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Abstract

Large area mapping at high resolution underwater continues to be
constrained by sensor-level environmental constraints and the mis-
match between available navigation and sensor accuracy. In this
paper, advances are presented that exploit aspects of the sensing
modality, and consistency and redundancy within local sensor mea-
surements to build high-resolution optical and acoustic maps that
are a consistent representation of the environment. This work is pre-
sented in the context of real-world data acquired using autonomous
underwater vehicles (AUVs) and remotely operated vehicles (ROVs)

working in diverse applications including shallow water coral reef

surveys with the Seabed AUV, a forensic survey of the RMS Titanic
in the North Atlantic at a depth of 4100 m using the Hercules ROV,
and a survey of the TAG hydrothermal vent area in the mid-Atlantic
at a depth of 3600 m using the Jason II ROV. Specifically, the focus
is on the related problems of structure from motion from underwater
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optical imagery assuming pose instrumented calibrated cameras.
General wide baseline solutions are presented for these problems
based on the extension of techniques from the simultaneous local-
ization and mapping (SLAM), photogrammetric and the computer
vision communities. It is also examined how such techniques can
be extended for the very different sensing modality and scale asso-
ciated with multi-beam bathymetric mapping. For both the optical
and acoustic mapping cases it is also shown how the consistency in
mapping can be used not only for better global mapping, but also to
refine navigation estimates.

KEY WORDS—underwater vehicles, structure from motion,
bathymetric mapping, computer vision

1. Introduction

A number of oceanographic applications require large area site
surveys from underwater imaging platforms. Such surveys are
typically required to study hydrothermal vents and spread-
ing ridges in geology (Yoerger et al. 2000), ancient ship-
wrecks and settlements in archaeology (Ballard et al. 2002),
forensic studies of modern shipwrecks and airplane accidents
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(Howland 1999; NTSB 2002), and surveys of benthic ecosys-
tems and species in biology (Singh et al. 2004a). Scientific
users in these disciplines often rely on multiscalar, multisen-
sor measurements to best characterize the environment.

At finer scales, for resolutions down to millimeters, opti-
cal imaging of the seafloor offers scientists a high level of
detail and ease of interpretation. However, light underwater
suffers from significant attenuation and backscatter, limiting
the practical coverage of a single image to a few square me-
ters. To cover larger areas of interest, hundreds or thousands
of images may be required. The rapid attenuation of the visi-
ble spectrum in water implies that a composite view of a large
area (or photomosaic) can only be obtained by exploiting the
redundancy in multiple overlapping images distributed over
the scene. Although there has been considerable effort in this
regard for land-based applications, the constraints on imaging
underwater are different and are far more difficult to deal with.
Mosaicing assumes that images come from an ideal camera
(with compensated lens distortion) and that either the scene
is planar or the camera is undergoing purely rotational mo-
tions. Under these assumptions the camera motion will not
induce parallax and therefore no 3D effects are involved and
the transformation between views can be correctly described
by a 2D homography. These assumptions often do not hold in
underwater applications since light attenuation and backscat-
ter rule out the traditional land-based approach of acquiring
distant, nearly orthographic imagery. Underwater mosaics of
scenes exhibiting significant 3D structure usually contain sig-
nificant distortions. In contrast to mosaicing, the information
from multiple underwater views can be used to extract struc-
ture and motion estimates using ideas from structure from
motion (SFM) and photogrammetry.

For coarser resolutions O(10 cm), but covering far greater
O(10-100 m) swaths, acoustic sensing centered at several
hundred kilohertz is the modality of choice. Multibeam sen-
sors mounted on underwater platforms can provide high-
resolution three-dimensional scans of the environment that
can be transformed into bathymetric maps.

Unfortunately, for both optical and acoustic sensors, the
fundamental limitation in converting high-resolution sensor
measurements into quantitative maps is the mismatch between
sensor accuracy and navigation. Due to the rapid attenuation
of the electromagnetic spectrum GPS signals are not available
underwater. Instead underwater imaging platforms typically
rely on a combination of acoustic transponders and inertial
navigation systems. Acoustic transponders (Milne 1983), like
sonar systems, must trade off range for resolution. Although
transponders have been built to work at frequencies as high
as 300 kHz, providing centimeter-level accuracy over an area
of 100 square meters, typical large area surveys utilize lower
frequency (8—13 kHz) long-baseline transponders that provide
meter-level accuracy across several kilometers. The deploy-
ment of such systems is nontrivial and usually requires signif-
icant time and effort as each individual transponder must be

deployed and its position independently calibrated from the
surface.

Inertial navigation sensors such as Doppler velocity logs
used in combination with fiber optic or ring laser gyros can
provide navigation estimates underwater (Whitcomb et al.
1999) that grow as a function of time (distance traveled).
However, such systems inherently provide an estimate whose
error characteristic grows without bound over time (distance).
Although expensive, from a cost, power and size standpoint,
these systems are far easier to use as they are integral to the
underwater vehicle and as such do not require any extra effort
for deployment and use.

