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Abstract

This paper presents new vector quantization based methods for select-
ing well-suited data for hand-eye calibration from a given sequence
of hand and eye movements. Data selection can improve the accu-
racy of classic hand-eye calibration, and make it possible in the first
place in situations where the standard approach of manually selecting
positions is inconvenient or even impossible, especially when using
continuously recorded data. A variety of methods is proposed, which
differ from each other in the dimensionality of the vector quantization
compared to the degrees of freedom of the rotation representation,
and how the rotation angle is incorporated. The performance of the
proposed vector quantization based data selection methods is eval-
uated using data obtained from a manually moved optical tracking
system (hand) and an endoscopic camera (eye).

KEY WORDS—hand-eye calibration, vector quantization

1. Introduction

Hand-eye calibration, which has classically been used for cal-
ibrating the rigid transformation from the tip of a robot ma-
nipulator arm to a camera mounted on the arm, becomes more
interesting for applications where similar problems arise, but
which are not directly related to robotics. Examples include
hand data provided by an optical tracking system instead of
a robot, where the camera is mounted on an endoscope and
moved manually as in Vogt (2006) or Schmidt et al. (2004)
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or an inertial sensor mounted on a camera as in Aron et al.
(2004). Self-calibration of a rigid stereo-camera system, where
one camera can be treated as the ‘hand’ and the other as the
‘eye’, is described in Luong and Faugeras (2001) and Schmidt
(2006).

A problem that is common to all hand-eye calibration al-
gorithms is that the quality of the result is highly dependent
upon the data used for computing the unknown transformation.
The usual approach for solving this problem is to use robot
movements that already take the restrictions on the data into
account, which means that the movement has to be planned be-
fore recording. Suggestions of how this can be achieved were
given in one of the original publications on hand-eye calibra-
tion by Tsai and Lenz (1989). In situations where planning
such a well-suited movement is not possible (e.g. due to con-
straints on the available space) or cannot be controlled well
(e.g. when using a hand-held camera), methods for data se-
lection are required in order to obtain high-quality calibration
results. In particular, in situations where the camera records
images at frame rates of 25 images per second while the cam-
era is moving continuously, using the movements in temporal
order is a bad choice. Performing a data selection step before
the actual hand-eye calibration is therefore essential in these
cases.

We present a variety of new methods for automatic se-
lection of well-suited data based on vector quantization. Us-
ing any of them before the actual hand-eye calibration makes
calibration of continuously recorded data possible in the first
place. As we will show in the experiments section, even when
only a small number of planned poses are used as in the classic
approach to acquiring data, running the proposed data selec-
tion algorithms can lead to an increase in accuracy. The algo-
rithms presented here have been developed by Schmidt (2006).
They have been partially revised, making the automatic thresh-
old computation (Section 3.5) more effective. New experimen-
tal results will be presented in this article.
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The problem of automatic data selection was already ad-
dressed in Schmidt et al. (2003), where it is applied in hand-
eye calibration of an endoscopic surgery robot. This method
first removes relative movements (defined by the rotation and
translation between two given poses� see also Section 3.1) with
small rotation angles using a fixed threshold. After this pre-
selection step, pairs of relative movements are rated according
to their suitability for hand-eye calibration. The goal is to use
the best fraction of pairs for computing the hand-eye transfor-
mation.

As a rating criterion, it is proposed to use the scalar product
between the rotation axes of two relative movements. A worst
case estimate (if no movements are eliminated during pre-
selection w.r.t. angle) of the time complexity of this approach
is O�N 4�, N being the number of poses contained in the orig-
inal input sequence. The method is more or less a brute-force
approach� it cannot compete in computation time (or accuracy)
with the vector quantization methods that we present in this ar-
ticle. Another problem is that well-matching pairs of relative
movements are always selected, where one relative movement
may be contained in multiple pairs. The pairs are afterwards
used to form a linear system of equations for solving the hand-
eye transformation. Since each relative movement results in
one equation, it may happen that one movement is used more
than once leading to two linearly dependent equations, one of
them being redundant.

We have presented the first vector quantization based data
selection method in Schmidt et al. (2004). This method is also
described in Section 3.3. The pre-selection of movements us-
ing a fixed threshold has been adopted in Schmidt et al. (2004),
while an algorithm for computing a suitable threshold auto-
matically is now used. Schmidt et al. (2004) also contains
an experimental comparison with the approach published in
Schmidt et al. (2003)� it concludes that the latter cannot com-
pete with the vector quantization method at all and that the
calibration results are mostly worse than for the vector quanti-
zation based methods.

Zhang et al. (2005) and Shi et al. (2005) have also presented
an iterative method for data selection in hand-eye calibration.
Their method considers pairs of movements and rates their
suitability for hand-eye calibration by comparing the angle be-
tween the two rotation axes, the rotation angles and the norm
of the translation vectors to thresholds. In contrast, our vector
quantization based approach does not only rate pairs but also
takes into account all available movements on a global scale.

The paper is structured as follows. A short introduction of
hand-eye calibration will be given in Section 2, including a
brief literature review and explaining the critical factors that
influence calibration accuracy. Section 3 describes the new
proposed data selection algorithms based on vector quantiza-
tion. Experimental results, including a comparison with clas-
sic hand-eye calibration without data selection, are presented
in Section 4. The paper concludes with Section 5. As the pro-
posed algorithms make excessive use of different representa-

tions of three-dimensional (3D) rotations, we have included a
short introduction for readers not familiar with these represen-
tations in Appendix A.

2. Hand-eye Calibration

2.1. Overview

The hand-eye calibration problem can be formulated as fol-
lows. Given a robot manipulator arm and a camera mounted
on that arm, compute the rigid transformation from arm to
camera, also called hand-eye transformation. Knowledge of
this transformation is necessary for computing the camera pose
from the pose of the robot arm, which is usually provided by
the robot itself, while the pose of the camera is unknown. Once
the hand-eye transformation is known, the camera pose is eas-
ily computed from the pose information provided by the robot.

The first hand-eye calibration methods were published by
Shiu and Ahmad (1989) and Tsai and Lenz (1989)� an early
comparison of the methods available at that time was given in
Wang (1992). The hand-eye calibration problem was formu-
lated by Shiu and Ahmad (1989) as a matrix equation of the
form

TETHE � THETH� (1)

where TH is the robot arm (hand) movement, TE the camera
(eye) movement, and THE is the unknown hand-eye transfor-
mation, i.e. the transformation from gripper to camera. (Note
that in some publications, THE is the transformation from cam-
era to gripper.) Each matrix T� is a rigid transformation in ho-
mogeneous form, i.e.

T� �
�� R� t�

0T
3 1

�� � � � �H�E�HE�� (2)

The transformations T� consist of a 3 � 3 rotation matrix R�
and a 3D translation vector t� � 03 denotes the 3D null-vector.

The straightforward method of solving Equation (1) is to
split it into two separate equations: one that contains only ro-
tation and a second that contains rotation and translation i.e.

RERHE � RHERH (3)

�RE � I3�3�tHE � RHEtH � tE� (4)

where I3�3 denotes the 3 � 3 identity matrix. Thus, the rota-
tional part RHE of the hand-eye transformation can be deter-
mined first from Equation (3) and, after inserting it into Equa-
tion (4), the translational part tHE is computed.

