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ABSTRACT

SINCE typical mobile robotic vehicles have mobility sensors (such as LADAR
or stereo) that can only acquire data up to a few tens of meters, a navigation
system has no knowledge about the world beyond this sensing horizon. As a

result, path planners that rely only on this knowledge to compute paths are unable
to anticipate obstacles sufficiently early and has no choice than to plan inefficient
paths that trace obstacle boundaries. To alleviate this problem, We present an op-
portunistic navigation and view planning strategy that incorporates look-ahead
sensing of possible obstacle configurations.

This planning strategy is based on a “what-if” analysis of hypothetical fu-
ture configurations of the environment. Candidate vantage positions are evaluated
based on their ability of observing anticipated obstacles. These vantage positions
identified by this forward-simulation framework are used by the planner as inter-
mediate waypoints.

The validity of the strategy is supported by results from simulations as well
as field experiments with a real robotic platform. These results also show that
opportunistically significant reduction in path length can be achieved by using this
framework.
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CHAPTER 1

Introduction

AT the core of many autonomous robotics systems is a mobility system

that takes data from sensors as input, reconstructs the 3-D geometry

of the terrain around the vehicle, assesses the drivability of the terrain,

detects obstacle regions, and modifies its currently planned path to avoid newly

discovered non-drivable areas. The cycle is repeated many times a second until the

vehicle reaches its goal destination. Typically, such a system is implemented by

maintaining a representation of the world in the form of a discrete 2.5D grid which

is used for planning.

Irrespective of the implementation details of such mobile robot systems, their

performance is always severely limited by the so-called myopic planning effect

(Figure 1.1);

This effect is due to the fact that the planner is limited by the maximum range

of the mobility sensors. Since typical mobility sensors, such as Laser Radar (LADAR)

or passive stereo vision, will only acquire data up to a few tens of meters, the plan-

ner has no knowledge about what to encounter beyond the sensed perimeter. As

a result, the planner is unable to anticipate obstacles sufficiently early and has no

choice but to plan paths close to obstacle boundaries.

For autonomous navigation over long distances, this issue degrades the per-

formance of the system by greatly increasing the length of the path traveled by the

vehicle. Consequently, the power consumed is increased and, more importantly,
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FIGURE 1.1. Typical example of poor performance due to lack of sensor
planning and mid-range sensing (Left: Overhead view of terrain; Right:
Executed path with detected obstacles shown as shaded regions). The
path from S1 to G1 intersects a large hill which is discovered only when
the vehicle enters a large cul-de-sac, causing the executed path to be sub-
stantially more expensive than the path that would have been followed,
had the obstruction been discovered earlier. (From [114])

the risk of exposure to threats is also increased. In addition, the relative short range

of the mobility sensors forces the vehicle to drive closer to terrain obstructions than

is safe or necessary.

One solution is to use sensors with longer range to acquire information about

the terrain further ahead. However, to use these sensors one needs to take into

account certain constraints about the sensing geometry acquisition method. We

will present in the Chapters 3 to 6 a method that plans for taking these range mea-

surements to allow for the path planning algorithm to compute a better informed

path.

1. Problem Components

Before attempting to devise an algorithm that can successfully navigate a mo-

bile vehicle in an unstructured environment, we will describe the problem com-

ponents in more detail. A logical division of these components includes first the

aspects of navigating in unstructured terrain, second the effects of the sensing

method used and third the influence of the planning strategy applicable.

2
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1.1. Navigation in Unstructured Environments

FIGURE 1.2. A panoramic view of natural unstructured terrain. It features
tree lines as a typical example of a natural obstacle boundary.

In contrast to path planning in man-made environments, the navigation prob-

lem in unstructured environments is more complicated since, the autonomous sys-

tem cannot rely on well-defined structures such as roads, buildings or corridors

and hallways to simplify the navigation task. Unstructured environments (Fig-

ure 1.2) are typically sparse and have no well defined layout. Vehicles navigating

in these environments cannot rely on the presence of roads and will therefore need

to estimate about the approximate global structure of the environment in order to

efficiently navigate. Typically these autonomous vehicles are quite capable of ne-

gotiating rough terrain (Figure 1.3) and feature an ensemble of sensors to aid in

determining the traversability of the terrain.

FIGURE 1.3. The General Dynamics XUV autonomous vehicle for Un-
manned Ground Navigation.

The absence of structure means we cannot make assumptions about the envi-

ronment and makes it necessary for the autonomous vehicle to gather information

3
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about the structure of the environment while traversing it. Having longer range

sensor measurements available will help to reason about the topological layout of

the environment.

1.2. Mid-range Sensing

Solving the myopic planning problem suggests the use of range sensors with

a much longer range than typically used for robot navigation and safeguarding.

Among the different types of range sensors, a distinction is often made between

active and passive sensing techniques. Active sensing techniques use some sort of

transmitter to emit radiation, whose reflection is measured by the sensor. Examples

of this type of systems are sonar, Laser Range Finders (LADAR) and conventional

RADAR. Examples of passive sensing techniques are fixed baseline stereo [1] and

structure from motion [128].

FIGURE 1.4. A typical sparse 3D wide-baseline stereo reconstruction from
an unstructured environment.

These sensors are constrained by the resolution and the field of view they op-

erate with. For example, for mid-range laser range finders, a single range measure-

ment is returned. Collecting a useful description of the terrain ahead will therefore

require taking many measurements, which is impossible for real time navigation

because of the low repetition rate. The wide-baseline stereo suffers from different

problems making it even more expensive to use. Typically for a mid-range stereo

system, the baseline needs to be a couple of tenths of meters (see also appendix A),

which implies that the two images from a stereo pair will have to be collected sepa-

rately. The planner will need to divert the vehicle to this other observation location

4
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or request this measurement from a cooperating agent [83]. Obviously, this is also

a very time consuming operation.

The geometry of obstructions in close proximity of the robot may prevent ob-

serving terrain further ahead. The observation location needs to be carefully cho-

sen such that the area of interest is in line of sight (if at all possible).

These sensing limitations affect our navigation and view planning strategy in

two ways. The planner:

• needs to be able to handle sparse mid-range sensor data.

• has to schedule intermediate way-points and corresponding viewing di-

rections to take a mid-range measurement.

1.3. Path Planning

Mobile robots traditionally navigate by using the Sense Plan Act cycle, in which

the robot would process the sensor data typically into an occupancy grid, which is

used in turn by a path planner to compute a path. The next waypoint on this path

is then handed to the mobility system which will control the actuators such that the

robot will reach that location. However, the planners are not restricted to these sim-

ple traversability cost maps. In addition, instead of cell traversability one could use

a utility function to define cell cost. Utility functions or cost functions have been

used in [54,100,101,126] and many others to take into account not only traversabil-

ity, but also other planning parameters such as vehicle dynamics, or even the size

of unexplored regions environment [36, 82]. Path planning then becomes heuristic

searching on utility maps in order to satisfy the utility objective.

Another common way of integrating multiple planning strategies is a hierar-

chical approach in which a high level planner reasons about different scenarios and

passes down subtasks. The navigation and sensor planning method proposed in

this thesis is of this kind.

5
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2. Proposed Solution

With the problem set in this framework, a solution can be outlined to solve

the navigation and view planning problem. The solution comprises of two parts.

The first part deals with when and where to take mid-range sensor measurements.

The second part deals with anticipating future obstacles and using the sparse mid-

range sensor data.

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

(b)(a)

mobility mid−range

FIGURE 1.5. The difference between the two path lengths in diagram (a)
and (b) yields a positive utility from taking an observation. In (a) no mid-
range measurement was taken. In (b), a more optimal path was planned
due to observing missing data.

A forward simulation approach is proposed to evaluate the benefit of going

through a scheduled way-point instead of going to the goal immediately. This

“what-if” analysis considers the additional incurred path length as a measure of

detecting an obstacle late rather than early by taking an additional mid-ranging

sensor measurement (Figure 1.5). In Chapter 3 we will develop a theoretical frame-

work to compute the benefit (utility) from visiting a sensing location and taking a

measurement. The formulation considers all possible future worlds and assumes

perfect sensor geometry.

Since such an unlimited range and omni-directional sensor does not exist and

because considering all possible worlds is intractable, we propose an approxima-

tion that is tractable and allows for the usage of a more typical range finder. The ap-

proximation strategy we use reduces the number of worlds to be considered. Our

approximation considers only the most anticipated or likely world. To anticipate

obstacles to be encountered in the future, we employ an inference mechanism that

6
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uses a prior model of the environment and the current accumulated sensor view

of this environment. These anticipated obstacles also allow for grouping sparse

mid-range sensor data into more meaningful obstacle regions (Figure 1.6). This

inference technique is described in more detail in Chapter 4.

FIGURE 1.6. The inferred world as shown on the right has the inferred ob-
stacles marked in white, the inferred empty space marked gray, observed
traversable marked green and observed obstacles marked red. The sensed
world is shown on the left for reference. The inferred part captures the
most likely configuration of the world based on the current observations.

The theoretical framework from Chapter 3 is adapted in Chapter 5 to incor-

porate the inferred world model. Using the likelihood model from this inferred

world, we show in Chapter 5 how to compute the expected utility from visiting

an observation location. We also show in this chapter how we can use the same

inferred world to allow the usage of a limited range sensor (limited in range and

field of view).

In Chapter 6 we present the components that are necessary in using the for-

ward simulation and inference framework as an online navigation and view plan-

ning algorithm. Included are details about the implementation and a system overview.

Also presented is an annotated viewpoint planning example that shows step by

step how an observation location is planned.

7
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3. Contributions

This thesis presents a navigation and sensor planning strategy that actively

uses mid-range sensors to aid a path planner in navigating large unstructured en-

vironments. It addresses the typical issues for navigating in large unstructured

environments by taking strategically placed mid-range sensor measurements. In

addition, the algorithm uses a prior model to anticipate obstacles and navigate ac-

cordingly.

The use of “Hallucinated” or inferred worlds in combination with probabilistic

techniques to plan for view points is new to the field and the key to our navigation

and sensor planning strategy.

8



CHAPTER 2

Prior Work

THIS section reviews the literature that is closely related to the navigation

algorithm presented in this thesis. First, we will briefly describe the type

of navigation regimes that can be typically found on current outdoor mo-

bile robots. The class of grid-based heuristic path planners is of great importance

since the proposed navigation algorithm uses this technique to computate paths.

The second section covers some of the view planning concepts for 3D modelling

that are related to addressing the question of where we should look to insure we

have seen the complete environment. Third, we discuss the research that covers

the relationship between sensing and navigating. A class of path planning algo-

rithms is discussed that incorporate a sensing model. We will discuss methods that

incorporate uncertainty in the planning framework. Since unknown and partial

information will have to be addressed in our problem, this section will also detail a

commonly known probabilistic framework (POMDP) that is well suited to capture

our navigation problem. We will conclude this section with the relevance of the

discussed techniques to the algorithm detailed in the remainder of this thesis.

1. Path Planning for Ground Vehicles

It is challenging to extend path planning algorithms that work well in lab con-

ditions to unstructured environments. These environments are often partly un-

known and there is never a well defined geometric structure that can be exploited.

Many groups are researching and experimenting in this area. Most notable are
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the experiments with the Autonomous Land Vehicle “ALV” [21,22], the Australian

Center for Field Robotics High Speed Vehicle “HSV” [3, 86] and Carnegie Mellon

University’s “NAVLAB” [35,44] (Figure 2.1). The groups at the Jet Propulsion Lab-

oratory (JPL) [68, 121] and Laboratoire d’Analyse et d’Architecture des Systèmes

(LAAS) [66, 78] have focused on the extraterrestrial application domain of sensing

and navigating in unstructured environments. Whereas the groups at Space and

Naval Warfare Systems Center (SPAWAR) [41, 90], National Institute of Standards

and Technology NIST [46, 97], SAIC [103], Perceptek [102, 104] and also JPL [7]

have been looking at navigating large Unmanned Ground Vehicles under one of

the many DARPA and ARL programs [112].

2

We have developed a complete navigation system that solves these problems. The system is capable of driving an
outdoor mobile robot from an initial position to a goal position. It may have a prior map of the environment or no
map at all. The robot is the Navigational Laboratory II (NAVLAB II) shown in Figure 1. The NAVLAB II is a high
mobility multi-wheeled vehicle (HMMWV) modified for computer control of the steering function. The NAVLAB II
is equipped with an Environmental Research Institute of Michigan (ERIM) scanning laser rangefinder for measuring
the shape of the terrain in front of the robot. Three on-board Sun Microsystems SPARC II computers process sensor
data, plan obstacle avoidance maneuvers, and calculate global paths to the goal.

In addition to perception sensors, the NAVLAB II is equipped with navigation sensors. For the experiments reported
in this paper, the navigation sensors consisted of a Litton Inertial Navigation System (INS) and an odometry encoder.
The readings from these sensors were integrated to provide a two-dimensional position estimate accurate to roughly
1% distance travelled and a heading estimate accurate to a few degrees per hour. The accuracy of the navigation
sensors was the basis for selecting many of the parameters described later in the paper. In particular, it defines the
expected amount of drift in the position of obstacles in the global map.

Figure  1: NAVLAB II Robot Testbed

Figure 2 shows the results of an actual run on the robot. The dimensions of the area are 500 x 500 meters. The robot
began at the position labelled S and moved to the goal location at G. Initially, the robot assumed the world to be
devoid of obstacles and moved toward the goal. Twice a second, the perception system reported the locations of
obstacles detected by the sensor. Each time, the robot steered to miss the obstacles and replanned an optimal global
trajectory to the goal. The robot was able to drive at approximately 2 meters per second. The robot’s trajectory is
shown in black, the detected obstacles in dark grey, and a safety zone around the obstacles in light grey.
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Figure  11: Scanline-Based Processing from a Range Image

2.3.3 Local Map Management
The local map is an array of cells with a simpler structure than the grid used in the range data processing component.
Local map cells contain only a binary flag indicating whether the cell is traversable; if it is not, the cell also contains
the coordinates of a 3-D point inside the obstacle. The positions of the untraversable cells in the local map are
updated at regular intervals, currently 100 msec, according to robot motion. Figure 12 shows an overhead view of the
local traversability map constructed from a sequence of images from the area shown in Figure 11(a). In this example,
the cells are 40 cm x 40 cm. The untraversable cells are shown as small squares; the robot is indicated by the rectan-
gle at the bottom of the display.