In this paper we examine the role of quantitative mapping
with optical and sonar sensors for underwater applications
within the bounds of current sensing and navigation method-
ologies. We present the results of a complete system method-
ology that begins with sensor-specific algorithms for image
enhancement in the underwater environment. We then look at
the applications of structure from motion algorithms, micro-
bathymetric mapping and visually based navigation to show
that sensor consistency and registration across multiple swaths
when used in combination with underwater positioning and
attitude information can be used to provide superior mapping
while simultaneously improving the quality of our navigation.
In the rest of this paper, Section 2 looks at the “structure from
motion” problem underwater, examining in detail the prob-
lem of two view image registration of optical imagery from
underwater robotic vehicles. Section 3 examines the case for
microbathymetric sonar mapping. Section 4 briefly discusses
sensor and terrain based navigation, while we offer some con-
cluding thoughts in Section 5.

2. Large Area Optical Imaging Underwater

The fundamental problem of obtaining a large area perspective
of an underwater scene is that due to constraints associated
with the attenuation and backscatter of light, which imply
that one can only image a small section of the seafloor with a
single image. Thus one must register multiple image frames
into a single composite. The highly unstructured nature of
underwater terrain, and issues associated with moving lighting
on underwater robotic vehicles all combine to make image
registration a difficult problem.

Considerable efforts in this regard have been made with
respect to black and white imagery as well as two-dimensional
photomosaicing (Marks et al. 1995; Pizarro and Singh 2003;
Singh et al. 2004b). In this paper we choose to focus instead
on the more challenging tasks associated with quantitative
mapping underwater with color imagery.

Figure 1 outlines the basic problems that we address in
this paper. Underwater lighting and the effects of large terrain
(compared with the field of view) dominate the task associated
with image registration underwater.
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Fig. 1. Underwater lighting and large relief are the primary difficulties associated with image registration underwater. The
two image pairs on the left and right have typical overlap between each other and across the pairs for the purposes of large
scale optical mapping underwater. These images are as they appear when recorded from an AUV. It is extremely difficult to

register such images temporally or spatially.

2.1. Color Imaging Underwater

Underwater lighting is one of the primary difficulties asso-
ciated with optical imaging underwater. Seawater serves to
nonlinearly attenuate different parts of the color spectrum as
a function of distance (Mobley 1994; Mertens 1970).

The attenuation of visible light underwater at a particular
wavelength may be modeled by a simple exponential function
with an attenuation coefficient that is a function of absorption
and scattering. However, this attenuation coefficient is a com-
plex function of the wavelength. For each wavelength, the
value of the attenuation coefficient depends on the depth and
salinity of the water. The changes due to depth are significant
in the upper layers of the water, with the dominant effects oc-
curring in the top 200 m, while the salinity level as well as or-
ganic/inorganic materials and organisms also significantly af-
fect the attenuation coefficient (Mobley 1994; Mertens 1970).

In addition to the attenuation, the lighting pattern of a light
source affects the spatial variations of the light on the seafloor
Jaffe 1990). The light source is usually a single strobe for
AUVs due to cost, size and power limitations. A combination
of different light sources, such as halogen-gas light, incandes-
cent light and strobes can be used to generate a more uniform
lighting pattern for ROVs and manned submersibles but even
so there is a strong dependence on altitude that affects such ge-
ometries, which leads to a non-uniform lighting pattern over
the entire domain of application.

For the imaging model, we use a common assumption that
decomposes an image F' into a reflectance image R, and an
illumination image / (Highnam and Brady 1997; Chen 1990;
Yoon and Ro 2002; Rzhanov et al. 2000)[14][15][16][17],

F(x,y,2) =1(x,y,A) R(x, y, %) ey

where x, y represent the spatial pixel coordinates, and A repre-
sents the color channel (i.e., red, green, or blue). Since the illu-
mination component is formed by a slowly varying light field
over a smooth surface, it is characterized by low-frequency
fields. The high-frequency components are those associated
with the reflectance component, which varies rapidly, and
forms the local contrast.

We utilize the logarithm of the input image to estimate
the reflectance image, by fitting a parametric surface to es-
timate the illumination image. For single-strobe underwater
vehicle imagery, in the log domain, the slowly varying char-
acteristic of the illumination can be captured by a parametric
surface. The advantage of this method over more classical ho-
momorphic filtering is that it is less sensitive to local intensity
variations such as shadows and backscatter.