This is how hand-eye calibration is carried out by Shiu
and Ahmad (1989)� Tsai and Lenz (1989)� Chou and Kamel
(1991)� Wang (1992). Various parameterizations of rotation
were applied (see Appendix A for an introduction). The origi-
nal works of Shiu and Ahmad (1989) and Tsai and Lenz (1989)
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use the axis/angle representation� quaternions were used by
Chou and Kamel (1991) and Horaud and Dornaika (1995).
Dual quaternions were introduced by Daniilidis (1999, 2001).

In contrast to the former approaches, it was suggested by
Chen (1991) that rotation and translation should be solved si-
multaneously, not separately. This approach is also followed
by Horaud and Dornaika (1995), where a nonlinear optimiza-
tion of rotation and translation is performed. An online cal-
ibration method based on Kalman filtering was proposed by
Andreff (1997). Daniilidis (1999, 2001) introduced a hand-eye
calibration algorithm based on dual quaternions that is also
capable of handling rotation and translation simultaneously.
However, in contrast to the former approaches, a linear solu-
tion is given. A method based on screw motions, very similar
to Daniilidis’ dual quaternion algorithm, can be found in Zhao
and Liu (2006). Fassi and Legnani (2005) present a geometric
interpretation of the original hand-eye calibration equation and
analyze its properties.

Commonly, hand-eye calibration methods rely on the fact
that the movement of the robot manipulator arm is provided
by the robot, while the camera movement is computed using
a calibration pattern and classic camera calibration methods
(e.g. Tsai 1987� Zhang 1998, 2000). Andreff et al. (1999, 2001)
and Schmidt et al. (2005) presented approaches that obtain
the camera movement not by using a calibration pattern, but
from point feature tracking and a structure-from-motion tech-
nique (see Faugeras and Luong (2001)� Hartley and Zisserman
(2003) for an introduction). In this case an additional scale
factor has to be estimated, making the problem very similar
to the self-calibration of a rigid stereo-camera system (Luong
and Faugeras 1993, 2001� Faugeras and Luong 2001�Dornaika
and Chung 2003� Schmidt 2006).

2.2. Critical Factors

Regardless of which algorithm is actually used, one important
constraint is always valid for solving the general hand-eye cal-
ibration problem. At least two movements of the robot manip-
ulator are necessary, where the axes of the rotations are non-
parallel. This was shown by Tsai and Lenz (1989) and Chen
(1991). If the movement is not general enough, the hand-eye
parameters can be recovered only partially. For details, see e.g.
Andreff et al. (2001).

The critical factors and criteria for improving hand-eye cal-
ibration accuracy have already been given by Tsai and Lenz
(1989).

1. Maximize the angle between rotation axes of relative
movements (influence on error in rotation, no transla-
tion recovery possible for parallel axes).

2. Maximize the rotation angle of relative movements
(influence on error in rotation and translation).

3. Minimize the distance between the optical center of the
camera and the calibration pattern (influence on error in
translation).

4. Minimize the distance between the gripper coordinate
system positions, i.e. small translational movement of
the hand (influence on error in translation).

More details as well as an error analysis can be found in
Tsai and Lenz (1989). If the movement of the robot gripper
can be planned in advance, all items above may be controlled
by the user. The usual way to fulfill the data requirements in
robot hand-eye calibration is to use a calibration setup where
the different positions of the gripper are chosen such that the
data is well suited for calibration. Such a setup is described in
e.g. Tsai and Lenz (1989).

When planning movements is not possible or gripper move-
ment is confined to certain areas, not all of the above crite-
ria can be controlled as desired. Particularly when hand-eye
calibration is done for devices other than robot manipulator
arms, controlled movements may be not possible at all or only
with very low accuracy. An example of such an application
that becomes more popular is the calibration of an optical
tracking system (basically a camera) and an endoscope (op-
tics and endoscopic camera). A so-called target, which con-
sists of retroreflective markers, is mounted on the endoscope.
Its 3D pose can then be determined by the optical tracking
system. In this setup, the hand data is provided by the track-
ing system and the eye data by the endoscopic camera. With
a known hand-eye transformation, the movement of the en-
doscopic camera can therefore be computed from the move-
ment of the target. The endoscope is normally moved manu-
ally, and its exact pose cannot be controlled. For more details
see Schmidt et al. (2004)� Vogt (2006).

Another application is self-calibration of a stereo-camera
system as discussed in Schmidt (2006). In this case, the rigid
transformation between two cameras is estimated based on im-
age information only, without using a calibration pattern. The
cameras are either moved manually or implicitly by the head
movement of a user in an Augmented Reality setting. Con-
trolling criterion (3) in such a setup is usually not feasible. It
would mean minimizing the distance of the cameras to the ob-
served scene, which would restrict the freedom of the user’s
movements considerably, rendering one of the main advan-
tages of a self-calibration approach useless.

However, the main difference between these new applica-
tion areas and classic hand-eye calibration is the way data is
recorded. In a traditional setup, images of a calibration pattern
are acquired at a comparatively small number of positions, say
20. In an Augmented Reality setting, where the user wearing a
stereo camera is allowed to move freely, images are recorded at
a rate of 25 or 30 frames per second. This results in an amount
of data higher by one to two orders of magnitude, recorded
at more or less arbitrary positions. Also, having a continuous
movement where rotation and translation change only slightly
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between two consecutive frames, a trade-off between require-
ments (1) and (2) and requirement (4) has to be taken into ac-
count.

3. Data Selection

Various data selection algorithms are presented which select a
globally consistent set of relative movements, optimizing the
non-parallelism criterion (1) and the rotation angle criterion
(2) from Section 2.2. Criterion (1) is considered to be the most
important one here, since no recovery of the hand-eye transla-
tion is possible if the rotation axes used are parallel.

3.1. Pre-processing

The main purpose of the algorithms presented in this pa-
per is to increase the hand-eye calibration accuracy when the
hand positions are recorded continuously (i.e. when consecu-
tive poses differ only minimally). Given the criteria from Sec-
tion 2.2, it can be expected that processing the data in temporal
ordering is suboptimal. This is supported by the experimental
results presented later on� using these readily available move-
ments between consecutive poses therefore cannot be recom-
mended.

Deciding which data, i.e. relative movements, should be
used as input for the data selection method instead is an impor-
tant step that has considerable influence on the performance of
the algorithm. It has been proposed by Schmidt et al. (2003) to
consider all possible relative movements between the recorded
hand poses that are contained in the data and use these as input
for the data selection algorithm. Given two robot gripper poses
at time i and j consisting of rotation Ri , R j and translation ti ,
t j , the relative movement given by Ri j , ti j can be computed as

Ri j � RT
j Ri (5)

for rotation and

ti j � RT
j �ti � t j � � Ri j RT

i �ti � t j � (6)

for translation.
For N poses, the total number of all relative movements is

N �N � 1��2, i.e. the time complexity of the pre-processing
step equals O�N 2�.

3.2. Vector Quantization – Overview

Given a set of Nr relative movements represented by their ro-
tation axes, the following algorithm aims to compute a new set
of distinct axes consisting of Ns vectors where Ns � Nr. This
is achieved by running a clustering algorithm on the vectors

representing axes, which computes a partitioning of the axes
vectors.

