two features. These features cor-
respond to the two extremes in terms of difference in
final feature location estimation uncertainty between
the two algorithms: one corresponds to the smallest
difference, and the other corresponds to the largest.
Again the estimates of the errors from D-SLAM are
always above those from traditional SLAM, confirm-
ing that D-SLAM is conservative. However, even in
the worst case scenario, the difference in estimation
uncertainty is less than 1m.

Figure 7(d) shows the sparse information matrix
of D-SLAM result. In this scenario, the sensor range
is significant with respect to the size of the environ-
ment. The information matrix is, therefore, not very
sparse. In particular, the high density of non-zero
elements in the top-left part of the matrix is caused
by many loop closing events near the starting point
of the vehicle.

6.4 Evaluation of information loss

The fact that the information in zrob is not used in
mapping and that the full state vector that includes
the robot and feature locations are not used in the
estimation process clearly results in some informa-
tion loss. This can also be seen from the results
shown in the 2D simulation and experimental results,
where the covariance ellipses in the case of D-SLAM
are larger than those obtained using the traditional
SLAM algorithm.

An analysis of the extent of information loss of

the D-SLAM mapping process based on a linear one-
dimensional form of the SLAM problem is presented
below. The 1D simulation is used so that the effects
due to linearization errors are avoided.

The scenario consists of a set of uniformly dis-
tributed features arranged on a straight line. The
robot, moving forward and backward along this line,
can measure the distances to features within its sen-
sor range (9m). Four parameters are considered:
the process noise, the sensor noise, the feature den-
sity, and the number of observations made before the
robot starts moving away from its initial position.
The trace of the submatrix of the covariance matrix
corresponding to all features from traditional SLAM,
Pmm, and the trace of the covariance matrix from
D-SLAM, P , are used as indicators of the filter per-
formance. Their ratio is used to evaluate the informa-
tion loss of D-SLAM. Table 1 summarizes the results
obtained.

The one dimensional analysis shows the following
with respect to information loss.

(1) When all other parameters are fixed, the larger
the process noise, the smaller the amount of infor-
mation lost (compare rows 2− 4 with row 1 in Table
1). In the limit when the process noise goes to infin-
ity (row 4 in Table 1), D-SLAM and traditional EKF
SLAM produce identical maps. This is expected as
D-SLAM mapping proceeds as if there is no informa-
tion on the robot location available. However, this
interesting result can not be verified for 2D case as
2D traditional EKF SLAM will either diverge or pro-
vide inconsistent results when the process noise is too
large. D-SLAM is, however, feasible provided that
data association is available.

(2) When all other parameters are fixed, the larger
the observation noise, the larger the extent of infor-
mation loss (compare rows 5− 6 with row 1 in Table
1). This is because, for mapping, D-SLAM only ex-
ploits the information contained in the observations.
When the ratio between observation noise and pro-
cess noise is high, the amount of information present
in the observations is comparatively smaller.

(3) When all other parameters are fixed, the larger
the number of observations made before robot moves
away from its initial position, the smaller the extent
of information loss in D-SLAM (compare rows 7− 8

13

Test Process Sensor Interval of Loops before EKF SLAM D-SLAM Trace ratio
No. noise (m/s) noise (m) features (m) robot moves trace of Pmm trace of P D−SLAM

EKF SLAM

1 0.02 0.07 3 15 0.00135 0.00176 1.304

2 0.1 0.07 3 15 0.00167 0.00176 1.054
3 0.2 0.07 3 15 0.00172 0.00176 1.023
4 2000 0.07 3 15 0.00176 0.00176 1.000

5 0.02 0.7 3 15 0.06310 0.17600 2.789
6 0.02 7 3 15 4.96373 17.60015 3.546

7 0.02 0.07 3 10 0.00146 0.00206 1.411
8 0.02 0.07 3 5 0.00174 0.00316 1.816

9 0.02 0.07 2 15 0.00137 0.00162 1.182
10 0.02 0.07 1 15 0.00362 0.00398 1.099

Table 1: Analysis of information loss in D-SLAM using 1D simulations

with row 1 in Table 1). This is due to the fact that
when the robot is stationary at its initial position
there is no information loss in D-SLAM.

