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Abstract

Ultrasound image-guided interventions are widespread in surgery
because of the non-invasive character of the procedures. However,
hand/eye synchronization is relatively difficult for a surgeon. Ultra-
sound image-based visual servoing is one way to perform this kind
of surgery. In this work, the control of instrument motion based on
ultrasound images through nonlinear model predictive control is in-
vestigated. This new scheme ensures the convergence of the instru-
ment to the desired position and also offers the possibility of satisfying
constraints such as joint limits, actuator saturation and visibility pre-
serving. This paper describes the proposed controller. The efficiency
and the robustness of the proposed solution to control a six degree-of-
freedom mechanical system is first illustrated by simulation. Experi-
ments on a Mitsubishi PA10 robot highlight the efficiency of the vi-
sion control scheme to handle constraints of ultrasound image-based
visual servoing.

KEY WORDS—human-centered and life-like robotics, med-
ical robots and systems, mechanics, design and control, motion
control, sensing and perception, computer vision, visual track-
ing

1. Introduction

Heart valves ensure the blood flows in only one direction (atria
to ventricle, ventricle to artery). Valve surgery aims to repair or
replace a cardiac valve in case of stenosis (narrowing) or re-
gurgitation (leakage) (For figure see http://www.heart-valve-
surgery.com/mitral-valve-regurgitation-symptoms-leaking.
php). Originally, these interventions inside the heart were

performed on the beating heart. As these operations were
performed blindly, results were not guaranteed and depended
largely on the surgeon’s skill. Since the middle of the last cen-
tury, cardiopulmonary bypass machines allowed the arresting
of the heart while maintaining blood circulation and oxy-
genation. Valve surgery therefore became open heart surgery,
providing direct visual access for the surgeon. However, this
method may trigger physiologic complications, and many
studies have highlighted the morbidity effects of the car-
diopulmonary bypass machine (Picone et al. 1999� Diegeler
et al. 2000� Wan et al. 2004) or cardioplegia (Rastan et al.
2005).

From blind and direct visual access intervention, the use of
non-invasive imaging techniques can be envisaged. Perform-
ing a beating heart mitral valve repair based on ultrasound
imaging has been investigated by Downing et al. (2002). The
authors evaluate the feasibility of such an approach for su-
turing anterior and posterior mitral valve leaflets under image
guidance� the results are promising.

Ultrasound (US) is very attractive to surgeons for exami-
nation or gesture guidance in cases of cardiac pathologies due
to non-invasiveness, a sufficient frame rate to temporally dis-
cretize the cardiac cycle and a relatively low cost. US images
are particularly helpful in percutaneous procedures or biop-
sies� the surgeon moves an instrument inside the patient and
controls its position through a video monitor. However, the
surgeon has to achieve hand/eye synchronization which is a
complicated task, the difficulty being increased by the fact that
he has to infer 3D structures from 2D US planes. The use of a
robot with advanced US image-based visual servoing capabil-
ities may therefore be an interesting solution.

The work presented here began as a French project funded
by the CNRS (French National Centre for Scientific Research)
named GABIE (Active Guidance based on Echographic Im-
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ages). The objective of the project was to provide tools for
US image-guided robotic systems with surgical applications.
More precisely, the project adressed mitral valve surgery un-
der echographic images.

One of the most conventional types of mitral valve surgery
consists of repairing broken cordages which work as springs
and prevent the valve from opening during the ventricular di-
astol. The intervention consists of fixing a neo-cordage (Gore
Tex fiber) at the mitral valve leaflet on one side and stapling the
other side to the ventricle wall. This intervention is achieved by
stopping the heart and performing a cardio-pulmonary bypass.
Robotizing the intervention should avoid the bypass but intro-
duces several difficulties such as US image analysis, specific
instrument development, control design and definition of new
robotized surgical techniques. Indeed, one scenario for the in-
tervention could be to define a robotized task where motion of
the surgeon’s instrument tool tip is guided using information
obtained by US image analysis with respect to the echographic
plane to ensure the visibility of the instrument.

