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Abstract

We consider the problem of grasping novel objects,
specifically ones that are being seen for the first
time through vision. Grasping a previously un-
known object, one for which a 3-d model is not
available, is a challenging problem. Further, even
if given a model, one still has to decide where to
grasp the object. We present a learning algorithm
that neither requires, nor tries to build, a 3-d model
of the object. Given two (or more) images of an ob-
ject, our algorithm attempts to identify a few points
in each image corresponding to good locations at
which to grasp the object. This sparse set of points
is then triangulated to obtain a 3-d location at which
to attempt a grasp. This is in contrast to standard
dense stereo, which tries to triangulate every single
point in an image (and often fails to return a good
3-d model). Our algorithm for identifying grasp
locations from an image is trained via supervised
learning, using synthetic images for the training set.
We demonstrate this approach on two robotic ma-
nipulation platforms. Our algorithm successfully
grasps a wide variety of objects, such as plates,
tape-rolls, jugs, cellphones, keys, screwdrivers, sta-
plers, a thick coil of wire, a strangely shaped power
horn, and others, none of which were seen in the
training set. We also apply our method to the task
of unloading items from dishwashers.1

1 Introduction
In this paper, we address the problem of grasping novel ob-
jects that a robot is perceiving for the first time through vision.

Modern-day robots can be carefully hand-programmed or
“scripted” to carry out many complex manipulation tasks,
ranging from using tools to assemble complex machinery, to
balancing a spinning top on the edge of a sword[Shin-ichi
and Satoshi, 2000]. However, autonomously grasping a pre-
viously unknown object still remains a challenging problem.
If we are trying to grasp a previously known object, or if we

1A preliminary version of this work was described in[Saxenaet
al., 2006b; 2006a].

Figure 1: Our robot unloading items from a dishwasher.

are able to obtain a full 3-d model of the object, then var-
ious approaches such as ones based on friction cones[Ma-
son and Salisbury, 1985], form- and force-closure[Bicchi and
Kumar, 2000], pre-stored primitives[Miller et al., 2003], or
other methods can be applied. However, in practical scenar-
ios it is often very difficult to obtain a full and accurate 3-
d reconstruction of an object seen for the first time through
vision. For stereo systems, 3-d reconstruction is difficultfor
objects without texture, and even when stereopsis works well,
it would typically reconstruct only the visible portions ofthe
object. Even if more specialized sensors such as laser scan-
ners (or active stereo) are used to estimate the object’s shape,
we would still only have a 3-d reconstruction of the front face
of the object.

In contrast to these approaches, we propose a learning al-
gorithm that neither requires, nor tries to build, a 3-d model
of the object. Instead it predicts, directly as a function of
the images, a point at which to grasp the object. Informally,
the algorithm takes two or more pictures of the object, and
then tries to identify a point within each 2-d image that cor-
responds to a good point at which to grasp the object. (For
example, if trying to grasp a coffee mug, it might try to iden-



Figure 2: Some examples of objects on which the grasping algorithm was tested.

tify the mid-point of the handle.) Given these 2-d points in
each image, we use triangulation to obtain a 3-d position at
which to actually attempt the grasp. Thus, rather than trying
to triangulate every single point within each image in order
to estimate depths—as in dense stereo—we only attempt to
triangulate one (or at most a small number of) points corre-
sponding to the 3-d point where we will grasp the object. This
allows us to grasp an object without ever needing to obtain its
full 3-d shape, and applies even to textureless, translucent or
reflective objects on which standard stereo 3-d reconstruction
fares poorly (see Figure 6).

To the best of our knowledge, our work represents the first
algorithm capable of grasping novel objects (ones where a 3-
d model is not available), including ones from novel object
classes, that we are perceiving for the first time using vision.

This paper focuses on the task of grasp identification, and
thus we will consider only objects that can be picked up
without performing complex manipulation.2 We will attempt
to grasp a number of common office and household objects
such as toothbrushes, pens, books, cellphones, mugs, mar-
tini glasses, jugs, keys, knife-cutters, duct-tape rolls,screw-
drivers, staplers and markers (see Figure 2). We will also
address the problem of unloading items from dishwashers.

The remainder of this paper is structured as follows. In
Section 2, we describe related work. In Section 3, we describe
our learning approach, as well as our probabilistic model for
inferring the grasping point. In Section 4, we describe our
robotic manipulation platforms. In Section 5, we describe
the motion planning/trajectory planning for moving the ma-
nipulator to the grasping point. In Section 6, we report the
results of extensive experiments performed to evaluate our
algorithm, and Section 7 concludes.

2For example, picking up a heavy book lying flat on a table might
require a sequence of complex manipulations, such as to firstslide
the book slightly past the edge of the table so that the manipulator
can place its fingers around the book.

2 Related Work

Most work in robot manipulation assumes availability of a
complete 2-d or 3-d model of the object, and focuses on
designing control and planning methods to achieve a suc-
cessful and stable grasp. Here, we will discuss in detail
prior work that uses learning or vision for robotic manip-
ulation, and refer the reader to[Bicchi and Kumar, 2000;
Mason and Salisbury, 1985; Shimoga, 1996] for a more gen-
eral survey of past work in robotic manipulation.

In simulation environments (without real world experi-
ments), learning has been applied to robotic manipulation
for several different purposes. For example,[Pelossofet
al., 2004] used Support Vector Machines (SVM) to esti-
mate the quality of a grasp given a number of features de-
scribing the grasp and the object.[Hsiao et al., 2007;
Hsiao and Lozano-Perez, 2006] used partially observable
Markov decision processes (POMDP) to choose optimal con-
trol policies for two-fingered hands. They also used imitation
learning to teach a robot whole-body grasps.[Miller et al.,
2003] used heuristic rules to generate and evaluate grasps for
three-fingered hands by assuming that the objects are made
of basic shapes such as spheres, boxes, cones and cylinders
each with pre-computed grasp primitives. All of these meth-
ods assumed full knowledge of the 3-d model of the object.
Further, these methods were not tested through real-world ex-
periments, but were instead modeled and evaluated in a sim-
ulator.

