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Abstract

We present a novel locomotion strategy called legless locomotion that
allows a round-bodied legged robot to locomote approximately when
it is high-centered. Typically, a high-centered robot is stuck since the
robot’s legs do not touch the ground. Legless locomotion uses the legs
as a reaction mass to set up oscillatory body rotations which when
coupled with ground contact gradually translate the robot. Legless
locomotion’s continuous dynamics differs from previously studied lo-
comotion methods because of the simultaneous interaction of gravity-
induced oscillations, a configuration-dependent system inertia, and
non-holonomic contact constraints. This paper employs simple mod-
els to capture the complex dynamics and uses the intuition developed
from the models to develop gaits that provide planar accessibility. We
also present a quantification of legless locomotion’s properties using
simulations and motion-capture experiments.

KEY WORDS—legged robots, mobility, dynamics and kine-
matics.

1. Introduction

This paper explores the mobility available to a high-centered
legged robot—a robot whose legs cannot touch the ground.
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Our interest in the problem arose from experiments with a
hexapod robot in uneven terrain. The robot, RHex (Saranli et
al. 2001) (see Figure 1), has a simple design where each singly
actuated compliant leg can rotate around its “hip”. While this
design, inspired by a cockroach, offers significant mobility,
RHex can be easily trapped when it becomes high-centered,
as there is no contact between its legs and the ground. The
only possible means of locomotion when the robot becomes
high-centered is to use the dynamic effect of swinging the legs,
where the legs act simply as a reaction mass (see Extension 1).
However, the question of how the robot should swing its legs to
induce translation remains. While random flailing may induce
incremental translation, the robot’s motion tends to be hard to
predict and control.

In at least one case, it is interesting to note that the high-
centered RHex can move even when only being able to gener-
ate small forces. Suppose that RHex’s body is rounded and the
obstacle is flat� then, there is a single rolling contact between
RHex’s body and the obstacle. In this configuration, even small
torques can cause the robot’s attitude to oscillate, and these
oscillations can interact with the body-obstacle rolling contact
to produce translation. This paper shows that a high-centered
robot has complete planar accessibility (meaning it can loco-
mote anywhere in the plane) by rocking and rolling on its body
using leg-swing motions. We call such a locomotion mode
legless locomotion. Legless locomotion is not a general alter-
native to conventional legged locomotion, because it is typ-
ically slow and inefficient. Furthermore, the translation in-
duced by legless locomotion is difficult to predict precisely,
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Fig. 1. The RHex experimental platform (http://rhex.net).

because modeling contact between a rounded body and the
ground is complex. However, even the approximate mobility
that legless locomotion provides is useful in the special situa-
tion where a robot is high-centered and its conventional loco-
motion mode is infeasible. The overarching principle is that
having a choice of locomotion modes for different circum-
stances ultimately contributes to robust mobility. Legless lo-
comotion’s dynamics differs from previously studied systems,
as it is dynamic, continuous, oscillatory, and exploits the inter-
action between a variable system inertia and non-holonomic
contact constraints in the presence of gravity. This paper pro-
vides an analysis of legless locomotion and develops suitable
gaits.

For our experiments we built a special prototype robot
called The Rocking and Rolling Robot (RRRobot, see Fig-
ure 2). RRRobot is a hemisphere with two actuated legs which
can never touch the ground—it is permanently high-centered.
Since RRRobot’s legs act only as reaction masses, they are
better called halteres, after the dumbbells sometimes used by
athletes to give impetus in leaping.

Ignoring RRRobot’s leg motions for a moment and focus-
ing only on RRRobot’s spherical contact with the ground, Fig-
ure 3 shows a sequence of interleaved pitch and yaw body ro-
tations that induce RRRobot to translate. A challenge in leg-
less locomotion is to find the leg motions that create such
body-attitude oscillations which, when coupled with the non-
holonomic slip-free contact constraints, cause RRRobot to
locomote in the plane. The goal being to significantly out-
perform random leg motions which may induce essentially
random incremental translation, this paper explores a low-
dimensional gait space for legless locomotion that enables sys-
tematic travel.

Our experiments and simulations with RRRobot suggest
that body-attitude oscillations produced by leg motions are a
practical, albeit imprecise, way of translating a high-centered
robot (see Figure 4 for an example gait). Furthermore, legless
locomotion offers a new perspective on dynamically coupled
locomotion, in particular the simultaneous interaction between

Fig. 2. The RRRobot experimental platform uses halteres to
induce body-attitude oscillations leading to body translations.

a configuration-dependent inertia, the oscillatory dynamics,
and the contact kinematics.

To the best of our knowledge, our work is the first to find
gaits for a dynamic, oscillatory, continuous locomotion mode
that exploits the simultaneous interaction of shape changes, a
varying inertia, and non-holonomic contact constraints in the
presence of gravity. After a brief review of related work in Sec-
tion 2, we present the legless locomotion dynamics models in
Section 3. We present legless locomotion gaits in Section 4
with results from experiment and simulation. We emphasize
that the models we use provide insight into the legless locomo-
tion’s structural quality, rather than an exact quantitative repro-
duction of the robot’s performance in the experiment. Portions
of this paper have appeared in Balasubramanian et al. (2003,
2004).

2. Related Work

We now review background and related work, organized into
three sections:

� Locomotion techniques.

� Locomotion error and recovery.

� Techniques for modeling mechanical systems.

2.1. Locomotion Techniques

Legged locomotion, which involves discontinuous contact, has
been studied for the mobility it offers (McMahon 1984� Raib-
ert 1986� McGeer 1990� Full and Tu 1991� Bares and Wetter-
green 1999� Zeglin 1999� Linnemann et al. 2001� Saranli et al.
2001� Sakagami et al. 2002� Nagasaka et al. 2004). Similarly,
wheeled locomotion, which involves continuous rolling, has
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Fig. 3. Body pitch–yaw rotations that produce locomotion. Motions are represented as rotations about axes attached to the body.
There is a local pitch rotation between positions 1 and 2 and positions 3 and 4� there is a local yaw rotation between positions 2
and 3 and positions 4 and 5.

Fig. 4. A legless locomotion gait: counter-clockwise transla-
tion produced by roll–pitch–yaw body oscillations resulting
from sinusoidal leg motions (Balasubramanian et al. 2004).

been explored for the efficiency it offers in a structured terrain
(Reeds and Shepp 1990� Bellaiche et al. 1991� Sussmann and
Tang 1991� Luca and Risler 1994� Jean 1996� Ostrowski 1996�
Laumond 1998� Endo et al. 1999). Undulatory or snake-like
locomotion offers stability and traction (Dowling 1997), and
many interesting aspects of undulatory locomotion (in the ab-
sence of gravity) have been explored by using the snakeboard
(Lewis et al. 1994� Ostrowski 1996� Bullo and Lewis 2003)
and roller racer (Krishnaprasad and Tsakiris 1998) as pro-
totypes. Several adaptive locomotion modes such as rolling,
“slinky”, and caterpillar-like locomotion have been suggested
for modular robots (Yamawaki et al. 1994� Yim 1994� Lee and
Sanderson 2002). Similarly, novel reconfigurable robot plat-

forms have been designed to enable climbing, rolling, and
walking (Phipps and Minor 2005� Shores and Minor 2005).
Finally, the robotic locomotion problem has been considered
as the dual of the manipulation problem, since the goal in both
problems is to move a robot with respect to an object. Rel-
evant to this paper, several researchers have explored, using
kinematic models of motion, the motion of a sphere on a plate
(Mukherjee et al. 2002� Das and Mukherjee 2006) or between
plates (Bicchi and Marigo 2002).