In the literature, US image-based robots may be charater-
ized as probe holders or surgical instrument holders. With
probe holder robots, visual servoing is used to control the
probe position with respect to anatomic structure. Abolmae-
sumi et al. (2001) describe a robot which manipulates a US
probe for medical examinations of the carotid artery. The vi-
sual servo-control aims at automatically centering the region
of interest. US image-based visual servoing is used by Batcha
and Krupa (2006) to position the probe with respect to a de-
sired image to assist the radiologist diagnostic in tumor detec-
tion. Simulation results are consistent with the proposed con-
trol law.

With instrument holder robots, the visual servoing is used
to control the motion of the surgical instrument. Computer-
guided pericardiocentesis has been realized based on US imag-
ing (Chavanon et al. 2000). The Padyc robot (Schneider et
al. 2000) moves the needle inside a pre-defined region com-
puted on US images. Megali et al. (2001) evaluate the perfor-
mance of a computer-assisted robotic US image-guided biopsy
system in terms of position accuracy and execution time. Re-
sults show that accuracy is improved and execution time is de-
creased with the robotic system. Hong et al. (2004) present a
robot specially designed to realize needle insertion for percu-
taneous cholecystectomy. Based on US imaging, the needle is
guided to reach the gallbladder. In the case of transperineal
biopsy of the prostate, Phee et al. (2005) also proposed the
design of a US image-guided robot. In needle insertion inter-
vention, control of the instrument motion is reduced to one
direction (needle axis). Considering a more complex applica-
tion such as grasping or cutting tissue, at least three degrees
of freedom (dof) are needed (two translations and one rota-
tion in the image plane). Thus, visual servoing is more com-
plex. Vitrani et al. (2005) applied image-based visual servo-
ing techniques (defined for classical camera� Hutchinson et
al. 1996) to control three dof of an instrument. Experimen-

Fig. 1. Schematic view of US plane thickness.

tal results in a box filled with water show good behavior of
the proposed strategy and robustness to parameter estimation
errors.

Image guided for minimally invasive surgical atrial
fibrillation ablation has been evaluated (Hastenteufel et al.
2006). The authors proposed to control the three dof of a spe-
cial device (specific to atrial fibrillation ablation) with respect
to information extracted from a US image. Stoll et al. (2006)
describe how the control of the instrument is based on 3D US
images. In this case, visual servoing becomes a position-based
visual servoing since information extracted from the 3D US
system is equivalent to the Cartesian position of the instru-
ment.

In the above-mentioned examples, specific constraints of
the application are not taken into account, particularly visi-
bility constraint� the target must be kept inside the field of
view of the probe and must intersect the echographic plane.
In this paper, a new US image-based control scheme is pro-
posed through nonlinear model predictive control (NMPC).
This predictive approach can be seen simultaneously as an op-
timal controller and an online open loop motion planning that
takes into account the future dynamics and constraints of the
system, based on a prediction model of the process. The idea
is to naturally handle constraints which can be applied to US
Image-Based Visual Servoing (US-IBVS). This approach has
already been exposed with a classical camera by (Sauvée et
al. 2006). The effectiveness of this control strategy has been
demonstrated to guarantee constraints of IBVS: actuator satu-
rations, joint limits and visibility preserving.

This article aims to exploit the capacity of the nonlinear
model predictive controller in the context of visual servoing
with echographic image sequence to constrain the robot, keep-
ing the instrument in the probe field of view. In-plane motion
is measured and tracked. Out-of-plane motion compensation is
guaranteed by imposing constraints on the instrument tool tip
with respect to the echographic plane. Indeed, the echographic
plane may be physically approximated by a thin plate with a
thickness of a few millimeters (Figure 1). The instrument tool
tip must therefore remain between the upper and lower limits
of this plate, imposed by a constraint in the controller.

In Section 2, we provide a brief introduction to NMPC. De-
tails of the NMPC implementation synthesized for US-IBVS
are given in Section 3: we describe the models and cost func-
tion and introduce the physical limits. Simulations presented
in Section 4 highlight the performance of this controller. In
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Fig. 2. Principle of model predictive control.

Section 5, experimental results are exhibited. The conclusions
and future research are discussed in the final section.