Some work has been done on using vision for real world
grasping experiments; however most were limited to grasp-
ing 2-d planar objects. For uniformly colored planar ob-
jects lying on a uniformly colored table top, one can find
the 2-d contour of the object quite reliably. Using local
visual features (based on the 2-d contour) and other prop-
erties such as form- and force-closure, the methods dis-
cussed below decide the 2-d locations at which to place
(two or three) fingertips to grasp the object.[Piater, 2002;
Coelhoet al., 2001] estimated 2-d hand orientation using K-
means clustering for simple objects (specifically, square,tri-



(a) Martini glass (b) Mug (c) Eraser (d) Book (e) Pencil

Figure 3: The images (top row) with the corresponding labels(shown in red in the bottom row) of the five object classes used
for training. The classes of objects used for training were martini glasses, mugs, whiteboard erasers, books and pencils.

angle and round “blocks”).[Moraleset al., 2002a; 2002b]
calculated 2-d positions of three-fingered grasps from 2-d ob-
ject contours based on feasibility and force closure criteria.
[Bowers and Lumia, 2003] also considered the grasping of
planar objects and chose the location of the three fingers of a
hand by first classifying the object as circle, triangle, square
or rectangle from a few visual features, and then using pre-
scripted rules based on fuzzy logic.[Kamonet al., 1996]
used Q-learning to control the arm to reach towards a spheri-
cal object to grasp it using a parallel plate gripper.

If the desired location of the grasp has been identified, tech-
niques such as visual servoing that align the gripper to the de-
sired location[Kragic and Christensen, 2003] or haptic feed-
back [Petrovskayaet al., 2006] can be used to pick up the
object. [Platt et al., 2005] learned to sequence together ma-
nipulation gaits for four specific, known 3-d objects. How-
ever, they considered fairly simple scenes, and used online
learning to associate a controller with the height and width
of the bounding ellipsoid containing the object. For grasping
known objects, one can also use Learning-by-Demonstration
[Hueseret al., 2006], in which a human operator demon-
strates how to grasp an object, and the robot learns to grasp
that object by observing the human hand through vision.

The task of identifying where to grasp an object (of the
sort typically found in the home or office) involves solving
a difficult perception problem. This is because the objects
vary widely in appearance, and because background clut-
ter (e.g., dishwasher prongs or a table top with a pattern)
makes it even more difficult to understand the shape of a
scene. There are numerous robust learning algorithms that
can infer useful information about objects, even from a clut-
tered image. For example, there is a large amount of work
on recognition of known object classes (such as cups, mugs,
etc.), e.g.,[Schneiderman and Kanade, 1998]. The perfor-
mance of these object recognition algorithms could proba-

bly be improved if a 3-d model of the object were available,
but they typically do not require such models. For exam-
ple, that an object is cup-shaped can often be inferred di-
rectly from a 2-d image. Our approach takes a similar di-
rection, and will attempt to infer grasps directly from 2-d
images, even ones containing clutter.[Saxenaet al., 2005;
2007d] also showed that given just a single image, it is often
possible to obtain the 3-d structure of a scene. While knowing
the 3-d structure by no means implies knowing good grasps,
this nonetheless suggests that most of the information in the
3-d structure may already be contained in the 2-d images, and
suggests that an approach that learns directly from 2-d images
holds promise. Indeed,[Marottaet al., 2004] showed that hu-
mans can grasp an object using only one eye.

Our work also takes inspiration from[Castiello, 2005],
which showed that cognitive cues and previously learned
knowledge both play major roles in visually guided grasping
in humans and in monkeys. This indicates that learning from
previous knowledge is an important component of grasping
novel objects.

Further,[Goodaleet al., 1991] showed that there is a disso-
ciation between recognizing objects and grasping them, i.e.,
there are separate neural pathways that recognize objects and
that direct spatial control to reach and grasp the object. Thus,
given only a quick glance at almost any rigid object, most pri-
mates can quickly choose a grasp to pick it up, even without
knowledge of the object type. Our work represents perhaps a
first step towards designing a vision grasping algorithm which
can do the same.

3 Learning the Grasping Point
We consider the general case of grasping objects—even ones
not seen before—in 3-d cluttered environments such as in a
home or office. To address this task, we will use an image of
the object to identify a location at which to grasp it.



Because even very different objects can have similar sub-
parts, there are certain visual features that indicate good
grasps, and that remain consistent across many different ob-
jects. For example, jugs, cups, and coffee mugs all have
handles; and pens, white-board markers, toothbrushes, screw-
drivers, etc. are all long objects that can be grasped roughly
at their mid-point (Figure 3). We propose a learning ap-
proach that uses visual features to predict good grasping
points across a large range of objects.

In our approach, we will first predict the 2-d location of
the grasp in each image; more formally, we will try to iden-
tify the projection of a good grasping point onto the image
plane. Then, given two (or more) images of an object taken
from different camera positions, we will predict the 3-d posi-
tion of a grasping point. If each of these points can be per-
fectly identified in each image, then we can easily “triangu-
late” from these images to obtain the 3-d grasping point. (See
Figure 8a.) In practice it is difficult to identify the projec-
tion of a grasping point into the image plane (and, if there are
multiple grasping points, then the correspondence problem—
i.e., deciding which grasping point in one image corresponds
to which point in another image—must also be solved). This
problem is further exacerbated by imperfect calibration be-
tween the camera and the robot arm, and by uncertainty in
the camera position if the camera was mounted on the arm it-
self. To address all of these issues, we develop a probabilistic
model over possible grasping points, and apply it to infer a
good position at which to grasp an object.

3.1 Grasping Point
For most objects, there is typically a small region that a
human (using a two-fingered pinch grasp) would choose to
grasp it; with some abuse of terminology, we will informally
refer to this region as the “grasping point,” and our training
set will contain labeled examples of this region. Examples
of grasping points include the center region of the neck for
a martini glass, the center region of the handle for a coffee
mug, etc. (See Figure 3.)

For testing purposes, we would like to evaluate whether the
robot successfully picks up an object. For each object in our
test set, we define the successful grasp region to be the re-
gion where a human/robot using a two-fingered pinch grasp
would (reasonably) be expected to successfully grasp the ob-
ject. The error in predicting the grasping point (reported in
Table 1) is then defined as the distance of the predicted point
from the closest point lying in this region. (See Figure 4; this
region is usually somewhat larger than that used in the train-
ing set, defined in the previous paragraph.) Since our gripper
(Figure 1) has some passive compliance because of attached
foam/rubber, and can thus tolerate about 0.5cm error in po-
sitioning, the successful grasping region may extend slightly
past the surface of the object. (E.g., the radius of the cylinder
in Figure 4 is about 0.5cm greater than the actual neck of the
martini glass.)

3.2 Synthetic Data for Training
We apply supervised learning to identify patches that contain
grasping points. To do so, we require a labeled training set,
i.e., a set of images of objects labeled with the 2-d locationof

Figure 4: An illustration showing the grasp labels. The la-
beled grasp for a martini glass is on its neck (shown by a black
cylinder). For two predicted grasping pointsP1 andP2, the
error would be the 3-d distance from the grasping region, i.e.,
d1 andd2 respectively.

the grasping point in each image. Collecting real-world data
of this sort is cumbersome, and manual labeling is prone to
errors. Thus, we instead chose to generate, and learn from,
synthetic data that is automatically labeled with the correct
grasps.