We start by noting that the variance of the reflectance
component is small relative to its unit mean (R = N(u =
1,0%()) and 62(A) << 1), and thus a logarithmic trans-
formation yields approximately a Gaussian process with zero
mean. This can be justified by approximating the logarithmic
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transformation as a unit transformation around one,
logR~R—1=N(u=0,0%*1)). ()

For a particular frame, and a color channel let F; (x, y) =
log F(x, y, 1) denote the logarithm of the input image. If we
assume that the illumination component can be represented
by a polynomial surface (experimentally we have found that
a fourth order polynomial closely represents the light pattern
formed by a single strobe in an attenuating media), then the
parametric surface fitting equation can be formulated as

F,(0,0) 0 0 - 0 1
F,0, 1) 0 0 - 1 1
b= F (x,y) -1 & x3y y 1
FL.(N, M) N* N’M - M 1
P
P2
. | =sp 3)
P
Pis

where S refers to surface fitting parameters for each pixel, P
is the parameter vector and N and M refer to the size of the
image.

The least squares estimate for the parameter vector is

P =(S"S)"'S"F,. 4)

Note that the (S”S)~'S” term in the above equation is in-
dependent of the input image, and hence needs only to be
computed once. Then for each frame and color channel, an
illumination image can be generated by using the estimated
polynomial surface,

log 7(x,y,2) =SP &)

The block diagram for this method is shown in Figure 2(a).
Note that, this is similar to the well known process of homo-
morphic filtering except that the log of the illumination com-
ponent is estimated using a parametric surface rather than a
low pass filter. The imagery in Figure 2(b) and 2(c) shows
the original image, the illumination component and the color
compensated image computed by this method. We note that
an implicit assumption in our formulation is that there is suffi-
cient dynamic range in our pixel values to support logarithmic
analysis. Given the nature of the underwater medium it is thus
imperative to utilize high dynamic range cameras. All the op-
tical imagery shown in this paper was acquired with cameras
providing twelve bits of dynamic range.

We apply this methodology to all our images prior to image
registration.

2.2. Structure from Motion with Pose Instrumented
Cameras

After dealing with the effects of color, we turn our attention
to the “structure from motion” (SFM) problem underwater.
Our methodology takes a local to global approach inspired by
mosaicing and other land-based applications of SFM (Hartley
and Zisserman 2000; Pollefeys et al. 1999; Triggs et al. 2000;
Fitzgibbon and Zisserman 1998; Slama 1980), but differs in
that it takes advantage of navigation and attitude information
(Pizarro et al. 2003). Local sequences are derived indepen-
dently (Fitzgibbon and Zisserman 19980 and then registered
in a global frame for bundle adjustment (Triggs et al. 20000.
Our approach seems more suitable than pure sequential meth-
ods (Pollefeys et al. 1999; Fitzgibbon and Zisserman 1998)
because in an underwater survey each 3D feature appears only
in a few images making the global solution look more like a
series of weakly correlated local solutions.

We assume a standard calibrated pin-hole camera model
which implies that the homogeneous mapping from the world
to the image plane can be described by the projection matrix
P defined as

P = K[, R[] (6)

where ¢ R and ‘t,,, encode the the coordinate transformation
from world w, to camera centered coordinate frame ¢ and K
is the intrinsic camera calibration matrix.

Under this representation the interest point with pixel co-
ordinates (u, v) in image [ is imaged as

u=PX (N

where u = [u, v]P"?, is the vector description of (u, v), u =
[uPTF, 1] its normalized homogeneous representation, X =
[X,Y, Z1P"" is the imaged 3D scene point, and UXU =
[XPT?, 1] its normalized homogeneous representation. We
note that for all homogeneous quantities, equality as defined
by (7), is implicitly defined up to scale. The benefit of having a
calibrated camera is that we can work with normalized image
plane coordinates and thus describe the geometry in terms of
the Essential matrix (Rzhanov et al. 2000) and recover the
5-degree-of-freedom camera pose from correspondences as
described below.

Our feature-based approach to image registration is out-
lined in Figure 4. A combination of Harris and SIFT interest
points are extracted for each image. For the Harris points we
apply an orientation normalization, based upon the underwa-
ter robot’s pose, before encoding the surrounding region with
Zernike moments (Pizarro and Singh 2003). Correspondences
are then posited based upon similarity and a pose constrained
correspondence search. These are then fed into a robust least
median of squares registration methodology with regularized
sampling to extract a consistent inlier correspondence set. We
then solve for the relative pose estimate using the inlier set and
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Fig. 2. High dynamic range cameras can be used with parametric surface fitting in the homomorphic domain as outlined (a)
to color correct typical underwater imagery (b) to obtain an image (c) that is independent of the nonlinear attenuation of color
underwater.
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Fig. 3. The use of high dynamic range cameras (as shown in Figure 2) can help compensate for lighting differences between
the two sets of images. However, it is still difficult to disambiguate the effects due to large relief with respect to the field of
view of the camera. Even with the colored dots to show corresponding points across two sets of images it is difficult to register
such images using conventional computer vision methodologies.
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Fig. 4. An overview of the pairwise registration methodology.

Horn’s relative orientation algorithm. Finally we refine our es-
timate utilizing a two view bundle adjustment step based upon
minimizing the reprojection error over all the inliers.