(4) When all other parameters are fixed, the larger
the feature density in the environment, the smaller
the extent of information loss (compare rows 9 − 10
with row 1 in Table 1). This is because the ratio
of the dimension of zmap (2m − 3) and zold (2m) is
closer to 1 when robot can observe more features (m)
in each scan. Therefore, comparatively, there is more
information in zmap than in zrob and the robot pro-
cess model.

Despite the fact that there is some information loss,
the results shown earlier in this section demonstrate
that D-SLAM provides significant computational ad-
vantages and good quality estimates of the map and
robot location in representative practical scenarios.

7 Conclusions and Future
Work

In this paper, a new decoupled SLAM algorithm: D-
SLAM, is described. While the localization and map-
ping are performed simultaneously, they are separate
processes. This new algorithm is based on a method
to recast the observation vector such that the infor-
mation about the map is extracted independent of
the robot location.

Although the robot location is not incorporated in
the state vector used in mapping, correlations among
the features are still preserved. Thus the location
estimates of all the features are improved using in-
formation from one local observation.

The significant advantages gained are that there is
no prediction step for the mapping, the information
matrix associated with mapping is exactly sparse and
only the features that are in the close vicinity are
linked through the information matrix. This results
in an O(N) SLAM algorithm where N is the number

14

of features.
In D-SLAM, however, the knowledge about the

robot location is not exploited in the mapping pro-
cess. This results in some information loss. An analy-
sis based on a linear one-dimensional simulation indi-
cated that the ratio between the sensor noise and the
process noise is one of the key factors influencing the
extent of the information loss. The smaller this ratio,
the smaller the amount of information loss. However,
the extent of information loss for 2D scenarios was
found to be difficult to appropriately quantify.

D-SLAM has some similarities with the very recent
Exactly Sparse Extended Information Filter (ESEIF)
by Walter et al. [31]. Both these methods achieves
exactly sparse information matrix without any ap-
proximation and without including the robot trajec-
tory in the state vector. The main differences be-
tween ESEIF and D-SLAM are: in D-SLAM, the
robot is not in the map state vector and the level
of sparseness of the information matrix naturally de-
pends on the sensor range and feature density; while
in ESEIF, the robot is still a part of the state vec-
tor, and the information matrix needs to be con-
trolled to achieve sparseness by deliberately “kidnap-
ping robot” and “relocating robot” from time to time.
Both algorithms have some information loss as com-
pared with traditional EKF SLAM. The main factor
influencing the extent of information loss in ESEIF
is how often the robot is kidnapped and relocated.
Which of these two algorithms results in more infor-
mation loss depends on the specific parameters used,
the motion of the robot and the environment.

The computational cost O(N) in each step may not
be acceptable for very large-scale SLAM problems.
Applying D-SLAM in conjunction with the submaps
(e.g. [29], [32]) has the potential to further reduce
the computational effort. By using the submaps [17],
it is also possible to deal with the bearing-only and
range-only SLAM problems. The research along this
direction is underway.

Some recent results have shown that large errors in
the robot orientation introduce inconsistency in tra-
ditional SLAM [3], [15]. D-SLAM does not have the
robot location in the state vector used for mapping
thus may be more robust than traditional SLAM. The
study on the potential robustness of D-SLAM against

the heading error of robot will also be very interest-
ing.

Acknowledgment

This work is supported by the ARC Centre of Excel-
lence programme, funded by the Australian Research
Council (ARC) and the New South Wales State Gov-
ernment.

References

[1] Bailey, T. 2002. Mobile robot localization and
mapping in extensive outdoor environment. Ph.D.
Thesis. Australian Centre of Field Robotics, Uni-
versity of Sydney.

[2] Bar-Shalom, Y., Li, X. R., and Kirubarajan, T.
2001. Estimation with Applications to Tracking
and Navigation: Theory Algorithms and Soft-
ware. John Wiley & Sons. (Electronic Version)

[3] Castellanos, J. A., Neira. J., and Tardos, J. D.
2004. Limits to the consistency of EKF-based
SLAM. Proc. 2004 IFAC Symposium on Intelli-
gent Autonomous Vehicles, Lisbon, Portugal.