A method which is suited very well to this task is vec-
tor quantization (Linde et al. 1980). Note that although we
propose to use vector quantization (and the LBG algorithm –
named after the authors Linde, Buzo and Gray (Linde et al.
1980) – mentioned later), this should be seen as an example
rather than a strict condition for data selection. In fact, any
clustering algorithm can be applied.

In general, vector quantization works as follows. An input
vector x� �n is mapped to a vector of the so-called codebook
� � �c1� � � � �cNs�, which is a set of Ns n-dimensional vec-
tors that define a partitioning of �n. Given a distance measure
d��� �� on vectors in �n (usually Euclidean distance), the input
vectors are mapped:

x 	
 c�� where d�x� c�� � d�x� ci �

�i � 1� � � � � Ns� i �� �� (7)

Thus, the entries of the codebook � are the cluster centers in
�

n . For finding the entries of the codebook, the well-known
LBG algorithm is used. This is an iterative method that com-
putes the codebook given the desired number of codebook en-
tries. The complexity of the LBG algorithm for each iteration
is O�Nr Ns�, which equals O�N 2 Ns�. Note that the number
of movements Nr is reduced further considerably by a pre-
selection step removing movements with small rotation angles
as described in Section 3.3.

Various algorithms based on this idea are presented in Sec-
tion 3.3. They differ in the input data used as well as in the
dimensionality of vector quantization.

3.3. Three-dimensional Vector Quantization of Normalized
Rotation Axes

The vector quantization based data selection algorithm pre-
sented in this section requires 3D rotation axes ri having norm
one computed from relative movements as input data. This al-
gorithm was first published in Schmidt et al. (2004).

Before selecting the movements according to their non-
parallelism, a pre-selection is done according to their rotation
angle since for angles close to zero the rotation axis is not well-
defined (see Appendix A.2). For an angle of 180, singularities
in hand-eye calibration arise (Shiu and Ahmad 1989� Dani-
ilidis 1999). These are exactly the cases where the rotation
matrix has multiple real eigenvalues. This step removes these
movements, thus optimizing criterion (2). Movements are dis-
carded that have rotation angles greater than a given threshold
	 t and less than 180�	 t, or higher than 180�	 t and less than
360 � 	 t. The second interval is due to the fact that a rotation
about an axis r by an angle 	 is the same as a rotation about
the axis�r by the angle 360 � 	 . After the pre-selection step,
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Fig. 1. Data selection using a 3D vector quantization of normalized rotation axes.

only the rotation axes (normalized to one) are used for further
processing. The complete algorithm is shown in Figure 1.

After pre-selection according to rotation angle and nor-
malization of the rotation axes to one, the ambiguity in the
axis/angle representation is resolved to ensure that similar ro-
tation axes are actually close to each other in 3D. Since all
normalized rotation axes ri � �rix riy riz�

T lie on a sphere in
3D space, this can be achieved by restricting the axes to one
hemisphere. The hemisphere with non-negative riz-coordinate
was chosen without loss of generality. If this coordinate of an
axis ri is negative, the axis ri is substituted by �ri . Rotation
axes having a zero riz-coordinate have to be handled separately
by checking the riy- and rix-coordinates.

The next step is training the vector quantizer i.e. compu-
tation of the codebook vectors � which results in a clustering
of the rotation axes. Note that since all axes have norm one,
the vectors are not uniformly distributed in space but lie on the
surface of the unit sphere. An example obtained from real data
is depicted in Figure 2. For the dataset shown in Figure 2(a),
no pre-selection of the data with respect to small rotation an-
gles was done, i.e. all relative movements were used as input
for vector quantization. The resulting codebook is plotted in

Figure 2(b). Figure 2(c) shows the same dataset, where rela-
tive movements having a rotation angle smaller than 15 have
been removed, and the generated codebook is depicted in Fig-
ure 2(d).

In many algorithms that apply vector quantization, the
codebook vectors can be used directly for further processing�
note that this is not the case for data selection as described
here. Codebook vectors are computed as the center of gravity
(i.e. mean values) of all input vectors belonging to a certain
partition. Therefore, a codebook vector does not usually coin-
cide with an element of the input vector set, which means that
it cannot be related to an actual relative movement. Additional
steps have to be taken in order to obtain a single rotation axis
(and the associated relative movement) per partition. Firstly,
each rotation axis ri has to be classified to one of the parti-
tions defined by the codebook vectors. The classified axes are
denoted by ri�� . Secondly, for each rotation axis ri�� of a par-
tition �, the distance to the codebook vector c� representing
that partition is computed� the selected axis is the one where
the distance to the codebook vector d�ri�� �c�� is smallest. The
relative movements belonging to the rotation axes selected this
way can now be used for hand-eye calibration.
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Fig. 2. Examples of vector quantization results in 3D based on real data: (a) input data, no threshold on rotation angle, i.e.
	 t � 0� (b) codebook, no threshold on rotation angle, i.e. 	 t � 0� (c) input data, threshold of 	 t � 15� and (d) codebook,
threshold of 	 t � 15. The input data (rotation axes of norm one) in (a), (c) are shown as small dots and the codebook are plotted
in (b), (d) as bold dots. Because of the normalization of the axes to one, all vectors lie on a sphere.

3.4. Two-dimensional Vector Quantization of Normalized
Rotation Axes

The data selection algorithm presented before uses normalized
rotation axes as input where the rotation angle is not encoded
in the axis but handled separately, an axis being a 3D vector
with only two degrees of freedom. Hence, the dimensionality
of the vector quantization can be reduced from three to two by

using an appropriate parameterization of the axes. An obvious
choice for this task is polar coordinates. Given a rotation axis
r, the polar coordinates 
, � of r are computed as:


 � arctan
ry

rx
� � � arcsin rz� (8)

The data selection algorithm using polar coordinates is sim-
ilar to that shown in Figure 1. The main difference is that an ad-
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Fig. 3. Examples of vector quantization result using polar coordinates based on real data: (a) no threshold on rotation angle, i.e.
	 t � 0 and (b) threshold of 	 t � 15. The angles 
 and � are given in rad.

ditional computation step, preceding the codebook generation,
has to be introduced to convert the normalized rotation axes ri

to polar coordinates using Equation (8). This reduces the di-
mensionality of the following vector quantization, as only 2D
vectors that contain the angles 
i and �i are used.

An example of a vector quantization result using polar co-
ordinates is shown in Figure 3. The same dataset as in Figure 2
was used.

3.5. Automatic Computation of Rotation Angle Thresholds

A drawback of the two data selection algorithms presented in
Sections 3.3 and 3.4 is that a threshold 	 t for the rotation angle
has to be set manually. There are mainly two ways to improve
the algorithm.

1. Use a threshold, but compute it automatically from the
available data.

2. Do not use a threshold at all, i.e. all data are used for
vector quantization. The rotation angle is taken into ac-
count implicitly by an appropriate parameterization.

The former is discussed here� algorithms using the second
option are shown in Sections 3.6 and 3.7.