Figure  12: A Local Map
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FIGURE 2.1. NAVLAB (a) navigating an unstructured area (b) [44].

Many of these systems follow the classical robotic sense plan act cycle. The

sensor acquisition system processes the raw data into an obstacle grid that repre-

sents the traversability of the environment. A heuristic search algorithm such as

A∗ [87, 88] would uses this map to plan a path towards the goal. This path would

then be handed off to the controller [67] to be executed.

A few other methods have been explored, but these have mostly been applied

for local navigation and safeguarding. Cang and Borenstein [57,126] present a local

navigation method that computes polar obstacle densities to represent traversabil-

ity. By computing the histogram of these obstacle densities, a trajectory with low

obstacle density can be followed by choosing bins with low obstacle densities.

The same concept was approached by Kelly in [54] a predictive classical con-

trol framework. The controller takes the vehicle dynamics and the current vehicle

10



2 VIEW PLANNING

attitude into account for predicting what is safe to navigate in the immediate fu-

ture.

Lacaze et al. [62] extend this idea in include a further planning lookahead step.

They pre-compute the so called “eco-graph” in which possible vehicle trajectories

are evaluated based on vehicle dynamics. Possible waypoints at a fixed looka-

head time are removed from the selection if the are not reachable under the cur-

rent sensed world configuration. This is done successively for discrete multiples

of the lookahead distance, creating a thinned eco-graph that has only traversable

branches in it. The planning algorithm presented in this thesis takes this idea of

lookahead or forward simulation a step further.

Unstructured environments are large in contrast to typical lab setups and meth-

ods of efficient planning have been researched in different directions. One ap-

proach is to represent the grid at multiple resolutions and to use a coarse-to-fine ap-

proach to efficiently compute a path [23, 91]. Another approach to make planning

more efficient is to reduce the amount of computation. Stentz [114, 115] reduces

the computation time by reusing previous planning results. Another approach is

to reduce the search space, Spero [113] uses Rapidly-exploring Random Trees to

do so. These approaches are not directly related to work presented in this thesis.

However, our algorithm does rely on some of these results to reduce computation

time [115].

2. View planning

Most related to our work is the problem of “View Planning“ in which we need

to decide where to acquire the next sensor reading given certain constraints. Al-

though most of the related work in this area exploits task specific constraints such

as a constrained turntable setup that are not valid for our task, it does provide

insight into our problem.

The work of Chen [16] and Kleinberg [55] make the common assumption that

the world is 2D. They approach the problem from a computational geometry per-

spective. Their approach to the problem is based on on-line search of polygon.

11
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Kleinberg introduces in [55] rectilinear polygons that allows him to give a bound

on the complexity of the view planning problem. Chen considers in [16] any type

of polygon, and shows an algorithm for the incremental exploration of the envi-

ronment. The algorithm that Chen presents is not as efficient as the algorithm

described by Kleinberg, since the algorithm is not restricted to a particular type

of polygons. Both of these results are interesting because of the provable perfor-

mance. They both assume that there are no physical sensor limitations, such as

range, infinite resolution, sensor noise and field of view restrictions. However, they

are still important results since they give some indication about the complexity of

the problem.

There is also extensive literature on view planning in the area of map building.

For example, the work of [16, 32, 82, 127] with respect to sensing for exploration,

focuses on complete exploration of the environment. The robot is driven by a mea-

surement of utility that represents some notion of information gain for exploring

certain areas. It does not deal with view planning in the context of deploying

a sensing device, but merely deals with visiting locations and ensuring that the

complete environment has been observed. Kondo [51] presents an algorithm for

sensing and motion for exploration that considers the sensor model of real sensors

(sonars), and copes with collision-avoidance issues. The algorithm incrementally

builds a topological map of the partially known environment. It updates this map

at every sensing location by incorporating local structure that has been computed

from the current sensory data. These exploration types of approaches solve the

navigation problem while ensuring that the whole environment is covered. The

navigation map produced by the exploration approach is a connected graph of

reachable nodes, which simplifies path planning. However, this type of approach

is not useful if the objective is to navigate from a single point to another in a fairly

efficient way since there is no notion of goal location.

An interesting question is whether the navigation task requires the construc-

tion of a model? Here also, the view planning literature provides some insight.

Wixson [124] questions the necessity of these models in search problems, and pre-

sents a compromise between model-based and fixed-increment strategies. He shows

12
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with empirical results that model-free methods that evaluate view-points spread

out in fixed-increments in the environments compare favorably in computational

speed and traversed distance to model-based ones in these search tasks. He also

finds that the simplicity of these model-free approaches compensate for the ad-

vantages a model-based method may have. Whaite and Ferie state the opposite

in [122]. They present a model based approach that uses a set of primitives for

building a model. They argue that it is reasonable to compute a measure of un-

certainty for such a primitive. The next best view [122] is then computed such

that this next view will reduce the uncertainty of these primitives in the model

currently being constructed. The computation time is fairly high since the whole

environment is constructed from super-quadratic primitives. The flavor of this ap-

proach however is certainly a good starting point in determining which areas in

our environment might need a closer look based on maximizing the information

gain.

An objective function based solely on information gain is not appropriate for

active sensing for planning since it does not account for additional costs for sensor

deployment. Wahl [58] describes a more useful function for active sensor deploy-

ment. A “planning-sensing-updating” cycle is described, which based on the cur-

rent, incomplete model and motion constraints, computes the next-best view such

that an objective function in configuration space is maximized. The objective func-

tion consists of two terms; an information gain quantity per putative viewpoint

and the traversal cost between view points. This approach of maximizing an ob-

jective function can be used in general as long as this function captures the desired

behavior.

More insight can be gained from the “active vision” community. For example

Kutulakos gives in [60,61] a good mathematical formalization of vision-guided ex-

ploration. This paper describes a method for exploration of arbitrary surfaces in

3D. The authors present in their paper two provably correct exploration methods.

The first method uses a range sensor, and is complete for smooth and connected

surfaces of finite area. The second uses a camera instead of a range sensor, and
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is complete for smooth, non-concave, and connected surfaces. Their mathemati-

cal analysis of the next best view problem is of importance to any vision-guided

exploration method. In their paper they address the problem of determining if a

particular surface can be explored in a finite number of steps using common sensor

types.

Another exploration approach is presented in [5]. This approach features a

method that can plan for a next view very quickly, but unfortunately there are no

guarantees about optimality or even an approximation. They present a method

that identifies occlusion boundaries in range images and selects next views based

on the information gain from a ray-traced model. To validate their method, they

show plots of how the ratio of unknown versus the recovered volume increases

over the number of views collected.

The planetarium algorithm as described by Connolly in [20] is another practical

approach which exploits a constraint workspace to solve for sensor planning. The

scene is represented by an octree and the putative sensing locations are distributed

uniformly around a viewing sphere. The algorithm returns from these locations

the location that yields the greatest unseen volume. They also present the so called

normal algorithm in which each node in the octree describes a part of the scene by

the six faces. The three faces that are neighboring the unseen volume are used to

compute the viewing direction. This algorithm is faster, but does not deal so well

with occlusions.

Maver’s [79] approach extracts regions with no information content and then

moves the sensor around the constrained workspace to fill in this data. This ap-

proach works well for their turntable setup, but has no practical application for

sensing for navigation purposes. Another approach that exploits a constrained

workspace is presented by Pito [94]. He describes a system that can automatically

collect a complete surface model based on next best view calculation. The objec-

tive function used in this method contains only a measure for information gain

and does not address sensing cost. The paper does address registration issues and

selects the next best view with overlapping data in order to facilitate registration.
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3. Sensor Based Path Planning

Different from the view planning methods discussed earlier are the sensor

based path planning methods. They are different in the way that views are not

planned for covering a certain region, but vehicle motion is planned with respect

to sensor constraints and/or coverage of the area to traverse. In other words, the

motion or path of the robot is planned simultaneously with the sensing action. For

example the algorithm described in [17,18] continuously senses around the robot’s

perimeter and constructs a topological map while it navigates towards the goal.

While the algorithm in [17, 18] continuously senses and plans a path, the sens-

ing itself does not involve any particular view planning. If we would reason about

the environment that we have observed so far, we can actively take measurements

so that we can compute better paths. In [33], [34] and also [36] such active sensor

based planning method is presented. The algorithm is based on detecting regions

that are safe to navigate. These regions will be extended at every iteration accord-

ing to newly sensed data. Candidate view points are generated at the boundaries

of these safe regions, the viewpoint that exposes most of the unknown boundary

is selected for the next viewing position. Although the focus of their paper is on

exploration, the viewing for planning approach is completely integrated. A draw-

back of their algorithm is that it assumes that the range data does not contain any

errors. Noisy data can cause mis-registering of range scans which may cause the

result of the algorithm to become invalid. The sensing is also solely based on cov-

erage and cannot be tailored for navigation purposes. The approach we have taken

to overcome these issues is to use a confidence label on each data item and evaluate

paths only with respect to the goal destination.

An alternative idea is explored in the “Bug” family of algorithms [74,96]. These

algorithms assume a simple contact sensor and simple rules to navigate through

unknown environments. Kamon et al. [52] extend this technique to incorporate the

usage of range sensors by using the reduced visibility graph, better known as the

tangent graph. The local tangent graph, which is the visible subset of the tangent

graph to the robot, can be constructed by using the measurements of a laser range
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finder. Instead of driving up to an obstacle, as in the bug algorithm the TangentBug

algorithm, senses the perimeter and follows the local tangent graph.

Laubach extends in [69] and [68] the TangentBug algorithm even further into

the WedgeBug (RoverBug) algorithm which explicitly deals with a sensor model.

She adds some virtual states to the typical bug states (Motion towards goal and

Boundary following), in these states the WedgeBug algorithm senses more from its

environment to determine the local tangent graph which it uses to generate new

path segments from. This algorithm is very elegant and clean in its underlying

concept, however it still suffers from the same problems as the Safe region algo-

rithm, that there is no notion of uncertainty in sensor data and it needs continuous

detectable obstacle boundaries.

Most similar to our work is the work by Gancet and Lacroix [31]. They present

in their paper the Perception-guided path planning (PG2P) approach which is a

hybrid sensing and path planning method. Some of the same philosophies that we

have embraced have been incorporated in the PG2P algorithm as well, although

there are some notable differences between the two approaches.

Most importantly, the PG2P algorithm focusses on their definition of Confi-

dence of Perception or COP. Their COP depends only on prior knowledge about

the sensor model. For the type of range sensors they consider, the COP can be

stated as a function of the perception distance. The COP is high for a location in

close proximity and low for a sensed site that is further away. The COP can only

be used if the site to be viewed already has an (obstacle/traversable) label and cor-

responding probability distribution. In contrast, we focus on the prior over the

terrain itself and can therefore infer and leverage global terrain information.

Using the COP function together with the label probability, a traversability cost

is defined [31]. The result is that the terrain’s traversability is reinforced by the con-

fidence in this measurement. Similar to what we propose is that given this metric,

we can now reason about taking measurements. Taking a measurement and there-

fore reducing the confidence level will have an influence in the new traversability

cost. They also define a utility for sensing that takes into account how much the
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traverse cost changes as these simulated measurements are taken. The robot will

then take a sensor measurement when this utility is positive.

Alternatively they select nodes on the boundary of the already observed area

(so they can be reached safely) as locations for observations. However, this heuris-

tic will not alleviate the problem of the myopic sensing horizon, since when we get

to this boundary sensing location, we might discover that we encounter an obsta-

cle.

Relevance to Thesis

This thesis will extend these independently derived ideas of sensing and si-

multaneously include mid-range sensing to actually alleviate the myopic path plan-

ning problem.

4. Planning with Uncertainty

Traditionally the path planning problem has been viewed in the context of

perfect information. However, in practice this is rarely the case. Robots in the

real world need to cope with partial information, which may also not be accurate

and erroneous. In order to successfully plan under these constraints, a different

framework is required.

One way of modeling this uncertainty is to pose the navigation task in a two

player game-theoretic framework, in which the mobile robots system is one player

and the environment is the other [26, 70, 71]. This is a very conservative approach,

because the world in practice is not conspiring against the planning algorithm.

These closed loop formulations do however provide great insights on the influence

of uncertainty and how far the algorithm plans ahead against its opponent (the

partially known environment).

In the remainder of this section we review a more general and commonly used

probabilistic framework which models many, if not most aspects of our mobile
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robot sensing and navigation problem. The notation used in the next few sections

follows the conventions from [50].

4.1. Markov Processes

If all available information can be collapsed into the current state, and if the

transition from this state to another state is not dependent on the history, this deci-

sion process is called a Markov Process.

A Markov process can be completely described by the tuple (S, T, s0), in which

S is a finite set of states, from which s0 is the initial state and T (s, s′) is the stochastic

transition function that brings the Markov Process from the current state st to the

next state st+1. The behavior of the process is then defined by

(2.1) Pr
(
st+1 = s′|st = s

)
= T (s, s′).

4.2. Markov Decision Process

We specify a reward function R(s) in addition to assuming the world as being

Markovian. With a reward function R(s) we can expand the Markov Process to

specify a task in a Markovian environment.

FIGURE 2.2. After Russel and Norvig [106]: Pacman lives in his favorite
maze. He is currently at the initial state s0, each move will have a reward
of -0.01, and can be done in the four cardinal directions. A move into a
wall will cause the agent to stay in place. In addition, visiting the ghost is
rewarded -1, visiting the big • is rewarded +1.

In the example shown in Figure 2.2 the reward function R(s) penalizes the

agent by rewarding a −0.01 for moving from one cell to another, visiting the ghost
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will penalize even more by a −1 reward. However if the big • is reached, the agent

gets a +1 reward.

In order for the agent to maximize its reward, it can execute any of the fol-

lowing actions from the action set A. with A = {North,East, South,West}. Since

each move has a negative reward of −0.01, the agent will want to make as few

moves as possible to get to the goal reward of +1, while avoiding incurring the

−1 reward altogether. We can formalize the problem now completely as a Markov

Decision Process MDP with the tuple (S,A, T,R, s0).

Since the agent’s choice of an action at the current moment, at ∈ A influ-

ences how the MDP transits to the next state, the transition function becomes now:

T (s, a, s′). With this modified transition function, the evolution of the Markov Pro-

cess is therefore given by

(2.2) Pr
(
st+1 = s′|st = s, at = a

)
= T (s, a, s′).