The problem of initial feature correspondence is arguably
the most difficult and challenging task for most feature-based
registration. The pose prior (available on our underwater
robot) can be used to relax the demands on the complex-
ity of the feature descriptor. We use the epipolar constraint
expressed as a two view point transfer model to restrict the
correspondence search to probable regions. These regions are
determined by our pose prior and are used to confine the inter-
est point matching to a small subset of candidate correspon-
dences.

In deriving the point transfer mapping we assume the pro-
jective camera matrices P = K[I|0] and P7 = KI[R]t],
where for notational convenience we drop the explicit sub-
script/superscript notation and simply write the relative pose
parameters as R, r. We begin by noting that the scene point X
is projected through camera P as

u=PX =KX (8)

5 DOF
Relative Pose Measurement
& Covariance

which implies that explicitly accounting for scale we have

X=ZK'u 9)

The back projected scene point, X, can subsequently be
reprojected into image I’ as

W =PX=KRX+1) (10)

By substituting (9) into (10) and recognizing that the fol-
lowing relation is up to scale, we obtain the homogeneous
point transfer mapping [17],

u=KRK'u+Kt/Z (11)

Finally, by explicitly normalizing (11) we recover the non-
homogeneous point transfer mapping,
_ Hou+Kt/Z
 HYu+t1/Z

!

12)

where HB,.; = KRKP~'", H" refers to the third row of
H B3, and ¢ B_; is the third element of 1. When the depth
of the scene point Z, is known in camera frame c, then (12)
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describes a functional relation on Z (i.e., u’ = f(u, Z)) that
traces out the corresponding epipolar line in /7.

The two view point transfer mapping can be used to con-
strain the correspondence search between image pair (I B;,
I B;) by using the pose prior for each of the camera vehicle
poses. We define the parameter pose vector y as

y=Ix,.x,

it pj

Z,u,v]” (13)

with mean, p,, and covariance X, given by

Mop;

/’ij

"y = Z

u

v

and

Emm Empj 0 00
X Zpp, 0 00
¥, = 0 0 o2 0 0
0 0 0 1 0
0 0 0 0 1

where x,,, x,, refer to the vehicle pose at the moment the
camera images i and j were acquired, Z and o B. represent
the scene depth parameters as measured in camera frame / and
(u,v) describe the feature location in pixels in image I B;.
To obtain a first-order estimate of the uncertainty in the
point transfer mapping between I B; and I B;; we compute

t 2 (12)],, (14)

DINESIN DN A (15)

where ,, is the predicted point location of u in I B}z, X,/ its
covariance, and J = iiy is the point transfer Jacobian (which
we compute numerically).

We use the Gaussian distribution as an analytical tool to
compute the first-order search bounds in (u/, v/) space by

noting that

W —pn)'Z) U — ) =k (16)

defines an ellipse where k? follows a x? distribution. Hence
we can choose an appropriate k2 such that with high proba-
bility «, the true mapping u,, falls within this region. Under
this scheme we test all feature points in /; to see if they fall
within the ellipse, and if they do, then they are considered to
be candidate matches for u. Since relative pose uncertainty
depends on the reference frame in which it is expressed, we
apply the two view search constraint both forwards and back-
wards to obtain a consistent candidate correspondence set. In
other words, candidate matches in /; that correspond to in-
terest points in /; are checked to see if they map back to the
generating interest point in ;. Based upon this set of con-
sistent candidate matches, feature similarity is then used to
establish the one-to-one putative correspondence set.

2.3. Large Area Structure from Motion

The temporal sequence of images is processed into a set of
3D submaps with estimates of coordinate transformations be-
tween temporally adjacent submaps. Our algorithm attempts
to establish additional spatial relationships between submaps
corresponding to overlap from parallel tracklines or loop
closures.

While the sparse set of 3D points contained in the submaps
do not consistently offer discriminating structure, the very fact
that they exist as 3D points implies that their appearance in
multiple views is characteristic enough to effectively estab-
lish correspondences and be reconstructed by the SFM algo-
rithm. We therefore extend the feature description and similar-
ity based matching between images to matching submaps by
relying on the appearance of 3D points to propose correspond-
ing features between submaps. The average of the descriptors
of the 2D neighborhoods on all views is used as the appearance
of the 3D point. The underlying assumption is that a similarity
measure which was effective to match 3D points along track
will also be effective when matching across submaps. Corre-
sponding 3D points are proposed based on appearance and a
robust registration using RANSAC with Horn’s (1987) algo-
rithm is used to determine which points are in correspondence
and the transformation parameters.

We continue to check possible submap correspondences
based on our navigation until all possible correspondences
are exhausted or an upper limit is reached (we use eight times
the number of submaps for the sparse structure associated with
local area mapping). The submaps are then placed in a global
frame by minimizing the descrepancies between composed
global estimates and the transformations between submaps.
Additional cost terms consider the navigation prior.

