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Abstract— It is known that a parallel manipulator at a singular configuration can gain one or more 

degrees of freedom and become uncontrollable. That is it might not reproduce a stable motion along a 

prescribed trajectory. However, it is proved experimentally that there is possible passing through the 

singular zones. This was simulated and shown on numerical examples and illustrated on several parallel 

structures. In this paper, we determine the optimal dynamic conditions generating a stable motion inside 

the singular zones. The obtained results show that the general condition for passing through a singularity 

can be defined as follows: the end-effector of the parallel manipulator can pass through the singular 

positions without perturbation of motion if the wrench applied on the end-effector by the legs and external 

efforts of the manipulator are orthogonal to the twist along the direction of the uncontrollable motion. This 

condition is obtained from the inverse dynamics and analytically demonstrated by the study of the 

Lagrangian of a general parallel manipulator. Numerical simulations are carried out using the software 

ADAMS and validated by experimental tests. 

Index Terms — parallel manipulators, singularity, dynamics, force management, trajectory 

planning. 



1. Introduction  

Parallel manipulators have experienced an increase in popularity in recent years due to their 

higher rate of acceleration, payload to weight ratio, stiffness and low effective inertia compared 

to those of serial manipulators. However they have some drawbacks, like a small workspace and 

special singular zones in it. Thus, in the presence of singular positions, the workspace of the 

parallel manipulators, which is less than that of serial manipulators, becomes even smaller and 

limits their functional performance. The studies of singularity have had different stages of 

development. The previous works on this problem is reported in a great number of publications 

and can be classified by different criteria. They can be arranged, by example, in three major 

groups, which are distinguished by historical evolution and are characterized by study of the 

singularity from kinematic, kinetostatic and dynamic points of view.  

The physical interpretation of a singularity in kinematics refers to those configurations of 

parallel manipulators in which the number of degrees of freedom of the mechanical structure 

changes instantaneously, either the manipulator gains some additional, uncontrollable degrees of 

freedom or loses some degrees of freedom. In this case the singularity analysis can be carried out 

on the base of the properties of the Jacobian matrices of the mechanical structure (i.e. when the 

Jacobian matrices relating the input speeds and the output speeds become rank deficient 

(Gosselin and Angeles 1990; Ma and Angeles 1992; Ottaviano, Gosselin and Ceccarelli 2001; 

Wen and Oapos Brien 2003)), by using Grassmann geometry (Merlet 1989) or screw theory 

(Bonev, Zlatanov and Gosselin 2003; Hunt 1987). However, it was observed that close to a 

singular configuration, a parallel manipulator loses its stiffness and its quality of motion 

transmission, and as a result, its payload capability. For this purpose, a kinetostatic approach has 

been applied for the evaluation of the quality of motion transmission in the singular zones of 



parallel manipulators. The quality of motion transmission of parallel manipulators was 

successfully studied in (Kim and Choi 2001; Kim and Ryu 2004; Lee et al. 2002; Weiwei and 

Shuang 2006). The quality of motion of manipulators with three degrees of freedom has been 

evaluated by means of a kinetostatic indicator, which is similar to the pressure angle (Alba-

Gomez, Wenger and Pamanes 2005). In (Arakelian, Briot and Glazunov 2007), the pressure angle 

was used as an indicator of the quality of motion transmission and the nature of the 

inaccessibility of singular zones by parallel manipulators are shown.  

The further study of singularity in parallel manipulators has revealed an interesting problem 

that concerns the path planning of parallel manipulators under the presence of singular positions, 

i.e. the motion feasibility in the neighborhood of singularities. In this case the dynamic conditions 

can be considered in the design process. One of the most evident solutions for the stable motion 

generation in the neighborhood of singularities is to use redundant sensors and actuators (Alvan 

and Slousch 2003; Collins and Long 1975; Dasgupta and Mruthyunjaya 1998a; Glazunov et al. 

2004). However, it is an expensive solution to the problem because of the additional actuators 

and the complicated control of the manipulator caused by actuation redundancy. Another 

approach concerns with motion planning to pass through singularity (Bhattacharya, Hatwal and 

Ghosh 1998; Dasgupta and Mruthyunjaya 1998b; Hesselbach 2004; Kemal Ider 2005; Kevin Jui 

and Sun 2005; Nenchev, Bhattacharya and Uchiyama 1997; Perng and Hsiao 1999), i.e. a parallel 

manipulator may track a path through singular poses if its velocity and acceleration are properly 

constrained. This is a promising way for the solution of this problem. However only a few 

research papers on this approach have addressed the path planning for obtaining a good tracking 

performance but they have not adequately addressed the physical interpretation of dynamic 

aspects.  