2. Nonlinear Model Predictive Control

The NMPC is formulated as solving on-line a finite horizon
open-loop optimal control problem. This optimization is sub-
ject to system dynamics and constraints involving states and
inputs. NMPC is an extension of MPC by considering a non-
linear system and constraints (see, for example, Allgöwer et al.
1999 for an introductory overview to NMPC theory).

A schematic representation of predictive control is given
in Figure 2. At each iteration k, the future state is predicted
from an estimated model of the process over the prediction
horizon, and an optimal sequence of control is computed to
force the predicted state to converge to the desired set-point.
Only the first input of the optimal sequence is injected into the
plant. The entire optimization is repeated after output measure-
ment to take into account disturbances and model uncertain-
ties.

The classical NMPC problem of computing an optimal con-
trol sequence u

Np
opt �k can be formulated as:

min
u

Np
k

���k� u
Np
k � (1)

subject to:

xi�1�k � f �xi �k� ui �k�� x0�k � xk (2)

�i �k � xd � xi �k� i � [1� Np] (3)

xi �k � �� i � [1� Np] (4)

ui �k � �� i � [1� Nc]� �i 	 Nc ui �k � uNc �k � (5)

The nonlinear differential equation (2) represents a model
of the dynamics or the evolution of the system, where xi�1�k
represents the predicted state at time i � 1 from time k. The
initial prediction x0�k is given by the state xk measured at time

k. u
Np
k is a sequence ui �k� i � [1� Np], of input vectors to be

minimized. �k is a sequence �i �k� i � [1� Np], of prediction
errors between the predicted state and the desired state xd . Np

is the prediction horizon. Nc is the control horizon, that is the
number of degrees of freedom of the control input. � and �
are the sets of feasible inputs and states, respectively.

The cost function � is inspired from LQG theory and is
generally defined as a quadratic function of states and control
inputs:

� � ���Np �k��
Np�1�
i�1

L��i �k� ui �k� (6)

where L is a quadratic function of the states and inputs. �
is a terminal constraint on the states at the end of the pre-
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Fig. 3. Control scheme.

diction horizon, referred to as the state terminal constraint,
which ensures asymptotic stability (Allgöwer et al. 1999). It
should be noted that proof of closed-loop stability is still an
open problem, especially when dealing with nonlinear system
in the presence of constraints. More details on different ap-
proaches for proving stability can be found in Allgöwer et al.
(1999).

From a practical point of view, one of the major difficulties
is to find an efficient algorithm able to cope with the con-
strained optimization problem. We will present in the fol-
lowing sections a solution based on the Sequential Quadratic
Programming (SQP) algorithm that has already shown its
efficiency in such situations.

3. Application to US-IBVS

The proposed NMPC approach for US-IBVS is evaluated
through the servoing of a long thin instrument composed of
two jaws mounted on a six-dof manipulator. Figure 3 provides
a schematic view of the application. In the following sub-
sections, components of the implemented NMPC controller
are detailed, including the modeling (robot model, projection
model and geometrical configuration), the cost function and
the physical limits that are the feasible sets of variables. We
also include a subsection concerning model error adjustement
that may be useful if modeling error.

3.1. Modeling

3.1.1. Robot Model

The inverse dynamic model of the robot in the joint space is
written as:

A�q� 
q� h�q� �q� � � (7)

where q� �q� 
q are the vectors of joint positions, velocities and
accelerations of the robot, A is the inertial matrix and the vec-
tor h represents the Coriolis, centrifugal, gravity and friction

forces. The input � is the actuator torque vector. This is a non-
linear and coupled system. However, taking into account the
low level velocity control of robotic systems (high bandwidth
with respect to vision loop one), most researchers in visual ser-
voing use a kinematic model (Hutchinson et al. 1996). There-
fore, the discrete equation of the system, obtained by a first
order discretization, is of the form

qk�1 � qk � �t uk (8)

where qk represents the state vector, uk is the input vector cor-
responding to the desired velocity and �t is the sampling pe-
riod. This pure integrator will be considered as the model used
for the open loop prediction in the NMPC scheme. To take
into account the physical limits of the robot, input saturation
and joint limits have been included (see Section 3.3).