In the data selection algorithms presented before a single
threshold was used, which is applied to the lower (0, 360)
and upper (180) bounds of the rotation angle interval sym-
metrically. The best-suited movements have rotation angles lo-
cated in the center of the two intervals at 90 and 270. The
algorithm for automatic threshold computation is different in
two ways. Two separate thresholds for the upper and lower

bound are calculated, and these are not necessarily symmet-
ric. The structure chart for automatic threshold computation is
shown in Figure 4.

The algorithm requires that the desired remaining fraction
of movements be specified as an input parameter. This is a
clear advantage over using a threshold for the angle directly.
When an explicit angle threshold is provided, more often than
not it will be chosen either too high or too low, as we have no a
priori knowledge of the data used for calibration. If the thresh-
old is too high, there may be no movement left after apply-
ing the threshold which makes calibration impossible. If cho-
sen too low, lots of movements are possibly processed further
that are actually not very good and thus distort the calibra-
tion result. Since the rotation angles are highly dependent on
the recorded image sequence, a general recommendation for
choosing a threshold on the angle is not possible. In contrast,
specifying a percentage of movements that are to remain after
pre-selection, allows the best movements to be selected while
it is guaranteed that a sufficient number of movements is left
for calibration.

First, the rotation angle 	 i is computed for each relative
movement� the rotation axes are irrelevant for threshold deter-
mination. Since only the amount of rotation is of interest we
take the absolute values of 	 i . Then, all angles are normalized
to the interval 0 to 180 and stored in a list �which can be ac-
cessed by an index ranging from 0 to Nr � 1. After sorting the
list in ascending order, the smallest and largest rotation angles
�l and �u that are contained in the recorded image sequence
can be found in the entries ��0� and ��Nr � 1�.

Recall that after normalization, the best-suited movements
have a rotation angle of � 90. Three cases have to be distin-
guished. If the smallest rotation angle �l is greater than 90,
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Fig. 4. An algorithm for computing upper and lower rotation angle thresholds 	u, 	 l automatically.

no movements are contained in the sequence that have to be
removed at the lower bound. Therefore, the lower threshold
	 l is set to 0. All movements have to be removed at the up-
per bound, and the upper threshold is defined by the list entry
having index �Nr � 1�� Round��1� � � �Nr � 1��.

A similar situation with reversed roles of thresholds arises
if the largest angle �u is smaller than 90. In this case, all
movements have to be removed at the lower bound. The up-
per threshold 	u is set to 0, while the lower is given by the list
entry at index Round��1� � � �Nr � 1��.

The case where angles both below and above 90 exist is
slightly more complex, as both thresholds have to be chosen
asymmetrically depending on the number of movements with
rotation angles greater and smaller than 90. Therefore, the
first step is to identify the position i of the first angle in the
list that is equal to or larger than 90, i.e. the ‘center’ of the list

with respect to the best angle contained in the sequence. The
fraction of angles left and right of the identified position i can
now be computed:

� l � i

Nr � 1
� � u � 1� � l� (9)

where � l� � u are the fraction of movements in the lower and
upper part with respect to 90, respectively. When deciding
which movements are to be removed, it is important to keep as
many close to 90 as possible. In the majority of cases, most
movements will be deleted in the part of the list containing the
larger amount of movements and only a small fraction (if any)
from the part containing the smaller amount of movements.
We compute two factors �s and �b that determine the fraction
of movements to be deleted in the smaller (�s) and the larger
(�b) parts of the list. These factors are given by:
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Fig. 5. Data selection using axis/angle representation.

�s � max

�
1

2
��1� �� �� l � � u��� 0

�
�b � min��1� ��max�� l� � u��min�� l� � u��� �s� (10)

The first addend in the equation for �b removes as many
movements as possible from the larger part, i.e. either all that
have been required or an amount that makes it the same size as
the originally smaller part. The remaining movements can then
be removed symmetrically from both parts, the amount being
defined by �s.

If most movements are located in the lower part of the list,
the thresholds 	 l, 	u are then defined by the list elements hav-
ing index Round��b�Nr�1�� and �Nr�1��Round��s�Nr�1��,
respectively. In the case that most movements are located in the
upper part of the list, �s and �b change roles when computing
the indices of the list elements.

Strictly speaking, checking the first two cases where all
movements are located on one side of 90 is not necessary
as both are covered by Equation (10). Nevertheless, they have
been included in the structure chart as we believe the concept
is easier to understand this way.

3.6. Vector Quantization using Axis/Angle Representation

This section presents a data selection algorithm that does not
need thresholds on rotation angles as no pre-selection of rela-

tive movements is done, i.e. all available movements are used.
A structure chart is shown in Figure 5.

Instead of treating rotation axis and angle separately, the
axis/angle representation is used as described in Appendix A.2
where the angle 	 is encoded as the norm of the axis vector r
in a 3D vector ��� having three degrees of freedom.

We start with a set of Nr relative movements, now repre-
sented by their rotation axes with angles encoded in ���i . The
result is a set of Ns vectors, Ns � Nr, where the corresponding
selected movements are a trade-off between criteria (1) and (2)
as defined in Section 2.2. Movements having small rotation an-
gles will be found in the resulting dataset if their rotation axes
fit the remaining data well.

Initially, all ���i are normalized such that angles are in the
range 0–180. This is different from the normalization in the
previous data selection methods, where the sign of the axes el-
ements is used. There are always two options: either the sign
of an axis or the rotation angle is controlled, never both. De-
pending on the application, either option may have advantages
and disadvantages.

In contrast to the methods presented before, where move-
ments with rotation angles close to zero are scattered, they will
now be concentrated near the origin of the coordinate system.
The pre-selection using a rotation angle threshold can there-
fore be omitted, as the vector quantization step will only select
a few movements having unsuitable rotation angles while the
majority will be alright. This feature is the main advantage of
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the algorithm. Also, 3D vector quantization can be used in a
straightforward fashion, as the 3D axis/angle vectors ���i have
three degrees of freedom.

The basic principle of the rest of the algorithm remains the
same as previously, except that vector quantization is now car-
ried out on the vector where rotation axis and angle are en-
coded.

3.7. Vector Quantization using Quaternions

As in Section 3.6, a data selection algorithm is presented here
that does not remove movements having small rotation angles
and therefore has no need for thresholds. The quaternion rep-
resentation of 3D rotations is now used (see Appendix A.3).

After the quaternion representation has been computed for
each relative movement, the ambiguity in the quaternion rep-
resentation has to be resolved. Since the quaternions qi and
�qi represent the same rotation, we restrict the quaternions
to the hyper-hemisphere with positive real part. This can be
done similarly to the axis ambiguity resolution discussed in
Section 3.3, with the difference that a quaternion consists of
four elements instead of three. The remaining part of the algo-
rithm is similar to the data selection methods discussed before.

The main advantage of quaternions compared to using the
rotation axis is that the quaternion is well defined for arbitrary
rotation angles. While the rotation axis is undefined for a rota-
tion angle of zero, i.e. for movements where the rotation ma-
trix equals I3�3, the corresponding quaternion is defined and
equals 1. The main disadvantage of using quaternions is that
these consist of four elements with only three degrees of free-
dom� therefore, a 4D vector quantization has to be used instead
of a 3D vector quantization. As before when rotation axes
were discussed, polar angles representing quaternions could
of course be used, as these have norm one and thus lie on a
hypersphere.