In this paper the dynamic condition for passing through the singular positions is defined in 

general. It allows the stable motion generation inside in the presence of singularity by means of 

the optimum force control. The disclosed condition can be formulated as follows: «In the 

presence of a type 2 singularity, the platform of the parallel manipulator can pass through the 

singular positions without perturbation of motion if the wrench applied on the platform by the 

legs and external forces is orthogonal to the direction of uncontrollable motion». In other terms, 

the condition is that the work of applied forces and moments on the platform along the 

uncontrollable motion is equal to zero. This condition is obtained from the inverse dynamics and 

analytically demonstrated by the study of the Lagrangian of a general parallel manipulator. The 

obtained results are illustrated by numerical simulations and validated by experimental tests. 

The paper is organized as follows. The next section presents theoretical aspects of the 

examined problem. Based on the Lagrangian formulation, the condition of force distribution is 

defined, that allows the passing of any parallel manipulator through the type 2 singular positions. 

In Section 3, two applications illustrate the obtained theoretical results. In section 4, the 

numerical simulations carried out using the software ADAMS are validated by experimental 

tests. 

2. Optimal dynamic conditions for passing through type 2 singularity 

Let us consider a parallel manipulator of m links, n degrees of freedom and driven by n 

actuators.  

The Lagrangian dynamic formulation for a parallel manipulator can be expressed as: 
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where,  



- is the vector of the input efforts; 

-  L is the Lagrangian of the manipulator;  

- T

nqqq ],...,,[ 21q  and T

nqqq ],...,,[ 21
 q  represent the vector of active joints variables and the 

active joints velocities, respectively; 

- Tzyx ],,,,,[ x  and Tzyx ],,,,,[  v  are trajectory parameters and their derivatives, 

respectively; x, y, z represent the position of the controlled point and  and   the rotation of 

the platform about three axes a aand a; 

- is the Lagrange multipliers vector, which is related to the wrench applied on the platform by: 

 pWA T  (2) 

where,  

-A and B are two matrices relating the vectors v and q  according to qBAv  . They can be 

found by the closure equations with respect to time. 

-Wp is the wrench applied on the platform by the legs and external forces (Khalil and Guégan 

2002), which is defined as: 
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where fp is the force along the directions of the global frame and np is the torque about the axes 

a aand a

The term Wp can be rewritten in the base frame using a transformation matrix D (Merlet 2006): 
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with p

R
W0  is the expression of the wrench Wp in the base frame, and 
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where I33, 033 and R33 are respectively the identity matrix, the zero matrix and the 

transformation matrix between axes a a and aand the base frame, whose dimensions are 33. 

By substituting (5) into (1), one can obtain: 
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where   BAJ
R 1

0


  is the Jacobian matrix between twist t of the platform (expressed in the base 

frame) and q , DAA
R

0  is the expression of matrix A in the base frame. 

For any prescribed trajectory x(t), the values of vectors q , q  and q can be found using the 

inverse kinematics. Thus, taking into account that the manipulator is not in a type 1 singularity 

(Gosselin and Angeles 1990), the terms Wb and p

R
W0  can be computed. However, for a 

trajectory passing through a type 2 singularity, the determinant of matrix J tends to infinity. 

Numerically, the values of the efforts applied by the actuators become infinite. In practice, the 

manipulator either is locked in such a position of the end-effector or it generates an uncontrolled 

motion. That is the end-effector of the manipulator could produce a motion, different to the 

prescribed trajectory. 

It is known that a type 2 singularity appears when the determinant of matrix A
R0  vanishes, in 

other words, when at least two of its columns are linearly dependant (Merlet 2006).  

Let us rewrite the matrix A
R0  as: 
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In the presence of type 2 singularity the columns of matrix A
R0  are linearly dependant, i.e. 
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where j are the coefficients, which in general can be functions of qp (p = 1, …, n). It should be 

noted that the vector ts = 2, …, 6]
T
 represents the direction of the uncontrollable motion of 

the platform in a type 2 singularity. 

Rewriting (8) in a vector form, we obtain: 
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where Nj represents the j-th column of matrix A
R0 . 

By substituting (9) into (2), we obtain 

 j

T
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where Wj is the j-th row of vector p

R
W0 . 

Then, from (9) and (10) the following conditions are derived: 

     
 


6

1

6

1

0
j j

jj

T

jj W λN  (11) 

The right term of eq.(11) corresponds to the scalar product of vectors ts and p

R
W0 .  

Thus, in the presence of a type 2 singularity, it is possible to satisfy conditions (11) if the 

wrench applied on the platform by the legs and external efforts p

R
W0  are orthogonal to the 

direction of the uncontrollable motion ts. Otherwise, the dynamic model is not consistent. 

Obviously, in the presence of a type 2 singularity, the displacement of the end-effector of the 

manipulator has to be planned to satisfy (11).  

Let us illustrate the considered problem by examples. 