Once submaps are in a global frame, camera poses within
submaps can also be placed in the global frame. These camera
poses are then used to triangulate the location of 3D features.
Sparse bundle adjustment then refines both camera poses and
3D feature locations.

Figures 8 and 9 illustrate this process. The results are from
a survey performed in the Johns Hopkins University (JHU)
Hydrodynamics Test Facility using the JHU ROV. As shown
in the figure the results are highly consistent with ground-
truth obtained by draining the test tank and laser scanning the
scene geometry. We have also obtained similar results from
a survey using the Seabed AUV at a coral reef off Bermuda
(Singh et al. 2004a).

3. Self-consistent Bathymetric Mapping

Another application of our techniques is to multibeam map-
ping (Singh et al. 2000) where the areas of interest encom-
pass several square kilometers that are typically mapped with
a sonar with 10 cm sensor accuracy but where the naviga-
tion from the standard combination of long baseline transpon-
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Fig. 5. Pose-restricted correspondence search on a pair of underwater reef images. A sampling of interest points are shown
for the image pair in the top row. The middle row shows the color coded sensor instantiated epipolar lines for a small number
of sample points. The bottom image shows the constrained search regions for the interest points in the right image based on
our two view point transfer mapping.
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Fig. 6. By utilizing the pose constraints, we can efficiently obtain consistent correspondences between the images. The x’s
denote individual features in each image that have been registered to the other image. The lines show where each successful
correspondence is registered on the other image.

YC]

Fig. 7. The set of inliers in the correspondence set can be used to derive a coarse 3D grid of structure. Texture mapping the
imagery corresponding to the structure provides a vivid quantitative representation of the scene.
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Fig. 8. Two views of the reconstruction of poses and structure for the JHU tank dataset (left). The scene consists of rocks
placed on carpet. The camera poses are connected by a red line. A Delaunay triangulation interpolates a surface between 3D
feature points. The structure is color-coded according to height. Units are in meters. A view of the texture mapped imagery

on the structure is shown for comparison at right.

ders and inertial navigation is only good to a meter. To avoid
this navigation limitation we break the total mapping prob-
lem down into small pieces, each of which contains internal
errors typical of the mapping sonar rather than the navigation
(Roman 2005). This is accomplished by assembling small
bathymetry sub-maps using only the short-term dead reckon-
ing information provided by the vehicle navigation sensors.
Algorithmically this is accomplished using a delayed state
extended Kalman filter (EKF) and a simple constant veloc-
ity dynamic model of the vehicle motion, as illustrated in
Figure 10. This simple model is sufficient, given the slow
dynamics typical of underwater survey vehicles. The current
estimate of the filter state vector contains the position and ve-
locity information required for a 6 degree-of-freedom (DOF)
state estimate.

The delayed portion of the state vector is used to archive
historical poses of the vehicle which serve as local 6-DOF
origins for the small sub-maps.

After accounting for issues specific to acoustic sensors such
as possible errors associated with weak returns, beam patterns

effects resulting in the acoustic pulse not striking the bottom,
and other false detections, we can approximate the sonar as
a three-dimensional line scanner. These line scans are assem-
bled into sub-maps using the range data and the vehicle posi-
tion estimates extracted from the state vector at the time each
sonar ping is taken as illustrated in Figure 11.

3.1. An EKF Formulation for Vehicle Navigation

The complete filter state vector x,,, is partitioned into a vehicle
state x,, which describes the current estimate of the vehicle
pose, and a delayed portion containing the sub-map origins.
The state vector in (17) shows the vehicle state and the N
delayed sup-map origins.

T T ..

xaug = [-x,) » X . 7-x;1r\,]T (17)

s1?

This state vector will grow in length as new sub-maps are
created and delayed states are added to the filter. The nota-
tion for the delayed states indicate that the delayed state x,,,
marked by subscript s, points from the common origin o to
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Fig. 9. The distance map from SFM 3D points to the ground truthed laser scan after ICP registration. Areas of large
discrepancies tend to correspond to the carpet being buoyant for the visual survey. An outlier in the reconstruction produced
the large error visible at approximately x = 1.4 m, y = 0.8 m.

Nav Sensors Sonar data

Z navigation

Kiehiclo Sub-map

EKF >

creation

Z relative pose

v
Sub-map relative | Sub-map
pose measurements catalog

Fig. 10. The delayed state EKF block diagram. The sub-mapping algorithm utilizes vehicle navigation data to create small
bathymetric sub-maps. The sub-map origins are held in a delayed state vector and used to create relative pose measurements
that reduce navigation error.
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Fig. 11. A schematic representation of multibeam sonar mapping. The underwater vehicle projects a linear beam on the
seafloor that is combined with vehicle navigation based on acoustic beacons to obtain a global map of the environment.
Typically the navigation errors far exceed the intrinsic accuracy of the sonar sensor.

the origin of sub-map 1. The delayed state poses consist of
6-DOF frames defined by:

Xs; = [)C, Yy, Zve’ ¢v W]T (18)

where 0, ¢, 1 are Euler angles.