3.1.2. Geometrical Configuration

To predict the position of the instrument in the image, the coor-
dinates of the intersection points P1 and P2 (Figure 4) between
tool tip and echographic plane must be expressed with respect
to probe frame. The following frames are therefore defined to
link the joint configuration of the robot to the coordinates of
the two observed points in the image (Figure 4):

� the robot base frame Rb (reference frame),

� the end-effector frame Re,

� the tool frame Rt,

� the probe frame Rs (the echographic plane relies on
plane XsYs).

The direct geometric model (DGM) of the robot is used to
define the rigid transformation from the robot base frame to
the end-effector:

bTe � DG M�q�� (9)

The instrument is directly attached to the end-effector. It
is a forceps with two jaws as sketched in Figure 4. The tool
frame Rt is located at point Ot. Using the rigid transformation
between Rt and Re (translation of distance d along the Ze axis
of Re), we can define the position of point Ot with respect to
Rb.

bI � bTe
eTt

�
��������

0

0

0

1

�
��������
� (10)

The instrument intersects the echographic plane in two
points: P1 and P2. Let L t be the distance between the echo-
graphic plane and point Ot. L t is measured at the beginning of
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Fig. 4. (a) Frame description and (b) tool geometric parame-
ters.

the experiment, and this initial value is subsequently used to
predict the locations of P1 and P2 in frame Rs throughout the
experiment. The instrument tool tip intersects the echographic
plane for a given opening angle � ensuring that the points P1

and P2 are inside the segments Ot M1 and Ot M2, M1 and M2

being the extremities of the tool (Figure 4). The coordinates
of the control points with respect to frame Rt are therefore
defined by:

tP1 �

�
�����
�L t sin

��
2

	
0

L t

�
����� (11)

and

tP2 �

�
�����

L t sin
��

2

	
0

L t

�
����� � (12)

The coordinates of these two points are defined in Rs using
the rigid transformation between Rb and Rs:

sPi � sTb
bTe

eTt
tPi� i � 1� 2� (13)

Two points should be noted here. First, the instrument is as-
sumed to be perpendicular to the ultrasound image here. How-
ever, the proposed algorithm is based on the control of the er-
ror in the US images between the measured positions P1 and
P2 and their desired positions as well as their depths with re-
spect to the image plane. If the instrument is rotated along the
line P1 P2 (Figure 4), there will be no change in the definition
of equations (11)–(12). If the ultrasound plane is not orthogo-
nal to the direction of the instrument, equations (11)–(12) will
have to be slightly modified or else additional constraints may
have to be introduced. Second, we will also assume that the
ultrasound probe does not move with respect to the robot base.

3.1.3. US Image Projection Model

The US image is modeled

imPi �

�
����

pui

p�i

1

�
����

�



����

Sx 0 0 us

0 Sy 0 �s

0 0 0 1



���� sPi � i � 1� 2� (14)

Sx and Sy are scale factors along the direction Xs and Ys in
meter by pixel and us and �s represent the coordinates of the
origin of the US rays. pui and p�i are the pixel coordinates of
point Pi � i � 1� 2. It should be noted that the estimation of
the US probe parameters is achieved experimentally by per-
forming motion of the instrument tool tip in the image plane.
The Cartesian position of points P1 and P2 are then related to
their image positions to compute the US probe parameters by
way of a least squares method. Their values will be given in
Section 5.

3.2. Cost Function

The function to be minimized is defined as a quadratic form of
prediction errors �i �k and the vector of control input ui �k :

� � 1

2

Np�1�
i�1

�T
i �kQ�i �k � uT

i �kRui �k (15)

where Q and R denote positive definite symmetric weighting
matrices. �i �k is equal to pd �pi �k 
pi�k are the predictions over
Np of the pixel coordinates of points P1 and P2 in the image
at the instant k � i . This prediction is obtained via equations
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Fig. 5. Representation of US image with probe field of view.

(8)–(14). pd is the desired pixel coordinate position in the im-
age. The initial value �0�k is given by �0�k � pd � p0�k where
p0�k are the pixel coordinates of points P1 and P2 measured in
the image at instant k. ui �k is the sequence of inputs to be opti-
mized over the horizon. For computational reasons, the control
horizon Nc (equation (5)) will be set equal to 1 in the follow-
ing. This means that the control vector is kept constant over the
horizon and that the control input has only one degree of free-
dom. This is a classical assumption when using a predictive
approach.