4. Experimental Results

This section presents an experimental evaluation of the vector
quantization based data selection algorithms. It starts with an
introduction to the metrics used for residual error computation
in Section 4.1. The datasets used are described in Section 4.2,
followed by the experimental results in Sections 4.3–4.6. We
will look into the following topics in particular: how the code-
book size used for vector quantization influences the calibra-
tion error (Section 4.3)� how the pre-selection threshold on the
rotation angle affects the result (Section 4.4)� and which of the
presented data selection methods perform best (Section 4.5)?
Finally, Section 4.6 shows how the data selection performs
compared to manually selecting well-suited poses during data
acquisition (although this is not the main application area of
the proposed methods). The actual hand-eye calibration was
done using the linear dual quaternion algorithm by Daniilidis
(1999, 2001).

4.1. Residual Error Metrics

For experimental evaluation, we need error metrics for rota-
tion and translation that measure the accuracy of hand-eye cal-
ibration. Commonly, the error in translation is given as a rel-
ative error, while for rotation an absolute error metric is used
(e.g. Horaud and Dornaika 1995� Daniilidis 1999� Andreff et
al. 2001). In this paper, absolute and relative errors will be
shown for both rotation and translation. The absolute residual
error for translation is given by

�tabs � 1

N

N�
i�1

��ti � ti� (11)

and the relative residual error by

�trel � 1

N

N�
i�1

��ti � ti�
�ti� � (12)

where N is the number of translation vectors used for error
computation, ti is the true translation vector, and �ti is the vector
estimated by hand-eye calibration.

Different metrics for errors in rotation are used in literature.
While the norm of the difference between two rotation matri-
ces is given in Horaud and Dornaika (1995), this work follows
Daniilidis (1999) and Andreff et al. (2001) and uses instead
the norm of quaternion differences for relative residual errors,
given by

�Rrel � 1

N

N�
i�1

��qi � qi�
�1� qi�

� (13)

The norm of quaternion differences is obviously connected
to the rotation angle as well as to the angle between the two
rotation axes:

��qi � qi�2 � 2� 2�cos �	 i cos 	 i � �rT
i ri sin �	 i sin 	 i �� (14)

where �	 i , 	 i are the rotation angles and �ri , ri the rotation axes
corresponding to the quaternions �qi and qi , respectively.

For rotations about the same axis but by different angles,
this metric has the property that it is directly connected to the
residual rotation angle as Equation (14) can be simplified to:

��qi � qi� �
�

2� 2 cos
�	 i � 	 i

2
� (15)

The absolute residuals can either be given using quaternions
as well, or in degrees based on the axis/angle representation of
the residual rotation matrix Rresi , which is given by:

Rresi � �RT
i Ri � (16)

A simplified absolute rotational residual error can now be
defined by the rotation angle 	 resi , which can be computed
from one of the complex eigenvalues of Rresi :
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Fig. 6. Left: optical tracking system smARTtrack1 in the laboratory and right: smARTtrack1 in the operating room during an
endoscopic surgery (images courtesy of F. Vogt).

��Rabs �
1

N

N�
i�1

�	 resi �� (17)

The advantage of using this metric instead of the quaternion
based metric is simply that an absolute residual given in de-
grees makes it easier for the reader to judge whether the error
is high or low.

The metrics presented above are used for computing a pre-
diction error, which is the residual between the predicted eye
position computed from hand data and the estimated hand-eye
transformation, and the real (calibrated) eye pose. In order to
give an overall residual error, a set of relative movements (we
use 100) is selected randomly from the complete set of all pos-
sible relative movements (Section 3.1). Note that again it is of
disadvantage to use relative movements between subsequent
positions because the movements will usually be small. This
results in large relative errors and thus does not reflect the ac-
tual quality of the estimated hand-eye transformation. The re-
sults shown in Tables 2–5 have been obtained by iterating the
above process 100 times and averaging the resulting residual
errors.

The reason why the randomly chosen movements are se-
lected from the complete dataset rather than the set obtained
after vector quantization is that the latter would not result in
a valid residual error that can be used to describe the actual
calibration accuracy, because these data have been used for
parameter estimation. As the estimation process optimizes the
hand-eye parameters on the provided data, the residual error
would always be minimal.

To summarize, the residual errors in translation shown in
the following were computed using Equations (11) and (12).

For relative residual errors in rotation, Equation (13) was used.
The absolute rotational errors show the average rotation angle
in degrees, which was computed using Equation (17). All re-
sults are given with an accuracy of three valid digits.

4.2. Description of Datasets

Instead of a robot as in classic hand-eye calibration, we have
used an optical tracking system in our experiments. The in-
frared optical tracking system smARTtrack1 by Advanced Re-
altime GmbH (shown in Figure 6) provides pose data of a so-
called target (the hand) that is fixed to an endoscope. It is a typ-
ical optical tracking system consisting of two infrared cameras
and the target, which is built from markers that can easily be
identified in the images captured by the cameras. Spheres with
a retro-reflective surface are used, and marker identification is
simplified by active illumination with infrared light. The 3D
position of each visible marker is calculated by the tracking
system� knowledge of the geometry of the target then allows
us to calculate its pose. The accuracy of the pose is 0.19 mm in
the x and y direction, 0.36 mm in the z direction and 0.14 for
rotation.

A CCD camera is mounted rigidly on the endoscope, which
is moved manually. The objective of hand-eye calibration is to
determine the unknown transformation from the target pose
provided by the optical tracking system to 3D camera coordi-
nates.

The camera (eye) poses are computed using a calibration
pattern and standard camera calibration techniques (Zhang
1998, 2000). We use an asymmetric pattern as shown in Fig-
ure 7 (left), which consists of 49 circular calibration points
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Fig. 7. Left: asymmetric 7 � 7 calibration pattern with marked corners and right: processed image of calibration pattern after
ellipse-fitting.

Table 1. Properties of the datasets used in the experiments, including data selection information.

Sequence ART1 ART2 ART3 ART4

Number of poses 270 190 200 200

Total number of relative movements 36 315 17 955 19 900 19 900

Number of movements after applying threshold 7261 8976 8954 6964

Minimum angle in dataset 0.000 001 71 0.0388 0.135 0.0406

Maximum angle in dataset 80.3 80.9 126 73.8

Minimum angle after applying threshold 38.5 25.0 48.4 34.5

Maximum angle after applying threshold 80.3 80.9 126 73.8

Median angle in dataset 21.8 25.2 42.8 25.2

Median angle after threshold 47.0 41.2 73.4 47.6

arranged in a 7 � 7 pattern. The corners of the pattern are
coded using smaller dots to allow for resolving ambiguities
when the camera is moved. We extract contours in the cap-
tured image of the calibration pattern, and perform ellipse-
fitting on each contour (Figure 7, right). The center of each
ellipse is used as a 2D calibration point which provides sub-
pixel accuracy� the measured back-projection error is smaller
than 0.2 pixels.

Results from eight representative datasets acquired this way
are shown here. These have been selected carefully out of
many more experiments that we have conducted, to describe
effects that can be observed when using the proposed data se-
lection methods. Four sets contain a large number of data con-
tinuously recorded while the endoscope was moved manually.
These are denoted by ART1, ART2, ART3 and ART4 in the fol-
lowing. The remaining four contain only a small number of
poses, which were recorded at manually selected positions as
in classic hand-eye calibration.