The covariance matrix for the filter describes the covari-
ance of the vehicle P,,, the covariance of the sub-map origins
Py, and all of the respective cross-correlations. As the new
sub-maps are created additional rows and columns are added
to the covariance matrix. These new elements are non-zero
because the current state is correlated with all prior states.
Intuitively, setting the covariance of a newly added delayed
state P, , equal to the current vehicle covariance allows that
sub-map origin to inherit the correct uncertainty of its position
estimate.

va PU.)‘] PUSN
Psv Ps Pss

Pug=| . . (19)
P, P P

SNV SNS1 SNSN

To describe the pose of the vehicle we use a 6-DOF param-
eterization with position and attitude variables measured in a
local level reference frame. The additional states included in
the vehicle state vector are the vehicle body frame velocities
and angular rates.

X, =[x, 9,2,0,0, ¥, u,v,w,0,0,91".  (20)

position

velocity

For a vehicle dynamic model we consider a constant veloc-
ity model f(x,(t)) perturbed by white noise w with zero mean
and diagonal covariance Q. The constant velocity assumption
seems adequate for this application where the vehicle dynam-
ics are relatively slow. This vehicle model relates the vehicle
body frame velocities to local level frame velocities through
the nonlinear rotation R(6, ¢, ¥ ). The white noise w adds to
the linear and angular accelerations.

X, (1) = f(x,(@) + w(t) (21)
— u — r O 7
R@,9,¥)| v
) w
= 0 + (22)
¢ :
14 0
L Ofoxny - L Wex1] _
where, wis,; = [w), wy, w3, Wy, Ws, we]". When the entire

augmented state is considered, the delayed states are not af-
fected by the vehicle model, that is, x,,, = [%,(1)", O NX”]T.

Navigation sensor measurements,z[#,], are handled using
nonlinear measurement models of the form 4, (x,[z.]). These
measurement models are implemented as mixed-coordinate
functions that predict the sensor measurement in the individ-
ual sensor coordinate systems. The sensor measurements are
assumed to be corrupted by a time-independent zero mean
Gaussian noise v with covariance R, where E[wv'] = 0.
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Measurements for the navigation sensors are available at dis-
crete times ;.

z[te] = by (xu[6]) + v (23)

For this application we incorporate navigation measure-
ments of the body frame velocities, surface relative depth and
three axis attitude. We use the LBL position estimates to eval-
uate the output of the simultaneous localization and mapping
(SLAM) algorithm but do not incorporate them or any other
ground reference position estimates in the filter. Thus, the ve-
hicle model within this framework is dead reckoning.

To make measurements between delayed states we use the
tail to tail operation as defined by Smith et al. (1990). This
nonlinear operation predicts the relative 6-DOF transform x,,
between the filter states x,; and x;;.

Zg, = hi(xy, X;,) = ©x,; D X 24
H, = 0. 2 0, 20 g 25)
Sij T ’ axSi s MV axxj 9 (

The sparse Jacobian H;,, of the relative pose estimate is used
in the update equations when the measurement is incorporated
into the filter.

The EKF uses the continuous time prediction equations
to propagate the state estimate forward in time until the next
navigation or delayed state measurement can be made.

() = f(x(0) (26)
:
Paug(t)=[ hio 8]P“”g(t)+f’”"g(”[ Fin 8}
0 0
+[ 0 0} @7

These equations and the update equations require the Ja-
cobians of the process model and the navigation sensor mea-
surements with respect to the vehicle state:

P af (x (1)) _ Oh,(x[6])

v = 28
axv (t) Xy (1) 8)(1, [tk] ( )

xylte]

The prediction equations are nonlinear and are integrated
numerically using a Runge—Kutta approximation. The inte-
gration produces the prediction of the mean vehicle state x
and covariance P, using all the measurements prior to time
ty.

The update equations are then written in a discrete form.

W=pP, H[HP, H +R]"

aug aug

(29)

xo[ud = x; + Wilzlt] — h(x,)] (30)

Paug[tk] = [[ - WH]P_ [I - WH]—r + VVIQVV—r

aug

€29}

where, H = [H,1 s Opmxon J], when the update is for a navigation
sensor updating m states, and H = H,, when the update is
for a delayed state measurement. The matrix R contains the
appropriate measurement covariance for the navigation sensor
or relative pose measurement.

3.2. Sub-map Creation and Matching

Prior to mapping the raw sonar data collected for each ping
is beamformed and range detected. Range detection is ac-
complished by looking at each beam and choosing the range
at which the peak amplitude was returned. To reduce possi-
ble errors associated with weak returns, beams not striking
the bottom and other false detections so ranges are thrown
out using amplitude thresholding and median filtering with
neighboring beams.