Legless locomotion, the locomotion mode we propose for
locomoting high-centered robots, has a combination of prop-
erties that differentiates it from previously studied locomotion
modes. Legless locomotion’s continuous dynamics differen-
tiates it from usual walking, running, climbing, and jumping
gaits, where contact between foot and the ground is intermit-
tent. Legless locomotion’s oscillatory dynamics differentiates
it from continuous and kinematic or quasistatic rolling loco-
motion. Also, most undulatory locomotion techniques studied
so far operate in the absence of gravity. In summary, legless
locomotion is an underactuated, dynamic, oscillatory, and con-
tinuous locomotion mode that maintains a rolling contact be-
tween its body and the ground. In addition, legless locomotion
exploits a configuration-dependent inertia, and its passive dy-
namics is induced by gravity. Legless locomotion’s interesting
features resulting from the interplay of contact constraints and
body rotational dynamics are explored in detail in Section 3 of
this paper.



578 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / May 2008

2.2. Mobile Robot Error Recovery

Our legless locomotion work began as a recovery strategy for
a high-centered robot. Leveraging previous studies of error re-
covery is difficult, since how a mobile robot fails and how it
recovers depend directly on the specifics of its design, the en-
vironment, and uncertainty in the dynamics. Carlson and Mur-
phy (2005) present a survey of how unmanned ground vehi-
cles fail, using data from various urban search-and-rescue op-
erations. While stating that mobile-robot reliability was low,
they list actuators and the control system as two primary fail-
ure causes.

Most prior work on error diagnosis focuses on using high-
level reasoning techniques on sensor data (Verma et al. 2003)
and not on how robots become stuck. However, there is prior
research in finding robot maneuvers that could act as error re-
covery techniques, although they are not portrayed as error re-
covery techniques. Hale et al. (2000) present a singly actuated
hopping robot that reorients itself before propulsion. Once the
robot lands, it reorients itself in the required direction of trans-
lation. Tunstel (1999) discusses a genetic programming ap-
proach to finding uprighting maneuvers for a nanorover. The
algorithm evaluates the maneuver quality using the power con-
sumed, the time elapsed, and the percentage of progress made.

While recovery modes allow a robot to return to its stock
locomotion mode, some robot designs allow conventional lo-
comotion modes to function even after an error. For example,
researchers at Carnegie Mellon have developed a highly ma-
neuverable robot called Spinner1 (Sofman et al. 2006) that has
an actuated suspension and can operate even when inverted.
Similarly, RHex, the six legged robot, can walk upside-down
also, but uprighting is useful when RHex uses automatic vision
to navigate. Saranli and Koditschek (2002) presents back-flips
as a technique for “uprighting” RHex. Returning to the prob-
lem of locomotion for a high-centered RHex, there are at least
four different contact phenomena that a high-centered legged
robot can exploit to translate using leg-swing motions (see Fig-
ure 5):

1. If the robot has a curved bottom, then the body rotations
can incrementally translate the robot assuming slip-free
body–ground contact (rolling legless locomotion, see
Figure 3 and Extension 2).

2. If the robot has an irregular bottom and the protrusions
act as “feet”, a series of rolling and yawing body mo-
tions translates the robot by shifting its weight from one
“foot” to another (walking legless locomotion, similar to
the Rotopod (Lyons and Pamnany 2005)).

3. If the robot has a flat bottom, a net translation force can
be produced using jerky leg motions (sliding legless lo-
comotion, similar to the Universal Planar Manipulator
concept (Reznik and Canny 1998)).

1. See http://www.rec.ri.cmu.edu/projects/autonomous.

Fig. 5. Four types of legless locomotion: rolling, walking, slid-
ing, and jumping.

4. If the robot’s actuators have sufficient power and the leg-
body mass ratio is sufficiently large, then the robot could
move by rapidly swinging the legs and jumping (Berke-
meier and Fearing 1998).

All four methods are potentially useful ideas for error re-
covery depending on the robot’s design and circumstances.
This paper focuses on the first strategy that uses pure rolling,
because it offers a viable locomotion mode for a robot with in-
ertial properties like RHex using small reaction forces. Hence-
forth, this paper will refer to rolling legless locomotion just as
legless locomotion.

2.3. Dynamic Systems Modeling Techniques

Finding the dynamic and kinematic principles underlying a
robot’s motion is essential for developing appropriate control
techniques. We now briefly review the various modeling tech-
niques that have been used for different mobile robots.

Legless locomotion involves the interplay between body
roll–pitch–yaw attitude dynamics and kinematic non-holono-
mic contact constraints. Numerous investigators have studied
dynamic systems with constraints using Lagrangian dynamics
(Craig 1989) or the energy-momentum method. Lewis et al.
(1994) study the constrained mechanics of the constant-inertia
snakeboard (see Figure 6), a modified version of a skateboard
in which wheel directions can be controlled. The snakeboard
rider locomotes by twisting his/her body back and forth, while
simultaneously moving the wheel directions with a suitable
phase relationship. Lewis et al. present numerical simulations
of snakeboard locomotion using characteristic wheel motions
and discuss a framework for studying mechanical systems with
constraints in a coordinate-free form. Zenkov et al. (1997) dis-
cuss the energy–momentum method for control of dynamic
systems with non-holonomic constraints such as the rattleback,
the roller racer, and the rolling disk. After identifying system
symmetries, Zenkov et al. use momentum equations to analyze
the system. We use the Lagrangian method to study RRRobot’s
dynamics.
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Fig. 6. The snakeboard (Lewis et al. 1994).

While RRRobot’s body spatial position and orienta-
tion (called the fiber space (Bloch et al. 2003)) are not directly
controlled, its leg configuration (called the base space) is con-
trollable. Ostrowski (1996) presents a method for studying sys-
tems where the fiber space can be represented as a group. Since
only the base space is actuated, Ostrowski finds a connection
relating the base space velocities to the fiber velocities. Os-
trowski’s technique focuses on systems with constant inertias,
simple constraints, and no gravity, such as the snakeboard and
the Hirose snake. Shammas et al. (2007) go further to provide
a unified approach to motion planning for dynamic underac-
tuated mechanical systems with non-holonomic constraints.
However, since RRRobot’s motion is influenced by gravity,
neither Ostrowski’s nor Shammas’s framework can be used di-
rectly to explore legless locomotion.