In detail, we generate synthetic images along with cor-
rect grasps (Figure 3) using a computer graphics ray tracer.3

There is a relation between the quality of the synthetically
generated images and the accuracy of the algorithm. The
better the quality of the synthetically generated images and
graphical realism, the better the accuracy of the algorithm.
Therefore, we used a ray tracer instead of faster, but cruder,
OpenGL style graphics.[Michels et al., 2005] used syn-
thetic OpenGL images to learn distances in natural scenes.
However, because OpenGL style graphics have less realism,
their learning performance sometimesdecreasedwith added
graphical details in the rendered images.

The advantages of using synthetic images are multi-fold.
First, once a synthetic model of an object has been created, a
large number of training examples can be automatically gen-
erated by rendering the object under different (randomly cho-
sen) lighting conditions, camera positions and orientations,
etc. In addition, to increase the diversity of the training data
generated, we randomized different properties of the objects
such as color, scale, and text (e.g., on the face of a book). The
time-consuming part of synthetic data generation was the cre-
ation of the mesh models of the objects. However, there are
many objects for which models are available on the internet
that can be used with only minor modifications. We generated
2500 examples from synthetic data, comprising objects from
five object classes (see Figure 3). Using synthetic data alsoal-
lows us to generate perfect labels for the training set with the
exact location of a good grasp for each object. In contrast,

3Ray tracing[Glassner, 1989] is a standard image rendering
method from computer graphics. It handles many real-world opti-
cal phenomenon such as multiple specular reflections, textures, soft
shadows, smooth curves, and caustics. We used PovRay, an open
source ray tracer.



Figure 5: Examples of different edge and texture filters (9
Laws’ masks and 6 oriented edge filters) used to calculate the
features.

(a) (b)

Figure 6: (a) An image of textureless/transparent/reflective
objects. (b) Depths estimated by our stereo system. The
grayscale value indicates the depth (darker being closer tothe
camera). Black represents areas where stereo vision failedto
return a depth estimate.

collecting and manually labeling a comparably sized set of
real images would have been extremely time-consuming.

We have made the data available online at:
http://ai.stanford.edu/∼asaxena/learninggrasp/data.html

3.3 Features
In our approach, we begin by dividing the image into small
rectangular patches, and for each patch predict if it contains a
projection of a grasping point onto the image plane.

Instead of relying on a few visual cues such as presence
of edges, we will compute a battery of features for each rect-
angular patch. By using a large number of different visual
features and training on a huge training set (Section 3.2), we
hope to obtain a method for predicting grasping points that is
robust to changes in the appearance of the objects and is also
able to generalize well to new objects.

We start by computing features for three types of lo-
cal cues: edges, textures, and color.[Saxenaet al., 2007c;
2007a] We transform the image into YCbCr color space,
where Y is the intensity channel, and Cb and Cr are color
channels. We compute features representing edges by con-
volving the intensity channel with 6 oriented edge filters (Fig-
ure 5). Texture information is mostly contained within the
image intensity channel, so we apply 9 Laws’ masks to this
channel to compute the texture energy. For the color chan-
nels, low frequency information is most useful for identifying
grasps; our color features are computed by applying a local
averaging filter (the first Laws mask) to the 2 color channels.
We then compute the sum-squared energy of each of these
filter outputs. This gives us an initial feature vector of dimen-
sion 17.

To predict if a patch contains a grasping point, local image
features centered on the patch are insufficient, and one has
to use more global properties of the object. We attempt to
capture this information by using image features extractedat
multiple spatial scales (3 in our experiments) for the patch.

Objects exhibit different behaviors across different scales,
and using multi-scale features allows us to capture these vari-
ations. In detail, we compute the 17 features described above
from that patch as well as the 24 neighboring patches (in a 5x5
window centered around the patch of interest). This gives us
a feature vectorx of dimension1 ∗ 17 ∗ 3 + 24 ∗ 17 = 459.

Although we rely mostly on image-based features for pre-
dicting the grasping point, some robots may be equipped with
range sensors such as a laser scanner or a stereo camera. In
these cases (Section 6.3), we also compute depth-based fea-
tures to improve performance. More formally, we apply our
texture based filters to the depth image obtained from a stereo
camera, append them to the feature vector used in classifica-
tion, and thus obtain a feature vectorxs ∈ R

918. Applying
these texture based filters this way has the effect of comput-
ing relative depths, and thus provides information about 3-d
properties such as curvature. However, the depths given by a
stereo system are sparse and noisy (Figure 6) because many
objects we consider are textureless or reflective. Even after
normalizing for the missing depth readings, these featuresim-
proved performance only marginally.

3.4 Probabilistic Model

Using our image-based features, we will first predict whether
each region in the image contains the projection of a grasp-
ing point. Then in order to grasp an object, we will statisti-
cally “triangulate” our 2-d predictions to obtain a 3-d grasp-
ing point.

In detail, on our manipulation platforms (Section 4), we
have cameras mounted either on the wrist of the robotic arm
(Figure 11) or on a frame behind the robotic arm (Figure 9).
When the camera is mounted on the wrist, we command the
arm to move the camera to two or more positions, so as to
acquire images of the object from different viewpoints. How-
ever, there are inaccuracies in the physical positioning ofthe
arm, and hence there is some slight uncertainty in the posi-
tion of the camera when the images are acquired. We will
now describe how we model these position errors.

Formally, letC be the image that would have been taken if
the actual pose of the camera was exactly equal to the mea-
sured pose (e.g., if the robot had moved exactly to the com-
manded position and orientation, in the case of the camera
being mounted on the robotic arm). However, due to posi-
tioning error, instead an imagêC is taken from a slightly dif-
ferent location. Let(u, v) be a 2-d position in imageC, and
let (û, v̂) be the corresponding image position in̂C. Thus
C(u, v) = Ĉ(û, v̂), whereC(u, v) is the pixel value at(u, v)
in imageC. The errors in camera position/pose should usu-
ally be small,4 and we model the difference between(u, v)
and(û, v̂) using an additive Gaussian model:û = u + ǫu,
v̂ = v + ǫv, whereǫu, ǫv ∼ N(0, σ2).

4The robot position/orientation error is typically small (position
is usually accurate to within1mm), but it is still important to model
this error. From our experiments (see Section 6), if we setσ2 = 0,
the triangulation is highly inaccurate, with average errorin predict-
ing the grasping point being15.4 cm, as compared to1.8 cm when
appropriateσ2 is chosen.