If the world has a terminal state (goal) and that state is reachable, this would be

sufficient. However, if that is not the case, rewards will grow towards infinity and

you will therefore often see the tuple (S,A, T,R, γ, s0) used. This tuple describes

the same MDP with discounted rewards. Rewards are in these MDPs discounted

with γ (0 < γ < 1), resulting in the agent preferring current rewards over future

rewards.

For the agent to achieve the maximum expected reward, the agent should se-

lect its actions according to a policy π for each state there is. Since the agent is in a

Markovian world, it only needs information available in the current state for it to

act optimally. The expected long term reward or Value function is defined as

(2.3) Jπ(s) = E

[ ∞∑
t=0

γtR(st, at)|π

]
.

An optimal policy π∗ is then defined as

(2.4) π∗ = argmax
π

Jπ(s).
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The Value Iteration algorithm that uses the Bellman equation for the expected

cost of subsequent states solves for the optimal policy π∗ [106].

4.3. Partially Observable Markov Decision Process

The limitation of the MDP modeling incomplete information was reason for

Cassandra et al. [15] to develop the Partially Observable Markov Decision Process

(POMDP) framework. The complete state in the POMDP is hidden from the agent

and can only be partially observed by a noisy sensor measurement.

The POMDP inherits all the elements from the MDP, but has also an obser-

vation model O(s, o) and a belief state b(s). The observation model models the

probability of receiving an observation o from all possible observationO, given the

state s. For the example shown in Figure 2.2 the observation model consists of only

one observation; the empty observation that occurs with a likelihood of 1 for each

state.

Since the optimal action can not depend on the state the robot is in (since this

state is not known to the robot), the best policy is described in respect to the current

belief state. The POMDP transits from one belief state to the next according to

(2.5) τ(b, a, b′) =
∑

o

P (b′|o, a, b)
∑
s′

O(s′, o)
∑

s

T (s, a, s′)b(s).

Similarly, the expected reward for the actual state the agent is in, is defined by

(2.6) ρ(b) =
∑

s

b(s)R(s).

With τ and ρ defined as in 2.5 and 2.6, the POMDP can be expressed as an observ-

able MDP on the belief states. Furthermore an optimal policy π∗(b) for this MDP

in belief space can be shown to be also the optimal policy for the original POMDP

formulation.

However, the belief space is a continuous and in most real problems a high

dimensional space. It is therefore very difficult to find optimal policies in this space.

Researchers have therefore looked into exploiting structure that is inherent to the
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problem to reduce the problem [105]. Other researchers focus on making it more

tractable to solve larger POMDPs [10, 11, 43, 73, 93, 129].

Relevance to Thesis

The navigation problem that we are interested in is an excellent example of a

POMDP problem. However the number of states, actions and observations that a

typical instance would have would make finding a optimal policy impractical. Let

us look at a very coarse description of our navigation problem:

S s0 . . . sn each state representing a cell in an obstacle map.
A typical state space size n of 1002 is nothing out
of the ordinary to model an obstacle map.

A aMN , aMNE , . . . aMNW a very limited 8 connected move set.
as0◦ , . . . as355◦ assuming we discretize the pointing angle for

the sensor to a 5◦ interval. For a typical
midrange set-up, 0.5◦ would be more reason-
able.

O omob000, . . . omob255 observation subset of a neighboring cell only
mobility sensing system. More typical would
be a 5 neighborhood radius, yielding approxi-
mately 268 different observations.

omid0◦r00, . . . omid355◦r50 observation subset discretized on a 5◦ by 50 cells
radial lattice.

For each cell traversed the robot will get a small negative reward to represent

the cost of traversing. Traversing an obstacle cell will incur a steep negative reward

and reaching the goal will be rewarded a very high positive reward. Although the

way the problem is described is fairly coarse, it is clear that the problem is from a

very high dimensionality. Because of the branching factor of the alternative belief

states and the fact that the belief state is continuous, it is unfortunately computa-

tionally intractable to solve this problem with the current POMDP solving meth-

ods [106].

5. Remarks

The algorithm that will be described in the following sections combines ideas

from the approaches that are traditionally used for outdoor navigation and a com-

plete probabilistic framework. Although the approach presented still relies on a
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grid based path planner, we use a probabilistic model to reason about what we ex-

pect to discover as we move through the environment and how to best verify this

hypothesis with observations.
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CHAPTER 3

Mid-range Sensing and Planning Algorithm

AS a solution to the navigation in unstructured and partially known ter-

rain problem we propose a combined view planning and navigation

strategy. As indicated in Chapter 1, a path planning navigation algo-

rithm can perform better if it has more knowledge about the environment.
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FIGURE 3.1. Top: poor performance due to lack of sensor planning and
mid-range sensing, the robot has to rely on mobility sensor data only. Bot-
tom: the pinch point is detected earlier which allows the planner to adjust
the path accordingly.

For navigating in unstructured environments, the use of longer range laser

range finders or wide-baseline stereo approaches could potentially provide this
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needed knowledge about the environment. In order to alleviate this finite hori-

zon problem for path-planners, we would like to use mid-range sensor data (Fig-

ure 3.1). However, there are some issues to be addressed to successfully use this

type of sensing modality:

• The sensor data rate is low and it does not allow for continuous sensing

• The field of view is very narrow, the sensor needs to be pointed in the

most “useful” direction

• The data is sparse, the registered data will be incomplete so we need to

deal with missing data

Figure 3.2, illustrates the influence of missing data on the path computed by a

planner. The absence of data could mean that there is traversable space, or a pos-

sible unobserved obstruction. In the latter case, in which the planner will discover

the obstacle at the very last moment, the path is far from desirable.
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FIGURE 3.2. The partial map in (a) suggests a gap between the two obsta-
cle regions. A large deviation from the path will be incurred if the gap is
actually blocked (b).

This thesis will address the problems associated with using mid-range data

for path-planning. Key to the solution is the insight that we can simulate the en-

vironment as we would observe it in the future. Sensor measurements and sensor

positions can now be planned to observe the differences between the current and

the expected environment in the future and therefore sense anticipated obstacles

in a timely manner. The algorithm presented uses the current perceived world and
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prior knowledge about the obstacle/free space distributions to compute interme-

diate observation locations.

1. Planning a Path

At the core of this solution is a grid based D* planner [115,116]. D* is a dynamic

A* planning algorithm that produces a path based on the current assumed sensor

information. It then incrementally repairs the plan as new information is sensed.

The repaired D* plan is optimal (under the used cost metric) and is equivalent to

replanning from scratch. In our case, we use D* to compute the best path from

the current vehicle location to the goal point as usual. In addition to the usual

traversability costs, we also evaluate the expected path costs for paths that first go

through an intermediate observation location, take a measurement, and then go to

the final goal destination. We define a positive utility for a location in the map if the

expected traverse from current location to the goal through an observation location

is cheaper than the expected cost for going to the goal directly (Figure 3.3).
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mobility mid−range

FIGURE 3.3. The obstacle is detected late, resulting in an expensive detour
as in (a). In (b) a mid-range sensor measurement supplies the missing
information to plan a more optimal path. The difference between the two
path lengths yields a positive utility for the observation location.

We use D* as our path planning method because it is critical to our approach

that we can reuse as much of our path planning computation as possible. The

nature of our algorithm warrants evaluation of many different alternative paths

which D* can do efficiently by incrementally updating and readjusting its search

space (see also Chapter 6, Section 4).
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This approach of incorporating utility into a cost is similar to the approach

Rosenblatt [100, 101] takes in his arbiter. However, his utility map only looks at

a few possible actions over a limited horizon and does not deal with additional

utility for sensing purposes.

2. Forward Simulation

Let us now formulate further this notion of “sensing utility”. Consider a can-

didate observation position u in our map. At this position, we can point our sensor

at an angle θ. Given the field of view and minimum and maximum sensing dis-

tance of the sensor, we can define a sensor footprint. In addition we define L as

the set of all possible obstacle/traversable labellings of the map. Each labelling
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FIGURE 3.4. Illustration of the path computed with (Cs) and without sens-
ing (Cns) in an example world configuration.

(LjεL) has an associated probability P (Lj). Given such a labelling and the sensor

footprint, one can compute the cost of getting from the current robot location xεR2

to the goal vGεR
2 by not making the observation at u: Cns(Lj ,x,vG), and the cost

of getting to the goal making the observation: Cs(Lj ,x,u, θ,vG) (Figure 3.4). Intu-

itively, Cns(Lj ,x,vG) is the cost of the path executed if no sensors other than the

short-range mobility sensors are used and the map is in configuration (Lj). The

utility ψ for visiting u while navigating to the goal is defined as:
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3 COMPUTATIONAL COMPLEXITY

(3.1) ψu(x,vG) = 1− argmax
θ

∑
j

P (Lj) (Cns(Lj ,x,vG)− Cs(Lj ,x,u, θ,vG))
Cns(Lj ,x,vG)


In principle, the utility can be computed everywhere in the map and the result-

ing utility map (see also Figure 3.5) can be used by the planner to select the most

favorable sensing position. This “forward simulation” [26, 53, 70] is at the heart of

our approach.

� � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � �

FIGURE 3.5. The utility map displayed for a very simple partially known
world. The robot depicted at the bottom of the figure denotes the current
robot position. A high measure of interest is represented with a bright
color. The brightest point (highest utility) is used as the next sensing loca-
tion.

3. Computational Complexity

Both Cs and Cns can be evaluated by running the planner on different “vir-

tual” configurations of the world map corresponding to different configurations

Lj . In reality, however, this would require the enumeration of all possible config-

urations of the world which is clearly a combinatorially large set. Furthermore,

the sum above must be evaluated, in principle, not only for all cell locations, but

also for all possible sensor orientations. Therefore, the computation of the optimal

utility function defined above is not tractable and an approximation must be used
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CHAPTER 3. MID-RANGE SENSING AND PLANNING ALGORITHM

to reduce the computation while retaining near-optimal evaluation of the utility.

In the following chapter such an approximation will be presented that will limit

the number of labellings that need to be considered. Incidentally, the number of

orientations to be evaluated can also be reduced as a side effect.

4. Conclusion

With the forward simulation framework presented here we have now a way

of evaluating potential mid-range observation locations and thus being able to de-

cide “when to look”. When to look, or taking a mid-range sensor measurement,

can now be limited to the most beneficial locations. However the formulation

presented is intractable to compute this, we will therefore use an approximation

instead.
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CHAPTER 4

Hallucinating Worlds

IN order to be able to successfully perform forward simulation, we will need

to predict how the world is likely to look like in the future. More specifically,

we would like to know which parts of the environment to be observed in the

future will be traversable or not. This problem can be expressed as an inference

problem: given what we have observed so far and some prior model, we can in-

fer, or hallucinate, the underlying world map and hence the traversability. With

this hallucinated world we can perform forward simulation and thus compute the

paths that are needed to compute the utility for taking additional mid-range sens-

ing measurements.

In order to be able to hallucinate the world as it will in the future, we could

use a previously learned distribution of worlds and use an inference mechanism

to draw most likely world configurations from it. Since we are only interested

in knowing if a particular cell is traversable, a binary representation of the world

will be sufficient. In the remainder of this chapter, we will formulate our inference

problem in the well known Markov Random Field framework.

1. Hallucinating

A hallucinated traversability label for a particular map cell needs to adhere to

the underlying spatial distribution of obstacle vs. non-obstacle. This problem of

grouping features together has been well studied in the field of computer vision [8,
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72, 125]. Because of the similarity between hallucinating our traversability map

and inference from noisy images, we have been looking at applying techniques

from the computer vision community to our problem.

For our forward simulation to work, we will need to infer a traversability la-

belling. Let us denote such a traversability labelling with L. The sensing system

that the robot uses to observe the world will only yield a partial terrain map. This

partial terrain map is denoted by D. We can now formalize how to hallucinate our

anticipated world L from the current observed terrain D.

Each L is a world configuration hallucinated from the data. IfN is the number

of cells in the map, |L| = 2N becomes computationally intractable in practice even

with small values of N . In order to make it possible to compute the utility ψu we

will use a common approximation that assumes that P (L | D) can be approximated

by a delta function [59]. This amounts to replacing the average configuration of

the world with the most probable configuration or Maximum A Posteriori (MAP)

estimate.

(4.1) P (L | D) ≈ δ(L, L̂)

with

(4.2) L̂ = argmax
L

P (L | D)

Intuitively, L̂ is the most likely world configuration inferred from the observed

data.

The next problem we need to address is how to compute P (L | D). We start

with the observation that the labels on cells expressing traversability are not inde-

pendent. If a cell is classified as non-traversable, then there is high probability that

the neighboring cells are also non-traversable except at the discontinuities. This is

also true for the traversable cells. This kind of contextual dependency in the labels

on 2D lattices has been well studied and is often referred to as spatial smoothness.
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2 DATA TERM

A standard approach for representing this spatial smoothness is to use Markov

Random Fields (MRFs), which can incorporate local contextual constraints in la-

belling problems in a principled manner [72]. These MRFs provide an efficient

method to group features based on their labelling while adhering to an underlying

spatial model. This inference technique has been successfully applied in the field of

computer vision [8, 72, 125] to infer the original image from noisy data. Because of

the similarity of the problems addressed in the computer vision community with

our problem, inferring an obstacle labelling for a partially known terrain led us

into formulating our inference problem into the MRF framework.

MRFs are generally used in a probabilistic generative framework that models

the joint probability of the observed data and the corresponding labels. In other

words, let D be the observed data from the terrain, where D = {di}iεS and diεR, di

is the terrain data from the i th site, and S is the set of sites. Let the corresponding

labels at the terrain sites be given by L = {li}iεS with liε{−1, 1}. In our case, li in-

dicates the presence or absence of an obstacle at location i. In the MRF framework,

the posterior over the labels given the data is expressed using the Bayes rule as,

(4.3) P (L | D) ∝ p(L,D) = p(D | L)P (L)

2. Data Term

The first term in the product, p(D | L), in Equation 4.3 is known as the likeli-

hood of the data. In general, it is assumed that the data at each site is conditionally

independent given the labels at that site, i.e. p(D | L) =
∏

iεS p(di | li) [8, 72]. We

model the likelihood for each class, traversable/non-traversable, as a Gaussian.