3.3. Physical Limits

Four types of constraints have to be guaranteed to compute a
physically valid solution of the US-IBVS. Two of them, related
to the robot, are the input constraints

�q � ��qmin� �qmax� (16)

and the joint boundaries

q � �qmin� qmax�� (17)

The third, associated with the limits of the image, are re-
ferred to as visibility constraints and ensure that all the fea-
tures will always be visible during motion. With a US probe,
the field of view is a part of the disc as shown in Figure 5. This
area can easily be defined in polar coordinates by:

pu � us � 	 sin�
�

p� � �s � 	 cos�
��

Conversely, for a point defined by coordinates �pu� p� �, its po-
lar coordinates are

	 �
�

p2
u � p2

�


 � tan�1

�
pu � us

p� � �s

�
�

The visibility constraint for in-plane motion with respect to the
probe field of view is expressed

	 � [	min� 	max] (18)

and


 �
�
�


max

2
� 


max

2

�
� (19)

To avoid lost of visibility due to being out of plane motion,
an additional constraint must be imposed: the tool must inter-
sect with the echographic plane. Since in practice the plane is
a slice, which is very thin, the positions P1 and P2 along Zs

axis of frame Rs (Figure 1) must satisfy:

P Z
i � [Zmin

s � Zmax
s ]� i � 1� 2 (20)

where Zmin
s and Zmax

s are the maximum displacement below
and above the theoretical echographic plane, respectively.

3.4. Model Error Adjustment

Modeling error may be corrected by using a model error ad-
justment (Richalet 1993). In our case, the adjustment is simply
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Fig. 6. Control scheme on a constrained linear model.

defined by the difference �Pi between the predicted pixel co-
ordinate output in the image and its measurement computed at
each iteration k. Thus, the following correction has been intro-
duced to the model:

imPcorrect
i � imPi ��Pi � i � 1� 2� (21)

This compensation is based on a separated correction on P1

and P2, which neglects the angular discrepancies. However,
this simple compensation provides acceptable simulated and
experimental results, as shown in the following sections.

4. Simulation

Simulations have been performed to highlight the perfor-
mance and robustness of the proposed approach. Gathering
all the equations of Sections 3.1–3.3, the implemented NMPC
scheme for US-IBVS is then given by:

� � 1

2

Np�1�
i�1

�T
i �kQ�i �k � uT

i �kRui �k (22)

subject to

qi �k�1 � qi �k � �t ui �k� q0�k � qk (23)

�i �k � pd � pi �k � pd � g�qi �k� (24)

�q � ��qmin� �qmax� (25)

q � �qmin� qmax� (26)

	�pi �k� � [	min� 	max] (27)

and


�pi �k� �
�
�


max

2
� 


max

2

�
(28)

P Z
i � �Zmin

s � Zmax
s �� i � 1� 2 (29)

where g represents geometric and projection models (equa-
tions (13)–(14)).

Simulations have been performed using an SQP optimiza-
tion algorithm (fmincon function in Matlab 7 Optimization
Toolbox). This classical package is able to cope with the con-
strained optimization problem as stated by equation (22) sub-
ject to equation (23) which corresponds to the box ‘NMPC
with constraints’ in Figure 6. The sampling time �t is equal
to 40 ms which is the sampling time obtained with a US ac-
quisition system. The image size is set to 768 � 576 pixels
and the coordinates of the origin of the US probe field of
view is equal to �340� 40� pixels. The scale factors �Sx � Sy�
are set to �2500� 3000� pixel m�1. The image size and shape
will also correspond to the visibility constraint given by equa-
tions (18) and (19), i.e. 	min � 40 (pixels), 	max � 400 (pix-
els), 
max � 80�. The constraint on the point position with
respect to the echographic plane is defined by the interval
[�1 mm� 1 mm] along Zs (Figure 1). These conditions are very
similar to the experimental setup detailed in Section 5.1.

These simulations are the first stage in the evaluation and
tuning of the algorithm. Section 4.1.1 is related to a practical
question which arises when using the predictive approach, i.e.
the choice of the prediction horizon, defined as a compromise
between performance and computation time. The following
sections discuss behavior performance during step responses.
Behavior with respect to constraints (joint, input and visibil-
ity) has also been evaluated as well as robustness with respect
to US projection model errors, noise measurement and in the
presence of outliers.