(a) Coffee Pot (b) Duct tape (c) Marker (d) Mug (e) Synthetic Martini Glass

Figure 7: Grasping point classification. The red points in each image show the locations most likely to be a grasping point, as
predicted by our logistic regression model. (Best viewed incolor.)

Now, to predict which locations in the 2-d image are grasp-
ing points (Figure 7), we define the class labelz(u, v) as fol-
lows. For each location(u, v) in an imageC, z(u, v) = 1
if (u, v) is the projection of a grasping point onto the image
plane, andz(u, v) = 0 otherwise. For a corresponding loca-
tion (û, v̂) in imageĈ, we similarly definêz(û, v̂) to indicate
whether position(û, v̂) represents a grasping point in the im-
ageĈ. Since(u, v) and(û, v̂) are corresponding pixels inC
andĈ, we assumêz(û, v̂) = z(u, v). Thus:

P (z(u, v) = 1|C) = P (ẑ(û, v̂) = 1|Ĉ)

=

∫

ǫu

∫

ǫv

P (ǫu, ǫv)P (ẑ(u + ǫu, v + ǫv) = 1|Ĉ)dǫudǫv(1)

Here,P (ǫu, ǫv) is the (Gaussian) density overǫu andǫv. We
then use logistic regression to model the probability of a 2-d
position(u + ǫu, v + ǫv) in Ĉ being a good grasping point:

P (ẑ(u + ǫu, v + ǫv) = 1|Ĉ) = P (ẑ(u + ǫu, v + ǫv) = 1|x; θ)

= 1/(1 + e−xT θ)
(2)

wherex ∈ R
459 are the features for the rectangular patch

centered at(u + ǫu, v + ǫv) in imageĈ (described in Sec-
tion 3.3). The parameter of this modelθ ∈ R

459 is learned
using standard maximum likelihood for logistic regression:
θ∗ = argmaxθ

∏

i P (zi|xi; θ), where(xi, zi) are the syn-
thetic training examples (image patches and labels), as de-
scribed in Section 3.2. Figure 7a-d shows the result of apply-
ing the learned logistic regression model to some real (non-
synthetic) images.

3-d grasp model: Given two or more images of a new ob-
ject from different camera positions, we want to infer the 3-d
position of the grasping point. (See Figure 8.) Because lo-
gistic regression may have predicted multiple grasping points
per image, there is usually ambiguity in the correspondence
problem (i.e., which grasping point in one image corresponds
to which graping point in another). To address this while also
taking into account the uncertainty in camera position, we
propose a probabilistic model over possible grasping points
in 3-d space. In detail, we discretize the 3-d work-space of
the robotic arm into a regular 3-d gridG ⊂ R

3, and associate
with each grid elementj a random variableyj , so thatyj = 1
if grid cell j contains a grasping point, andyj = 0 otherwise.

Figure 8: (a) Diagram illustrating rays from two imagesC1

andC2 intersecting at a grasping point (shown in dark blue).
(Best viewed in color.)

From each camera locationi = 1, ..., N , one image is
taken. In imageCi, let the ray passing through(u, v) be
denotedRi(u, v). Let Gi(u, v) ⊂ G be the set of grid-
cells through which the rayRi(u, v) passes. Letr1, ...rK ∈
Gi(u, v) be the indices of the grid-cells lying on the ray
Ri(u, v) .

We know that if any of the grid-cellsrj along the ray rep-
resent a grasping point, then its projection is a grasp point.
More formally, zi(u, v) = 1 if and only if yr1

= 1 or
yr2

= 1 or . . . or yrK
= 1. For simplicity, we use a (ar-

guably unrealistic) naive Bayes-like assumption of indepen-
dence, and model the relation betweenP (zi(u, v) = 1|Ci)
andP (yr1

= 1 or . . . or yrK
= 1|Ci) as

P (zi(u, v) = 0|Ci) = P (yr1
= 0, ..., yrK

= 0|Ci)

=

K
∏

j=1

P (yrj
= 0|Ci) (3)

Assuming that any grid-cell along a ray is equally likely to be
a grasping point, this therefore gives

P (yrj
= 1|Ci) = 1 − (1 − P (zi(u, v) = 1|Ci))

1/K (4)

Next, using another naive Bayes-like independence as-
sumption, we estimate the probability of a particular grid-cell



yj ∈ G being a grasping point as:

P (yj = 1|C1, ..., CN ) =
P (yj = 1)P (C1, ..., CN |yj = 1)

P (C1, ..., CN )

=
P (yj = 1)

P (C1, ..., CN )

N
∏

i=1

P (Ci|yj = 1)

=
P (yj = 1)

P (C1, ..., CN )

N
∏

i=1

P (yj = 1|Ci)P (Ci)

P (yj = 1)

∝

N
∏

i=1

P (yj = 1|Ci)

(5)

whereP (yj = 1) is the prior probability of a grid-cell being
a grasping point (set to a constant value in our experiments).
One can envision using this term to incorporate other avail-
able information, such as known height of the table when the
robot is asked to pick up an object from a table. Using Equa-
tions 1, 2, 4 and 5, we can now compute (up to a constant
of proportionality that does not depend on the grid-cell) the
probability of any grid-cellyj being a valid grasping point,
given the images.5

Stereo cameras: Some robotic platforms have stereo cam-
eras (e.g., the robot in Figure 10); therefore we also discuss
how our probabilistic model can incorporate stereo images.
From a stereo camera, since we also get a depth valuew(u, v)
for each location(u, v) in the image,6 we now obtain a 3-d
imageC(u, v, w(u, v)) for 3-d positions(u, v, w).

However because of camera positioning errors (as dis-
cussed before), we get̂C(û, v̂, ŵ(û, v̂)) instead of actual im-
age C(u, v, w(u, v)). We again model the difference be-
tween(u, v, w) and(û, v̂, ŵ) using an additive Gaussian:û =
u + ǫu, v̂ = v + ǫv, ŵ = w + ǫw, whereǫu, ǫv ∼ N(0, σ2

uv).
ǫw ∼ N(0, σ2

w). Now, for our class labelz(u, v, w) in the 3-d
image, we have:

P (z(u, v, w) = 1|C) = P (ẑ(û, v̂, ŵ) = 1|Ĉ)

=

∫

ǫu

∫

ǫv

∫

ǫw

P (ǫu, ǫv, ǫw)

P (ẑ(u + ǫu, v + ǫv, w + ǫw) = 1|Ĉ)dǫudǫvdǫw (6)

5In about 2% of the trials described in Section 6.2, grasping
failed because the algorithm found points in the images thatdid not
actually correspond to each other. (E.g., in one image the point se-
lected may correspond to the midpoint of a handle, and in a different
image a different point may be selected that corresponds to adiffer-
ent part of the same handle.) Thus, triangulation using these points
results in identifying a 3-d point that does not lie on the object. By
ensuring that the pixel values in a small window around each of the
corresponding points are similar, one would be able to reject some
of these spurious correspondences.