RRRobot locomotes by rolling its round body on the pla-
nar surface. The curvatures of the two surfaces and the type of
contact between the two surfaces determine the kinematic con-
straints and, consequently, the relative motion between the two
bodies. Montana (1988) derives the equations of motion for the
contact point between two moving rigid bodies using differ-
ential geometry. Camicia et al. (2000) provide an analysis of
the non-holonomic kinematics and dynamics of the Sphericle
(Bicchi et al. 1997), a hollow ball driven on a planar surface by
an unicycle placed inside. Bhattacharya and Agrawal (2000)
present a spherical rolling robot that locomotes using two or-
thogonal rotors placed inside. They derive driftless equations
of motion using the conservation of angular momentum and
the contact constraints. The Sphericle, Bhattacharya’s robot,
and RRRobot have similar non-holonomic contact constraints,
but RRRobot’s oscillatory body rotations differentiates its pla-
nar motion (see Murray et al. (1994) and Li and Canny (1990)
for more details on non-holonomic constraints). If we ignore
RRRobot’s ground contact constraints and assume RRRobot is
floating in space, the problem of controlling RRRobot’s body
motion reduces to simply controlling its body attitude. This
permits an analysis of the reaction forces between RRRobot’s
body and its legs without the environment’s influence. Fernan-
des et al. (1994) discuss near-optimal non-holonomic motion

planning for coupled bodies using Lagrangian dynamics and
the principle of angular momentum conservation. Modeling a
falling cat as two links attached either through an actuated uni-
versal joint or an actuated spherical joint, Fernandes et al. find
plans to land a falling cat on its feet from an arbitrary start-
ing point. RRRobot’s body-attitude control problem is differ-
ent because both the hip joints are aligned. This results in large
reaction forces on the body pitch freedom, while the reaction
forces are small on the body roll and yaw freedoms. Also, the
roll and yaw body motions are induced by the non-linear ef-
fects that arise from a configuration-dependent inertia. It can
be shown that by repeatedly wiggling the legs while exploit-
ing the inertia variances, RRRobot can adjust its orientation.
This contrasts with satellite reorientation using spinning reac-
tion wheels—the inertias of the satellite system do not change
with rotation of reaction wheels (Rui et al. 2000), and hence
non-aligned reaction wheels are necessary for complete con-
trol.

2.4. Summary

Our work on the novel locomotion mode called legless lo-
comotion is at the intersection of three areas: (1) dynamic
systems modeling� (2) dynamic systems motion control and
planning� and (3) mobile robotics. The above section touches
some of the related work, while balancing between algorithmic
techniques for mechanical systems and experimental mobile-
robotics research. We emphasize that the problem we explore,
namely the high-centered robot locomotion problem, has not
been explored before and offers new insights into control for
mechanical systems. We now present the models used to study
legless locomotion.

3. Legless Locomotion Models

3.1. RRRobot’s Dynamics

We begin studying legless locomotion by exploring the motion
of RRRobot on a plane. The model is simple, consisting of
a hemispherical shell with two short actuated legs hinged at
revolute joints (see Figure 2). The massless shell has radius r ,
and the massless legs have length l. There are five masses on
the robot: a reaction mass at the distal end of each leg (Ml),
a servo mass where each leg is hinged (Ms), and the battery
and processor mass at the bottom of the shell (Mb). Torques � 1

and � 2 may be applied at the leg joints, and the shell rolls on
the plane without slip.

RRRobot’s configuration qrr consists of the sphere’s posi-
tion and orientation �x� y� R�� r � � p� � y��with respect to a spa-
tial frame and the internal configuration of its legs ��1� �2�.
We choose to represent the orientation of RRRobot’s shell us-
ing the roll–pitch–yaw fixed-angle convention (Craig 1989).
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This representation defines any spatial orientation as a se-
quence of the following rotations: a roll rotation, followed
by a pitch rotation, followed by a yaw rotation, all expressed
in a frame aligned with the spatial frame. Note that there
are several choices to represent orientation, but the dynamic
properties are unaffected by the choice. Thus, RRRobot’s
configuration is given by

qrr � �x� y� R�� r � � p� � y�� �1� �2�
T

� �
2 � SO�3�� �1 � �1� (1)

The equations of motion for RRRobot on a plane can be
derived using Lagrangian dynamics (Craig 1989) and take the
form

M�qrr � �qrr � C�qrr � �qrr � �qrr � G�qrr �

� � � ��1	
1�T � ��2	

2�T � 
 rr � (2)

	1 �qrr � 0� (3)

	2 �qrr � 0� (4)

	1 � �1� 0�	r cos � p sin � y�	r cos � y� 0� 0� 0�� (5)

	2 � �0� 1� r cos � r cos � y�	r sin � y� 0� 0� 0�� (6)

where M�qrr � � �7�7 represents the positive-definite non-
diagonal configuration-dependent mass matrix, C�qrr � �qrr � �qrr

� �7 the vector of Coriolis and centrifugal terms, G�qrr � �
�

7 the vector of gravitational terms, 
 rr � �
7 the energy

loss, and � � �0� 0� 0� 0� 0� � 1� � 2�
T the generalized force. The

generalized force � indicates that only the legs are actuated.
The gravitational terms cause RRRobot to behave as a pendu-
lum (for small-amplitude oscillations), and RRRobot’s pitch
and roll natural frequencies are governed by its mass distribu-
tion and the shell’s curvature. Thus, when the legs are swung
along oscillatory trajectories, the superimposition of the dy-
namic effect of leg swings, gravity, and contact losses cause
RRRobot to behave as a forced damped oscillator (Jose and
Saletan 1998). The sphere–plane no-slip contact constraints
(Montana 1988) are defined by (3) and (4). The one-forms
in (5) and (6) define the directions in configuration space along
which the tangential contact forces act. The symbols �1� �2 �
� represent the magnitudes of the contact constraint forces. A
detailed discussion of sphere–plane no-slip contact kinematics
is available in Section 3.2. RRRobot loses energy when it rolls
on the ground. For example, when RRRobot is released from
a non-zero body pitch or roll configuration and is allowed to
oscillate without leg swings, oscillation amplitude decreases
with time, until the robot stops oscillating. Also, if RRRo-
bot is spun about its contact point (that is, the robot yaws in
the plane), the robot stops rotating after some time—again be-
cause the robot loses energy due to friction with the ground.

However, these body–ground traction losses in legless loco-
motion are difficult to model, and this paper seeks simple mod-
els that provide an approximation of system behavior and re-
main tractable for use in planning. The energy loss that occurs
when RRRobot rolls on the ground or spins about the contact
point arises from a combination of dry and viscous friction.
Dry friction results from body–ground slip, while viscous fric-
tion results from the body–ground rolling interaction as well
as aerodynamic effects. Dry friction is easy to model using,
say, a Coloumb friction model, but including Columbic loss
makes RRRobot’s dynamical model significantly more com-
plex. The primary complication arises from RRRobot’s dy-
namics becoming hybrid� that is, RRRobot’s dynamics would
then transition between two models depending on whether the
traction forces exceed the friction cone—one model when the
body slides on the ground (traction forces exceed the friction
cone), and another when the body rolls on the ground (traction
forces inside the friction cone). Since this research focuses on
understanding RRRobot’s novel coupled motion and not on
modeling contact between two surfaces, we ignore dry friction
in our simulations of RRRobot. This also implies that we do
not model differences between static and dynamic friction. As
a first approximation, we bundle all ground contact losses into
a viscous damping term 
 rr .