Sub-maps are created using the range data and the vehicle
position estimates extracted from x,(#)~ at the time each ping
is taken. The beam ranges are projected and kept as points
in 3D dot cloudsS; using the delayed statesi = 1--- N as
local origins. Using the notation from Smith et al. (1990) the
locations of an individual point in space can be written as

S = (exx,- ®xp(t)_) 69 Xy (32)

where, x, is the location of the range point in the vehicle
coordinate frame and x,,(¢)~ is the vehicle pose extracted from
x, ().

Sub-maps are created by collecting pings in this manner
over short time scales during which the vehicle position error
associated with the dead reckoned navigation grows slowly.
Determining the size at which to break a terrain map and begin
another is a balance between creating a map small enough
that it itself does not contain a significant amount of internal
error or distortion and creating a map large enough to contain
enough 3D information that it can be registered to another
map.

Given these criteria there are a few obvious limitations
in applying this technique. For starters, the dead reckoned
navigation must be reasonable enough that sub-maps can be
reasonably constructed. Also, the seafloor cannot be flat and
featureless. Fortunately, there is little interest in mapping such
areas.

In an effort to algorithmically break and initiate sub-maps
we monitor the characteristics of the sub-maps as they are
created. To estimate the amount of 3D information in a sub-
map we monitor the eigenstructure of the principal component
matrix

(33)

1 &,
ﬁ;lzl

where, s; = [x, y, z]" is one of N points in the dot-cloud S;.
A minimum map size threshold is defined by the condition
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number of this matrix. If this matrix is poorly conditioned the
sub-map is dominantly planar or too small to contain sufficient
3D information.

The maximum map size is limited by comparing a mea-
sure of vehicle covariance relative to the current sub-map’s
origin to a threshold. This threshold is set proportional to the
approximate accuracy of the sonar range detection and an es-
timate of the potential bias between the heading sensor and
the velocity sensor. When the threshold is exceeded a new
map is started, independent of the minimum map size condi-
tion. Intuitively this test breaks the sub-map before the dead
reckoned navigation error dominates the mapping error. The
navigation uncertainty for this comparison can be determined
on line using the Jacobian H associated with the relative pose
operation A, (x,,, x,) and the current covariance matrix P,,, as

P,,=H,P,H'

aug t 4

(34)

As a measure of uncertainty we use the determinant of
the upper left 3 x 3 partition of P, as a volumetric error
measurement.

Sub-map registration is accomplished using a two-step pro-
cess. For coarse alignment overlapping sub-map dot clouds
are transformed to a common coordinate frame using the pre-
dicted relative pose and then gridded and matched using a 2D
correlation method. Experimentally, correlation has proven
to be a robust method of providing an initial guess for a final
registration based on the ICP algorithm. The 2D transform
Aorr = [8, 6,] is determined from

= i —l E (Z, — Z,(N)) (35)
A, = argmin Z,— Z)(A 35
gm N - : 2

where, I is the number of common bins between the gridded
height surface for the base map,Z,, and the gridded height sur-
face for the matching sub-map, Z,, shifted by A = [3,, 5,]".
The gridded surfaces can be created using any gridding ap-
proach for non-uniformly sampled surfaces. We have used a
Gaussian gridding technique that computes grid values based
on a distance- dependent weighting of the dot cloud points.

Fine-scale sub-map registration with an ICP method is then
performed using the sub-map dot clouds after they are trans-
formed by the initial A_,,.. We have implemented the typical
point-to-point and point-to-plane methods for this alignment
(Besl and McKay 1992; Rusinkiewic and Levoy 2001).

To reduce some computational costs the sub-map dot
clouds are randomly down- sampled. The randomization helps
limit the effect of the sampling pattern on the registration. If
sampling effects such as striping, low point density and occlu-
sion are present the registration can be easily biased to align
artifacts in the sampling rather than the underlying terrain.

To evaluate the result of the registration we combine both
sub-map dot clouds into a single dot cloud and use a local
measurement of the surface variance. Without ground truth for
the unstructured surface it is difficult to evaluate the absolute

accuracy of the registration. By locally fitting planes to small
sections of the surface that have been binned in x and y, and by
calculating the standard deviation of the orthogonal projection
errors to this plane, we get an estimate of the local error.
Ideally, the dot cloud would represent the sampled surface
and have zero thickness. Although this measure of surface
variance removes the overall effect of terrain, it is still lower
bounded by the sonar range accuracy and terrain shape within
the individual bins. This measure is also upper-bounded by
how varied the neighboring terrain is. Over rugged terrain
mis-registration adds directly to the surface variance and over
flat terrain mis-registration will not contribute to the surface
variance. We have found that coarse correlation followed by
ICP registration will reduce the surface variance indicating
that the surfaces have been aligned correctly.