4.1. Performances

4.1.1. Influence of Np

Simulations have been performed to evaluate the influence of
the prediction horizon length. Figure 7a displays the responses
for a step along the pixel coordinate axis u for Np equal to 2,
3 and 5. The system converges to the desired set-point, but the
fastest response is obtained for Np � 2. Practically, the opti-
mal control obtained through minimization of the cost function
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Fig. 7. Controller behavior with respect to Np: (a) image coor-
dinate error of point 1 and (b) optimal input of actuator 1.

is computed over the prediction horizon. With a short predic-
tion horizon, the predicted state therefore has to reach the de-
sired set-point more quickly than with a longer prediction hori-
zon. The counterpart is that the controller with Np � 2 is more
demanding for the actuators than for Np � 5 (Figure 7b). In
the following simulations, a trade-off has been made between
a fast response and actuator torques� therefore Np is set at 3.

4.1.2. Step Response

Step responses along pixel coordinate axes u and � (transla-
tions in the image plane) and a rotation around the normal to
the image plane have been tested. Since results obtained for the

Fig. 8. Step response for a translation along �: (a) evolution of
image error and (b) cost function.

translation along u have already been presented in the previous
section, only the results of the translation along � (Figure 8)
and the rotation (Figure 9) are presented here. In each case,
the cost function evolution is also plotted. The NMPC con-
troller ensures convergence for each possible motion in the US
image. As seen in Figures 8 and 9, the convergence for transla-
tion motion is faster than for rotational motion (0�6 s compared
to 1�4 s).

4.2. Constraints Satisfaction

For sake of brevity, joint limit constraint satisfaction is not ex-
posed in this paper� see Sauvée et al. (2006) for a presentation
of this point.
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Fig. 9. Step response for a rotation about the normal to the
image plane: (a) evolution of image error and (b) cost function.

To highlight constraint satisfaction on actuator saturation, a
motion of 100 pixels has been simulated along pixel coordinate
axis � . Figure 10 shows input velocities of actuators involved
( �q2, �q6 for joints 2 and 6, respectively) in this motion. Satura-
tion constraint of the control input is quickly reached, ensuring
fast motions, and is naturally handled by the controller.

The visibility constraint is satisfied when both points re-
main in the field of view of the probe and intersect the US
plane. To emphasize the respect of the field of view, simu-
lations of a desired motion with two different fields of view
(normal and reduced) have been achieved. In case of a reduced
field of view, the desired position is close to the limit which

Fig. 10. Input velocities with saturation constraints for a com-
plex motion: (a) input 2 and (b) input 4.

induces a change in the controller behavior to ensure that the
image instrument trajectory respects the visibility constraint
(Figure 11).

The height of points P1 and P2 with respect to frame Rs is
limited to �1 mm around 0. The evolution of the coordinates
along the Zs axis is plotted in Figure 12 for a complex motion
composed of two translations and one rotation. The limit is
reached for both points and, in this case, a small rotation along
the Y axis of frame Rt can be observed (s P Z

1 � 1 mm and
s P Z

2 � �1 mm).
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Fig. 11. Visibility constraints: (a) image trajectories of the two
points for the same initial and desired positions but with dif-
ferent fields of view (dashed line: normal, continuous line: re-
duced) and (b) zoom on in the region of the desired position.

4.3. Robustness

The robustness of the proposed control scheme has been eval-
uated in the presence of (1) outlier and noise measurement and
(2) modeling error.

Feature extraction is sensitive to outlier detection and noise
measurement. Outliers can occur for different reasons such as
change in image intensity or occlusions. Control based on vi-
sual servoing must be robust to outliers. Then outliers have
been randomly introduced in the simulation on the output of

Fig. 12. Visibility constraints: the height of points P1 and P2 is
kept within the desired intervals.

the projection model by adding given value on measured data.
Behavior of the proposed scheme is shown on Figure 13. Con-
vergence is still observed in the image (Figure 13a and b) and
in Cartesian space (Figure 13c) as long as the measurement
remains visible in the image.