The continuously recorded datasets differ mainly in the
number of poses contained in each sequence (270 for ART1,
190 for ART2, 200 for ART3 and ART4) and in the type
of movement made while they were recorded. The camera-
endoscope configuration, i.e. the hand-eye transformation, is
different for all datasets as the camera was re-mounted on the
endoscope every time. An overview of the main properties of
the datasets, including the results of automatic threshold com-
putation, are shown in Table 1.

The the accuracy of the hand-eye calibration is heavily de-
pendent on the amount of rotational movement in terms of both
distinct rotation axes as well as large rotation angles. The qual-
ity of a dataset can therefore be assessed by plotting the distri-
bution of normalized rotation axes and histograms of rotation
angles, as shown in Figures 8 and 9.

As can be seen in the plots of normalized rotation axes after
pre-selection in Figure 8, the rotational movement in ART1 and
ART3 is smaller than in ART4, and considerably smaller than
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Fig. 8. Comparison of normalized rotation axes contained in the continuously recorded datasets after pre-selection: (a) ART1� (b)
ART2� (c) ART3� and (d) ART4. The variation in the rotation axes is much larger for ART2 and ART4 compared to ART1 or ART3,
making the former better suited for hand-eye calibration.

in ART2. It is important to note that a dataset has to contain a
certain amount of rotational movement to achieve good results.
Therefore, based on rotation axes, the datasets ART2 and ART4
are much better suited for hand-eye calibration than ART1 and
ART3, due to the small coverage of the latter.

Figure 9 shows histograms of rotation angles contained
in the datasets before (left column) and after (right column)

pre-selection of movements using an automatically computed
rotation angle threshold. It can be observed that the major-
ity of movements before pre-selection have small rotation an-
gles, and only ART3 contains angles greater than 90. Recall
that for obtaining a very accurate calibration we would need
movements with rotation angles around 90. Based on the his-
tograms we can conclude that ART3 is the best-suited dataset.
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Fig. 9. Histograms of rotation angles (rad) in the datasets: (a) ART1 – all movements� (b) ART1 – after pre-selection� (c) ART2
– all movements� (d) ART2 – after pre-selection� (e) ART3 – all movements� (f) ART3 – after pre-selection� (g) ART4 – all
movements� and (h) ART4 – after pre-selection.

However, combined with the distribution of axes (Figure 8(c))
which has low coverage, judging the calibration outcome for
ART3 in advance from the plots is inconclusive.

Based on these figures it can already be predicted that ART1
is probably a dataset that results in a low-accuracy calibration,
as neither rotation axes nor angles are well suited for hand-eye

calibration. It is likely that ART2 and ART4 will yield better
results, as the coverage of axes is good and the histograms of
angles are acceptable, although not optimal.

In order to get an idea of the quality of the hand-eye cal-
ibration obtained from continuously recorded sequences, the
results were compared to the accuracy of performing hand-
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Fig. 10. Comparison of normalized rotation axes contained in the datasets recorded at manually selected positions: (a) ART5� (b)
ART6� (c) ART7� and (d) ART8. These datasets contain less poses than the continuously recorded ones, but the distribution of
rotation axes is much better suited for hand-eye calibration.

eye calibration in the classic way i.e. using a small number of
poses recorded at manually selected distinct positions that are
well-suited for hand-eye calibration. These were acquired us-
ing the same camera-endoscope configuration as continuously
recorded data, and are denoted by ART5 (18 poses), ART6 (14
poses) (both corresponding to ART2), ART7 (20 poses, cor-

responding to ART3) and ART8 (18 poses, corresponding to
ART4).

Figure 10 shows plots of the distribution of rotation axes of
all relative movements contained in these four datasets. Com-
paring these figures to the plots in Figure 8, it can be observed
that the coverage is much better than for the continuous se-
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Fig. 11. Histograms of rotation angles (rad) in the datasets recorded at manually selected positions: (a) ART5� (b) ART6� (c)
ART7� and (d) ART8.

quences. They obviously contain much less data, but it is not
quantity that counts. Histograms of the rotation angles (with-
out any pre-selection) are shown in Figure 11. As opposed
to the histograms in Figure 9, the manually recorded datasets
contain less very small angles close to 0. Although they too
are far from being optimal, with the exception for ART5 they
all contain angles greater than (but still close to) 90.

To summarize, even without performing an actual calibra-
tion, it can be concluded from the plots alone that in most cases
continuously recorded data will lead to a less accurate calibra-
tion compared to data containing manually selected positions.
However, in many applications it may be very inconvenient or
even impossible (e.g. due to time constraints during a surgical

intervention as in the case of the endoscope) to use manually
selected positions.

In the following sections we present an evaluation of the
data selection algorithms, compare continuously recorded data
with data acquired at manually selected positions calibrated
the classic way and show that even for the manually selected
datasets, performing a data selection can result in a more ac-
curate calibration.

4.3. Codebook Size

In this section the influence of one of the two data selection
parameters is analyzed, namely the codebook size used for
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Fig. 12. Mean relative residual errors in rotation and translation (%) dependent on the codebook size used for vector quantization
for the datasets: (a) rotation error ART1� (b) translation error ART1� (c) rotation error ART2� (d) translation error ART2� (e)
rotation error ART3� (f) translation error ART3� (g) rotation error ART4� and (h) translation error ART4.

vector quantization. The hand-eye calibration residual errors
were computed varying the codebook size, while the other
parameter was left constant. For data selection, the 3D vec-
tor quantization algorithm on normalized rotation axes (Sec-
tion 3.3) was chosen and the pre-selection step that removes

movements having small rotation angles was done using the
automatic threshold computation (Section 3.5).

Plots of the relative residual errors in rotation and transla-
tion for the continuously recorded datasets ART1, ART2, ART3
and ART4 are shown in Figure 12� the graphs for absolute
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residuals have been omitted, as they look very much like the
relative ones and therefore do not provide much more infor-
mation.

The codebook size was varied from 20 to 4000 relative
movements, which is 0.22–57% (depending on the dataset)
of the number of relative movements remaining after pre-
selection with respect to the rotation angle, and only 11–22%
of the total number of relative movements contained in the
sequence. Typically, what can be observed is the behavior of
the datasets ART1 and ART2 and, with the exception of some
outliers in the middle, ART3 as shown in Figures 12(a)–12(f).
Fluctuations are quite high for small codebook sizes, the resid-
ual error becoming more stable as a larger amount of data is
used for calibration. In contrast to the other datasets, ART4 is
stable from the beginning (note the scale of the vertical axis).
This is probably due to the fact that ART4 is obviously the best-
suited dataset for hand-eye calibration, judging by the residual
errors.

For practical purposes, low values for codebook size is
preferable to high values, as the number of vectors in the code-
book has a twofold impact on computation time. Vector quan-
tization itself will take longer to compute as will the actual
hand-eye calibration as more data are used. All datasets shown
can arguably be considered to be relatively stable from a code-
book size of �2000 for all sequences, which corresponds to
about 5.5% (ART1), 10% (ART3, ART4) and 11% (ART2) of
the total number of relative movements before pre-selection or
about 22–29% of the relative movements after pre-selection.