3. Illustrative examples  

In this section, two examples are chosen to illustrate the obtained theoretical results discussed 

above. The first example presents a planar 5R parallel manipulator, which allows obtaining 

relatively simple mathematical models for demonstrating the expected results by numerical 

simulations. The second example presents a parallel manipulator which was developed in the 

I.N.S.A. of Rennes. This example was chosen for validation of numerical simulations carried out 

by the software ADAMS on the built prototype.    

 

3.1. Example 1:  Planar 5R parallel manipulator  

In the planar 5R parallel manipulator, as shown in Fig. 1, the output point is connected to the 

base by two legs, each of which consists of three revolute joints and two links. In each of the two 

legs, the revolute joint connected to the base is actuated. Thus, such a manipulator is able to 

position its output point in a plane. 

 

Fig. 1. Kinematic chain of the planar 5R parallel manipulator. 

 



 
 

(a)1 = 2  (b)1 = 2 

Fig. 2. Second kind of singularities of the planar 5R parallel manipulator. 

 

As shown in Fig. 1, the actuated joints are denoted as A and E with input parameters q1 and q2. 

The common joint of the two legs is denoted as C, which is also the output point with controlled 

parameters x and y. A fixed global reference system xOy is located at the center of AE with the y-

axis normal to AE and the x-axis directed along AE. The lengths of the links AB, BC, CD, DE are 

respectively denoted as L1, L2, L3 and L4. The positions of the centers of masses Si of links from 

joint centers A, B, D and E are respectively denoted by dimensionless lengths r1, r2, r3 and r4, i.e. 

111 LrAS  , 222 LrBS  , 333 LrDS   and 444 LrES  . 

The singularity analysis of this manipulator (Liu, Wang and Pritschow 2006) shows that the 

Type 2 singularities appear when legs 2 and 3 are parallel (Fig. 2).   

In both cases, the gained degree of freedom is an infinitesimal translation perpendicular to the 

legs 2 and 3. However, if L2 = L3, the gained degree of freedom in case (b) becomes a finite rotary 

motion about point B. 

In order to simplify the analytic expressions, we consider that the gravity effects are along the 

z-axis and consequently the input torques are only due to inertia effects. To simplify the 

computation, it is also preferable to replace the masses of moving links by concentrated masses 



(Seyferth 1974; Wu and Gosselin 2007). For a link i with mass mi and its axial moment of inertia 

Ii, we have:  
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where mij (j = 1, 2, 3) are the values of the three point masses placed at the centers of the revolute 

joints and at the center of masses of the link i.  

In this case, the kinetic energy T can be written as: 
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where, 121 mmS  , 222 mmS  , 323 mmS  , 424 mmS  , 2113 mmmB  , 2123 mmmC  , 

4133 mmmD  . The terms mij (i = 1, 2, 3, 4) are deduced from the relation (12), VSi is the vector 

of the linear velocities of the center of masses Si; VB, VC and VD are the vectors of the linear 

velocities of the corresponding axes.   

The input torques can be obtained from (6): 
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taking into account that for examined manipulator: 

 DDBBb FJFJW TT  ,  (15) 

where, 
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 CBBF  11 CB mm  , CDDF  32 CD mm  , (17) 
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The term Wp is given by: 
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and the Jacobian matrix J5R by: 
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and we determine ts in according with (8):  

 T]cos,sin[ 11 st  (26) 

Thus, the examined manipulator can pass through the given singular positions if the wrench 

Wp determined by (21) is orthogonal to the direction of the uncontrollable motion ts described by 

(26).  

Let us now consider the motion planning, which makes it possible to satisfy this condition. 

For this purpose the following parameters of manipulator’s links are specified: L1 = L2 = L3 = L4 

= 0.25 m; r1 = r2 = r3 = r4 = 0.5; a = 0.2 m; m1 = m4 = 2.81 kg; I1 = I4 = 0.02 kg/m
2
; m2 = m3 = 

1.41 kg; I2 = I3 = 0.01 kg/m
2
. 



 

 

Fig. 3. Initial, singular and final positions of the planar 5R parallel manipulator. 

 

With regard to the prescribed trajectory generation, the point C should reproduce a motion 

along a straight line between the initial position C0 (x0, y0) = C0 (0.1, 0.345) and the final point Cf 

(xf, yf) = Cf (-0.1, 0.145) in tf = 2 s.  

Thus, the given trajectory can be expressed as follows: 
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However, the manipulator will pass by a type 2 singular position at point Cs (xs, ys) = Cs (0, 

0.245) (Fig. 3). 

Developing the condition for passing through the singular position (11) for the planar 5R 

parallel manipulator at point Cs, we obtain: 

 063)48248( 2
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  (28) 

Then, taking into account that the velocity and the acceleration of the end-effector in initial and 

final positions are equal to zero, the following nine boundary conditions are found: 

 s (t0) = 0, (29) 

 s (tf) = 1, (30) 

 s (ts = 1 s) = 0.5, (31) 
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(a) actuator 1 (b) actuator 2 

Fig. 4. Input torques of the planar 5R parallel manipulator in the case of the eight order 

polynomial trajectory planning, obtained by the ADAMS software. 