(4.4) P (di | li) =
1√

2πσ2
li

exp

{
1

2σ2
li

(di − µli)
2

}

The parameters of the two Gaussians representing the likelihood for these

classes can be easily learnt from labeled training data. This learning takes place
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CHAPTER 4. HALLUCINATING WORLDS

for a typical type of environment where the robot is to navigate in, for example on

Mars, an exemplar is used for learning. There after the robot will use these learned

parameters for online classification/hallucination of terrain. For the current model,

this learning boils down to fitting a single Gaussian to each of the two classes.

3. Field Model

After modeling the likelihood of the data, we need to model the prior over la-

bel configurations P (L), which encodes the notion of spatial smoothness of the ter-

rain labels except at discontinuities. Since we have only two classes (traversable/non-

traversable), this can be expressed in a MRF formulation as a binary classification

problem. The data likelihood p(D | L) is assumed to be conditionally indepen-

dent given the labels and the label interaction field P (L) is assumed to follow a

homogeneous and isotropic Ising model [80] with only a pairwise interaction term:

βlilj where β is the interaction parameter of the MRF and li, lj are the labels at two

neighboring cells. The Ising model favors neighboring sites with the same labels

and penalizes the dissimilar labels by cost β [59].

Combining the likelihood model P (D | L) with the prior over labels P (L), we

can write the overall posterior over labels as follows:

(4.5) P (L | D) =
1
Zm

exp

∑
iεS

log p(di | li) +
∑
iεS

∑
jεNi

βlilj



In which Zm is a normalizing constant, often referred to as the partition func-

tion. For this MRF (Equation 4.5), computing the Maximum A Posteriori (MAP)

configuration of the labels, L̂ given the data can be solved exactly using graph min-

cuts/max-flow algorithms if β > 0 [8, 37]. With such a min-cuts algorithm [59], we

now have a way of computing L̂ = argmaxL P (L | D).
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4 INFERENCE

4. Inference

The min-cuts/max-flow algorithm that solves the MRF equation (4.5) produces

a labelling L̂ of traversable/non-traversable cells that is most consistent with the

world model and the current data. This binary labelling of traversable and non-

traversable cells is updated for a given instance of the currently observed terrain

data and represents the most anticipated configuration of the world (Figure 4.1).

FIGURE 4.1. Typical example that shows the influence of the obstacle hal-
lucination. The robot (in green) travels to the goal (blue). The path is
shown in yellow. The hallucinated obstacles are in white, hallucinated
empty space in gray, observed traversable in green and observed obstacles
are red. In the top panel, the planner uses only the information from the
sensors and it plans a path through the obstacle. In the bottom panel, the
hallucination algorithm merges obstacles correctly together and produces
a better path.

It is interesting to examine how the influence of the inference behaves over a

typical traverse of the robot. To illustrate the operation of the obstacle inference

algorithm, Figure 4.2 shows an example experiment. In Figure 4.2(a) and (b), the

example terrain is shown with its ground truth obstacle labelling. The planner

simulated a robot traversal from the red to the yellow markers.
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CHAPTER 4. HALLUCINATING WORLDS

The number of map cells that are detected as obstacles at every position along

the path is shown in Figure 4.2(c), along with the number of hallucinated cells. The

ground truth, that is, the total number of actual obstacle cells computed directly

from the underlying elevation map of Figure 4.2(a) is also included. This number

provides a baseline for reference: It is the total number of obstacle cells that would

be included in the map if the entire world had been explored and sensed.
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FIGURE 4.2. Example demonstrating the influence of the obstacle halluci-
nation over the course of a typical traverse. (a) is an overhead view of the
terrain, with start and goal location marked. The ground truth obstacle
labelling is displayed in (b). Obstacle cells are marked in blue. The num-
ber of obstacle cells is plotted in (c). The graphs confirm the intuition that
while more of the environment gets explored, less needs to be inferred. In
the limit, the number of inferred cells will go to zero and the total number
of known obstacle cells will equal the number for the ground truth la-
belling.

When we look at the number of cells hallucinated in Figure 4.2(c) over the

course of a traverse, we see that the number of inferred cells first increases rapidly

and then tapers down when we have sensed more of the environment. This is

because initially there is no data available, therefore the hallucination algorithm

has no evidence for any possible obstacles. It will therefore not infer any obstacles.

As some sparse terrain data has been sensed, there is enough evidence for some

cells to be inferred and classified as obstacles. However, when even more of the

environment becomes known and inferred obstacles get confirmed, the number of
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5 CONCLUSION

inferred obstacles decreases. In the limit, when all cells have been explored there

will be no inferred obstacles.

5. Conclusion

By modeling the traversability of the terrain as a MRF, we can use an efficient

graph-cut algorithm to hallucinate the most likely traversability labelling of a par-

tially known terrain map. This will allow us to use the formulation developed in

Chapter 3 to compute the expected path costs for the most likely world configura-

tion and thus identify beneficial observation locations for mid-range sensing.
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CHAPTER 5

Where to Look

WITH the algorithm laid out in Chapter 3 and a method to infer the most

likely world in Chapter 4 we have all the components to implement

the selection of intermediate viewpoints that are beneficial for nav-

igation. The following sections revisit the original forward simulation definition

to reflect the MRF framework. In addition, we will also define several metrics to

eliminate an extensive search over the viewing angle θ.

In the following sections, we will not define θ explicitly, instead we will sim-

plify the discussion by using the term “Point Of Interest” (POI). It is sufficient to

limit the discussion to just the point of interest since, the gazing angle θ is fixed

such that it will bring the point of interest in the center of the view (Figure 5.1).

θ
(x,y)POI
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FIGURE 5.1. The relation between θ and point of interest (POI).
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1. Expected Path Costs

The MAP estimate yields the most likely world obstacle label configuration

and its corresponding likelihood. Given this labelling and the individual cell prob-

abilities we can express in more detail the expected path costs as originally intro-

duced in Chapter 3.

In Figure 5.2 we formulate the paths for both the non-sensing and the mid-

range sensing case. Different from Chapter 3 is that we are considering only the

most likely obstacle configuration of the world. Based on the probabilities from the

MRF we can compute meaningful probabilities for the inferred regions [81].

r1

r2

r3 s1

s2

li

FIGURE 5.2. The paths displayed in the left figure are possible traverses
depending on the interpretation of the inferred (shaded light gray) area
of the obstacle. r1 is the path the robot would take if it is very confident
that this area is blocked. r2, r3 are the possible paths if the robot beliefs the
inferred area is traversable. More specifically, r2 when the region is actu-
ally traversable and r3 when the region is actually blocked. The diagram
shown on the right shows the paths that first go through an intermediate
observation location and then to the goal. Path s1 follows after observing
the inferred area blocked, s2 after observing the inferred area traversable.

Given a labelling, the paths denoted in Figure 5.2(a) with r1, r2, r3 are examples

of the three different classes of paths the robot can choose from when it chooses not

to take a sensor measurement. Depending on the confidence of the inferred area li,

the robot needs to decide between the two different interpretations of this area. A

very high confidence (P (lj) > τ ) of the interpretation that the area is untraversable,

will lead to the path r1. Whereas a lower confidence will yield an expected path
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2 RESTRICTING SENSOR ORIENTATION

cost of the r2, r3 combination that is more favorable.

(5.1)

Cns(lj ,x,vG) =
{
Cr1 if P (lj) > τ
(1− P (lj))Cr2(lj ,x,vG) + P (lj)Cr3(lj ,x,vG) otherwise

The introduction of the parameter τ is not strictly necessary because, if the expected

cost of the r2, r3 combination is lower than Cr1 , the robot could just favor the con-

servative path r1. With τ added to the definition, there is a parameter to influence

how curious or conservative the robot behaves.

The expected costs of the paths (Figure 5.2(b)) that go through an intermediate

observation can be updated in a similar fashion:

(5.2) Cs(lj ,x,u,vG) = (1− P (lj))Cs2(lj ,x,u,vG) + P (lj)Cs1(lj ,x,u,vG)

Notice that the sensor orientation θ has been dropped from the definition, because

we can orient the sensor such that the inferred cells in li will be observed. Each

location u for which the expected total path cost CS is lower than the expected

direct path cost Cns we have a positive utility and therefore a candidate waypoint.

2. Restricting Sensor Orientation

So far we have shown how the computation over all possible map labellings

can be reduced to evaluating a single, most likely instance. However, we have not

defined yet how alternatives for the sensing direction θ are selected. The goal is

to reduce the search space over θ. Depending on the evaluation mode (see also

Chapter 6) different strategies apply. The following sections detail each approach.

2.1. Sampling from the Field Model

One possible approach would use the fact that we have modeled traversability

as a Markov Random Field, which allows for sampling worlds from this distribu-

tion. Given such a sample world, we can plan a path to the goal and keep a tally at

each cell that will be increased each single time the cell is traversed. If we sample

our distribution correctly, the collection of these tallies gives us the distribution of
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cells likely to be traversed, and therefore the distribution of cells that are interesting

for us to observe.

Previous chapters have discussed efficient sampling methods for Binary Markov

Random Fields [30, 48, 49]. However, we still have to draw many samples of in-

ferred worlds and need to compute their corresponding paths, which becomes im-

practical for an online planning algorithm. For the online version of the algorithm,

we can use the Maximum A Posteriori (MAP) estimate from Chapter 4, Section 1

and restrict ourselves to just observing those cells in the MAP estimate that differ

from the current known labelling. Because if the labelling is identical, they will not

influence the path and therefore do not need to be observed.

2.2. Interesting Areas

As an alternative approach, we can ask which sites are worthwhile to observe

regardless if they can be observed from an observation location (Figure 5.3).
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start
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mid−range
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FIGURE 5.3. Illustration showing the relation between an interesting area
(marked unknown) and observation location (in magenta).

We will look at some metrics that can express this. Ideally these would be

the areas which our planning algorithm would like to collect more information in

order to compute a better path.

In defining “interesting” areas, we use the following observations. An area is

said to be interesting to observe if:
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2 RESTRICTING SENSOR ORIENTATION

• an area has not been observed we are interested in observing it to deter-

mine its obstacle labelling.

• an area contains a lot of clutter, there is a mix of the different cell labellings

“obstacle” and “free”, this area is of interest.

• an area is likely to be traversed e.g. the path lays within, or is close to it,

this area is of interest.

“Interesting” with respect to unknown cells can therefore be expressed as:∑
x

(1− Conf(x))

The confidence Conf(x) expresses how much confidence we have in the sensed

terrain data at site x. In addition, we can express interest due to clutter as:

(5.3)
∑

x

(
1−

∣∣∣∣2 (
(Gσ ⊗Occ(x))− 1

2

)∣∣∣∣)
With Gσ a smoothing kernel with a support region of σ and Occ the occupancy

map. Figure 5.4 illustrates the behavior of this definition on two example occu-

pancy configurations. The definition of interest due to closeness to the path follows
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FIGURE 5.4. The Occupancy (labelling) of the example configuration is
shown on the left. On the right, the response of the definition from equa-
tion 5.3 is shown. The comb style obstacle results in a higher degree of
interest.
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the following exponential definition:

(5.4)
∑

x

e
−d(P,x)

η

In which η controls the range of influence of the path, and d (P) denotes the mini-

mum distance to the path P .
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FIGURE 5.5. The measure of interest due to expected traversal for an ex-
ample path and η = 10

Combined, we have a heuristic definition that peaks if locations close to the

path are or unknown or cluttered:

(5.5)
∑

x

argmax
(

1− Conf(x),
(

1−
∣∣∣∣2 (

(Gσ ⊗Occ(x))− 1
2

)∣∣∣∣))
e
−d(P,x)

η

One problem with this definition is that the path P is known only until after

the robot completes its traverse and reaches the goal. Up until then we only have

the current best estimate for the path given by the current knowledge of the world.

In order for this definition to be more general we would need to summarize over

all possible paths and their likelihood.

This heuristic for determining the viewing direction is only used if the infer-

ence mechanism does not yield any inferred cells that influence the path. This is
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2 RESTRICTING SENSOR ORIENTATION

for example the case if we start out with an initial empty map and the inference

needs some initial data to bootstrap the forward simulation.

2.3. Considering the Topological Map

Since the previous definition of the interest value (eq. 5.5) has the problem that

the path P is not known, we should in principle evaluate over all possible paths.

However, evaluating all possible paths is computationally intractable. Instead we

suggest another approximation that only uses a small subset of paths.

When we consider the way that sensing data is collected, there will always be

a so-called sensing perimeter. This perimeter is located at the maximum range that

the robot is capable of sensing and it propagates when the robot moves. Obstacles

will appear at this perimeter, when the robot moves while sensing its environment.

Each obstacle that has been sensed at this perimeter can either be passed to the left

or right side. Each of these two paths belongs to a different homotopic class. Two

paths P1 and P2 are in the same homotopic class if and only if P1 can be contin-

uously distorted in P2 without intersecting the obstacles [9, 12, 14, 25, 45]. For our

evaluation, we consider only one representative path from each homotopic class

(Figure 5.6).

FIGURE 5.6. All the paths marked in blue are discarded for evaluation,
since we use only one singe representative per homotopic class (marked
in green).
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CHAPTER 5. WHERE TO LOOK

To illustrate why we can justify evaluating only one single path per homotopic

class, we have included the following example experiment. Figure 5.7 shows that

even if the path planner chooses a different path around the obstacle, the location

of the maximum of the interest metric (eq. 5.5) does not change substantially. In

addition, unless the environment changes drastically, the shortest path actually ex-

ecuted by the planner will be very close to the representative path. However, if the

environment changes drastically, it is likely that one of the other class representa-

tives becomes preferable.
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FIGURE 5.7. Example illustration that shows that for different paths in
the same homotopic class, the interest metric and most importantly the
most interesting point (marked by +) changes only slightly. (a) shows the
obstacle labelling and the two example paths. In (b), the confidence for the
cells is displayed. (c) and (d) show for each path the interest metric from
equation 5.5.
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3 SUMMARY

This heuristic is used in the same way as the definition of interest in Equa-

tion 5.5. It differs however in that, instead of returning a single interest location,

it returns one interest location for each homotopic class. The forward simulation

view planner will therefore consider all these alternate viewing angles, resulting in

sensor measurements being considered in a wider variety of areas. The data col-

lected in these areas might be useful if the current pursued path turns out to be

unattainable and an alternative one needs to be planned.

3. Summary

Having defined the point of interest in relation to the viewing angle, we can

simplify the question “where to look” to “what is of interest”. We also present

several heuristics to determine these points of interest (POI’s).