6The depths estimated from a stereo camera are very sparse, i.e.,
the stereo system finds valid points only for a few pixels in the im-
age. (see Figure 6) Therefore, we still mostly rely on image features
to find the grasp points. The pixels where the stereo camera was
unable to obtain a depth are treated as regular (2-d) image pixels.

Here,P (ǫu, ǫv, ǫw) is the (Gaussian) density overǫu, ǫv and
ǫw. Now our logistic regression model is

P (ẑ(û, v̂, ŵ(û, v̂)) = 1|Ĉ) = P (ẑ(û, v̂, ŵ(û, v̂)) = 1|xs; θs)

= 1/(1 + e−xT
s θs)

(7)

wherexs ∈ R
918 are the image and depth features for the

rectangular patch centered at(û, v̂) in imageĈ (described
in Section 3.3). The parameter of this modelθs ∈ R

918 is
learned similarly.

Now to use a stereo camera in estimating the 3-d grasping
point, we use

P (yj = 1|Ci) = P (zi(u, v, w(u, v)) = 1|Ci) (8)

in Eq. 5 in place of Eq. 4 whenCi represents a stereo camera
image with depth information at(u, v).

This framework allows predictions from both regular and
stereo cameras to be used together seamlessly, and also al-
lows predictions from stereo cameras to be useful even when
the stereo system failed to recover depth information at the
predicted grasp point.

3.5 MAP Inference
Given a set of images, we want to infer the most likely 3-d
location of the grasping point. Therefore, we will choose the
grid cellj in the 3-d robot workspace that maximizes the con-
ditional log-likelihoodlog P (yj = 1|C1, ..., CN ) in Eq. 5.
More formally, let there beNC regular cameras andN −NC

stereo cameras. Now, from Eq. 4 and 8, we have:

arg maxj log P (yj = 1|C1, ..., CN )

= arg max
j

log

N
∏

i=1

P (yj = 1|Ci)

= arg max
j

NC
∑

i=1

log
(

1 − (1 − P (zi(u, v) = 1|Ci))
1/K

)

+
N

∑

i=NC+1

log (P (zi(u, v, w(u, v)) = 1|Ci))(9)

where P (zi(u, v) = 1|Ci) is given by Eq. 1 and 2 and
P (zi(u, v, w(u, v)) = 1|Ci) is given by Eq. 6 and 7.

A straightforward implementation that explicitly computes
the sum above for every single grid-cell would give good
grasping performance, but be extremely inefficient (over 110
seconds). Since there are only a few places in an image where
P (ẑi(u, v) = 1|Ci) is significantly greater than zero, we im-
plemented a counting algorithm that explicitly considers only
grid-cellsyj that are close to at least one rayRi(u, v). (Grid-
cells that are more than3σ distance away from all rays are
highly unlikely to be the grid-cell that maximizes the sum-
mation in Eq. 9.) This counting algorithm efficiently accu-
mulates the sums over the grid-cells by iterating over allN
images and raysRi(u, v),7 and results in an algorithm that

7In practice, we found that restricting attention to rays where
P (ẑi(u, v) = 1|Ci) > 0.1 allows us to further reduce the number
of rays to be considered, with no noticeable degradation in perfor-
mance.



identifies a 3-d grasping position in 1.2 sec.

4 Robot Platforms
Our experiments were performed on two robots built for the
STAIR (STanford AI Robot) project.8 Each robot has an arm
and other equipment such as cameras, computers, etc. (See
Fig. 9 and 10.) The STAIR platforms were built as part of a
project whose long-term goal is to create a general purpose
household robot that can navigate in indoor environments,
pick up and interact with objects and tools, and carry out tasks
such as tidy up a room or prepare simple meals. Our algo-
rithms for grasping novel objects represent perhaps a small
step towards achieving some of these goals.

STAIR 1 uses a harmonic arm (Katana, by Neuronics), and
is built on top of a Segway robotic mobility platform. Its
5-dof arm is position-controlled and has a parallel plate grip-
per. The arm has a positioning accuracy of±1 mm, a reach of
62cm, and can support a payload of 500g. Our vision system
used a low-quality webcam (Logitech Quickcam Pro 4000)
mounted near the end effector and a stereo camera (Bumble-
bee, by Point Grey Research). In addition, the robot has a
laser scanner (SICK LMS-291) mounted approximately1m
above the ground for navigation purposes. (We used the we-
bcam in the experiments on grasping novel objects, and the
Bumblebee stereo camera in the experiments on unloading
items from dishwashers.) STAIR 2 sits atop a holonomic mo-
bile base, and its 7-dof arm (WAM, by Barrett Technologies)
can be position or torque-controlled, is equipped with a three-
fingered hand, and has a positioning accuracy of±0.6 mm. It
has a reach of1m and can support a payload of3kg. Its vision
system uses a stereo camera (Bumblebee2, by Point Grey Re-
search).

We used a distributed software framework called Switch-
yard [Quigley, 2007] to route messages between different
devices such as the robotic arms, cameras and computers.
Switchyard allows distributed computation using TCP mes-
sage passing, and thus provides networking and synchroniza-
tion across multiple processes on different hardware plat-
forms.

5 Planning
After identifying a 3-d point at which to grasp an object, we
need to find an arm pose that realizes the grasp, and then plan
a path to reach that arm pose so as to pick up the object.

Given a grasping point, there are typically many end-
effector orientations consistent with placing the center of the
gripper at that point. The choice of end-effector orientation
should also take into account other constraints, such as loca-
tion of nearby obstacles, and orientation of the object.

5-dof arm. When planning in the absence of obstacles, we
found that even fairly simple methods for planning worked
well. Specifically, on our 5-dof arm, one of the degrees of
freedom is the wrist rotation, which therefore does not affect
planning to avoid obstacles. Thus, we can separately consider
planning an obstacle-free path using the first 4-dof, and de-
ciding the wrist rotation. To choose the wrist rotation, using a

8See http://www.cs.stanford.edu/group/stair for details.

Figure 9: STAIR 1 platform. This robot is equipped with a
5-dof arm and a parallel plate gripper.