 



  

(a) actuator 1 (b) actuator 2 

Fig. 5. Input torques of the planar 5R parallel manipulator in the case of the fifth order 

polynomial trajectory planning, obtained by the ADAMS software. 

 

From (28) – (37), the following eighth order polynomial trajectory planning is found:   

   876543 12606.007101.158909.372792.584228.325851.0 ttttttts   (38) 

Thus the generation of the motion by the obtained eighth order polynomial makes it possible to 

pass through the singularity without perturbation and the input torques remain in the limits of 

finite values, which are validated by numerical simulations carried out by the ADAMS software 

(Fig. 4). 

Thus, we can assert that the obtained optimal dynamic conditions assume the passing of the 

manipulator’s end-effector through the singular position.  

Now, we would like to show that, in the case of the generation of the motion by any trajectory 

planning without meeting the adopted boundary conditions, the end-effector is not able to pass 

through the singular position. For this purpose the generation of motion between initial and final 

positions, let us generate by a fifth order polynomial trajectory planning: 

   543 1875.09375.025.1 tttts   (39) 



The obtained numerical simulations carried out by the software ADAMS are given in Fig. 5. 

We can see that, when the manipulator is close to the singular configuration (for ts = 1 s), the 

values of the input torques tend to infinity. 

 

3.2. Example 2: PAMINSA (Parallel Manipulator of the I.N.S.A.) 

The second example presents a parallel manipulator, which was invented and developed at the 

I.N.S.A of Rennes (Arakelian et al. 2006). The particularity of this architecture is in decoupling 

of the displacements of the platform in the horizontal plane from the translations along the 

vertical axis. The advantages of such an approach was disclosed in (Arakelian et al. 2005; Briot 

et al. 2007b) and the singularity analysis is discussed in (Briot et al. 2007a; Briot and Arakelian 

2007; Arakelian, Briot and Glazunov 2006). 

The previous studies have revealed that there are type 2 singularities in the workspace of the 

symmetrical architecture of PAMINSA. Let us illustrate the proposed approach for the 

PAMINSA with 4 degrees of freedom (Fig. 6).    

Each leg of this manipulator is realized by a pantograph mechanism (Fig. 7) with two input 

points 3i and 8i, and an output point 5i (i = 1, 2, 3). Each input point 8i is connected to the rotating 

drive Mi by means of a prismatic guide mounted on a rotating link. This kind of architecture 

allows for generation of motion in the horizontal plane by the use of rotating actuators M1, M2, 

M3, and the vertical translations by means of the linear actuator Mv. Thus, the displacements (x, y, 

) of the platform in the horizontal plane xOy, that are translations along the x and y-axes and 

rotations about the z-axis, are independent of vertical translations z. 

 



 

Fig. 6. PAMINSA with 4 DOF. 

 

 

Fig. 7. Kinematic chain of each leg. 

 

This implies that the kinematic models controlling the displacement of the manipulator can be 

divided into two parts:  

- a model for the displacements in the horizontal plane, which is equivalent to a 3-RPR 

manipulator; 



- a model for the translations along the vertical axis equivalent to the model for the vertical 

translations of a pantograph linkage. 

The type 2 singularities of such a manipulator appear when (Arakelian, Briot and Glazunov 

2006; Briot et al. 2007a): 

a)  the three legs of the manipulators are parallel, which is impossible for the developed 

PAMINSA manipulator. 

b)  the orientation of the platform is equal to )/(cos 1

bpl RR , where Rpl and Rb correspond 

respectively to the lengths PCi and OM’i (Fig. 8). In this case, the manipulator gains one 

infinitesimal rotation around one vertical axis. 

c) the platform is located in a circle defined by 

  cos22222

bplbpl RRRRyx                           (40) 

In this case, the manipulator gains one finite rotation about one vertical axis (Cardanic self 

motion) (Briot et al. 2007a). 

 

Fig. 8. Example of Type 2 singular configuration  

(horizontal projection of the examined structure). 

 



For both cases (b) and (c), the direction of the unconstrained motion can be represented by the 

twist ts = [0, 0, 1, xW, yW, 0]
T
, where xW and yW corresponds to the planar coordinates of the 

intersection point of the wrenches Ri applied on the platform by the three legs of the manipulator 

(Fig. 8). 

Let us now study the inverse dynamics of the PAMINSA. The potential energy V can be 

written as: 

 



3

1i

legpl i
VVV  (41) 

where Vpl is the potential energy of the platform and 
ilegV is the potential energy of the leg i (i = 1, 

2, 3). 