On the other hand, viscous damping losses can be included
without resorting to a hybrid model. Detailed rolling resistance
models are available in (Brilliantov and Poschel 1998) and
(Poschel et al. 1999) and, in reality, RRRobot’s viscous losses
are possibly coupled across rotational axes. For example, the
damping losses for translation are coupled with pitch and roll
rotation damping losses, and yaw rotational losses are also
possibly coupled with pitch and roll configuration. For sim-
plicity, we model viscous losses simply as being proportional
to configuration velocities along each axis. This paper does not
present the detailed experiments required to glean the viscous-
loss parameters and achieve a perfect match of RRRobot mo-
tion between simulation and experiment. We choose viscous
damping coefficients 
 rr that permit a qualitative comparison
between RRRobot’s motion in the experiment and the simula-
tion. Needless to say, neglecting dry friction and approximat-
ing it with a simple viscous friction model introduces differ-
ences in robot path between simulation and experiment, as we
will see in Section 4.1.

3.2. RRRobot’s Sphere–plane Contact Kinematics

In this section, we study RRRobot’s sphere–plane contact
kinematics (Montana 1988) independent of the leg-body dy-
namics. The non-holonomic sphere–plane contact constraints
given by (3) and (4) define the relationship between a sphere’s
roll–pitch–yaw velocities and its planar translation velocity.
Thinking about a sphere rolling on a plane, we notice that if
the robot pitches while roll and yaw are zero, the robot trans-
lates in the X direction. Similarly, if the robot rolls while pitch
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Fig. 7. The path taken by a sphere rolling on a plane changes
with body-attitude trajectory. The contact point evolves over
one cycle for different pitch–yaw phase relationships, given
by � r � 0� � p � sin�t�, and � y � sin�t � � y�, where � y is the
yaw–pitch phase difference.

and yaw are zero, the robot translates along the Y direction.
If RRRobot’s yaw orientation is, say, 45
, the robot’s pitching
motion causes it to roll along a line that is rotated 45
 from the
X -axis. Due to RRRobot’s spherical body and our choice of
configuration representation, yaw rotations produce zero trans-
lation of the sphere center (and the contact point which is di-
rectly below), even at non-zero pitch or roll configuration. This
is because the yaw configuration velocity is expressed about
an axis perpendicular to the plane, and accordingly, the fifth
element in the one-forms in (5) and (6) is zero. Finally, note
that elements 6 and 7 in 	1 and 	2 are zero, indicating that leg
configuration does not contribute to the contact kinematics.

Li and Canny (1990) have shown that a ball on a plane
is globally controllable� that is, the ball can roll from any
configuration on the plane to another. We are interested in ex-
ploring how body rotational oscillations relate to net contact-
point displacement. First, consider an example where roll is
constant while pitch and yaw configuration are sinusoidal over
time with unit amplitude. Figure 7 shows the net motions
for various choices of the yaw–pitch phase difference. Note
that net displacement along the global X-axis is zero for any
choice of phase difference. If we choose roll–yaw oscilla-
tions (with zero pitch), net contact-point displacement is along
the global X-axis. Note that attitude oscillation frequency only
time scales the path. Now consider a more complicated motion
where roll, pitch, and yaw configuration are all sinusoidal over
time with unit amplitude, but pitch–yaw and pitch–roll phase

Fig. 8. Body-fixed translation direction for a sphere (radius
0.12 m) on a plane after one cycle in body-rotation space
given by � r � sin�t � �r �� � p � sin�t�, and � y � sin�t �
� y�, where �r is the roll-oscillation phase and � y the yaw-
oscillation phase relative to pitch oscillations.

Fig. 9. Body-fixed translation direction for a sphere (radius
0.12 m) on a plane after one cycle in body-rotation space given
by � r � Ar sin�t � �2�� � p � sin�t�, and � y � Ay sin�t �
�4�, where Ar is the roll oscillation amplitude and Ay the
yaw oscillation amplitude.

differences are independently variable. Then translation in any
direction is possible (see Figure 8 which shows net translation
direction over one cycle (in the body-fixed frame) as a function
of the two phase differences� also see Extension 3). Finally, we
consider a motion where the phases are determined, but the roll
and pitch amplitudes vary. Figure 9 shows how translation di-
rection (in the body-fixed frame) varies with the choice of roll
and pitch amplitude. Since RRRobot’s legs are aligned with
its body-fixed Y -axis, pitch oscillations tend to dominate over
roll oscillations. So, RRRobot’s predominant translation mode
is along the body-fixed Y -axis.

Thus, from Figures 8 and 9, we notice that by varying the
body-attitude phase and amplitude relationships, a sphere can
rock and roll along any direction. An important point to note
here is that translation direction is fixed for a given phase
and amplitude relationship� that is, cyclic body-attitude oscil-
lations produce net linear translation. So what body rotations
can induce RRRobot’s translation to curve? Consider the case
where yaw configuration drifts over time in addition to the ro-
bot maintaining pitch–yaw or roll–yaw oscillations. Figure 10
provides an example of how translation curves when body yaw
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Fig. 10. Contact-point time history for a sphere (radius 0.12 m)
on a plane starting from the origin for the body-rotation phase
relationship given by � r � � p � 0�15 sin�8t�, and � y � 0�1t�
0�15 sin�8t��2�. The arrows indicate the direction the robot
faces (yaw orientation).

drifts linearly with time in addition to the sphere maintaining
sinusoidal roll, pitch, and yaw oscillations—the robot moves
in a circle while oscillating back and forth. In this example,
the roll, pitch, and yaw oscillations have constant amplitude,
phase, and frequency, and yaw drifts over time. If yaw does
not drift, the robot moves in a straight line (similar to the cases
in Figures 8 and 9). Translation curvature increases as yaw
drift rate increases, and the path radius becomes smaller. In
summary, linear translation arises from an appropriate (fixed)
phase relationship between body-attitude oscillations. These
oscillations when coupled with yaw drift (over time) result in
curved translation. Note that while we use sinusoidal body ro-
tations to illustrate the contact kinematics, RRRobot’s body-
attitude oscillations created by the leg motions are not nec-
essarily sinusoidal. Also, even though the contact kinematics
permit translation in any direction for different body-attitude
trajectories, RRRobot’s leg-body dynamics limits the range of
locomotion. Similarly, the limited roll–pitch–yaw phase rela-
tionships produced by the leg dynamics limit translation ve-
locities. However, curved translation is possible since we can
produce varying body-yaw drift rates using leg trajectories that
produce varying inertias (Balasubramanian et al. 2003).

Since we are specifically interested in RRRobot’s net trans-
lation, we characterize RRRobot’s translation speed and direc-
tion using its net motion over a body rotation cycle and not
its instantaneous state. Thus, even if RRRobot’s attitude oscil-
lations cause it to deviate from its average path, we only use
its net translation over a cycle to characterize its speed and di-
rection. A challenge in legless locomotion is to find the leg
motions that produce the body rotations to induce the desired
translation. We now explore gaits for legless locomotion that
allow full planar accessibility.