One method follows straight from our inference framework. All cells that have

a different labelling (obstacle or traversable) in the inferred and sensed world are

point of interest candidates.

As an alternate approach we use a heuristic measure that takes into account

the confidence over the obstacle labels, the amount of clutter and the likelihood

that the cells will be traversed. We consider a small subset of homotopic classes to

determine if a particular cell is expected to be traversed.

These two methods are just two example heuristics that address the question

“where to look”. Other heuristics could possibly work as well, the ones presented

here have shown to work well enough in our system. With the question of where

to point our sensor answered, we can now complete the mid-range sensing and

planning algorithm.
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CHAPTER 6

System Integration

SO far we have discussed the main details of the view-point selection mecha-

nism. What remains are some implementation details that are important to

make the algorithm work in practice. This chapter contains the collection

of implementation details that together with the framework described in previous

chapters make up a complete functional navigation algorithm. First, we will ex-

plain the sensor models used for both data aggregation and forward simulation.

Then, we will explain how we compute the cost maps that the low level (naviga-

tion level) path planner uses to navigate. Third, we will explain how we further

optimize the forward simulation computational cost. Finally, we will present an

overview of the complete system.

1. Sensor Model

For the forward simulation module in the algorithm and for the data aggrega-

tion into the navigation map, we use a simplified sensor model (Figure 6.1). The

mobility sensing system is modeled after close proximity range sensors. The local

visibility is looked up (details later in this chapter) and the terrain is retrieved from

the visible cells. For these visible cells, the gradient is computed. The local gradi-

ent is then inserted into the navigation map with full (1.0) confidence. Similar for

the midrange data, with the following difference: Only a small but longer segment

of the precomputed visible cells is used for computing the terrain gradient. The
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FIGURE 6.1. On the left, the sensor model used for the mobility sensing
system. On the right, the sensor model used for the mid-range sensor. The
color-bar indicates the confidence levels for both diagrams.

shape of this segment corresponds to the range, field of view and sensor orienta-

tion of the mid-range sensor modeled. In addition, a linear decay as a function of

the measured range is used for the confidence model. Typically we use a value of

0.9 for the data points close to the robot and 0.6 for data points at the end of the

sensor radius.

2. Computing Navigation Maps

The low level path planner [116] that is in charge of getting the robot from

its current location to the next observation position uses a normalized cost map to

find a path to the goal. Since the data gathered from the mid-range and mobility

sensing systems have different properties, we use different techniques to integrate

both into the same navigation map. Let us first define the separate cost:

ρ is the actual cost of traversing the cell based on data from the short range

obstacle detection system. This is the cost that is used in the simplest

mobility system in which mobility sensors, such as LADAR or stereo, in-

sert obstacles in the world map. In practice we use a normalized and

smoothed version of the observed terrain gradient:

ρ = f

(
|∇ (Gσ ⊗ObservedTerrain)|

ObstacleThreshold

)
with

f(x) =
{
x if x < 1
1 otherwise
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2 COMPUTING NAVIGATION MAPS

While this is a simple cost model for traversability, this function can be ar-

bitrarily complex and might encode many different other costs, our frame-

work does not restrict the choice of this model [101, 114].

ϕ expresses our knowledge about the traversability of a grid cell as discov-

ered by the mid-range sensing system. This cost is similar to ρ in that it

encodes the local traversability of the terrain. However since we are only

interested in the course layout of the environment and since the resolu-

tion of mid-range data is very low, we use only a binary representation

[free, obstacle]. In addition, we also paint empty space from the sensor

location up to the obstacle that was measured. Figure 6.2 shows an exam-

ple of such a cost map. It is useful to separate the two costs because the

mid-range data is less reliable.
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FIGURE 6.2. On the left, the ground truth obstacle labelling, the robot tra-
verses the path (in white) from top to bottom. On the right, the mid-range
sensor measurements and their expansions.

The final navigation map can now be computed as follows:

(6.1) NavMapij =
{
ϕij if P (ϕij) > 0.5
ρij otherwise
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3. Earliest Observation Position

To reduce the amount of computation, we can ask whether all the locations in

the map need to be evaluated for potential observation locations. We can use the

observation that the planner can find a cheaper detour if an obstruction is detected

in an early stage. Hence there is no need to evaluate the utility for observation

locations that are not on the boundary of the visibility contour (Figure 6.3).
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FIGURE 6.3. Example robot navigation scenario and the corresponding
utility map. It is sufficient to evaluate only the earliest observation points
(shown on the right) since the observation location with the maximum
utility (marked by the ×) will be laying on this contour.

Based on the previous argument, and the heuristic from previous chapter that

inferred obstacles are of interest, we can decrease the number of sites to be eval-

uated. The online version of our algorithm computes only the utility for those

locations that are within mid-range range of inferred obstacles.

4. System Overview

The algorithm presented so far has only dealt with the high level mid-range

sensing planning loop. The low level loop navigates the robot using the mobility

sensing information. In principle we could forward simulate and plan for way-

points continuously. However, the amount of computation involved would unnec-

essarily slow down the low level path planning cycle.
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The reason why we do not need to reevaluate possible vantage locations con-

tinuously comes from the fact that the changes caused by gathering more data from

the mobility sensing system are small and very close to the robot. The mid-range

view point planner benefits therefore little from this information, and need only to

be run when new mid-range data comes available.

The mid-range sensing planning loop is therefore only invoked when we reach

a waypoint (Figure 6.4). There are however two exceptions. First, when the system

is started, we allow the robot to collect some initial mid-range data to bootstrap

the inference process. Second, to insure the inference mechanism is not starved

from data we explicitly take a measurement and reevaluate after a certain timeout

period. This timeout is further explained in Chapter 7, Section 2.2.

In the robot experiments, the low-level navigation loop is executed on the ro-

bot computer, while the high level forward simulation is executed remotely. The

loose coupling between the two loops allows for running this computationally

more intensive task on a remote machine.

To further illustrate the inner workings of the algorithm, we have included the

illustrations Figure 6.5 and Figure 6.6 that show how the algorithm navigates from

one waypoint to another. The experimental results that will be presented in the next

chapter are similar to the example presented here, however they are not discussed

for each run individually. What is shown in the example is a typical viewpoint

planning cycle. First some initial range measurements are acquired to bootstrap

the forward simulation. Then the inference procedure produces the anticipated

obstacles, which are used in turn to evaluate the alternative paths and select the

best intermediate observation location.

We can zoom in even further and take a detailed look at one single evaluation

(Figure 6.7). Since the computation is driven by the hallucinated obstacles, we start

our “what-if” analysis by taking such an inferred obstacle and consider all the ob-

servation locations from which it can be observed (these locations are marked with

magenta in the diagram). First we compute the paths from our current location to

the goal with the obstacle present (r1, left panel in red) and without (r2, Figure 6.7
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Sense (Mobility)

Plan (D*)

Waypoint 
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Act (Traverse)

Sense (Mobility)
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Plan (Forward 
simulation)

Act (Aim Sensor)Waypoint

Terrain
map

Hallucinated
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Yes

No

FIGURE 6.4. Mid-range planning sensing algorithm overview. The left-
most flow is the low level navigation loop. The flow on the right shows the
flow of the algorithm that does the forward simulation and sensor plan-
ning. Solid lines denote control flow of the algorithm, while dashed lines
denote data transfer. Data items that have arrows entering on the sides are
receiving incremental updates, whereas a top entry depicts the creation of
the item.

left panel in green). If these two paths are the same, we need not to worry about

this obstacle since it does not influence our path.

However, if these two paths are different, we compute the path that follows if

we observe the obstacle late (r3, left panel in yellow). We also compute the paths
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Evaluated location

FIGURE 6.5. The diagrams that are used in the example presented in Fig-
ure 6.6 use the notation that is detailed out here. Counter clockwise from
the top left is depicted: Terrain map (ground truth), Observed terrain map,
Mid-range pencils of rays, binary hallucinated obstacle map and the utility
map.

that first go through an observation location and then to the goal taking into ac-

count the observation. Observing the inferred obstacle at the sensed location yields

s1 (right panel in green), and observing free space leads to s2 (right panel in red).

With these paths s1 and s2 and their costs Cns and Cs known, the utility ψ for this

obstacle and observation location is computed. If as a result of another halluci-

nated obstacle a higher utility was already computed for this observation location,

the previous value is retained.

Path Evaluation

Waypoints are in principle selected as the observation location with the high-

est utility. However, since we would like to enforce that we occasionally take a

measurement and recompute the utility, a waypoint is returned within a certain

timeout interval. This strategy will prevent the robot from travelling without sens-

ing for a long period of time and being surprised by an obstacle (see also Chapter 7,

Section 2.2).
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Reusing computation results, to speed up the computation, all the path com-

putation is cached. Specifically we can reuse much of the D∗ [116] computation by

keeping separate D∗ navigation maps for the goal location and the current loca-

tion. By setting each of these positions as goal location in its respective navigation

maps, D∗ can efficiently reuse most of the computation from previous queries to

that location.

Over the course of evaluating waypoints as beneficial vantage points, the cur-

rent and goal locations are fixed. We can thus exploit the way that D∗ computes

paths. With the separate maps for goal and current locations, D∗ can keep all the

heuristic values from previous path computations. Therefore D∗ only needs to

incrementally expand a few more nodes in the previous map for answering new

queries.

Visibility computation as used for simulating range measurements is per-

formed for every cycle, but the sensor masks and pixel indexes are all precom-

puted once upon initialization of the algorithm. The visibility computation uses a

standard ray-casting algorithm [29]. Possible improvements from using graphics

hardware for computing visibility can be achieved by indexing a 2.5D terrain sur-

face model with a unique color that is generated as a hash from the pixel location.

When we render in hardware a view of this terrain, the pixel colors in this ren-

dered image will identify all visible terrain locations from the location that view

was rendered. This enhancement was not included in the system. Relative indexes

that map the sensor footprint are precomputed for a finite set of small orientation

angles. These are then stored in a fixed size hash table using the angle as a hash.

Finding all the pixels in a particular wedge is now a constant time operation.

Frequency of evaluation controls the forward simulation loop that through

the timeout parameter. This parameter is used to enforce a mid-range sensor mea-

surement after a certain number of cycles of the inner loop. Typically this value

is set such that a mid-range sensor measurement is planned within a distance of

54



4 SYSTEM OVERVIEW

about twice the radius of the mobility sensing system. See also Chapter 7, Sec-

tion 2.2 for the influence of this timeout parameter on the overall performance of

the algorithm.

Homotopic paths are computed using a modified plane-sweep technique. A

radius originating at the current location is swept clockwise through the binary

obstacle-map giving rise to events at obstacle boundaries. If two obstacle pixels in

the scan are separated by an empty pixel, a gap event is generated. In addition if

two neighboring obstacle pixels in the scan are not neighboring obstacle pixels in

the map, another gap event is generated.

For each gap we compute a homotopic class representative by closing all the

gaps but one. We then compute a path through this open gap and repeat this pro-

cedure for each gap until for all gaps a path have been computed.
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FIGURE 6.6. In row (1), the robot is about to arrive at a waypoint. This
waypoint is reached and depicted in row (2). The robot takes a mid-range
sensor reading in the shown direction. It then plans for a new waypoint,
which is shown in row (3). This new waypoint is reached in row (4) and
the cycle repeats.
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FIGURE 6.7. In our data display utility, we can see how the paths are com-
puted. Shown here are the paths from one single evaluation location out of
the many displayed on row (2) in Figure 6.6. In the displays, we only plot-
ted those paths that correspond to the obstacle cells belonging to the seg-
ment marked with a white ⊗. All the cells marked in magenta have been
evaluated since they are within range of observing the hallucinated obsta-
cle. The view point planning algorithm has selected the location marked
with a green ⊗ as an intermediate waypoint. The labelling of the paths
follows the same convention as in Figure 5.2.
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Regular Gap

No-Neighbor Gap

Sweep Line

FIGURE 6.8. A radial scan line sweeps a binary obstacle map. Events are
generated if two obstacle pixels in the scan are separated by an empty pixel
and also if two neighboring obstacle pixels in the scan are not neighboring
obstacle pixels in the map.
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CHAPTER 7

Empirical Evaluation

TO validate the proposed algorithm various experiments were carried out.

These include results from field tests with an autonomous vehicle, as well

as results from a much larger set of simulated experiments. The following

sections will describe these experiments and show their results.

In the first section, we describe a set of experiments that serve as an example

for the applicability of the algorithm. The example experiments described were

carried out with real robotic platforms in outdoor environments. The first of these

example experiments is using mid-range data from a wide-baseline stereo algo-

rithm in a mostly structured environment. The second and third examples describe

the usage of mid-range data from a laser range finder in a somewhat unstructured

environment.

The second section looks in more detail at the performance of the algorithm

and the influence of the parameters. To be able to evaluate performance and the

influence of parameters properly, the algorithm was used in a controlled environ-

ment (simulation mode). All the simulation experiments use real terrain data for

ground truth reference. The example simulation batch that is presented first is de-

scribed in detail, whereas the following examples are summarized.
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1. Example Experiments with Laser Range Finder and Wide-baseline Stereo

Since we have discussed two different types of mid-range sensing methods, we

have conducted experiments for both of these methods. First, we will present some

examples in which we use range data from a wide-baseline stereo setup. Second

we will show some results from using laser range finders.

1.1. Experiment with Wide-baseline Stereo

For this example experiment in an outdoor environment we compare our ap-

proach to the standard proximity sensing and planning approach.

Experimental Setup. In this example we had our Pioneer DX robot navigate

across the parking lot to find a goal behind a building. The Pioneer is equipped

with a single camera, (the second image was captured manually at a fixed three

meter baseline to collect wide-base line stereo images).

From these images a sparse set of 3D points were computed with a wide base-

line stereo algorithm [83, 118]. The points were then used as the single source of

information in an off-line algorithm to compute the next best vantage point. The

off-line navigation and view planning algorithm used a camera field of view that

was identical to the camera on the robot. With this particular configuration of base-

line, range measurements of up to 100M can be acquired. Figure 7.1 shows a typical

image pair that was used to compute this data1. See Table 7.1 for experimental de-

tails.

Map size Map size Resolution Distance Mobility Mid-range FOV mid-range Timeout β
x (M) y (M) M/cell Start-Goal Range (M) Range (M) degrees Cycles [0 . . . 1]
100 100 0.5 45 1 100 45 20 0.7

TABLE 7.1. Smith Hall parking lot run, experiment parameters.