The results of our framework are illustrated in Figures 12
and 13 using data collected by the Jason ROV at the TAG
Hydrothermal Vent Site located at a depth of 2600 m on the
mid-ocean ridge in the Atlantic Ocean. One can see that the
resulting map is a far better representation of the environment.
We have also used consistency within the submaps to derive
corrected navigation estimates for the vehicle trajectory over
the course of the survey.

4. Pose-based Navigation

Note that the submap registration may also be used to infer
navigation estimates for each submap origin, as illustrated in
Figure 14. Such results fall out naturally from our algorithm
for maintaining sensor consistency across the global frame-
work. While these measurements are far sparser than can be
traditionally obtained using classical inertial navigation sys-
tems, they trade- off errors that grow unbounded with time for
errors that are are a function of spatial distance and topology.

We can further build upon the delayed-state EKF frame-
work and two-view structure from motion case to formulate
a vision-based SLAM approach to provide high precision,
accurate navigation measurements on an underwater robotic
vehicle. Similar to the bathymetry-based EKF submapping
strategy, our methodology is to employ pairwise-generated
image measurements as spatial constraints in a graph over a
collection of historical vehicle poses. However, because we
are able to generate camera measurements at the pairwise
level, we choose instead to maintain all pose samples that
are associated with image acquistion, as illustrated in Fig-
ure 15. This differs from the aggregate submapping strategy
used for bathymetry-based navigation and implies that the
EKF’s scalability becomes a severe issue (due to the quadratic
complexity of maintaining the covariance) as the image-based
navigation uses orders of magnitude more delayed-states.

A well known and very attractive property of formulating
SLAM in the information form is that the information matrix
(as in Fisher information) has the direct interpretation as a
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Fig. 12. Two sample sub-maps showing their outlines and local reference frames. Note the fine scale features that can be
resolved individually within each sub-map. Normal smoothed navigation tends to blur these real and often significant features.
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Fig. 13. Error in bathymetric mapping as measured by self consistency across multiple sub-maps. Map to map surface error
for our algorithm (a) versus map to map surface error using a standard smoothing method (b).
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Fig. 15. Sub-mapping pose network. This pose network was established by the sub-mapping algorithm. Nodes indicate the
location of the sub-map origins. Blue links indicate consecutive poses in time. Green links indicate where relative pose
measurements were made. Magenta links indicate links that were tried but not established. The uncertainty ellipses have been
scaled in size by a factor of 8 for visibility. Note that the poses fall into alignment with the LBL fix locations even though this
algorithm did not use LBL measurements. This survey consisted of 62 sub maps and 92 established links.

Gaussian graphical model (Pearl 1988; Weiss and Freeman
2001). Sparsity in this model (i.e., missing edges) implies
available conditional independencies in the joint-distribution,
which can be exploited to realize efficient inference. Others
have shown that the feature-based SLAM information matrix
obeys a “close-to-sparse” structure when properly normalized
(Thrun et al. 2004; Frese 2005). In our formulation of view-
based SLAM (Eustice et al. 2005a) however, the information
matrix is exactly sparse without having to make any sparse ap-
proximations. This implies that for a bounded graph structure,
as is the case with typical underwater surveys, view-based
SLAM systems comprise a sparse information parameteriza-
tion without incurring any sparse approximation error.
Based upon this insight, we have implemented a view-
based SLAM system for underwater applications built around
fusing 6-DOF relative-pose camera measurements from
monocular overlapping seafloor imagery with traditional un-
derwater vehicle dead-reckon navigation sensors. Our state
vector consists of samples from the robot’s trajectory acquired
atimage acquisition and is maintained using a sparse extended
information filter. We use our two view image registration
engine to provide non-Markov edge constraints in the corre-
sponding pose network. These “spatial” edges constrain the
pose graph and enforce global consistency from local con-
straints. This system was tested with data collected using the
Hercules ROV operating at a depth of 3750 m at the wreck of

the RMS Titanic. The survey covered an area of about 3100
square meters on the seafloor with a accumulated survey path
length over 3.4 kilometers. Although the exact formulation is
detailed elsewhere (Eustice et al. 2005b) sample results are
shown in Figure 15.

5. Conclusions

In this paper we have highlighted some of the fundamen-
tal issues associated with the lack of precise and accurate
navigation and how they affect our ability to conduct high-
resolution mapping efforts in the deep sea. We have presented
three different applications of systems-level approaches for
deep water mapping that exploit vehicle attitude and navi-
gation information and enforce local and global consistency
within sensor measurements to yield superior mapping results
commensurate with sensor accuracy. While improving map-
ping fidelity, these methods also provide us with independent
mechanisms for ground truthing, refining and bounding the
coarse navigation estimates that are typical in the deep ocean.

These algorithms are applicable across the entire suite of
imaging and robotic underwater vehicles—manned, towed,
tethered and autonomous. Our work in these areas is con-
tinuing with emphasis on implementing a number of these
algorithms in real time on board the vehicles to better help us
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exploit our precision mapping algorithms for real-time adap-
tive surveys.
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