Figure 10: STAIR 2 platform. This robot is equipped with
7-dof Barrett arm and three-fingered hand.



Figure 11: The robotic arm picking up various objects: screwdriver, box, tape-roll, wine glass, a solder tool holder, coffee pot,
powerhorn, cellphone, book, stapler and coffee mug. (See Section 6.2.)

simplified version of our algorithm in[Saxenaet al., 2007b],
we learned the 2-d value of the 3-d grasp orientation projected
onto the image plane (see Appendix). Thus, for example, if
the robot is grasping a long cylindrical object, it should rotate
the wrist so that the parallel-plate gripper’s inner surfaces are
parallel (rather than perpendicular) to the main axis of the
cylinder. Further, we found that using simple heuristics to
decide the remaining degrees of freedom worked well.9

When grasping in the presence of obstacles, such as when
unloading items from a dishwasher, we used a full motion
planning algorithm for the 5-dof as well as for the opening
of the gripper (a 6th degree of freedom). Specifically, having

9Four degrees of freedom are already constrained by the end-
effector 3-d position and the chosen wrist angle. To decide the fifth
degree of freedom in uncluttered environments, we found that most
grasps reachable by our 5-dof arm fall in one of two classes:down-
wardgrasps andoutwardgrasps. These arise as a direct consequence
of the shape of the workspace of our 5 dof robotic arm (Figure 11).
A “downward” grasp is used for objects that are close to the base of
the arm, which the arm will grasp by reaching in a downward direc-
tion (Figure 11, first image), and an “outward” grasp is for objects
further away from the base, for which the arm is unable to reach
in a downward direction (Figure 11, second image). In practice, to
simplify planning we first plan a path towards an approach position,
which is set to be a fixed distance away from the predicted grasp
point towards the base of the robot arm. Then we move the end-
effector in a straight line forward towards the target grasping point.
Our grasping experiments in uncluttered environments (Section 6.2)
were performed using this heuristic.

identified possible goal positions in configuration space us-
ing standard inverse kinematics[Mason and Salisbury, 1985],
we plan a path in 6-dof configuration space that takes the
end-effector from the starting position to a goal position,
avoiding obstacles. For computing the goal orientation of
the end-effector and the configuration of the fingers, we
used a criterion that attempts to minimize the opening of
the hand without touching the object being grasped or other
nearby obstacles. Our planner uses Probabilistic Road-Maps
(PRMs) [Schwarzeret al., 2005], which start by randomly
sampling points in the configuration space. It then constructs
a “road map” by finding collision-free paths between nearby
points, and finally finds a shortest path from the starting po-
sition to possible target positions in this graph. We also ex-
perimented with a potential field planner[Khatib, 1986], but
found the PRM method gave better results because it did not
get stuck in local optima.

7-dof arm. On the STAIR 2 robot, which uses a 7-dof arm,
we use the full algorithm in[Saxenaet al., 2007b], for pre-
dicting the 3-d orientation of a grasp, given an image of an
object. This, along with our algorithm to predict the 3-d
grasping point, determines six of the seven degrees of free-
dom (i.e., the end-effector location and orientation). Forde-
ciding the seventh degree of freedom, we use a criterion that
maximizes the distance of the arm from the obstacles. Sim-
ilar to the planning on the 5-dof arm, we then apply a PRM
planner to plan a path in the 7-dof configuration space.



Table 1: Mean absolute error in locating the grasping point for different objects, as well as grasp success rate for picking up the
different objects using our robotic arm. (Although training was done on synthetic images, testing was done on the real robotic
arm and real objects.)

OBJECTSSIMILAR TO ONES TRAINED ON NOVEL OBJECTS
TESTED ON MEAN ABSOLUTE GRASP-SUCCESS TESTED ON MEAN ABSOLUTE GRASP-SUCCESS

ERROR(CM) RATE ERROR(CM) RATE
STAPLER 1.9 90%
DUCT TAPE 1.8 100%

MUGS 2.4 75% KEYS 1.0 100%
PENS 0.9 100% MARKERS/SCREWDRIVER 1.1 100%
WINE GLASS 1.2 100% TOOTHBRUSH/CUTTER 1.1 100%
BOOKS 2.9 75% JUG 1.7 75%
ERASER/ TRANSLUCENTBOX 3.1 75%
CELLPHONE 1.6 100% POWERHORN 3.6 50%

COILED WIRE 1.4 100%
OVERALL 1.80 90.0% OVERALL 1.86 87.8%

6 Experiments
6.1 Experiment 1: Synthetic data
We first evaluated the predictive accuracy of the algorithm on
synthetic images (not contained in the training set). (See Fig-
ure 7e.) The average accuracy for classifying whether a 2-d
image patch is a projection of a grasping point was 94.2%
(evaluated on a balanced test set comprised of the five objects
in Figure 3). Even though the accuracy in classifying 2-d
regions as grasping points was only 94.2%, the accuracy in
predicting 3-d grasping points was higher because the proba-
bilistic model for inferring a 3-d grasping point automatically
aggregates data from multiple images, and therefore “fixes”
some of the errors from individual classifiers.

6.2 Experiment 2: Grasping novel objects
We tested our algorithm on STAIR 1 (5-dof robotic arm, with
a parallel plate gripper) on the task of picking up an object
placed on an uncluttered table top in front of the robot. The
location of the object was chosen randomly (and we used
cardboard boxes to change the height of the object, see Fig-
ure 11), and was completely unknown to the robot. The orien-
tation of the object was also chosen randomly from the set of
orientations in which the object would be stable, e.g., a wine
glass could be placed vertically up, vertically down, or in a
random 2-d orientation on the table surface (see Figure 11).
(Since the training was performed on synthetic images of ob-
jects of different types, none of these scenarios were in the
training set.)

In these experiments, we used a web-camera, mounted on
the wrist of the robot, to take images from two or more loca-
tions. Recall that the parameters of the vision algorithm were
trained from synthetic images of a small set of five object
classes, namely books, martini glasses, white-board erasers,
mugs/cups, and pencils. We performed experiments on cof-
fee mugs, wine glasses (empty or partially filled with water),
pencils, books, and erasers—but all of different dimensions
and appearance than the ones in the training set—as well
as a large set of objects from novel object classes, such as
rolls of duct tape, markers, a translucent box, jugs, knife-
cutters, cellphones, pens, keys, screwdrivers, staplers,tooth-
brushes, a thick coil of wire, a strangely shaped power horn,

etc. (See Figures 2 and 11.) We note that many of these
objects are translucent, textureless, and/or reflective, mak-
ing 3-d reconstruction difficult for standard stereo systems.
(Indeed, a carefully-calibrated Point Gray stereo system,the
Bumblebee BB-COL-20,—with higher quality cameras than
our web-camera—fails to accurately reconstruct the visible
portions of 9 out of 12 objects. See Figure 6.)