Results. The path that the robot followed in this example is indicated by a

red trace in Figure 7.2. The mid-range sensing/planning approach did detect that

1see also appendix A
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1 EXAMPLE EXPERIMENTS WITH LASER RANGE FINDER AND WIDE-BASELINE STEREO

FIGURE 7.1. The Pioneer mobile robot with camera mounted is shown on
the left. Shown on the right is the example range data that was computed
by a wide-baseline stereo system, using a region based approach (See also
appendix A).

� � �� �

FIGURE 7.2. The experiment was conducted in the parking lot, with the
start in front of the building and the goal (out of view) behind it. The
red trace sketches the path as computed by a mobility only approach, the
green trace shows approximately the path from the mid-range sensing ap-
proach.

the straight path to the goal was blocked and found immediately a passage around

the obstacle, as indicated by the green trace in Figure 7.3.
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Hamburg Hall

Smith Hall

Cars

FIGURE 7.3. a birds-eye view of the example test scenario in a struc-
tured environment, in which the mobility sensing navigation skirts around
the building (red) and the Mid-range sensing/planning algorithm (green)
finds a passage and heads straight towards it.
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1 EXAMPLE EXPERIMENTS WITH LASER RANGE FINDER AND WIDE-BASELINE STEREO

1.2. Experiment with Laser Range Finder

Further experiments were done with a robotic Deere eGator (Figure 7.4). This

allowed us to test our approach in much more natural environments.

Experimental Setup. The autonomous vehicle that we have been using for

these experiments is an eGator from Deere. This vehicle was modified by the Na-

tional Robotics Engineering Consortium to incorporate sensing, computation and

actuation for autonomous navigation.

FIGURE 7.4. The robotic Deere eGator, equipped with a nodding laser
range finder which gives us range measurements up to 60M in a 100◦ hor-
izontal and 45◦ vertical FOV.

Our algorithm sits right on top of the vehicle navigator and receives its sensing

data unprocessed from the vehicles sensing system. Since we do not have a mid-

range type of sensor on the vehicle, we have simulated mid-range sensing in the

following way:

Range: The range measurements are simulated by cutting scanner data off

at 4M for the mobility system, the mid-range system is providing the full

sensor range.

FOV: The Field of view of the sensor is limited to 6◦ by artificially selecting

slices from the scan. Aiming the sensor is done in a similar matter, the

slice that corresponds to the desired angle is returned.
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Examples. Included are two experiments that were conducted with the eGa-

tor. The first experiment was staged on the “Cut” which is a grassy area that has a

few trees and some other non-natural obstacles (Figure 7.5). The second example

was set in Shenley park, this area is slightly larger and contains a higher density of

obstacles.

� �� �

� � �� �

� �� �
� �� �

� � �	 	

FIGURE 7.5. Example experiment “On the Cut”: In the left display: the
robot is at its starting position, the path marked in green is planned by the
mid-range sensing and planning framework. It runs through the planned
vantage points (marked yellow) where a mid-range sensor measurement
is taken. The path marked in red is taken if only mobility sensing was
used. On the right: the robot has reached its goal position which is behind
the initial obstruction.

Map size Map size Resolution Distance Mobility Mid-range FOV mid-range Timeout β
x (M) y (M) M/cell Start-Goal Range (M) Range (M) degrees Cycles [0 . . . 1]
150 150 0.5 75 4 40 6 20 0.7

TABLE 7.2. “On the Cut”, experiment parameters.

Map size Map size Resolution Average distance Mobility Mid-range FOV mid-range Timeout β
x (M) y (M) M/cell Start-Goal Range (M) Range (M) degrees Cycles [0 . . . 1]
150 150 0.5 140 4 40 6 20 0.7

TABLE 7.3. “In Shenley park”, experiment parameters.

1.3. Discussion

The examples show that our presented algorithm can successfully navigate

autonomous vehicles in unknown terrain. The inference mechanism, the core of

the forward simulation view planning and navigation strategy, assures that the

most likely inferred obstacles will be observed.
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(a) (b) (c) (d)

FIGURE 7.6. Example experiment “On the Cut”: The internal maps of the
mid-range sensing and planning algorithm are shown after the robot com-
pleted its run. In (a), the binary obstacle map as sensed during the run are
shown. (b) shows the observed gradient from the mobility sensing system.
The mid-range data is displayed in display (c). The hallucinated obstacles
are shown in panel (d).
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FIGURE 7.7. Example experiment “In Shenley park”: In the left display:
the robot is at its starting position, the path marked in green is planned
by the mid-range sensing and planning framework. It runs through the
planned vantage points (yellow marked) where a mid-range sensor mea-
surement is taken. On the right: the robot has reached its goal position
which is behind the initial obstruction.
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(a) (b) (c) (d)

FIGURE 7.8. Example experiment “In Shenley park”: The internal maps of
the mid-range sensing and planning algorithm are shown after the robot
completed its run. In (a), the binary obstacle map as sensed during the
run are shown. (b) shows the observed gradient from the mobility sensing
system. The mid-range data is displayed in display (c). The hallucinated
obstacles are shown in panel (d).
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2. Detailed Analysis

After the encouraging examples from previous section, we will now take a

closer look at the performance of the algorithm. We describe an experimental pro-

tocol in the following few sections that allows us to run controlled experiments for

a substantial number of runs on three different terrain datasets.

First we will describe how these experiments are carried out. Emphasis is on

the experimental procedure. We then discuss in detail an experiment that shows

clearly how the algorithm performs. This is followed with a discussion of the in-

fluence of the parameters used in our experiments which is supported by some

example experiments. We then continue with the discussion of a few experiments

that show results on publicly available terrain data.

2.1. Overview

For running our controlled experiments, we have setup up simulator that uses

2.5D elevation maps. We have successfully used maps from both the U.S. Geolog-

ical Survey and also high resolution maps from the CMU Helicopter Lab and the

CMU 3D Computer Vision Group [119, 120].

These maps are used in simulation as ground truth, the simulated vehicle will

sense by using the same sensor model as used for the forward simulation (Chap-

ter 6, Section 1) from this ground truth terrain map. Most of the forward simulation

framework doubles as simulator in which the algorithm is evaluated.

The robot itself is modeled as a single point, and can freely move without

any restrictions in the plane. This does not pose a serious limitation, since the

view planning navigation algorithm we have presented is a high level planner, and

we could ultimately use low level vehicle controller that does incorporate vehicle

dynamics [54]. Because the robot is being modeled as a single point, its motion

commands reduce to updating a system wide parameter for the current location.

Sensing actions are performed using this system variable.

67



CHAPTER 7. EMPIRICAL EVALUATION

Typically an experiment is setup in the following way. Fist we acquire terrain

data which is then scaled such that it matches the scale we would otherwise have

sensed with. to match a realistic obstacle gradient threshold. With this parameter

known, a script will then generate the largest connected traversable component for

which all coordinates are stored. This set of components is then used to randomly

draw the number of goal and start locations. These might also include trivial ones

such as shown in Figure 7.11 on the left. Typically paths that span less than twice

the range of the mobility sensing system are discarded since they tend to represent

trivial scenarios in which no planning would be required.

We use then another script to generate the initialization files that include the

settings for the simulator. This script includes computing the priors for the ob-

stacles and free space. The priors for each of the two classes are computed by a

standard nonlinear least squares fit of the terrain labels and gradient to a Gauss-

ian distribution. The simulator is then started with the initialization file and data

collection begins.

Depending on the verbosity level in which the simulator is initialized, we can

either examine in full detail each single path evaluation (as shown in Figure 5.2) or

summarize the results.

2.2. Analysis

Additional experiments were conducted using the environment as displayed

in Figure 7.9. This terrain data from an open coal mine was collected by the CMU

Helicopter Lab and is of very high spatial resolution. We sampled it down to a

resolution of 0.5M/cell. See Table 7.4.

For a controlled experiment, we ran simulations of the system for different

start and goal locations and different system configurations. A complete elevation

map of the environment is used for generating sensor data in the simulation, but it

is not known by the robot initially.
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FIGURE 7.9. Top: a panorama view of the open coal mine test site from
which an elevation map was collected. Bottom: a rendering of this eleva-
tion map.

Map size Map size Resolution Average distance Mobility Mid-range FOV mid-range Timeout β
x (M) y (M) M/cell Start-Goal Range (M) Range (M) degrees Cycles [0 . . . 1]
235 258 1 121 12 120 5 18 0.7

TABLE 7.4. Open coal mine data-set, experiment parameters.

We have executed 500 trial runs with randomly chosen start and goal positions,

given the constraint that there exists a path from start to goal.

We analyze the data from these runs in three ways. First, we compare the

lengths of the paths generated by using the mid-range sensor planning method

with the paths executed by using mobility sensing only. This is shown in Fig-

ure 7.10, in which the runs are sorted in the order of increasing gain for the sensor-

based planning method. This first type of analysis is necessary to assess the amount

gained from using sensor planning. It is important to note that the gain can vary

dramatically depending on the start and goal points. Intuitively, little gain can be

expected if the area between the start and goal points is completely unobstructed,

in which case any planning strategy would perform well.

The graph shows clearly that for an unobstructed path, the algorithm leads

to a slightly longer path. This is because the vehicle might veer off the “path” in

order to get better coverage (Figure 7.11). On average the gain in path length is
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FIGURE 7.10. The Mid-range planning sensing algorithm compared to the
standard navigation approach. A positive percentage shows how much
shorter the path from the mid-range sense/planning is over the mobil-
ity only approach. The average gain in path length is +18%. However,
more interesting is that +76% of the runs exhibit positive gain (up to al-
most +200%) and that of those that have negative gain, the maximum loss
is -6%. This is due to the overhead introduced by the explore behavior that
tries to find better paths. For 22% of the runs there was no gain or loss.

+18%. Also, 76% of the runs exhibit positive gain (up to almost 200%). And of

those that have negative gain, the maximum loss is only -6%, furthermore, as the

left illustration in Figure 7.11 shows, these cases are those for which the paths in

the environment are unobstructed. A representative sample of runs was randomly

selected from these 500 individual runs and plotted in Figure 7.11.

Second, it is important to compare the paths obtained with our sensor plan-

ning heuristics with the plan generated by using a mid-range sensor that senses

all the time in every direction, since our claim is that the algorithm generates a

”good” selection of when/where to sense during motion of the robot. If our plan-

ner were to generate paths that have substantially higher cost than those generated

by using the sense all the time/everywhere strategy, it would indicates that our

heuristics can be improved. This part of the analysis is summarized in Figure 7.13,

in which the lengths of the paths generated from our planning approach and from

the sense all the time/everywhere approach are plotted (with (+)) as a scatter plot.
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2 DETAILED ANALYSIS

(a) (b)

FIGURE 7.11. Typically, bad performance is due to the fact that little gain
can be expected if the area between the start and goal points is completely
unobstructed. This is due to the fact that the vehicle might veer off the
“path” in order to get better coverage (diagram on the left). Much gain
can be found if a major obstruction is anticipated early (diagram on the
right).

FIGURE 7.12. A random sample of runs drawn from the set of 500. In
green are shown the paths resulting from our mid-range sensing and nav-
igation framework. The paths shown in red are from a planner that has to
rely on mobility only sensor data.
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The plot indicate that the lengths are similar, i.e., the values are scattered near the

diagonal (the correlation coefficient is ρ = 0.99). This result verifies empirically our

hypothesis that continuous sensing of the environment is not necessary, provided

that suitable heuristics are used for computing when and where to sense.
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FIGURE 7.13. The Mid-range planning sensing algorithm compared in a
scatter plot to a hypothetical continuous sensing method with an unlim-
ited range, 360◦ view range finder (no viewpoint planning (+)). and also
compared to the true shortest path (◦). The vertical axis is the path length
from the omniscient planner and also the planner using continuous sens-
ing and planning. The horizontal axis is the path length from our Mid-
range sensing/planning method. Results show that the performance of
our mid-range sensing approach are almost as close to the optimal as they
were to the continuous sensing planner.

Finally, a third type of analysis uses the paths generated by an omniscient

planner that has complete knowledge of the entire map prior to execution as the

baseline for comparison. Such an omniscient planner generates the shortest paths

that can be generated given the environment and the selections of start and goal

locations. As such, it is a useful baseline to quantify the degradation of perfor-

mance due to limited sensor horizon. This analysis is shown in Figure 7.13 as well,

in which the paths generated by using our mid-sensor planning strategy and the

paths executed by omniscient planner (marked with ◦) are plotted again as a scatter
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plot. The graph shows that the paths generated with mid-range sensor planning

are almost as close to the optimal from the omniscient planner as they were to

the continuous sensing planner. Specifically, the correlation coefficient is ρ = 0.98

between the paths planned by the omniscient planner and our mid-range sensor

planning approach.

In addition we have conducted experiments to determine the influence of the

two main parameters of the system. The frequency of taking measurements (see

also Chapter 6, Section 4) is determined by the timeout parameter. The timeout

parameter enforces taking measurements even if the forward simulation does not

expect that there is anything to sense. The following diagram (Figure 7.14), shows

the result of the randomly drawn start and goal locations over a range of parameter

settings. The plot suggests, that enforcing a measurement after a certain timeout

seems to be unnecessary. However, there will be situations where not having had

any data to infer from and not enforcing a measurement from time to time will

lead to not having anticipated an obstacle and incurring a longer path. The timeout

parameter has been varied in increments of 5 starting at the range of the mobility

sensing system and extending well out into the range of the mid-range system.
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FIGURE 7.14. A random sample of start and goal tuples were evaluated
over a wide range of the timeout parameter. Each line represents an in-
dividual experiment in which the start and goal situation are fixed, while
the timeout parameter is changed.

73



CHAPTER 7. EMPIRICAL EVALUATION

Intuitively, one would expect the variation of this timeout parameter to have

a substantial effect on the performance of the algorithm. However, after carefully

studying these results it turns out that, in all these cases, the initial data that is

collected at the start is sufficient to bootstrap the algorithm. To be more specific,

when the system gets data initially the inference mechanism will keep us interested

in looking at inferred obstacles until these are all confirmed and do not expand any

further. At that time, we will have found an empty passage next to the obstacle and

our laser range finder will have been targeted at this empty corridor. Moreover,

when our ray hits this corridor it will have hit in all our cases another obstacle

further away. This is also shown by example in Figure 6.2.