[4] Chen, L., Arambel, P. O., and Mehra, R. K. 2002.
Estimation under unknown correlation: covari-
ance intersection revisited. IEEE Transactions on
Automatic Control 47(11):1879-1882.

[5] Csorba, M., Uhlmann, J. K., and Durrant-Whyte,
H. 1997. A suboptimal algorithm for automatic
map building. In Proc. American Control Con-
ference, pp. 537-541.

[6] Deans, M. C., and Hebert, M. 2000. Invariant
filtering for simultaneous localization and map
building. In Proc. IEEE International Conference
on Robotics and Automation, pp. 1042-1047.

[7] Dellaert, F. 2005. Square root SAM. In Proc.
Robotics: Science and Systems. See webpage:
http://www.roboticsproceedings.org/rss01/
index.html.

15

[8] Dissanayake, G., Newman, P., Clark, S., Durrant-
Whyte, H., and Csobra, M. 2001. A solution to
the simultaneous localization and map building
(SLAM) problem. IEEE Transactions on Robotics
and Automation 17(3):229-241.

[9] Eustice, R. M., Singh, H., and Leonard, J.
2005. Exactly sparse delayed-state filters. In Proc.
IEEE International Conference on Robotics and
Automation, pp. 2428-2435.

[10] Eustice, R. M., Walter, M., and Leonard, J.
2005. Sparse extended information filters: in-
sights into sparsification. In Proc. IEEE/RSJ In-
ternational Conference on Intelligent Robots and
Systems, pp. 641-648.

[11] Eustice, R., Singh, H., Leonard, J., Walter, M.,
and Ballard, R. 2005. Visually navigating the
RMS Titanic with SLAM information filters. In
Proc. Robotics: Science and Systems. See web-
page: http://www.roboticsproceedings.org
/rss01/p08.html.

[12] Folkesson, J., and Christensen, H. I. 2004.
Graphical SLAM - a self-correcting map. In Proc.
IEEE International Conference on Robotics and
Automation, pp. 383-390.

[13] Frese, U. 2005. A proof for the approximate
sparsity of SLAM information matrices. In Proc.
IEEE International Conference on Robotics and
Automation, pp.331-337.

[14] Frese, U., Larsson, P., and Duckett, T. 2005. A
multilevel relaxation algorithm for simultaneous
localization and mapping. IEEE Transactions on
Robotics 21(2):196-207.

[15] Frese, U. 2006. A discussion of simultaneous lo-
calization and mapping. Autonomous Robots 20
(1):25-42.

[16] Gerkey, B. P., Vaughan, R. T., and Howard, A.
2003. The player/stage project: Tools for mul-
tirobot and distributed sensor systems. In Proc.
International Conference on Advanced Robotics,
pp. 317-323.

[17] Huang, S., Wang, Z., and Dissanayake, G. 2006.
Mapping large scale environments using relative
position information among landmarks. In Proc.
International Conference on Robotics and Au-
tomation, pp. 2297-2302.

[18] Julier, S. J., and Uhlmann, J. K. 2001. Simul-
taneous localization and map building using split
covariance intersection. In Proc. IEEE/RSJ In-
ternational Conference on Intelligent Robots and
Systems, pp. 1257-1262.

[19] Martinelli, A., Tomatics, N., and Siegwart, R.
2004. Open challenges in SLAM: An optimal so-
lution based on shift and rotation invariants. In
Proc. IEEE International Conference on Robotics
and Automation, pp. 1327-1332.

[20] Maybeck, P. 1979. Stochastic Models, Estima-
tion, and Control. Vol.1. Academic, New York.

[21] Moutarlier, P., and Chatlia, R. 1989. Stochas-
tic multisensor data fusion for mobile robot local-
ization and environment modeling. In Proc. In-
ternational Symposium on Robotics Research, pp.
85-94.

[22] Nebot, E. M. UTE Experimental Data from Vic-
toria Park. See webpage: http://www.acfr.
usyd.edu.au/homepages/academic/enebot/
experimental data ute.htm.