By further considering that the coordinates of the all points of the pantograph linkages can be 

found as a linear combination of the coordinates of points 3i, 5i and 9i, one can express the terms 

Vpl and 
ilegV  as follows: 

 zgmV plpl   (42) 

 439251 vvvivivleg CqCzCzCV
i

  (43) 

Here, Cvj (j = 1, 2, 3) are constant terms whose dimension is equivalent to a mass multiplied by 

the gravitational acceleration g, mpl is the mass of the platform with a payload, and z5i and z9i are 

the altitude of joints 5i and 9i. The expressions of the coordinates of joints 5i and 9i are given in 

appendix A. The expressions for Cvj (j = 1, …, 4) are given in appendix B. 

We consider that the links are perfect tubes. Therefore the tensor of inertia Ij of the link Bji at 

the center of masses will be written as: 
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Thus, the kinetic energy T of the manipulator can be represented as: 

 



3

1i

legpl i
TTT ,  (45) 

where Tpl is the kinetic energy of the platform, Tlegi is the kinetic energy of the leg i, as: 

  2222 )(
2

1


plplpl IzyxmT   (46) 

where Ipl is the axial moment of inertia of the platform about the vertical axis. 

 
iii rottransleg TTT   (47) 
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 (48) 

irotT  is the kinetic energy of the rotating links.  

Note that there are two types of rotations (see, Fig. 7): 

- rotation due to the actuators Mi (i = 1, 2, 3) (angle qi), which is about the vertical axis, 

- rotations due to the displacement of the pantograph in the linkage plane (angles i and i 

denoted as the angles between the direction of the passive slider and the links B4i and B3i 

respectively). 

Thus, the kinetic energy of the rotating links can be written as: 

)cossincossin( 2
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2

9

2
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22
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9 icicicicciicicrot CCCCCqCCT
i

     (49) 

The expressions for Ccj (j = 1, …, 13) are given in appendix C. 

The input torques can be obtained from (6): 

 pb WJW T

PAM  (50) 



where the terms JPAM, Wb and Wp are presented in appendix D. 

The following parameters of manipulator’s links are specified for the trajectory generation:  

- the radii of the circles circumscribed to the base and platform triangles are respectively equal 

to Rb = 0.35 m and Rpl = 0.1 m; 

- magnification factor of the pantograph: k = 3; 

- gravitational acceleration g is equal to 9.81 m/s
2
. 

- lengths of the links of the pantograph linkages: LB1 = 0.308 m, LB2 = 0.442 m, LB3 = LB8 = 0.42 

m, LB4 =k LB7 = 0.63 m, LB5 = 0.0275 m, LB10 = 0.3635 m; 

- masses of the joints of the pantograph linkages: m2 = 0.214 kg, m3 = 0.338 kg, m4 = 0.262 kg, 

m5 = 0.233 kg, m7 = 3.08 kg, m8 = 0.305 kg, m9 = 0.259 kg; 

- mass of the platform: mpl  = 2.301 kg; 

- masses of the links of the pantograph linkages: mB1 =1.221 kg, mB2 = 0.921 kg, mB3 = 0.406 kg, 

mB4 = 0.672 kg, mB7 = 0.107 kg, mB8 = 0.403 kg, mB10 = 0.436 kg; 

- term of the inertia matrix of the platform: 2kg/m015.0plI . 

- terms of the inertia matrices of the links of the pantograph linkages:  

 2)3( kg/m0038.0B

XXI , 2)3( kg/m02.0B

YYI , 2)4( kg/m0012.0B

XXI , 2)4( kg/m048.0B

YYI , 

24)7( kg/m108 B

XXI , 2)7( kg/m003.0B

YYI , 2)8( kg/m0024.0B

XXI , 2)8( kg/m02.0B

YYI , 

2

2 kg/m003.0BI , 2

10 kg/m02.0BI  . 

The point P is desired to make a motion x(t) along a straight line between points P0 (x0, y0) = P0 

(0, 0) and point Pf (xf, yf) = Pf (0.3, 0) in tf = 2.4 s. However, the manipulator will pass through a 

type 2 singular position at point Ps  (xs, ys) = (0.25, 0) (Fig. 9). 

 



 

Fig. 9. Displacement of the PAMINSA along the prescribed straight line (planar projection). 

 

In order to carry out a comparative analysis for the optimized and not optimized dynamic 

conditions for passing through type 2 singularity, it has been considered two cases. The first is 

such a movement on the given trajectory, which is calculated from condition (11), and the second 

is an arbitrary motion. 