Having said that, it is easy to come up with a counter example that will break

this hypothesis. If one would present a very sparse environment, with for example

a single obstacle. The inference mechanism will not infer any new obstacles after

the first obstacle have been steer clear from. If there would be yet another obstacle

that was just out of range, then the algorithm will be surprised by this when it is

eventually detected by the mobility sensing system.

In practice, this is however not a major issue, since we can set this timeout

fairly high and still be safe, because we only need it to catch obstacles that are well

beyond our mid-range sensing range.

The other algorithm parameter β controls the amount in which the obstacle

inference mechanism weighs the importance of the labels from its neighbors. In

Figure 7.15 and 7.16 the results of this example experiment are shown.

Figure 7.16 shows that even though the difference between the number of in-

ferred cells is fairly high, the influence on the path is negligible. This behavior is

expected, since the MRF models local structures especially well. The MRF will only

influence large regions, if there is enough evidence to warrant a grouping, or the

neighboring have a very weak confidence level.
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FIGURE 7.16. Obstacle inference as a function of the neighborhood inter-
action term β. On the left, obstacles were inferred with β = 0. On the right,
inference with β = 1.
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Much in the same flavor as the batch that was presented earlier in this section,

we have acquired terrain maps from the USGS database and setup similar exper-

iments. The examples shown here, have the same parameters (Table 7.5 and 7.6)

but were generated independently.

The terrain map as rendered in Figure 7.17 is from the vicinity of Albuquerque,

New Mexico, where as the second set uses a terrain patch from the vicinity of

Flagstaff Arizona. The results are discussed in the same manner as before, but

more briefly.

FIGURE 7.17. A rendering of the USGS elevation map from a terrain patch
in the vicinity of Albuquerque, NM.

Map size Map size Resolution Average distance Mobility Mid-range FOV mid-range Timeout β
x (M) y (M) M/cell Start-Goal Range (M) Range (M) degrees Cycles [0 . . . 1]
3000 2000 10 634 40 1000 8 12 0.7

TABLE 7.5. New Mexico data-set, experiment parameters.

As before, we first compare the lengths of the paths generated by using the

mid-range sensor planning method with the paths executed by using mobility

sensing only. This is shown in Figure 7.18.

On average the gain in path length is +21%. Also, 75% of the runs exhibit

positive gain (up to almost +200%). And of those that have negative gain, the

maximum loss is -16%.
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FIGURE 7.18. The Mid-range planning sensing algorithm compared to the
standard navigation approach. A positive percentage shows how much
shorter the path from the mid-range sense/planning is over the mobility
only approach. The average gain in path length is +21%. In addition, +75%
of the runs exhibit positive gain (up to almost +200%) and that of those that
have negative gain, the maximum loss is -16%. This is due to the overhead
introduced by the explore behavior that tries to find better paths (see also
Figure 7.19). For 20% of the runs there was no gain or loss.

FIGURE 7.19. The path with a negative gain of 11% is due to the fact that
the viewpoint that is planned is in comparison to the total path length far
away. The start is marked yellow, the goal green.
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Second, we compare the paths obtained with our sensor planning heuristics

with the plan generated by using a mid-range sensor that senses all the time in

every direction. The result of this analysis is summarized in Figure 7.20, in which

the lengths of the paths generated from our planning approach and from the sense

all the time/everywhere approach are plotted (with (×)) as a scatter plot. The

correlation coefficient for this experiment is (ρ = 0.85).

P
at

h
le

ng
th

[c
el

ls
]

un
lim

ite
d

ra
ng

e,
36

0◦
vi

ew
(×

)

20 40 60 80 100 120
0

20

40

60

80

100

120

Path length Mid-range sensing and planning [cells]

FIGURE 7.20. The Mid-range planning sensing algorithm compared in a
scatter plot to a hypothetical continuous sensing method with an unlim-
ited range, 360◦ view range finder (no viewpoint planning (×)). The ver-
tical axis is the path length for the planner using continuous sensing and
planning. The horizontal axis is the path length from our Mid-range sens-
ing/planning method.

Third, we use the paths generated by an omniscient planner that has complete

knowledge of the entire map prior to execution as the baseline for comparison. This

analysis is shown in Figure 7.21, in which the paths generated by using our mid-

sensor planning strategy and the paths executed by omniscient planner (marked

with ◦) are plotted again as a scatter plot. For this experiment, the correlation

coefficient is ρ = 0.77.
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FIGURE 7.21. The Mid-range planning sensing algorithm compared in a
scatter plot to the true shortest path (◦). The vertical axis is the path length
from the omniscient planner. The horizontal axis is the path length from
our Mid-range sensing/planning method.
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The second set of example experiments using a USGS database terrain patch

from a location close to Flagstaff,AZ. The results from this experiment are pre-

sented in the Figures 7.23 to 7.25.

FIGURE 7.22. A rendering of the USGS elevation map from a terrain patch
in the vicinity of Flagstaff,AZ.

Map size Map size Resolution Average distance Mobility Mid-range FOV mid-range Timeout β
x (M) y (M) M/cell Start-Goal Range (M) Range (M) degrees Cycles [0 . . . 1]
3000 2000 10 991 40 1000 8 12 0.7

TABLE 7.6. Arizona data-set, experiment parameters.

First, compare the lengths of the paths generated by using the mid-range sen-

sor planning method with the paths executed by using mobility sensing only. This

is shown in Figure 7.23.

On average the gain in path length is 19%. Also, 66% of the runs exhibit posi-

tive gain (up to almost 177%). And of those that have negative gain, the maximum

loss is only -7%.

Second, we compare the paths obtained with our sensor planning heuristics

with the plan generated by using a mid-range sensor that senses all the time in

every direction. The result of this analysis is summarized in Figure 7.24, in which

the lengths of the paths generated from our planning approach and from the sense

all the time/everywhere approach are plotted (with (×)) as a scatter plot. The

correlation coefficient found for this experiment is ρ = 0.98).
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FIGURE 7.23. The Mid-range planning sensing algorithm compared to the
standard navigation approach. A positive percentage shows how much
shorter the path from the mid-range sense/planning is over the mobility
only approach. The average gain in path length is +19%. In addition, 66%
of the runs exhibit positive gain up to almost +177% and that of those that
have negative gain, the maximum loss is -7%. This is due to the overhead
introduced by the explore behavior that tries to find better paths. For 25%
of the runs there was no gain or loss.

Third, we use the paths generated by an omniscient planner that has complete

knowledge of the entire map prior to execution as the baseline for comparison. This

analysis is shown in Figure 7.25, in which the paths generated by using our mid-

sensor planning strategy and the paths executed by omniscient planner (marked

with ◦) are plotted again as a scatter plot. For this experiment, the correlation

coefficient is ρ = 0.98.

81



CHAPTER 7. EMPIRICAL EVALUATION

P
at

h
le

ng
th

[c
el

ls
]

un
lim

ite
d

ra
ng

e,
36

0◦
vi

ew
(×

)

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

Path length Mid-range sensing and planning [cells]

FIGURE 7.24. The Mid-range planning sensing algorithm compared in a
scatter plot to a hypothetical continuous sensing method with an unlim-
ited range, 360◦ view range finder (no viewpoint planning (×). The ver-
tical axis is the path length for the planner using continuous sensing and
planning. The horizontal axis is the path length from our Mid-range sens-
ing/planning method.
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FIGURE 7.25. The Mid-range planning sensing algorithm compared in a
scatter plot to the true shortest path (◦). The vertical axis is the path length
from the omniscient planner. The horizontal axis is the path length from
our Mid-range sensing/planning method.
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2.3. Discussion

We have shown examples in which our algorithm uses mid-range laser range

finder data as well as data from a wide-baseline stereo system to successfully plan

view points and navigate a real robot in an outdoor environment. In addition we

have performed an extensive evaluation of the framework by means of experi-

ments with a simulator that uses real terrain data.

Our analysis shows that the mid-range sensing and planning algorithm per-

forms on average better than a mobility sensing only navigation approach. More-

over, opportunistically the algorithm has shown to outperform the mobility sens-

ing only approach by a factor of two. In the few cases that our mid-range sensing

and navigation is outperformed, the paths are trivial and a no sensing at all method

would have performed as well.

If we compare our approach to an ideal, continuous unlimited range, unlim-

ited field of view sensing approach, we often perform almost as good. Typically

we find a correlation coefficient of 0.98.
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Discussion

NAVIGATION for ground vehicles is severely hindered by the limitations

of sensor capabilities. The limited sensing range that is available often

leads to inefficient paths because important terrain features or obsta-

cles are not observed in a timely manner, so the navigation algorithm has no other

choice than to skirt past these obstructions.

The use of mid-range sensing can alleviate this problem, since these types of

sensors will provide data up to a few kilometers. However, applicability of these

mid-range sensing devices is limited because of both geometric constraints and the

type of data that is returned. Mid-range data is typically sparse and mid-range

sensors need to be properly aimed at the region of interest such that the sensor’s

field of view is not limited by nearby obstructions.

In this thesis both of these issues are addressed. We propose a novel mid-range

sensing and navigation strategy that relies on a new forward simulation technique

that uses hallucinated worlds to determine “when and where” to look. This for-

ward simulation is based on a novel application of a well studied inference mech-

anism in a probabilistic framework to reason about the most likely future world

scenario. Based on this prediction, a cost benefit analysis is performed to deter-

mine which locations on our way to a goal destination could be used to acquire

more mid-range data to aid navigation.



CHAPTER 8. DISCUSSION

We demonstrate that the concept of forward simulation can be brought suc-

cessfully into a working algorithm. This forward simulation framework evaluates

alternative scenarios for navigation or sensing based on the most likely scenario.

The algorithm is shown to be able to improve navigation of a robot in both simu-

lated and real scenarios. The sensing and navigation strategy can opportunistically

reduce the path cost by 50% in comparison with a mobility only navigation strat-

egy. The algorithm is also shown to degrade gracefully. More specifically, the algo-

rithm does not incur any significant extra cost by strategically planning waypoints.

Much work remains to be done. Most importantly we would like to extend our

framework such that better prior models could be used. We have demonstrated

examples on real autonomous vehicles.

The current implementation of the forward simulation is based upon a Markov

Random Field (MRF) inference mechanism. Although quite powerful in expressing

local spatial groupings, the MRF is not adequate to capture structures in real envi-

ronments. Alternative inference mechanisms or possibly even a hierarchical multi

resolution MRFs can be explored in the future such that more intricate structures

could be inferred. Work in the pattern recognition community is directly related to

this question, and new techniques from this field could possibly be tailored to suit

our needs.

With respect to making the system ready for the field, more improvements

may be made. The current system uses a fixed map. For an autonomous vehicle

that might traverse long distances, this is somewhat impractical. This issue can be

addressed by using so called “scrolling maps”. These maps stay centered around

the vehicle while the vehicle travels. In addition, we would like to further reduce

the cycle time, which could be achieved by using a multi-resolution representation

of the maps. Forward simulation can initially be applied on a coarse scale and then

in a higher resolution if necessary. The inference mechanism can likely benefit from

this multi-resolution evaluation approach.
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Wide baseline stereo for unstructured
environments

RECOVERY of scene structure at long distances, e.g., hundreds of meters is

critical for mobile robot navigation in expansive outdoor environments.

Structure recovery at such distances is not possible from fixed, on-board

stereo systems because a much wider baseline is needed than can be achieved on

a single robot. Generally speaking, very wide baseline between camera views can

be achieved either by accumulating images over long distances, i.e., structure from

motion (SFM), or by using images taken from widely separated robots, i.e., coop-

erative stereo. SFM is often favored because it simplifies the matching problem

by using small incremental motion between images. In many cases, however, it is

not possible to accumulate image data over a sufficiently long baseline to recover

structure accurately. This is particular true for structure recovery in the direction

of motion. Furthermore, in cluttered environments, it is difficult to track a large

enough set of features to recover 3-D structure.

To address the potential shortcomings of SFM in robotics systems, we have in-

vestigated the feasibility of the alternative approach, cooperative stereo, to perform

image matching over the very wide baselines necessary for long-range structure re-

covery. This approach is attractive because it makes no assumption on the robot’s

motion and, in principle, requires only images from a few positions of the robots.



APPENDIX A. WIDE BASELINE STEREO FOR UNSTRUCTURED ENVIRONMENTS

Recent advances in wide-baseline matching in the Computer Vision literature pro-

vide a solid basis to tackle this problem. In particular, the landmark work of Zis-

serman and his colleagues [107] provides the basic tools for wide-baseline stereo.

Our work is based in large part on that formulation; we extend it and evaluate it in

the context of very wide baselines for robotic navigation.

For a mobile robot control standpoint, recent results in multi-robot coopera-

tion [24] show that multi-robot planners can support the coordination of multiple

robots to ensure coverage of a scene by their sensors.

Cooperative Stereo

In order to make a stereo measurement, a single robot would have to cooperate

with another robot to take the second image [24] [117]. In a setup like this, there is

only a limited amount of control over the camera position. It is therefore necessary

for the stereo algorithm to deal with significant different views and occlusions, dif-

ferent scale and camera rotation. We want to perform cooperative stereo in three

a b c

FIGURE A.1. A few typical outdoor scenes. (a) man-made environments
at moderate distances, e.g., up to 100m. (b) environments with little regular
structure. (c) a fair amount of structure but at a large distance.

broad classes of environments, as shown in Figure A.1. First, we want to address

environments that contain a lot of structure, such as man-made environments, as

shown in Figure A.1(a), at moderate distances, e.g., up to 100m. This type of en-

vironment is the closest to the examples typically studied in the existing work on

wide-baseline stereo. The second class of environments is shown in Figure A.1(b)

in which little regular structure can be extracted from the images. In such cases,
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we need to rely on ill-defined features such as regions uniform in color or texture

rather than on geometric features such as straight lines and corners. A third case is

shown in Figure A.1(c) in which the scene does contain a fair amount of structure

but the distance to the camera and the baseline between the robots is consider-

ably larger. The large aspect difference between the images induced by the very

wide baseline complicates stereo matching substantially. The environments of Fig-

ure A.1(b) and Figure A.1(c) depart from the type of environments normally used

in wide-baseline stereo work and are closer to target environments for colonies of

mobile robots operating in outdoor environments.