[23] Neira, J., and Tardos, J. D. 2001. Data associ-
ation in stochastic mapping using the joint com-
patibility test. IEEE Transactions Robotics and
Automation 17(6):890-897.

[24] Newman, P. 2000. On the structure and solution
of the simultaneous localization and map building
problem. Ph.D. Thesis. Australian Centre of Field
Robotics, University of Sydney.

[25] Pradalier, C., and Sekhavat, S. 2003. Simultane-
ous localization and mapping using the Geomet-
ric Projection Filter and correspondence graph
matching. Aadvanced Robotics 17(7):675 - 690.

[26] Saad, Y. 1996. Iterative Methods for Sparse Lin-
ear Systems. PWS Publishing Company. (Elec-
tronic Version)

16

[27] Shewchuk, J. 1994. An Introduction to the
Conjugate Gradient Method without the Ago-
nizing Pain. Technical Report. CMU-CS-94-125,
Carnegie Mellon Univerisity, Pittsburgh, PA,
USA.

[28] Smith, R., Self, M., and Cheeseman, P. 1990.
Estimating uncertain spatial relationships in
robotics. In Automomous Robot Vehicles, Cox, I.
J., and Wilfon, G. T., eds, New York: Springer
Verleg. pp. 167-193.

[29] Tardos, J. D., Neira, J., Newman, P., and
Leonard, J. 2002. Robust mapping and lo-
calization in indoor environments using sonar
data. International Journal of Robotics Research
21(4):311-330.

[30] Thrun, S., Liu, Y., Koller, D., Ng, A. Y.,
Ghahramani, Z., and Durrant-Whyte, H. 2004.
Simultaneous localization and mapping with
sparse extended information filters. International
Journal of Robotics Research 23(7-8):693-716.

[31] Walter, M., Eustice, R., and Leonard, J.
2005. A provably consistent method for impos-
ing exact sparsity in feature-based SLAM in-
formation filters. In Proc. International Sym-
posium on Robotics Research. See webpage:
http://robot.cc/program.html.

[32] Williams, S. B. 2001. Efficient solutions to
autonomous mapping and navigation prob-
lems. Ph.D. Thesis. Australian Centre of Field
Robotics, University of Sydney.

A Iterative Method for
Cholesky Factorization

In this appendix, it is shown that the Cholesky Fac-
torization of the information matrix I(k + 1) can be
constructed from that of I(k) due to the similarity
between the two consecutive information matrices as
shown in (11).

A.1 Cholesky Factorization

Suppose the Cholesky Factorization of I(k) is Lk (a
lower triangular matrix). Then

I(k) = LkLT
k . (20)

Let Lk and I(k) be partitioned according to (15)
as

Lk =
[

L11 0
L21 L22

]
, I(k) =

[
I11 IT

21

I21 I22

]
.

(21)
Then from (20),

L11L
T
11 = I11,

L21L
T
11 = I21,

L21L
T
21 + L22L

T
22 = I22.

(22)

According to (11), (15) and (21), I(k + 1) can be
expressed by

I(k + 1) =
[

I11 IT
21

I21 Ik+1
22

]

=
[

I11 IT
21

I21 I22 + HR

]
.

(23)

Lemma A.1 The Cholesky Factorization of I(k+1)
is

Lk+1 =
[

L11 0
L21 Lk+1

22

]
(24)

where Lk+1
22 is the Cholesky Factorization of the sub-

matrix HR + L22L
T
22 = Ik+1

22 − L21L
T
21. That is,

Lk+1
22 (Lk+1

22)T = HR + L22L
T
22

= Ik+1
22 − L21L

T
21.

(25)

Proof: By (22), (24) and (25),

Lk+1L
T
k+1

=
[

L11 0
L21 Lk+1

22

] [
LT

11 LT
21

0 (Lk+1
22)T

]

=
[

L11L
T
11 L11L

T
21

L21L
T
11 L21L

T
21 + Lk+1

22 (Lk+1
22)T

]

=
[

I11 IT
21

I21 L21L
T
21 + HR + L22L

T
22

]

=
[

I11 IT
21

I21 I22 + HR

]
.