Simulations under white noise with 5 pixels amplitude have
also been performed. Convergence and constraint satisfaction
are still observed (Figure 14).

Finally, an error of 30% has been added in simulation on
the projection model (equation (14)). Simulations performed
with the model error adjustment exhibit a good behavior. Con-
vergence to the desired position is observed (Figure 15a), even
if the model gives a position outside the field of view (Fig-
ure 15b).

5. Experiments

5.1. Experimental Setup

5.1.1. Robotic Platform

The proposed control algorithm has been implemented on a
Mitsubishi PA10 robot. The experimental setup is depicted
in Figure 16. This is a lightweight robot with seven revolute
joints. However, only joints from numbers 2–7 have been con-
sidered for this experimental evaluation in order that control
issues due to redundancy can be neglected. Velocity has been
limited to 1% of its maximum value on each axis (see Table 1)
to cope with the harsh exciting conditions of the step response.
The instrument as described in Figure 4 is attached to the robot



Sauvée, Poignet, and Dombre / Surgical Instrument Through Nonlinear Model Predictive Control

Fig. 13. Robustness to outlier detection: (a) image error and
(b) image trajectory.

Table 1. Joint limits (rad)and actuator saturation (rad s�1).

1 2 3 4 5 6

��
2 �� �2�5 �3�
2 �� �2�

0�01 0�01 0�02 0�02 0�063 0�063

end-effector. A standard Pentium II PC running under QNX
real-time operating system ensures communication via Arcnet

Fig. 14. Robustness with respect to noise measurement.

Table 2. Estimated parameters of the US probe.

Sx (in pixel m�1) 2450

Sy (in pixel m�1) 2900

us (in pixel) 340

�s (in pixel) 150

LAN with a low-level control unit at a sampling rate of 10 ms.
In the setup, the computer receives the desired joint velocities
generated by the NMPC controller through an Ethernet link
and sends them to the robot controller. Due to the large sample
rate of the vision control loop with respect to the robot control
one, a zero-order hold has been implemented.

5.1.2. Image Acquisition and Analysis

We used an Acuson Cypress
R�

from Siemens with a transtho-
racic probe. Display output is used to acquire images through
a Matrox Meteor II acquisition board at a frame rate of 25 Hz.
The estimation of the US probe parameters has been achieved
experimentally by performing motion of the instrument tool
tip in the image plane. The Cartesian position of points P1

and P2 are then related to image point positions to compute
the US probe parameters through a least squares method. Es-
timated parameters for the US projection model are listed in
Table 2.

The instrument position is extracted from US images
through a blob analysis. First, the image is binarized with re-
spect to a fixed threshold. Opening and closing operations are
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Fig. 15. Robustness with respect to projection model errors:
(a) image error (measured: solid line, modeled: dash-dot line)
and (b) image trajectories.

then performed to remove small particles and fill holes that
can appear. Finally, detection of connected pixels (blob) is re-
alized. The selection of the good blobs is based on area analy-
sis (image of the instrument is represented by two blobs of
minimal area). Thus, image analysis provides the coordinates
of the image instrument points by computing blob centers of
gravity. All these operations are performed directly using the
acquisition board capabilities and the MIL library.

Fig. 16. Experimental setup: (a) minimally invasive instrument
with tool tip composed of two jaws, (b) overview of the robot
which holds the tool in a box full of water and (c) detail of the
setup with the US probe in contact with the box.

5.1.3. Software Architecture

The vision control loop has been implemented on a Pentium
IV bi-Xeon PC running under Windows 2000. The architec-
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Fig. 17. Evolution of the optimization thread computation time
for a complex motion (mean time is represented by the dashed
line).

ture is based on a multithread application and the software has
been divided into three threads, which allows the exploitation
of the hardware capabilities of the computer. A first thread is
dedicated to image processing to detect the two image features
at a low level on the acquisition board, as described previously.

In a second thread, the optimization procedure using
CFSQP (a C library of the Feasible Sequential Quadratic Pro-
gramming algorithm) computes at each iteration a feasible so-
lution with respect to the constraints. Indeed, this optimization
package is a portable standard C source code that is based on
SQP programming (as for simulation) but modified to provide
feasible iterates that satisfy the constraints. As mentioned be-
fore, it has been shown to be an efficient way of solving con-
strained optimization problems. Details of CFSQP can be read
of in Lawrence et al. (1997).