4. Legless Locomotion Gaits

One way to think about gaits for legless locomotion is to con-
sider the body–ground contact kinematics and the leg-body dy-
namics separately. In the previous section, we explored kine-
matic coupling between the body and the support plane, while
neglecting the dynamic effect of either the leg actuation or the
floor contact on the body oscillations. We now consider just
the interplay between the dynamics of RRRobot’s leg motions
and body rotations. First, we notice that RRRobot’s swinging
legs can produce a combination of pitch, roll, and yaw body
rotations. These coupled rotations make the mapping between
leg motions and body oscillations complex. Suppose for sim-
plicity we imagine that RRRobot’s leg motions create body ro-
tations along each axis individually without any coupling (see
Figure 11). Then, we can glean individual mappings, albeit ap-
proximate, between leg motions and yaw rotations (with the
robot hinged at its body center), leg motions and pitch rota-
tions, and leg motions and roll rotations. Such a mapping is
simpler when compared with the mapping between leg mo-
tions and RRRobot’s coupled body rotations.

Using the simplified pitch-dynamics model, we note that
swinging the legs in-phase with each other creates pitch oscil-
lations due to a combination of reaction forces and gravity. Us-
ing the simplified yaw-dynamics model, we note that swing-
ing the legs 180
 out of phase about the vertical configuration
produces yaw oscillations due to reaction forces. Combin-
ing these two insights while keeping in mind that legless lo-
comotion’s dynamics is continuous, we notice that swing-
ing the legs 90
 out of phase with each other (half-way be-
tween completely out-of-phase and in-phase) about the ver-
tical configuration produces both pitch and yaw oscillations
simultaneously. Coupling this understanding with the sphere–
plane contact kinematics, we note that appropriate leg trajecto-
ries can produce pitch–yaw oscillations, which in turn induce
translation. Since we focus on gaits where the legs are close to
the vertical configuration and RRRobot’s leg axes are aligned
with its body-fixed Y -axis, roll oscillations have small magni-
tude compared with pitch oscillations, and so do not contribute
directly to RRRobot’s translation.

So what leg motions induce yaw drift (or net yaw rotation)
which is required for curved translation? For this, we will take
a closer look at the simplified yaw dynamics model. It is ap-
parent from the angular momentum conservation principle that
the body yaws due to the reaction forces from leg swing mo-
tions. For example, if we move the left leg forward from the
vertical-up configuration while keeping the other leg station-
ary, the body undergoes a positive yaw rotation. However, if
the leg makes a complete rotation, the body returns to its start
configuration.

An important property of the yaw model that we can use
to produce net body yaw is its configuration-dependent iner-
tia (Balasubramanian and Rizzi 2004�Balasubramanian 2006).
Here is a simple thought experiment with the simplified yaw-
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Fig. 11. Decoupled RRRobot dynamics.

Table 1. Incremental motion of the yaw model.

Time interval �1�t� �2�t� Change in yaw

0–1 0 � �2 0 �1

1–2 �2 0 � �2 	�2

2–3 �2 � 0 �2 	�2

3–4 0 �2 � 0 �1

Net change in yaw 2��1 	 �2�

dynamics model. We will move each leg back and forth be-
tween extremes of 0 and �2. Each leg will dwell at the ex-
treme for 1 s and will take 1 s to transition between angles
following a cubic spline. The result is a Lie bracket-inspired
(Murray et al. 1994) smoothed square wave, with the two legs
out-of-phase with each other. This sequence of leg motions
yields a net yaw motion, as shown in Table 1 and can be
confirmed by studying the table and thinking about the yaw
angular inertia of the system. Suppose the body yaw is �1 dur-
ing the interval t � 0 to t � 1, and is �2 during the inter-
val t � 1 to t � 2. The net yaw during the two motion seg-
ments is different, because the yaw angular inertia varies de-
pending on whether the leg is stretched out or tucked in. This
difference produces net yaw at the end of the motion sequence.
This same property of producing net yaw motion using yaw in-
ertia differences is seen in RRRobot also, but RRRobot’s full
dynamics is more complex because of the coupling between
body pitch and yaw oscillations. We have earlier shown (Bala-
subramanian et al. 2006) that combining the decoupled models
in Figure 11 provides a good approximation to the RRRobot’s
original fully integrated dynamics. We now present gaits for
legless locomotion that use leg motions to exploit the interplay
of pitch and yaw rotations and the contact constraints.

While many candidate leg motions, such as aperiodic and
non-smooth trajectories, exist, we limit our analysis to sinu-

soidal leg trajectories for simplicity. We choose leg trajecto-
ries of the form a sin�	t � ��� � , where a represents the leg
amplitude, 	 the leg angular frequency, � the leg phase differ-
ence, and � the leg offset. In this paper, we mainly study the
influence of leg offset and leg phase difference on RRRobot’s
translation, while keeping the leg amplitude and frequency
fixed. We choose leg oscillation amplitudes that keep body os-
cillation amplitudes small to minimize body–ground contact
slip. We set leg oscillation frequency slightly greater than the
natural oscillatory frequency to excite attitude oscillations of
sufficient amplitude. We avoid high- and low-frequency leg os-
cillations, since the body motions induced by such leg motions
do not exhibit the slip-free rocking and rolling behavior we are
interested in exploring. In all our experiments, the robot starts
from rest at the origin with the legs in the vertical position, and
a proportional-derivative controller tracks the desired leg tra-
jectories. The robot has no feedback about its global position
and orientation, and thus runs “open loop”.

4.1. Demonstrating Legless Locomotion using Experiments
and Simulation

We begin with experiments to explore the influence of varying
the leg offsets on RRRobot’s planar translation, while keeping
leg frequencies, leg phase difference, and leg amplitude fixed.
We explore both individual gaits and gait transitions. We keep
body oscillations small in order to minimize body–ground slip.
This is required for proper comparison with the simulation re-
sults, which assume slip-free body–ground contact.

We use the following parameter values: servo mass Ms �
0�053 kg, leg reaction masses Ml � 0�057 kg, leg length
l � 0�1 m, and gravity g � 9�81 ms. Note that RRRo-
bot’s motion is particularly sensitive to mass distribution dif-
ferences and ground traction, since RRRobot’s motion relies
on slip-free contact and small inertia differences arising from
leg swing motions. We ensure that pitch oscillations and body–
ground slip do not overwhelm these properties. The prototype
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robot has a suspended tether providing servo power and control
signals. With only the servos hinged on the body, we can con-
trol the untethered RRRobot mass distribution carefully, but
must ensure that the disturbances from the tether are small.
The tethered RRRobot’s shell radius is 0.12 m, and battery and
processor are modeled with weights Mb � 0�3 kg.