Note that the residuals for ART1 are considerably higher
than those of the other sequences. This is not due to the data
selection or hand-eye calibration algorithms used but is inher-
ent in the data, which does not contain sufficient information
for an accurate calibration due to only small rotational move-
ment. In other words, rotation axes are more concentrated and
the amount of rotation is smaller than in the other datasets.

4.4. Rotation Angle Threshold

The second data selection parameter that influences hand-eye
calibration accuracy determines how much data is discarded
during the pre-selection stage due to small rotation angles.
For the experimental evaluation in this section, the automatic
threshold computation algorithm described in Section 3.5 was
used.

During the experiments codebook size was fixed for each
dataset, while the percentage of relative movements that are
removed by automatic threshold computation was variable.
The codebook sizes used are 1200 (ART1), 1000 (ART2), 900
(ART3) and 700 (ART4). Residual error plots dependent on the
fraction of data left after pre-selection according to the rota-
tion angle are shown in Figure 13. A value of 1 on the hori-
zontal axis is equivalent to 100% of the data used, i.e. no pre-
selection at all, while 0 would indicate that no data was left

after pre-selection. As the latter case is pointless, the evalua-
tion was only done up to a fraction where enough data was left
to allow for hand-eye calibration, namely 7%.

The problem when removing relative movements based on
the rotation angle alone is that an unknown amount of these
movements may be suited quite well for hand-eye calibration
in terms of non-parallel rotation axes, so there will always be a
trade-off. This issue has been addressed before in Sections 3.6
and 3.7 where data selection algorithms have been presented
that do not require a threshold for pre-selection, as none are
carried out. Whether this results in a higher calibration accu-
racy than applying a rotation angle threshold is evaluated in
Section 4.5.

As shown in the histograms in Figure 9, the datasets contain
a considerable number of movements with relatively small ro-
tation angle. Therefore, judging solely on rotation angle, what
would be expected is that the plots in Figure 13 are U-shaped.
When no movements are removed from the dataset, the resid-
ual error should be high because unsuitable data are used for
calibration and skew the result. On the other hand, when most
movements have been removed, the calibration residual should
increase due to the very small amount of noisy data that is
used, making hand-eye calibration more sensitive to erroneous
movements.

While the increasing residual error at the lower end can be
observed in all plots in Figure 13, the increase at the right end
is visible only for the ART3 and ART4 datasets.

In general, a value of 20–40% for the data to be left af-
ter pre-selection with respect to the rotation angle is a rel-
atively good choice for automatic threshold computation in
most cases. If possible, smaller values are preferable to higher
values, because the computation time of vector quantization
depends on the size of the datasets after pre-selection.

4.5. Comparison of Data Selection Methods

In this section, a comparison of the performance of the various
vector quantization based data selection methods is presented.
Data selection is essential if continuous movements are used
and the results when using relative movements between con-
secutive poses (i.e. without any data selection) are also shown.

The following methods were compared.

1. Consecutive movements: relative movements between
consecutive poses are used. No data selection is done.
These results are presented in order to show how much
can be gained by data selection when continuously
recorded sequences are used.

2. 3D VQ, normalized axes: data selection using normal-
ized 3D rotation axes with two DOF as presented in Sec-
tion 3.3.
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Fig. 13. Mean relative and absolute errors (%) in rotation and translation dependent on the fraction of relative movements left
after pre-selection with respect to the rotation angle: (a) rotation error ART1� (b) translation error ART1� (c) rotation error ART2�
(d) translation error ART2� (e) rotation error ART3� (f) translation error ART3� (g) rotation error ART4� and (h) translation error
ART4.

3. 2D VQ, polar coordinates: data selection based on the
polar coordinate representation of normalized rotation
axes as presented in Section 3.4.

4. 3D VQ, axis/angle: data selection with three DOF based
on the axis/angle representation of rotation axes, where

the rotation angle is encoded as the norm of the axis.
This method was presented in Section 3.6.

5. 4D VQ, quaternions: data selection with three DOF
based on the quaternion representation of rotations as
shown in Section 3.7.
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Table 2. Comparison of different data selection methods,
sequence ART1 (parameters: codebook size 1200,  � 0�2).

Method Translation Rotation

(1) 19.9 mm 49.8% 2.89 14.7%

(2), automatic threshold 5.67 mm 15.8% 1.53 10.3%

(3), automatic threshold 5.43 mm 15.3% 1.51 10.3%

(4), no threshold 5.75 mm 15.8% 1.49 10.1%

(4), automatic threshold 5.75 mm 16.0% 1.44 10.1%

(5), no threshold 5.98 mm 16.4% 1.52 10.2%

(5), automatic threshold 5.61 mm 15.7% 1.43 10.0%

In case of (2) and (3), rotation angle thresholds were com-
puted automatically using the method presented in Section 3.5.
Obviously, this is not applicable for method (1).

Note that for methods (4) and (5) no pre-selection of the
data with respect to small rotation angles is necessary as the
angle is handled implicitly during vector quantization. The
residuals for this case are described by ‘no threshold’. How-
ever, the removal of relative movements with small rotation
angles can nevertheless be done, and the results using auto-
matically computed thresholds are also shown.

The tables show absolute and relative residual errors for ro-
tation and translation. In the case of translation, the residu-
als were computed using Equation (11) for absolute errors and
Equation (12) for relative errors.

The relative rotation error was computed based on quater-
nions using Equation (13). In order to obtain an impression
of the order of magnitude of the absolute rotational error, it
has been decided to show these in degrees rather than to give
the absolute quaternionic residual. For this purpose, the ab-
solute residuals have been computed from the rotation angle
(in axis/angle representation) of the residual rotation matrix
given by Equation (17). This value is highly correlated to the
quaternionic residual. Note, however, that due to the different
rotation representations, there will be slight deviations in some
cases where absolute and relative residuals from different ex-
periments are compared.

The calibration results are shown in Tables 2–5.
As predicted, using consecutive movements is always the

worst case, with residual errors that render the calibration re-
sult totally useless in most cases. It can be observed that the
data selection method used has virtually no influence on the
residual errors in rotation. This result is as expected, as the
rotation matrix can always be computed, even for movements
which are not general enough, while this is not true for trans-
lation.

Recommending a single data selection method based on the
results presented here is not easy, as there is no single method
that consistently gives the best results. However, the follow-

Table 3. Comparison of different data selection methods,
sequence ART2 (parameters: codebook size 1000,  � 0�5).

Method Translation Rotation

(1) 4.98 mm 23.9% 0.854 4.26%

(2), automatic threshold 1.98 mm 10.4% 0.626 3.63%

(3), automatic threshold 3.12 mm 15.6% 0.797 4.12%

(4), no threshold 1.52 mm 8.09% 0.563 3.46%

(4), automatic threshold 3.37 mm 16.6% 0.777 4.07%

(5), no threshold 2.11 mm 11.0% 0.662 3.73%

(5), automatic threshold 2.21 mm 11.5% 0.652 3.70%

Table 4. Comparison of different data selection methods,
sequence ART3 (parameters: codebook size 1000,  �
0�45).