At first let us consider an optimized trajectory which allows satisfying the condition (11), i.e. 

the force Wp should be perpendicular to the to the twist ts [0, 0, 1, 0, 0.1, 0]
T
 defining the 

direction of the unconstrained motion. Developing the expression (11) for the PAMINSA at point 

Ps, we obtain: 
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17625.519423.005643.085175.002947.018482.0

11720.085084.606827.004425.014649.02115.106441.00
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



  (51) 

Now considering that the end-effector of the manipulator moves along a straight line directed 

along the x-axis, we can note that )( sty  = )( stz  = )( sty  = )( stz  = )( st  = )( st  = 0. Thus, the 

relationships, which satisfy the passing through of the singular positions, taking into account that 



the velocity and the acceleration of the platform in the initial and final positions are equal to zero, 

can be expressed by the following boundary conditions: 

 x(t0) = x0,  (52) 

 x(tf) = xf,  (53) 

 x(ts = 2s) = xs,  (54) 

 0)( 0 tx , (55) 

 0)( ftx , (56) 

 0)( 0 tx , (57) 

 0)( ftx , (58) 

 05.0)(  ss xtx  m/s,  (59) 

 1.32583)(  ss xtx   m/s². (60) 

In this case, a motion for passing of the platform through the singular position can be found 

from the following eighth order polynomial form: 

   345678 27.17563.40023.36505.16665.3741.3 tttttttx   (61) 

However, a trajectory obtained by (61) cannot be reproduced by the prototype because of the 

limited capability of drivers’ deceleration. Therefore, the trajectory was divided into two parts, 

i.e., the first sixth order polynomial trajectory assumes the motion from an initial to the singular 

position (P0Ps) and the second sixth order polynomial trajectory from singular to the final 

position (PsPf). The core of the problem is same but it allows for generating motions for the 

prototype. 

Thus, the trajectory planning equations can be written as: 

    6

6

5

5

4

4

3

300 tbtbtbtbxxxtx s   for t  ts; (62) 



    ))()()()()(( 6

6

5

5

4

4

2

21 ssssssfs ttcttcttcttcttcxxxtx   for t > ts. (63) 

with b3 = -3.3033, b4 = 5.10456, b5 = -2.45207, b6 =0.37844, c1 = 1, c2 = -13.25829, c4 = 

2365.3672, c5 = -11953.07236 and c6 = 16158.76157. 

Thus, the motion obtained from the following sixth order polynomial equations 

  6543 095.0613.0276.1826.0 tttttx   for t  2s; (64) 

  65432 9.8079.102921.545714.1541222.2445553.2067187.72722 tttttttx   

for t > 2s;  (65) 

allows for passing through the singularity without perturbation, and the input efforts take on finite 

values (Fig. 10).  

It can be seen that the input torques remain in the limits of finite values, but, by the end of the 

motion there is an increase of the input efforts, caused by a quick deceleration to stop the 

manipulator before it reaches the workspace boundary. It will be shown further that in the case of 

the motion generated by any trajectory planning without meeting the adopted boundary 

conditions (52) – (60), the manipulator platform is not able to pass through the singular position.  

For this purpose, the generation of motion between initial and final positions is carried out by a 

fifth order polynomial trajectory planning. 

In this case, for   m0ty ,   m45.0tz and   0t , the fifth order polynomial trajectory 

planning is the following: 

   543 023.0137.0217.0 ttttx   (66) 

The obtained input efforts computed by the software ADAMS are represented in Fig. 11. 

It can be noted that, while the manipulator passes through the singular configuration (for ts ≈ 

1.8 s), the value of the input torques tend to infinity. 

Let us now validate the obtained results by experimental tests.  



  

(a) actuator M1 (b) actuator M2 

 

(c) actuator M3 

Fig. 10. Input efforts of the PAMINSA in the case of the sixth order polynomial trajectory 

planning, computed with ADAMS software. 

 



 

  

(a) actuator M1 (b) actuator M2 

 

(c) actuator M3 

Fig. 11. Input efforts of the PAMINSA in the case of the fifth order polynomial trajectory 

planning, computed with ADAMS software. 

 

 



4. Experimental validation of obtained results 

For validating the results of the previous section, we have carried out experimental tests on the 

prototype of the PAMINSA developed in the I.N.S.A. of Rennes (Fig. 12). 

 

 

Fig. 12. The prototype of PAMINSA developed in the I.N.S.A. of Rennes. 

 

    

    
Fig. 13. Trajectory reproduction on the PAMINSA during the displacement of the platform 

with the fifth order polynomial law (view from below). 

 



    

    
Fig. 14. Trajectory reproduction on the PAMINSA during the displacement of the platform 

with the sixth order polynomial law (view from below). 

 

At first, we have applied an arbitrary fifth order control law and observed the reproduction of 

motion during the displacement of the platform. The obtained trajectory is shown in Fig. 13 

(dotted line). 

The different positions are classified by time. For positions from (a) to (d), the platform moves 

towards the singular zone but yet it is outside of it. In this case, the reproduction of the real 

trajectory is similar to the desirable. At position (e), the manipulator enters the singular zone, 

which is close to the circle of the theoretical singular loci, and starts an uncontrollable motion. 

Thus, since the motion generation is carried out by non optimized dynamic parameters, the 

platform moves along an unplanned trajectory (see positions (e) - (h) in Fig. 13). 