4.1.1. RRRobot’s Linear and Curved Translation Gaits

In this section, we explore RRRobot’s linear and curved trans-
lation gaits individually using simulations and experiments
with the tethered RRRobot. We explore two specific versions
of the sinusoidal gait: in Gait 1, the legs oscillate about the
vertical position (offset �2), and in Gait 2, the legs oscillate
about a position �4 off the horizontal in Gait 2. The leg am-
plitude is set to 0.3 rad and leg angular frequency to 7.5 rad/s.
The experiments and simulations run for 100 s, and an over-
head camera tracks the robot–ground contact-point’s motion.

Gait 1 produces translation along the Y -axis (see Figure 12
and Extensions 4 and 5) by inducing body pitch–yaw oscilla-
tions and negligible body roll rotations. The robot translates
at about 2.5 mm/s in the experiment and about 8 mm/s in the
simulation.

Gait 2 produces counter-clockwise circular translation (see
Figure 13 and Extensions 6 and 7) due to a combination of
pitch–yaw oscillations, yaw drift (over time), and small roll
oscillations. The robot covers half a circle in the experiment
and the simulation, translating at about 2.5 mm/s and turning
at about 1.5
/s. In both gaits, swapping the relative phase be-
tween the two legs produces translation in the opposite direc-
tion. The initial transients produced by ramping the legs from
rest into the desired trajectories are visible in the experiment
and the simulation, and dampen out after a few cycles.

Our experience indicates that gaits with leg offset close to
the horizontal �0� �� offer limited translation capability. This
is because as the leg offset gets closer to the horizontal, pitch
oscillations become smaller and roll oscillation amplitudes are
too small to overcome ground friction losses. We thus focus
on gaits with offset between �4 and 3�4 (45
 either side of
the vertical).

The robot’s paths produced in the simulation and the ex-
periment match qualitatively. In particular, the path curvature
in the simulation and the experiment match well—the robot
translates linearly (curvature zero) in Gait 1, while it curves
with radius approximately 0.1 m in Gait 2. While the robot’s
translation velocity in Gait 2 compares well between experi-
ment and simulation, the robot’s translation velocity in Gait 1
is smaller in the experiment than in the simulation and the dif-
ference in distance traveled builds up over time. The difference
in Gait 1’s translation velocity between the experiment and the
simulation is probably due to errors in modeling ground fric-
tion. In particular, we believe that losses due to dry (static)
friction in the experiment are larger in Gait 1 due to the jerky

Fig. 12. Planar plots of contact-point time history during side-
ways locomotion produced by Gait 1 in RRRobot-on-a-plane
simulation and RRRobot-on-a-plane experiment. The solid ar-
row gives robot motion direction, the dotted lines indicate the
robot position at the specified time, and the white-headed ar-
rows indicate robot yaw orientation. The close-up indicates
how the paths match over a few cycles.

to and fro pitch–yaw oscillations. In contrast, Gait 2 induces
simultaneous roll, pitch, and yaw oscillations, causing dry (sta-
tic) friction effects to be reduced. Since dry friction effects are
not modeled in the simulation, the robot’s velocity using Gait 1
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Fig. 13. Planar plots of contact-point time history during counter-clockwise circular locomotion produced by Gait 2 in the
simulation and the experiment. The solid arrow gives robot motion direction, the dotted lines indicate the robot position at the
specified time, and the white-headed arrows indicate robot yaw orientation. The close-up indicates how the paths match over a
few cycles.

in the experiment is slower when compared with its velocity in
the simulation. Our simulations of a tethered RRRobot bundle
all ground-friction losses into the viscous damping coefficients
by setting viscous damping 
 rr to


 rr � �	0�6 �x�	0�6 �y�	0�05�� r �	0�01 �� p�

	0�0045 �� y�	0�01 ��1�	0�01 ��2�
T� (7)

Since legless locomotion is a dynamically coupled locomotion
mode where the dynamic effect of the leg swings is transferred
through the contact geometry to produce motion, the losses are
larger and more difficult to model when compared with a con-
ventional locomotion mode such as walking (see Section 4.1
for a discussion on modeling RRRobot’s contact dynamics).
In this paper, the models are intended to capture the structural
quality, and not the complete quantitative details, of legless lo-
comotion to permit approximate planning of translation when
a robot is high-centered. In summary, legless locomotion of-
fers an alternative locomotion mode, albeit incremental and
approximate, when a robot is high-centered.

4.1.2. RRRobot Gait Transitions

While we presented an individual analysis of RRRobot’s lin-
ear and curved translation gaits in the previous section, we now
present an analysis of RRRobot’s behavior when its gaits are

sequenced. In particular, we use computer simulations and ex-
periments with an untethered RRRobot to study how leg tra-
jectory transients affect RRRobot’s translation when changing
from a linear translation gait to a curved translation gait and
vice versa.

The untethered RRRobot is autonomous with the controller
and power supply on-board, thus eliminating disturbances
from the tether. The untethered RRRobot’s mass distribution
must be carefully tuned using weights to ensure symmetry,
since the processor and battery weight is fixed to the hemi-
sphere bottom. The untethered RRRobot’s radius is 0.15 m,
and battery and processor mass is Mb � 0�168 kg.

We use sinusoidal leg trajectories (amplitude 0.65 rad,
phase difference �2, and frequency 7.5 rad/s) with the fol-
lowing sequence of leg offsets (see Figure 14(a) and (b)): leg
offset �2 for 80 cycles (period 1, linear translation expected),
leg offset 5�8 for 40 cycles (period 2, curved translation ex-
pected), leg offset �2 for 80 cycles (period 3, linear trans-
lation expected), and leg offset 3�4 for 40 cycles (period 4,
curved translation expected). Smooth transitions from one gait
to another are executed inside ten cycles. A Vicon motion-
capture system2 tracks the motion of the robot body (six mark-
ers on the hemisphere rim) and the legs (two markers on each
leg) at 120 frames/s. The motion-capture data permits us to

2. See http://www.vicon.com.
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Fig. 14. The untethered RRRobot experiment and simulation. (a) Studying gait transitions in legless locomotion: the offset of
the sinusoidal gaits change from �2 to 5�8 to �2 and then to 3�4. (b) Untethered RRRobot experiment: phase relationship
between leg motions (red solid lines) during each period. The blue dotted lines indicate the desired trajectories. (c) RRRobot
simulation: planar translation. (d) Untethered RRRobot experiment: planar translation.

perform a complete geometric analysis of RRRobot’s motion.
In reviewing the experiment and simulation results, we first
examine the robot’s translation, followed by the phase rela-
tionships between body rotations and leg motion, and finally
how body rotations evolve over time.

Figure 14(c) shows the time history of planar translation
in the simulation, and Figure 14(d) shows the time history of
planar translation in the experiment (see Extension 8 for an
animation created from motion capture). Since RRRobot runs
open-loop, the robot drifts from the expected path in the ex-
periment due to unmodeled disturbances and transients. This
is seen particularly in the periods where the robot is supposed
to translate linearly (periods 1 and 3). It would be interesting

to find advanced feedback controllers that eliminate such drift
to “close the loop”. While examples of feedback controllers
that combine dynamics and kinematics for wheeled robots ex-
ist (Fierro and Lewis 1998� Wilson and Robinett 2001� Zhu et
al. 2006), finding feedback controllers for dynamic mobile ro-
bots with spherical kinematics remains an unsolved problem.