1. Algorithm Description

In this section, we describe the algorithm for recovering epipolar geometry and

scene structure, from widely separated viewpoints. After extracting features from

the two images, as described in the next section, we apply progressively tighter

filtering criteria to the set of candidate matches generated from the two sets of

features from the two images.

The overall strategy for finding a set of matching regions can be summarized

as follows. Each region i from image j, Rj
i , is represented by a feature vector f j

i

describing global characteristics of the regions, for example, color histogram. f j
i is

used for establishing initial matches between regions based on global properties.

In addition, each Rj
i is warped to a new image Rj

i

o
in a normalized frame, a fixed

square patch, using a homography Hoj
i computed from the region’s parameter. If

two image regionsR1
k andR2

l correspond to the same, approximately planar, phys-

ical patch, then Roj
k and Roj

l should be similar. This fact is used to further refine

the set of matches between regions. Finally, given a candidate set of matches, the

homography Hn mapping the first region R1
kn of correspondence n to the second

region R2
ln is estimated, using the homography induced by Ho1

kn
and Ho2

ln . The

approach and the notations are summarized in Figure 1.

Below, we describe the three levels of filtering and refinement of the set of

candidate matches, leading to the final evaluation of the epipolar geometry.
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FIGURE A.2. General approach to finding matching regions.

Feature Extraction

The scenes we consider can be roughly divided in two classes: mostly geo-

metric man-made and natural scenes. The approaches taken for these scenes differ

only in the first phase of the algorithm. In both cases, we have ruled out approaches

based solely on point features in favor of region-based techniques for the reasons

stated above. Similarly, we rely on the approximate planarity of the image regions

to reduce the number of matches needed for geometry recovery and to further con-

strain matching.

Feature Extraction: Line Groupings. It has been shown, in the context of

3-D modeling from multiple aerial images [4] for scenes with substantial geomet-

ric structure content, regions can be extracted by grouping line segments. Four

line segments are normally needed for each region, although, in practice, three

line segments are sufficient with the fourth one being inferred. To avoid searching

through all possible 3-tuples of line segments, the endpoints of the line segments

are first stored in bins equally spaced in the horizontal and vertical directions. Bins

of 50-pixel width are used. For each segment, candidate segments with connecting
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endpoints are retrieved by consulting the appropriate bins. Line segments are di-

vided into two categories: near-horizontal and near-vertical lines. The two groups

are defined based on large tolerance, ± 20o, between the lines and the horizontal

and vertical directions. Groups are formed by finding connecting lines segments

from the two categories. The use of the image axis as reference to aid in grouping

restricts somewhat the generality of the approach. In practice, for images taken by

mobile robots in which in-plane camera rotation is limited, the number of groups

that are missed is small enough that it has no effect on the performance of the sys-

tem. The result of this initial grouping approach is a set of cycles which is further

filtered based on thresholds on the ratio of lengths of opposing line segments and

on the elongation of the regions enclosed by the cycles.

Each region Rj
i corresponding to a cycle is mapped to a normalized reference

patch by computing the transformationHoj
i that maps its vertices to a 15x15 square.

The intensity values (Y channel) in the region defined by the cycle are mapped to

the normalized patch. Such a small size is used for the normalized patch so that

comparison of regions for initial matching is fast. It is important to note that the

normalized patches are used only for filtering out correspondences; the transfor-

mations between regions are estimated by using all the pixels within the regions.

Figure A.3 shows a typical set of line groupings and an example of normalized

patch representation. Typical for these real images, a number of spurious cycles

are detected and the normalized patches may not match even if the groups are

geometrically correct. Filtering and refinement of the matches are described in the

sections below.

Each region Rj
i is represented by a feature vector f j

i which includes:

• Area and axes of the region. The axes are computed by taking the eigen-

vectors of the second moment matrix of the region.

• A color histogram computed in the U and V channels of the YUV color-

space. Each channel was converted into a 3bit color-depth. These two

vectors were concatenated in a 64-bin histogram.
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This feature vector is used for generating initial matches as described later in

this section.

a b c
FIGURE A.3. Lines extracted from an image (a), a hypothesized line
grouping (b) and the reference normalized patch (c)

Feature Extraction: Regions. A color segmenter [19] is used in natural scenes

that lack strong geometric features. The same feature vectors as before, area and

axes, and color histogram, are used for representing each region. Using the same

feature vectors as in the case of regions computed from line groupings allows us to

use exactly the same machinery for matching.

In addition, each region is warped to a normalized patch as in the case of the

four-cycle representation above. More precisely, each segmented region is mapped

to a reference square patch. The transformation is estimated by mapping the two

axis and the two elongations of the second moment matrix to the reference axes.

Figure A.4 shows a typical example of a segment from an image segmentation.

The ellipse computed from the second-order matrices is shown as is the normal-

ized reference frame. As can be seen in this example, many regions are segmented

incorrectly due to over-segmentation, occlusion, and photometric variations. This

is typical of real outdoor images. It is the job of the matching algorithm described

below to retain those few regions that can be matched reliably.
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a b c
FIGURE A.4. a typical segment from an image segmentation (a), the prin-
cipal axis (b) and the normalized reference patch (c).

Initial Filtering of Matches

Using the feature descriptor computed as described above, a first filtering step

is applied to eliminate incorrect matches. Due to the large number of possible

matches, this first step uses low-computation tests. Also, liberal thresholds are

used to avoid filtering out acceptable matches at this stage.

We first reject all matches that have a significant mismatch in area, axis length

and orientation. Matches are rejected if the area is off by a factor of 10, an axis

mismatch by a factor of 3 or a 30◦ orientation difference. In order to further re-

duce the candidate matches, we only keep the 20 best color matches. These are the

matches with the smallest sum of squared differences (L2-distance) of the two color

histograms.

This initial filtering reduces the number of potential matches typically to a

dozen or so out of an initial set on order of one thousand candidates.

Initial Matching

For the remaining candidates the normalized gray-scale patch is used to com-

pute a similarity measure. For this, we will use the result, as presented by Pritchett

and Zisserman [95], that cross-correlation is geometrically invariant if the pixels of
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two planar patches are mapped unto each other under a homography. So if the

result of a cross-correlation between these warped patches yield a high correlation

score, the underlying assumption that the patches are the same and planar holds.

To compute an initial assignment, we would like to find the best global con-

sistent pairing between features in the left and right image. To do this, we extend

the approach suggested in [92,108,109] in the context of matching point features to

planar regions. In this approach, we define a cross-correlation similarity measure

as a cost metric weighted by a proximity term [92].

The total cost for a match between feature i from one image and j from the

other is given by:

(A.1) Gij = 1− (Cij + 1)
2

e
−r2

ij

2σ2

In which Cij is the normalized cross-correlation value between patch i and j and

rij the Euclidean distance between the feature in the first and the second image.

This distance metric follows a Gaussian decay over the support region σ. This

distribution favors more distant matches, but because of the gradual decay and the

large support region, matches within a shorter range are still accounted for. The

costs in this cost matrix G ranges from 0 to 1, the smaller the cost, the better the

match. In order to be able to assign a one to one mapping between the two feature

sets, the cost matrix is padded to a square matrix with the rogue feature match cost

set to a constant value (0.4).

The matching problem now follows the regime of a maximum weighted match-

ing problem for bipartite graphs for which a standard solution is the Hungarian

method [28], a polynomial-time algorithm. The output of this stage is a set of possi-

ble correspondences between regions, which has been filtered based on similarity

between feature vectors, similarity between normalized patches, and global con-

sistency.

Figure A.5 shows the set of candidate matches retained at this point in the

matching algorithm for two regions.
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FIGURE A.5. Unfiltered matches (top), candidate matches after filtering
based on feature vectors and normalized patch similarity (bottom).

Refinement

Since the number of potential correspondences is reduced to a small number

N by using the steps above, it is now possible to use more expensive algorithms

to compute the exact transformation between regions. In keeping with our general

approach, we use all the pixels in the regions to estimate the transformation rather

than estimating the transformation from sets of feature points extracted inside the

regions. This may be potentially more expensive than using point matches, but it

leads to more accurate estimates of the transformations. This is in contrast with

other wide-baseline stereo work [107] in which the transformations are estimated

from point features.

To simplify notations, we denote by (R1
i , R

2
i ), i = 1, . . . , N , the set of matches

identified at the previous steps. Since those candidate matches have fairly high
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confidence, we can now compute explicitly the transformation H i that maps R1
i

to R2
i for every correspondence i. H i is recovered by minimizing the objective

function J defined as:

(A.2) J(H i) =
∑

x∈R1
i

(I2(H ix)− I1(x))2,

where H i the homography that maps region R1
i in the first image onto region

R2
i in the second image. Levenberg-Marquardt is used to adjust the homography

H i such that the similarity between the patch in the second image and the warped

patch from the first image is optimal. The LM iterations are initialized at the value

of H i induced by the homographies to the normalized patches, Ho1
i and Ho2

i .

In practice, this type of optimization is known to be able to recover only small

pixel discrepancies between patches (strictly speaking, at most one pixel motion

can be recovered.) In practice, however, the initial homography computed from

Ho1
i and Ho2

i may be relatively far from the optimum due, for example, to in-

stability in region segmentation. To allow for a larger discrepancy between the

regions, we can minimize the J first using lower resolution of the images and use

the resulting H i to start the estimation at the next higher level of resolution. Four

levels of resolution seem sufficient to handle the typical errors between matching

regions. The images are blurred between resolution levels by a Gaussian of σ = 11.

Epipolar Estimation

The homographies H i, N = 1, . . . , N , estimated as described above are used

for computing the initial epipolar geometry. As before, while the homographies

can be used to find point correspondences [6], we prefer to first use the homogra-

phies directly to compute a first estimate without using additional point features. If

(R, t) is the transformation between the two viewpoints, the epipolar geometry is

characterized by E = [t]×R. This is assuming that the cameras are calibrated and
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that the image coordinates are expressed as normalized coordinates. Classical re-

sults from multi-view geometry show that the epipolar geometry can be recovered

exactly from two homographies [42].

Based on this classical result, we could pick pairs of homographies from the set

H i, i = 1, . . . , N and compute the corresponding epipoles and epipolar geometry.

A better approach is to use all the homographies simultaneously to compute t and

R. This is the approach we use, based on the formulation introduced in [27]. As a

final step, the estimation is refined by using a robust estimator.

We use the standard representation of each homography as:

H i = λiR + tvT
i ,

where v is the scaled normal to plane i: vi = λi
ni
di

(the translation is normal-

ized to unit length by convention.) We then find the unknowns, R, t, λi,vi, i =

1, . . . , N that minimizes the difference between H i and λiR + tvT
i , summed over

i = 1, . . . , N . It turns out that the solution to this problem can be computed by first

considering a virtual homography: H =
∑

i H i = λR + tvT , where v is the scaled

normal to the virtual plane. If H = USV T is the SVD decomposition of H , then

the optimal R and t is obtained by equating λ to the largest singular value of H

and t = Ut′,v = V v′. The components of the vectors t′ and v′ are computed as

solutions of fourth-order polynomial equations whose parameters depend only of

S. This approach is similar to the one used in [27].

There are in fact four solutions for R, t using this method. One pair of solu-

tions corresponds to the usual ambiguity on the sign of t which is eliminated by

enforcing a sign constraint on one of the coordinates of t. The second pair of so-

lutions corresponds to the fact that if (R, t) is a solution, then so is (RQ, t) (with

different values of v,) where Q is a rotation of 180o about t. A simple test ensuring

that both cameras are pointing in the same direction eliminates this ambiguity.
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Robust Estimation

The previous step provides an estimate of R and t from the homographies.

This estimation was performed so far without outlier rejection so that the current

estimate may be corrupted by spurious matches. As a last step, to eliminate pos-

sible remaining spurious matches, we re-estimate R and t based on the vertices of

the regions. We denote by P 1
ij , j = 1, . . . , 4 are the four vertices of region i in im-

age 1 and P 2
ij = H iP

1
ij are the vertices in image 2 obtained by transformation by

the current estimate of the homography H i. In the case of region extraction from

lines, the vertices are the vertices of the polygon defining the region; in the case

of free-form segmentation, the vertices are extremities of the principal axes of the

second-moment matrix of the region. R and t are estimated by minimizing:

(A.3) E(R, t) =
i=N,j=4∑
i=1,j=1

ψ(d(P 2
ij ,EP 1

ij) + d(P 1
ij ,E

T P 2
ij)),

where d() is the usual normalized distance between image point and epipolar

line, and ψ() is a Lorentzian function of the form ψ(d) = d2

σ2+d2 . The scale σ is

proportional to the median of the error d() over all pairs of points. This approach

is the one used, for example, in robust registration [123]. An alternative robust

estimation technique would be to use a technique such as RANSAC. In practice,

the outliers are effectively eliminated by using a Lorentzian directly, which also

has the advantage to produce an optimal estimate of (R, t) at the same time.

2. Experimental Results

For the typical images as show in Figure A.1, we have included the epipolar

reconstruction results.

In Figure A.6 the result for structured scene is shown. The result for this type

of scene is very good as can be seen by the precise epipolar reconstruction. This

is further illustrated in Figure A.9 by the fact that the ratio between the edges of

two reconstructed windows matches fairly closely: 1.5456 for the left and 1.8356 for

the right. The algorithm initially considered all the 262x305 matches, after filtering
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only 369 of these matches were considered for refinement and 41 matches passed

the global matching and robust optimization phase.

The result for the more natural scene (Figure A.7) was computed using only

the patches from the segmentation stage. These 533x919 original patches were fil-

tered down to 137 candidate matches, from which 17 made it through the global

matching and robust optimization phase. Because the segmentations are much in-

fluenced by noise, this result is far less accurate as the previous result.

A much more exciting result is shown in Figure A.8 here we show a result

that was computed from a 33m baseline. Locations in the scene cover a distance

from a 100m to a 1000m. A small error has therefore quite some influence in the

result. Nevertheless the reconstruction is fairly accurate. Here we started out with

considering 982x669 matches, after filtering we had 1107 matches left from which

194 survived the global matching and robust optimization.

FIGURE A.6. The reconstructed epipolar geometry from the man-made
structured environment.
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FIGURE A.7. The reconstructed epipolar geometry from the more natural environment.

FIGURE A.8. The reconstructed epipolar geometry from the very wide baseline

FIGURE A.9. The ratio of the height over the width of the window on
the left is 1.5456 and the window on the right 1.8356, which gives us an
indication of the reconstruction quality.
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