Finally, a third thread handles communication with the PC
supporting the robot controller� this thread receives the joint
positions and sends the optimal control input. The optimiza-
tion thread is clearly the most expensive in terms of computa-
tion time. Experiments have shown a mean computation time
for minimizing the criterion to be close to 30 ms. Computa-
tion time is plotted in Figure 17, exhibiting some data over
30 ms. Moreover, the vision loop is limited by the image ac-
quisition frame rate (40 ms) and the time used to perform the
blob analysis. Thus, a sampling time of 50 ms has been chosen
during open-loop prediction.

Fig. 18. Error in the image plane for a complex motion: (a)
coordinates along pixel coordinate axis u and (b) coordinates
along pixel coordinate axis � (measured: solid line and model
prediction: dash dot line).

5.2. Results

5.2.1. Performance

Evaluation of the proposed controller has been achieved
through step responses for each image motion (two transla-
tions and one rotation of the instrument). In all cases, conver-
gence is satisfied. For brevity, only convergence for a complex
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Fig. 19. Image trajectory for a complex motion between initial
(circle) and desired (square) positions.

Fig. 20. Evolution of the cost function for a complex motion.

motion is plotted in Figure 18. The desired position is reached
even when an erroneous model is used. The corresponding
image trajectory is shown in Figure 19. The controller forces
the system to make the error vanish by translation motion and
then corrects the instrument orientation to ensure image con-
vergence.

One can see that an error remains at the end of the mo-
tion around two pixels on coordinates pu of the two points,
whereas the convergence is reached as shown in the cost func-
tion evolution (Figure 20). It has to be linked to the authorized
displacement with respect to the US plane. In this experiment,

Fig. 21. Input saturation on joint 1.

maximum displacement with respect to this plane is 1�1 mm
which can induce the observed error in the image.

5.2.2. Constraint Satisfaction

The behavior of the proposed control scheme to satisfy the
constraints is illustrated through the respect of the saturation
and the intersection constraints. The saturation of the robot ac-
tuators is observed and naturally satisfied by the NMPC con-
troller. In Figure 21, behavior of joint 1 is presented in the
presence of the saturations listed in Table 1.

The height of the two points is naturally constrained within
the interval �Zmin

s � Zmax
s � where Zmax

s � �Zmin
s � 0�0011 m

(Figure 22). Nevertheless, an overshoot is observed. This be-
havior may be the result of a combination of two effects. On
one side, the dynamics of the system are not taken into account
in the prediction model, in particular friction force effects. On
the other side, inequality constraints are ‘soft’ constraints in
the CFSQP algorithm, meaning that it accepts small constraint
violation during the optimal input search. However, this prob-
lem may be practically solved by imposing smaller software
joint limits. Without this constraint, however, the out of plane
motion becomes much larger.

6. Conclusion

In this paper, a Nonlinear Model Predictive Control scheme
applied to US-IBVS has been proposed. Using cost function
based on errors in the image plane, convergent and stable ro-
bot motion has been obtained through nonlinear constraint op-
timization. The proposed visual servoing scheme ensures the
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Fig. 22. Constraint satisfaction on z coordinates of points P1

and P2 with respect to probe frame Rs .

convergence of the system to the desired set-point. It also ex-
hibits robustness with respect to sensor calibration, outlier de-
tection and noise measurement. The major contribution of this
approach is the constraint handling. Inequality constraints are
naturally taken into account, which allows us to specify joint
limits, actuator saturation and sensor working range.

Experimental validation has been performed on a robotic
platform. The results prove the efficiency of the proposed strat-
egy to handle the above-mentioned constraints. Future work
concerns enhancement of the robustness of the proposed ap-
proach. Evolution of the proposed algorithm may be able to
take into account displacement of the US probe, as in real in-
tervention where it is needed to move the probe to observe
different structures. The minimization of the computation time
will also be considered to increase the dynamics of the system.
In vivo experiments on animals will allow the evaluation of the
effectiveness of the control strategy.
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