The robot’s planar path in the experiment and the simula-
tion match qualitatively. However, we again notice that RRRo-
bot’s linear translation velocity is slower in the experiment
when compared with the simulation. We attribute this to the
errors in ground traction modeling (see Section 3 for a dis-
cussion of contact modeling for legless locomotion). We also
notice that the transients dampen out more quickly in the sim-



Balasubramanian, Rizzi, and Mason / Legless Locomotion: A Novel Locomotion Technique for Legged Robots 587

Fig. 15. The untethered RRRobot experiment and simulation. (a) RRRobot simulation: yaw–pitch phase relationship during
period 1, (b) Untethered RRRobot experiment: yaw–pitch phase relationship during period 1, (c) RRRobot simulation: yaw–
pitch phase relationship during period 4. (d) Untethered RRRobot experiment: yaw–pitch phase relationship during period 4.

ulation than in the experiment. The important point from Fig-
ures 14(c) and 14(d) is that RRRobot can translate approx-
imately with variable curvature and has complete planar ac-
cessibility using different leg trajectory offsets. In addition to
measuring RRRobot’s planar translation, the motion capture
data allows us to quantify RRRobot’s body rotations and leg
motions seen in our experiments and simulations. Figure 14(b)
shows the phase relationship of the actual leg trajectories dur-
ing each of the periods. We note two discrepancies in the leg
trajectories. First, the leg angles are offset by about 8
 (aver-
age across three periods) from the desired offset values. The
inertias on the prototype robot had to be carefully balanced
to ensure that the body pitch angle was zero, and so the leg
trajectory offsets were modified slightly to ensure that the ro-
bot pitch was zero at the start. Second, while we expect to see
circles because the commanded leg trajectories are �2 out-of-
phase with each other, the distorted circles indicate that there
are errors in tracking the commanded leg trajectories. How-
ever, despite these errors, RRRobot’s translation in the exper-
iment is still predictable from the simulation, since legless lo-
comotion has smoothly varying dynamics.

Figures 15(a) and 15(c) show the relationship between
RRRobot’s pitch and yaw rotations during period 1 and pe-
riod 4 in the simulation, while Figures 15(b) and 15(d) show

the relationship between RRRobot’s pitch and yaw rotations
during the same periods in the experiment. We note three in-
teresting features.

First, we note that pitch and yaw are out-of-phase with each
other in period 1, as evidenced by the non-zero area under
the curve. As presented in Section 3.2, such out-of-phase at-
titude oscillations when coupled with the non-holonomic con-
tact constraints produce net translation� this compares well
with the linear translation induced by pitch–yaw oscillations
in Figure 7.

Second, we note that yaw drifts in time during period 4,
due to the out-of-phase leg oscillations offset from the verti-
cal. Yaw drift combined with pitch–yaw oscillations induces
RRRobot’s translation to curve. This compares well with the
example seen in Figure 10 where yaw drift causes the robot to
translate in a circle.

Third, we note that the pitch–yaw rotations are not identical
in the simulation and the experiment due to modeling errors.
In the simulation, the yaw oscillation amplitude is bigger� also
the pitch–yaw phase relationship is closer to �2 in the exper-
iment than in the simulation.

Figure 16(a) shows the time history of pitch rotations in
the simulation, and Figure 16(b) the time history of pitch rota-
tions in the experiment. In both experiment and simulation, the
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Fig. 16. The untethered RRRobot experiment and simulation. (a) RRRobot simulation: time history of pitch oscillations. (b) Un-
tethered RRRobot experiment: time history of pitch oscillations. (c) RRRobot simulation: time history of yaw oscillations. (d) Un-
tethered RRRobot experiment: time history of yaw oscillations.

mean pitch during periods 2 and 4 are different from those in
periods 1 and 3, since the leg offsets are different and gravity
causes the robot to lean (pitch) in the offset direction. However,
while the mean pitch during periods 1 and 3 is zero in the sim-
ulation, pitch is offset from the vertical in the experiment due
to small leg position and mass distribution errors in RRRobot.
This causes RRRobot to translate along a curve during peri-
ods 1 and 3 in the experiment, rather than along a straight line.
Also, pitch offset transients take longer to dampen out in the
experiment than in the simulation. For example, the transients
during period 3 dampen out slowly in the experiment, caus-
ing pitch oscillations to slowly settle into the limit cycle. This
causes the translation path to curve during period 3 before set-
tling into a linear translation path.

There is a strong similarity in RRRobot’s yaw oscillations
between the experiment and the simulation, except during pe-
riod 3 when pitch transients take a long time to settle (see
Figures 16(c) and (d)). RRRobot translates linearly during pe-
riod 1 and curves during periods 2 and 4. Simply put, RRRo-

bot’s translation curves in the direction the robot pitches to-
ward.

Finally, Figure 17 shows the time history of body roll ro-
tations in the experiment. Note that the roll oscillation ampli-
tudes are significantly smaller than the pitch oscillation ampli-
tudes and have small impact on RRRobot’s translation direc-
tion.

We also scanned RRRobot’s body curvature to see if the
plastic hemisphere deforms with the weight, since body de-
formations near the contact point influence the contact kine-
matics. In the nominal operating configuration (concave up),
the hemisphere radius is 0.156 m, whereas the hemisphere
in an inverted configuration (convex up) has radius 0.162 m
(we fit a sphere to a set of points using the algorithm de-
veloped by Chang and Pollard (2006)). Note that we as-
sume that the sphere radius is 0.15 m in our simulations.
Despite the discrepancies in robot radius, the planar paths
traversed in the simulation and the experiment qualitatively
match.
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Fig. 17. Untethered RRRobot experiment: body roll oscilla-
tions.

Our simulations of an untethered RRRobot model ground
traction by setting viscous damping 
 rr to


 rr � �	2�0 �x�	2�0 �y�	0�01�� r �	0�01 �� p�

	0�004 �� y�	0�01 ��1�	0�01 ��2�
T� (8)

Note that these damping parameters are different from those
used in simulating the smaller radius RRRobot (as discussed
in the previous Section 4.1.1), since the ground traction losses
differ between the two cases. Again, note that the translation
and rolling damping coefficients are coupled, and more work
is required to find the exact mapping between the losses in
different freedoms. In this paper, the damping coefficients only
approximate the ground traction forces seen in the experiment
to find a qualitative agreement between the robot’s translation
in the experiment and the simulation.

Finally, note that the large ground friction forces in the ex-
periment (and modeled using viscous damping in the simula-
tion) cause RRRobot to move slowly. In the following section,
we present simulation results with lesser viscous damping to
model slip-free body–ground contact. As expected, this allows
RRRobot to translate faster.

4.2. Exploring Legless Locomotion Capabilities using
Simulation

In this section, we explore using simulation the full range
of motions available to RRRobot by varying its leg trajec-
tories. We use the following parameter values: servo mass

Fig. 18. RRRobot simulation: time history of contact-point
motion induced by out-of-phase leg motions about the verti-
cal configuration over 30 s.