In extensive experiments, the algorithm for predicting
grasps in images appeared to generalize very well. Despite
being tested on images of real (rather than synthetic) objects,
including many very different from ones in the training set,
it was usually able to identify correct grasp points. We note
that test set error (in terms of average absolute error in the
predicted position of the grasp point) on the real images was
only somewhat higher than the error on synthetic images; this
shows that the algorithm trained on synthetic images trans-
fers well to real images. (Over all 5 object types used in the
synthetic data, average absolute error was 0.81cm in the syn-
thetic images; and over all the 14 real test objects, averageer-
ror was 1.84cm.) For comparison, neonate humans can grasp
simple objects with an average accuracy of 1.5cm.[Boweret
al., 1970]

Table 1 shows the errors in the predicted grasping points on
the test set. The table presents results separately for objects
which were similar to those we trained on (e.g., coffee mugs)
and those which were very dissimilar to the training objects
(e.g., duct tape). For each entry in the table, a total of four
trials were conducted except for staplers, for which ten trials
were conducted. In addition to reporting errors in grasp posi-
tions, we also report the grasp success rate, i.e., the fraction
of times the robotic arm was able to physically pick up the
object. For a grasp to be counted as successful, the robot had
to grasp the object, lift it up by about1ft, and hold it for 30
seconds. On average, the robot picked up the novel objects
87.8% of the time.

For simple objects such as cellphones, wine glasses, keys,
toothbrushes, etc., the algorithm performed perfectly in our
experiments (100% grasp success rate). However, grasping
objects such as mugs or jugs (by the handle) allows only
a narrow trajectory of approach—where one “finger” is in-
serted into the handle—so that even a small error in the grasp-
ing point identification causes the arm to hit and move the ob-



Figure 12: Example of a real dishwasher image, used for
training in the dishwasher experiments.

ject, resulting in a failed grasp attempt. Although it may be
possible to improve the algorithm’s accuracy, we believe that
these problems can best be solved by using a more advanced
robotic arm that is capable of haptic (touch) feedback.

In many instances, the algorithm was able to pick up
completely novel objects (a strangely shaped power-horn,
duct-tape, solder tool holder, etc.; see Figures 2 and 11).
Perceiving a transparent wine glass is a difficult problem
for standard vision (e.g., stereopsis) algorithms becauseof
reflections, etc. However, as shown in Table 1, our algorithm
successfully picked it up 100% of the time. Videos showing
the robot grasping the objects are available at

http://ai.stanford.edu/∼asaxena/learninggrasp/

6.3 Experiment 3: Unloading items from
dishwashers

The goal of the STAIR project is to build a general purpose
household robot. As a step towards one of STAIR’s envi-
sioned applications, in this experiment we considered the task
of unloading items from dishwashers (Figures 1 and 14). This
is a difficult problem because of the presence of background
clutter and occlusion between objects—one object that we are
trying to unload may physically block our view of a second
object. Our training set for these experiments also included
some hand-labeled real examples of dishwasher images (Fig-
ure 12), including some images containing occluded objects;
this helps prevent the algorithm from identifying grasping
points on the background clutter such as dishwasher prongs.
Along with the usual features, these experiments also used
the depth-based features computed from the depth image ob-
tained from the stereo camera (Section 3.3). Further, in these
experiments we did not use color information, i.e., the images
fed to the algorithm were grayscale.

In detail, we asked a person to arrange several objects
neatly (meaning inserted over or between the dishwasher
prongs, and with no pair of objects lying flush against each
other; Figures 10 and 11 show typical examples) in the upper
tray of the dishwasher. To unload the items from the dish-
washer, the robot first identifies grasping points in the image.
Figure 13 shows our algorithm correctly identifying grasps

Figure 13: Grasping point detection for objects in a dish-
washer. (Only the points in top five grasping regions are
shown.)

Table 2: Grasp-success rate for unloading items from a dish-
washer.

TESTED ON GRASP-SUCCESS-RATE
PLATES 100%
BOWLS 80%
MUGS 60%
WINE GLASS 80%
OVERALL 80%

on multiple objects even in the presence of clutter and occlu-
sion. The robot then uses these grasps and the locations of
the obstacles (perceived using a stereo camera) to plan a path
while avoiding obstacles, to pick up the object. When plan-
ning a path to a grasping point, the robot chooses the grasp-
ing point that is most accessible to the robotic arm using a
criterion based on the grasping point’s height, distance tothe
robot arm, and distance from obstacles. The robotic arm then
removes the first object (Figure 14) by lifting it up by about
1ft and placing it on a surface on its right using a pre-written
script, and repeats the process above to unload the next item.
As objects are removed, the visual scene also changes, and
the algorithm will find grasping points on objects that it had
missed earlier.

We evaluated the algorithm quantitatively for four object
classes: plates, bowls, mugs and wine glasses. (We have
successfully unloaded items from multiple dishwashers; how-
ever we performed quantitative experiments only on one dish-
washer.) We performed five trials for each object class (each
trial used a different object). We achieved an average grasp-
ing success rate of 80.0% in a total of 20 trials (see Table 2).
Our algorithm was able to successfully pick up objects such
as plates and wine glasses most of the time. However, due to
the physical limitations of the 5-dof arm with a parallel plate
gripper, it is not possible for the arm to pick up certain ob-
jects, such as bowls, if they are in certain configurations (see
Figure 15). For mugs, the grasp success rate was low because
of the problem of narrow trajectories discussed in Section 6.2.

We also performed tests using silverware, specifically ob-
jects such as spoons and forks. These objects were often
placed (by the human dishwasher loader) against the corners
or walls of the silverware rack. The handles of spoons and



Figure 14: Dishwasher experiments (Section 6.3): Our robotic arm unloads items from a dishwasher.

forks are only about 0.5cm thick; therefore a larger clearance
than 0.5cm was needed for them to be grasped using our par-
allel plate gripper, making it physically extremely difficult to
do so. However, if we arrange the spoons and forks with part
of the spoon or fork at least 2cm away from the walls of the
silverware rack, then we achieve a grasping success rate of
about 75%.

Some of the failures were because some parts of the object
were not perceived; therefore the arm would hit and move the
object resulting in a failed grasp. In such cases, we believe
an algorithm that uses haptic (touch) feedback would signifi-
cantly increase grasp success rate. Some of our failures were
also in cases where our algorithm correctly predicts a grasp-
ing point, but the arm was physically unable to reach that
grasp. Therefore, we believe that using an arm/hand with
more degrees of freedom, will significantly improve perfor-
mance for the problem of unloading a dishwasher.