(26)

17

Thus by (23),

I(k + 1) = Lk+1L
T
k+1. (27)

Since both L11 and Lk+1
22 are lower triangular, Lk+1

is also lower triangular. Thus Lk+1 is the Cholesky
Factorization of I(k + 1).

Remark: When the dimension of HR in (15)
is O(1), the computational cost of computing Lk+1

using (24) is O(1), which is much more efficient
than directly computing the Cholesky Factorization
of I(k + 1).

A.2 Approximate Cholesky Factoriza-
tion

The formula (24) in the above section can also be
used to iteratively compute an approximate Cholesky
Factorization of I(k + 1).

Suppose L̃k is an approximation of Cholesky Fac-
torization of I(k), then

I(k) ≈ L̃kL̃T
k . (28)

Let L̃k be partitioned according to (15) as

L̃k =
[

L̃11 0
L̃21 L̃22

]
. (29)

Let L̃k+1
22 be an approximate Cholesky Factoriza-

tion of the submatrix HR + L̃22L̃
T
22 and construct

L̃k+1 by

L̃k+1 =
[

L̃11 0
L̃21 L̃k+1

22

]
. (30)

Then the following approximate equation can be
proved in a way similar to the proof of Lemma A.1,

I(k + 1) ≈ L̃k+1L̃
T
k+1. (31)

18

−4 −3 −2 −1 0 1 2 3 4 5 6
−4

−3

−2

−1

0

1

2

3

4

5

6

X(m)

Y
(m

)

Loop: 485

(a) Map obtained by D-SLAM (ellipses indicate 2σ
error bounds for feature and robot location esti-
mates)

0 20 40 60 80 100 120 140 160
−0.2

−0.1

0

0.1

0.2

E
rr

or
 in

 X
(m

)

0 20 40 60 80 100 120 140 160
−0.2

−0.1

0

0.1

0.2

E
rr

or
 in

 Y
(m

)

0 20 40 60 80 100 120 140 160
−0.1

−0.05

0

0.05

0.1

E
rr

or
 in

 P
hi

(r
ad

)

Time(sec)

(b) Error of the robot location estimate and associ-
ated 2σ error bounds

0 20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

0.2

E
rr

or
 in

 X
(m

)

0 20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

0.2

E
rr

or
 in

 Y
(m

)

0 20 40 60 80 100 120 140 160
0

0.02

0.04

0.06

E
rr

or
 in

 P
hi

(m
)

Time(sec)

(c) 2σ error bounds of robot location estimate (solid
line is from D-SLAM; dashed line is from traditional
SLAM)

0 20 40 60 80 100 120 140 160
0

0.02

0.04

0.06

0.08

0.1

E
st

im
at

io
n

er
ro

r
in

 X
(m

)

0 20 40 60 80 100 120 140 160
0

0.02

0.04

0.06

0.08

0.1

E
st

im
at

io
n

er
ro

r
in

 Y
(m

)

Time(sec)

(d) 2σ error bounds for the location estimate of fea-
ture 9 (solid line is from D-SLAM; dashed line is
from traditional SLAM)

Figure 4: Implementation of D-SLAM in an indoor environment

19

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

X(m)

Y
(m

)

(a) Robot trajectory and the map obtained
by traditional EKF SLAM

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

X(m)

Y
(m

)
(b) Robot trajectory and the map obtained
by D-SLAM

0 500 1000 1500 2000 2500
−0.4

−0.2

0

0.2

0.4

E
rr

or
 in

 X
(m

)

0 500 1000 1500 2000 2500
−0.4

−0.2

0

0.2

0.4

E
rr

or
 in

 Y
(m

)

0 500 1000 1500 2000 2500
−0.04

−0.02

0

0.02

0.04

E
rr

or
 in

 P
hi

(r
ad

)

Time(sec)

(c) Robot location estimation errors and 2σ
error bounds from traditional EKF SLAM

0 500 1000 1500 2000 2500
−0.4

−0.2

0

0.2

0.4

E
rr

or
 in

 X
(m

)