Ms � 0�053 kg, leg reaction masses Ml � 0�057 kg, battery
and processor mass Mb � 0�3 kg, sphere radius r � 0�12 m,
leg length l � 0�1 m, and gravity g � 9�81 ms. We use leg
amplitude 0.3 rad and leg frequency 8 rad/s and set viscous
damping to


 rr � �0� 0�	0�01�� r �	0�01�� p�	0�01�� y�

	0�01 ��1�	0�01 ��2�
T� (9)

Note that these damping coefficients are different from
those we use to match experimental results in Section 4.1.
The damping coefficients used in the previous section try to
model the dry friction from body–ground slip and the viscous
damping from the ground interaction, while from this section
onwards we assume slip-free body–ground contact and only
model the viscous damping.

Figure 18 shows RRRobot’s translation induced by �2
out-of-phase leg motions about the vertical configuration (sim-
ulation duration 25 s), while Figure 19 shows RRRobot’s trans-
lation induced by �2 out-of-phase leg motions offset �4
from the vertical configuration (simulation duration 25 s).
Note that the translation velocity is lesser in the curved trans-
lation gait. This is because the robot pitches, yaws, and rolls
simultaneously, causing the contact point to trace loops in the
plane. In contrast, RRRobot’s body only pitches and yaws in
the linear translation gait and does not trace loops.

Figure 20 shows how RRRobot’s planar translation changes
with varying leg offset and phase difference, based on RRRo-
bot simulations using leg amplitude 0.3 rad and leg frequency
8 rad/s (simulation duration 100 s). Note that translation curva-
ture depends predominantly on leg offset, and RRRobot curves
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Fig. 19. RRRobot simulation: time history of contact-point
motion induced by out-of-phase leg motions offset �4 from
the vertical configuration over 30 s.

in the direction it leans (pitches) in. For example, the robot
curves to the left with leg offset �4 and curves to the right
with leg offset 3�4. Also, translation curvature is symmet-
ric as leg offset varies either side of the vertical configuration.
Thus, the simulations indicate, like the experiments, that trans-
lation with variable curvature is possible. This compares well
with the intuition offered by the contact kinematics analysis in
Section 3.2, where we showed that pitch–yaw oscillations in-
duce lateral translation and such oscillations when combined
with yaw drift induce curved motion. This is exactly what we
see in RRRobot’s dynamic motion—out-of-phase leg motions
about the vertical produce pitch–yaw oscillations which in-
duce RRRobot to translate along its body-fixed Y -axis� when
RRRobot’s leg offset shifts from the vertical, RRRobot’s yaw
drifts with time and induces curved translation.

Translation velocity varies depending on both leg offset and
phase difference. Gauging from the path lengths in Figure 20,
we notice that translation velocity is maximum (1 cm/s) with
leg offset �2 and phase difference �2, since this induces
large body pitch–yaw oscillations with body pitch–yaw phase
difference close to �2.

Figure 21 analyzes RRRobot’s steady-state body rotations
as a function of leg offset and phase difference. Notice that
roll oscillation amplitudes are much smaller than pitch oscilla-
tion amplitudes, and this matches our intuition that RRRobot’s
translation is primarily due to out-of-phase pitch and yaw os-
cillations. RRRobot’s pitch and yaw oscillation amplitudes do

not vary much with leg offset, but change significantly with
leg phase difference—as leg phase difference approaches zero,
pitch oscillation amplitude increases and yaw oscillation am-
plitude decreases� as leg phase difference approaches � , pitch
oscillation amplitude decreases and yaw oscillation amplitude
increases. This observation matches with the intuition offered
by the decoupled pitch and yaw dynamics models in Figure 11.
Thus, there is a trade-off between pitch and yaw oscillation
amplitudes as leg phase difference varies between �4 and
3�4. The phase difference between yaw and pitch oscillations
varies little from �2 (see Figure 21(d)). We noticed in Sec-
tion 3.2 that this pitch–yaw phase difference produces maxi-
mum translation velocity. So this choice of parameters, namely
RRRobot’s body masses, leg masses, and body curvature, in-
duce RRRobot to translate with maximum linear velocity nat-
urally.

4.3. Summary of RRRobot Experiments and Simulations

In this section, we have explored legless locomotion through
both experimental studies and simulation. Using sinusoidal leg
trajectories that induce variable-curvature translation, we have
shown that RRRobot has full planar accessibility, albeit slow
and approximate. The simulation and the experiment results
match qualitatively, with the main difference being the slower
linear translation velocity observed in the experiments as com-
pared with the simulation. We believe this is the result of un-
modeled body–ground dry friction.

5. Conclusion

Legless locomotion is a novel locomotion mode that is applica-
ble in the special case where a robot is high-centered. The gaits
we present show that translation is feasible, albeit slow and
approximate, and the robot can travel anywhere in the plane.
There may be many more novel locomotion strategies avail-
able to a robot when its conventional locomotory mode fails.
Finding and understanding these different locomotion modes
will contribute to improving a robot’s robustness.

Unique from all previously studied locomotion, legless lo-
comotion is continuous, oscillatory, and underactuated in the
presence of gravity, variable inertia, and non-holonomic con-
tact constraints. At this time, it is unclear how to apply previ-
ously used techniques in geometric control theory to study leg-
less locomotion. Using experiment, simulation, and dynamics
theory, we have provided a strong understanding of how leg-
less locomotion works. Several interesting aspects of legless
locomotion remain to be explored. For example, while we have
used specific masses, spherical shells, and leg trajectories to il-
lustrate legless locomotion’s properties, it would be interesting
to explore a dimensionless parametrization of legless locomo-
tion. Also, more work is required to study the stability of leg-
less locomotion’s dynamics and to find a planning technique
for legless locomotion’s approximate translation.
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Fig. 20. Translation curvature as a function of leg trajectory offset and phase difference: each plot shows the time history of
contact-point motion over 100 s. The X-axis range is [	0�6� 0�6] m, and the Y -axis range is [0� 1�1] m.

Fig. 21. The mapping between leg motions (offset and phase difference) and body oscillations: influence of leg motions on
(a) pitch oscillation amplitude, (b) roll oscillation amplitude, (c) yaw oscillation amplitude, and (a) yaw–pitch oscillation phase
difference.
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Appendix: Index to Multimedia Extensions

The multimedia extension page is found at http://www.ijrr.org.

Table of Multimedia Extensions

Extension Type Description

1 Video RHex escapes after becoming high-
centered.

2 Video A round-bottomed RHex locomotes
by swinging its legs.

3 Video A simulation of the sphere–plane
contact kinematics illustrates a
sphere can translate in any di-
rection using roll, pitch, and yaw
oscillations.

4 Video Experiment showing RRRobot loco-
moting sideways.

5 Video Simulation showing RRRobot loco-
moting sideways.

6 Video Experiment showing RRRobot loco-
moting in a counter-clockwise path.

7 Video Simulation showing RRRobot loco-
moting in a counter-clockwise path.

8 Video Animation of experiment motion
capture showing legless locomotion
gait transitions.
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