Figure 15: Dishwasher experiments: Failure case. For some
configurations of certain objects, it is impossible for our 5-
dof robotic arm to grasp it (even if a human were controlling
the arm).

6.4 Experiment 4: Grasping kitchen and office
objects

Our long-term goal is to create a useful household robot that
can perform many different tasks, such as fetching an object

in response to a verbal request and cooking simple kitchen
meals. In situations such as these, the robot would know
which object it has to pick up. For example, if the robot was
asked to fetch a stapler from an office, then it would know that
it needs to identify grasping points for staplers only. There-
fore, in this experiment we study how we can use information
about object type and location to improve the performance of
the grasping algorithm.

Consider objects lying against a cluttered background such
as a kitchen or an office. If we predict the grasping points
using our algorithm trained on a dataset containing all five
objects, then we typically obtain a set of reasonable grasping
point predictions (Figure 16, left column). Now suppose we
know the type of object we want to grasp, as well as its ap-
proximate location in the scene (such as from an object recog-
nition algorithm[Gould et al., 2007]). We can then restrict
our attention to the area of the image containing the object,
and apply a version of the algorithm that has been trained
using only objects of a similar type (i.e., using object-type
specific parameters, such as using bowl-specific parameters
when picking up a cereal bowl, using spoon-specific param-
eters when picking up a spoon, etc). With this method, we
obtain object-specific grasps, as shown in Figure 16 (right
column).

Achieving larger goals, such as cooking simple kitchen
meals, requires that we combine different algorithms such
as object recognition, navigation, robot manipulation, etc.
These results demonstrate how our approach could be used
in conjunction with other complementary algorithms to ac-
complish these goals.

6.5 Experiment 5: Grasping using 7-dof arm and
three-fingered hand.

In this experiment, we demonstrate that our grasping point
prediction algorithm can also be used with other robotic
manipulation platforms. We performed experiments on the
STAIR 2 robot, which is equipped with a 7-dof arm and a
three-fingered Barrett hand. This is a more capable manipu-
lator than a parallel plate gripper, in that its fingers can form
a large variety of configurations; however, in this experiment
we will use the hand only in a limited way, specifically, a con-
figuration with the two fingers opposing the third one, with all
fingers closing simultaneously. While there is a large space
of hand configurations that one would have to consider in or-
der to fully take advantage of the capabilities of such a hand,
identifying a point at which to grasp the object still remains
an important aspect of the problem, and is the focus of the



Kitchen

Office

Figure 16: Grasping point classification in kitchen and office
scenarios: (Left Column) Top five grasps predicted by the
grasp classifier alone. (Right Column) Top two grasps for
three different object-types, predicted by the grasp classifier
when given the object types and locations. The red points in
each image are the predicted grasp locations. (Best viewed in
color.)

present experiment.
In particular, we asked a person to place several objects in

front of the STAIR 2 robot. The bowls were placed upright
at a random location on a table (with height unknown to the
robot), and the plates were stacked neatly in a rack (also in
a random location). Using our algorithm trained on a dataset
containing the five synthetic objects described in Section 3.2,
the robot chose the best grasp predicted from the image, and
attempted to pick up the object (Figure 17). It achieved a
grasping success rate of 60% for cereal bowls, and 80% for
plates (5 trials for each object).

7 Conclusions
We proposed an algorithm for enabling a robot to grasp an
object that it has never seen before. Our learning algorithm
neither tries to build, nor requires, a 3-d model of the ob-
ject. Instead it predicts, directly as a function of the images,
a point at which to grasp the object. In our experiments, the
algorithm generalizes very well to novel objects and environ-
ments, and our robot successfully grasped a wide variety of
objects in different environments such as dishwashers, office
and kitchen.

The ability to pick up novel objects represents perhaps a
tiny first step towards the STAIR project’s larger goal of en-
abling robots to perform a large variety of household tasks,
such as fetching an item in response to a verbal request, tidy-
ing up a room, and preparing simple meals in a kitchen. In
the short term, we are working on applying variations of the

Figure 17: Barrett arm grasping an object using our algo-
rithm.

algorithms described in this paper to try to enable STAIR to
prepare simple meals using a normal home kitchen.
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Appendix: Predicting orientation
In [Saxenaet al., 2007b], we presented an algorithm for pre-
dicting the 3-d orientation of an object from its image. Here,
for the sake of simplicity, we will present the learning al-
gorithm in the context of grasping using our 5-dof arm on
STAIR 1.

As discussed in Section 5, our task is to predict the 2-d
wrist orientationθ of the gripper (at the predicted grasping
point) given the image. For example, given a picture of a
closed book (which we would like to grasp at its edge), we
should choose an orientation in which the robot’s two fingers
are parallel to the book’s surfaces, rather than perpendicular
to the book’s cover.

Since our robotic arm has a parallel plate gripper compris-
ing two fingers that close in parallel, a rotation ofπ results in
similar configuration of the gripper. This results in a discon-
tinuity atθ = π, in that the orientation of the gripper atθ = π
is equivalent toθ = 0. Therefore, to handle this symmetry,
we will represent angles viay(θ) = [cos(2θ), sin(2θ)] ∈ R

2.
Thus,y(θ + Nπ) = [cos(2θ + 2Nπ), sin(2θ + 2Nπ)] = y(θ).

Now, given images featuresx, we model the conditional
distribution ofy as a multi-variate Gaussian:

P (y|x; w, K) = (2π)−n/2|K|1/2

exp

[

−
1

2
(y − wT x)T K(y − wT x)

]



whereK−1 is a covariance matrix. The parameters of this
modelw andK are learnt by maximizing the conditional log
likelihood log

∏

i P (yi|xi; w).
Now when given a new image, our MAP estimate fory is

given as follows. Since||y||2 = 1, we will choose

y∗ = arg max
y:||y||2=1

log P (y|x; w, K) = arg max
y:||y||2=1

yT Kq

for q = wT x. (This derivation assumedK = σ2I for some
σ2, which will roughly hold true ifθ is chosen uniformly in
the training set.) The closed form solution of this isy =
Kq/||Kq||2.

In our robotic experiments, typically30◦ accuracy is re-
quired to successfully grasp an object, which our algorithm
almost always attains. In an example, Figure 18 shows the
predicted orientation for a pen.

Figure 18: Predicted orientation at the grasping point for pen.
Dotted line represents the true orientation, and solid linerep-
resents the predicted orientation.
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