0 500 1000 1500 2000 2500
−0.4

−0.2

0

0.2

0.4

E
rr

or
 in

 Y
(m

)

0 500 1000 1500 2000 2500
−0.1

−0.05

0

0.05

0.1

E
rr

or
 in

 P
hi

(r
ad

)

Time(sec)

(d) Robot location estimation errors and 2σ
error bounds from D-SLAM

0 500 1000 1500 2000 2500
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

E
st

im
at

io
n

er
ro

r
of

 X
(m

)

0 500 1000 1500 2000 2500
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

E
st

im
at

io
n

er
ro

r
of

 Y
(m

)

Time(sec)

(e) Estimation error of feature 7 from D-
SLAM

0 500 1000 1500 2000 2500
0

0.05

0.1

0.15

0.2

S
ta

nd
ar

d
de

vi
at

io
n

in
 X

(m
)

0 500 1000 1500 2000 2500
0

0.05

0.1

0.15

0.2

0.25

S
ta

nd
ar

d
de

vi
at

io
n

in
 Y

(m
)

Time(sec)

(f) Standard deviation of location estimates
of several randomly selected features from D-
SLAM

Figure 5: Simulation results with large number of features

20

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

(a) Links in the information matrix

0 200 400 600 800 1000

0

200

400

600

800

1000

nz = 44692

(b) Sparse information matrix obtained by D-
SLAM without any reordering of the state
vector

0 200 400 600 800 1000

0

200

400

600

800

1000

nz = 44692

(c) Banded information matrix obtained by
D-SLAM with reordering of the state vector

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

Number of features

A
ve

ra
ge

 c
om

pu
ta

tio
n

tim
e/

nu
m

be
r

of
 fe

at
ur

es
 (

se
c)

Precondition
PCG for state recovery
PCG for recovery of state and 1 column of covariance matrix

(d) Average time for precondition and PCG
divided by the number of features

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

Number of features

A
ve

ra
ge

 it
er

at
io

n
nu

m
be

r

recovery of state
recovery of one column of covariance matrix

(e) Average iteration number for PCG con-
vergence (previous state vector is used as the
initial guess for recovering current state vec-
tor; zeros are used as the initial guesses for
recovering columns of covariance matrix)

0 100 200 300 400 500 600
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Number of features

A
ve

ra
ge

 c
om

pu
ta

tio
n

tim
e

(s
ec

)

direct Cholesky factorization average time
iterative Cholesky factorization average time

(f) Comparison of the average time required
for the Cholesky Factorization using the iter-
ative method and the direct Cholesky Factor-
ization

Figure 6: D-SLAM simulation results – sparse information matrix and computation time

21

−100 −50 0 50 100 150 200 250

0

50

100

150

200

250

(a) Map and vehicle trajectory (solid line and cross
are trajectory and feature location from D-SLAM;
dashed line and dot are trajectory and feature loca-
tion from traditional EKF SLAM)

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.5

1

1.5

2

2.5

3

X
(m

)
0 1000 2000 3000 4000 5000 6000 7000 8000

0

0.5

1

1.5

2

Time(sec)
Y

(m
)

(b) 1σ error bounds for robot position estimate
(solid line is from D-SLAM; dashed line is from tra-
ditional EKF SLAM)

0 200 400 600 800 1000 1200 1400 1600
0

0.5

1

1.5

2

2.5

E
st

im
at

io
n

er
ro

r
in

 X
(m

)

0 200 400 600 800 1000 1200 1400 1600
0

0.5

1

1.5

2

2.5

E
st

im
at

io
n

er
ro

r
in

 Y
(m

)

Time(sec)

(c) 2σ error bounds for the feature location estimate
of the two extreme cases in terms of difference in re-
sulting estimation uncertainty (solid line is from D-
SLAM; dashed line is from traditional EKF SLAM)

0 100 200 300 400 500 600

0

100

200

300

400

500

600

nz = 33196

(d) Exactly sparse information matrix (33196 non-
zero elements and 353688 exactly zero elements)

Figure 7: Outdoor, large-scale implementation of D-SLAM using Victoria Park data set

22