Next, we have implemented the sixth order control laws as it was shown in the previous section 

and observed the behavior of the platform during the displacement (Fig. 14). The different 

positions are classified by time. During all these displacements, the manipulator retains its 

orientation and passes through the singular configuration without any perturbation. 



Thus, we can note that the obtained optimum dynamic conditions allow the passing of the 

manipulator through the singular position. 

 

5. Conclusion 

At a singular configuration, a manipulator can gain one or more degrees of freedom, and at 

such a configuration it may becomes uncontrollable, i.e. it may not reproduce stable motion with 

prescribed trajectory. Nevertheless it is approved that there are several motion planning 

techniques, which allow passing through these singular zones. These approaches are simulated by 

numerical examples and illustrated on several parallel structures. It is a promising tendency for 

the solution of this problem. However, the attention was focused only on control aspects of this 

problem and very little attention has been paid to the dynamic interpretation, which is a crucial 

factor for governing the behavior of parallel manipulators at the singular zones.  

In this paper we have found the optimal dynamic conditions, for making the pass through the 

type 2 singular configurations possible. The general definition of the condition for passing 

through the singular position is formulated as follows: in the presence of type 2 singular 

configuration, the platform of a parallel manipulator can pass through the singular positions 

without perturbation of motion if the wrench applied on the platform by the legs and external 

efforts are orthogonal to the direction of the uncontrollable motion, or in other words, if the work 

of applied forces and moments on the platform along the uncontrollable motion is equal to zero. 

This condition has been verified by numerical simulations carried out with the software ADAMS 

and validated by experimental tests on the prototype of four degrees of freedom parallel 

manipulator PAMINSA. 



It should be noted that the formulated general conditions ensure any given trajectory generation 

in the manipulator workspace. We would like to point out that the trajectory is not imposed and 

only the conditions of force generation must be satisfied.  

Thus, the passing of any parallel manipulator through the singular positions by the proposed 

technique is carried out by optimal generation of inertia forces. Hence, it is impossible to stop the 

manipulator in the singular locus and to start again from fixed position. 

We would like to mention that we studied the optimal redistribution of forces only in singular 

positions of the manipulator but it should be noted that there are zones close to these positions, in 

which the manipulator loses the quality of motion. For more reliable generation of motion, it is 

desirable to ensure the given condition of force generation not only in the singular positions of 

the manipulator but also in the zones near to these positions. It should be also mentioned that a 

future development of our work is the study of the difficulties of controlling parallel robots in the 

neighbourhood of singular configurations. 

Finally, it should be noted that for the case of non controllable external forces applied on the 

platform the proposed technique cannot be used. Therefore, the most prominent field of the 

industrial application is a “fast pick and place” manipulation, when the generation of motion is 

determined by input, gravitational and inertia forces. 

APPENDIX A 

Coordinates of points 3i, 5i and 9i (i = 1, 2, 3): 
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APPENDIX B 

Expressions of terms Cvj (j = 1, …, 4): 
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APPENDIX C 

Expressions of terms Ccj (j = 1, …, 13): 
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APPENDIX D 

JPAM = A
-1

B is the global Jacobian matrix where matrice A and B are: 
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The expressions of the terms Wb and Wp are: 



)

(

22101077

883344

3

1

2277994433

iS

T

iSiS

T

iSiS

T

iS

iS

T

iSiS

T

iSiS

T

iS

i

i

T

ii

T

ii

T

ii

T

ii

T

i

FJFJFJ

FJFJFJFJFJFJFJFJW

QQQ

QQQQQQQQb






)

(

7788

334477

3

1

44995588

iS

T

iSiS

T

iS

iS

T

iSiS

T

iSi

T

i

i

i

T

ii

T

ii

T

ii

T

i

FJFJ

FJFJFJFJFJFJFJFW

XX

XXXXXXXPp



 
  

with 
























































133333

13

33

33
X

000

0
J 

T

iii

T

T

iii

i

zyx

zyx

zyx ],,[

],,[

],,[ 555555

5
, ii

k
58 10

01

1

1
X

441414

41

41

X J

000

0

0

J


























, 

























1333

31

1232

Q

00

0

00

J 13i , ii 32 QQ JJ  ,  

T

T

B

iqii

T

B

iqii

T

B

iqii

i

L

L

L

















































































































3131

12

P31

12

P31

12

P31

Q

00

0
RotR0

0
RotR0

0
RotR0

J

3

3

3

2

3

1

9

),(

),(

),(

y

y

y







, 























000

0sincos

0cossin

ii

ii

qi qq

qq

PR , 

iii

B

ii
i

L
q

8

3

ε
9

),(
XX

1313

13

12

P
X JJ

00

0
0

RRot
J 































 

z
, 























ii

ii

i





sin0cos

000

cos0sin

εPR ,  



  



























i

i

iBiB

iBiB

ii k

k

LL

LL

5

1

43

43

1
1

coscos

sinsin

X3121

X
X

J00

J
J 





, 
































iiii
i

zyx
00XJ , i

T

T

B

iqii

T

B

iqii

T

B

iqii

i

kL

kL

kL

9

4

3

4

2

4

1

4

/
),(

/
),(

/
),(

Q

3131

12

P31

12

P31

12

P31

Q J

00

0
RotR0

0
RotR0

0
RotR0

J 

















































































































y

y

y







, 

iii

B

ii
i

kL
q

9

4

4

/
),(

XX

1313

12

P13
X JJ

00

0
RRot0

J 


































z
,  























ii

ii

i







sin0cos

000

cos0sin

PR , 

T

T

B

iqii

T

B

iqii

T

B

iqii

i

kL

kL

kL

















































































































3131

12

P31

12

P31

12

P31

Q

00

0
RotR0

0
RotR0

0
RotR0

J

/
),(

/
),(

/
),(

4

3

4

2

4

1

7

y

y

y







, 

iii

B

ii
i

kL
q

8

4

7

/
),(

XX

1313

12

P13
X JJ

00

0
RRot0

J 


































z
,    














i

iiiS

1Q

43

QQQ
J

0
JJJ 954 5.0 , 














0321 iii

i


12121212

1Q

0000
J ,   












i

iiiS

1Ω

954 5.0
X

63

XXX
J

0
JJJ , iii

i

i q

q

X1X JJ















 



00

cos0

sin0

, 

  













i

iiiS

2

743 5.0
Q

43

QQQ
J

0
JJJ , 













0321

2

iii

i


12121212

Q

0000
J , 



  











i

iiiS

2Ω

743 5.0
X

63

XXX
J

0
JJJ , iii

i

i q

q

XX JJ



















00

0cos

0sin

2 ,   













i

iiiS

2

988 5.0
Q

43

QQQ
J

0
JJJ , 

  











i

iiiS

2Ω

988 5.0
X

63

XXX
J

0
JJJ ,   














i

iiiS

1

787 5.0
Q

43

QQQ
J

0
JJJ , 

  











i

iiiS

1Ω

787 5.0
X

63

XXX
J

0
JJJ , 























 i

T

iSiSiS

iS

zyx

1

101010

10

],,[

Q

Q

J

qJ , 





































 i

i
iS

1

3
2

0100

0010

0001

Q

Q
Q

J

J
J , 

 Tplplplpl Izmymxm  00PF ,   

 Tjijijijji zyxm 000F , for j = 2, 3, 4, 5, 7, 8, 9  

 TvBiB qm 00000 11
F , 

 TiBjSjiBSjiBjSjiBjBji qIzmymxm  002F , for j = 2, 10 

 TT

SjiSjiBSjiBjSjiBjBji zmymxm CF 
2 , for j = 3, 4, 7, 8 

   

 

  Bji

T

iiBjii

Bji

T

iiiqiBjii

Bji

T

iiBjiiiqiSji

qq

qq

qq







),(),(),(),(

),(),(),(),(

),(),(),(),(

yRotzRotIyRotzRot

RzRotyRotRIyRotzRot

yRotzRotIRzRotyRotRC

PP

PP
















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In these expressions, ij represents the Krönecker symbol (ij = 1 if j = i and ij = 0 if j  i). 
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FIGURE CAPTIONS 

 

Fig. 1. Kinematic chain of the planar 5R parallel manipulator. 

Fig. 2. Second kind of singularities of the planar 5R parallel manipulator. 

Fig. 3. Initial, singular and final positions of the planar 5R parallel manipulator. 

Fig. 4. Input torques of the planar 5R parallel manipulator in the case of the sixth order 

polynomial trajectory planning, obtained by the ADAMS software. 

Fig. 5. Input torques of the planar 5R parallel manipulator in the case of the fifth order 

polynomial trajectory planning, obtained by the ADAMS software. 

Fig. 6. PAMINSA with 4 DOF. 

Fig. 7. Kinematic chain of each leg. 

Fig. 8. Example of Type 2 singular configuration (horizontal projection of the examined 

structure). 

Fig. 9. Displacement of the PAMINSA along the prescribed straight line (planar projection). 

Fig. 10. Input efforts of the PAMINSA in the case of the sixth order polynomial trajectory 

planning, computed with ADAMS software. 

Fig. 11. Input efforts of the PAMINSA in the case of the fifth order polynomial trajectory 

planning, computed with ADAMS software. 

Fig. 12. The prototype of PAMINSA developed in the I.N.S.A. of Rennes. 

Fig. 13. Trajectory reproduction on the PAMINSA during the displacement of the platform with 

the fifth order polynomial law (view from below). 

Fig. 14. Trajectory reproduction on the PAMINSA during the displacement of the platform with 

the sixth order polynomial law (view from below). 