Method Translation Rotation

(1) 9.94 mm 37.3% 2.61 7.61%

(2), automatic threshold 2.80 mm 12.3% 1.05 4.57%

(3), automatic threshold 4.01 mm 16.7% 1.28 4.95%

(4), no threshold 3.96 mm 16.5% 1.48 5.28%

(4), automatic threshold 3.69 mm 15.6% 1.36 5.09%

(5), no threshold 4.12 mm 17.1% 1.55 5.40%

(5), automatic threshold 3.94 mm 16.5% 1.42 5.20%

Table 5. Comparison of different data selection methods,
sequence ART4 (parameters: codebook size 700,  � 0�35).

Method Translation Rotation

(1) 8.34 mm 17.7% 1.10 4.59%

(2), automatic threshold 1.67 mm 4.87% 0.555 2.93%

(3), automatic threshold 1.68 mm 4.89% 0.561 2.95%

(4), no threshold 1.68 mm 4.85% 0.578 2.99%

(4), automatic threshold 1.65 mm 4.85% 0.544 2.90%

(5), no threshold 1.75 mm 4.96% 0.587 3.01%

(6), automatic threshold 1.65 mm 4.86% 0.541 2.90%

ing insights are to be gained. Using any data selection is bet-
ter than doing nothing, as all methods perform much better
than using consecutive movements directly. We believe that
the method of choice is using normalized rotation axes with a
pre-selection according to the rotation angle with an automat-
ically computed threshold (case (2)), because it is consistently
good and ranked in the top three in all experiments.
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The results using rotation representations where the ro-
tation angle is implicitly coded, such as quaternions and
axis/angle ((4), no threshold and (5), no threshold), did not
perform as well as the others, with the exception of the ART2
experiment. Results improved when the automatic threshold
computation was done, removing movements with small rota-
tion angles.

With the exception of ART1, using polar coordinates was
inferior to most other methods. Table 5 lists the results for
the ART4 experiment. If the dataset is suited well for calibra-
tion, i.e. the coverage of rotation axes is high and there is a
sufficient amount of rotation angles close to 90, it makes vir-
tually no difference which data selection method is used. The
difference between the best and worst results (not taking into
account using consecutive movements for obvious reasons) is
only 0.1 mm, and the difference between the best result and the
recommended method using normalized rotation axes is only
0.02 mm.

The experiments were run on a computer with an Intel P4
2.6 GHz CPU. While the implementation was not particularly
optimized for speed, we want to give at least a rough guideline
regarding the computation times that can be expected for data
selection and hand-eye calibration.

Using consecutive movements is obviously the fastest way
to calibrate, as no data selection is performed, and takes
about 50 ms. For the remaining methods, computation time
depends mainly on the amount of data during vector quanti-
zation and its dimensionality. Not surprisingly, the fastest al-
gorithm is that based on polar coordinates as only a 2D quanti-
zation has to be done. Computation times varied between 5.8 s
(ART4) and 11 s (ART1). Accordingly, using quaternions and
no threshold (i.e. 4D quantization and all data) is always the
slowest option, with computation times between 10 s (ART4)
and 31 s (ART1). This is similar for the axis/angle method
using no threshold, where the time required is only slightly
less, namely 9.5 s (ART2) to 26 s (ART1). When using a pre-
selection with an automatically computed threshold, the com-
putation times of these two algorithms are very similar to that
for the normalized rotation axes method, which varies between
6.1 s (ART4) and 12 s (ART1).

4.6. Comparison with Manual Selection

There are obviously situations when acquiring well-suited data
at manually selected positions is less convenient than in oth-
ers. In a classic setup with a robot manipulator arm, the robot
can easily be programmed to move to defined positions that
are used for calibration. However, in setups such as hand-eye
calibration of a camera mounted on an endoscope or a stereo-
camera system used in Augmented Reality, the device is manu-
ally controlled by the user and obtaining good data is no longer
straightforward. Two topics are therefore addressed in this sec-
tion.

Table 6. Comparison of the continuously recorded se-
quences ART2, ART3 and ART4 to datasets using the same
camera-endoscope configuration recorded at manually se-
lected positions with a small number of poses. It can be ob-
served that a manual selection of positions is not always su-
perior to the conveniently recorded continuous sequences.

Dataset Translation Rotation

ART5 2.31 mm 10.2% 0.556 3.46%

ART6 1.65 mm 8.02% 0.556 3.47%

ART2 1.98 mm 10.4% 0.626 3.63%

ART7 1.85 mm 8.41% 0.892 4.34%

ART3 2.80 mm 12.3% 1.05 4.57%

ART8 2.08 mm 5.49% 0.672 3.21%

ART4 1.67 mm 4.87% 0.555 2.93%

1. How well does hand-eye calibration based on continu-
ously recorded sequences perform compared to calibra-
tion by the classic method using a small number of poses
recorded at manually selected distinct positions that are
well-suited for hand-eye calibration?

2. Can calibration accuracy be increased by running a data
selection on datasets with manually selected positions,
which is already good when consecutive poses are used?

Table 6 shows calibration results for datasets consisting of
about 20 poses recorded at manually selected positions (cal-
ibrated the classic way), described in Section 4.2, and com-
pares them to the corresponding continuously recorded data
(calibrated using data selection with normalized rotation axes
and automatic threshold computation). The camera-endoscope
configuration (i.e. actual hand-eye transformation) of ART5
and ART6 is the same as for the continuously recorded dataset
ART2. Likewise, ART7 has the same configuration as ART3,
and ART8 the same as ART4.

Comparing ART5 and ART6 on one side to ART2 on the
other shows that the manual selection of positions while
recording data is not always better than the conveniently
recorded continuous sequence. In particular, the translation es-
timate of ART2 is considerably better than that of ART5. The
result for the manually selected positions (ART7) is much bet-
ter than that of the continuously recorded ART3. The situation
for the last set ART8 and ART4 shows again that a continuously
recorded sequence can lead to better results than a manual se-
lection of the positions for recording.

It is obvious that much depends on the dataset itself and
the poses contained in it. When there is insufficient informa-
tion available, the calibration results are also poor. Of course,
in practice this may be more often the case for continuously
recorded sequences, as the user usually does not choose the
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Table 7. Comparison between the classic hand-eye calibration method using consecutive poses (left) and the method using
the data selection proposed in this work (right). Clearly, an additional data selection improves the calibration accuracy
on these datasets, which contain only a small number of poses recorded at manually selected distinct positions.

Consecutive frames Data selection

Dataset Translation Rotation Translation Rotation

ART5 2.31 mm 10.2% 0.556 3.46% 2.13 mm 9.76% 0.552 3.45%

ART6 1.65 mm 8.02% 0.556 3.47% 1.32 mm 7.11% 0.538 3.41%

ART7 1.85 mm 8.41% 0.892 4.34% 1.73 mm 8.14% 0.865 4.30%

ART8 2.08 mm 5.49% 0.672 3.21% 1.86 mm 5.15% 0.518 2.80%

positions as carefully as in the case where the data are acquired
at distinct positions.

Even although the data selection methods have been de-
veloped for continuously recorded sequences where they are
essential, the question remains whether applying them to the
datasets containing only a small number of poses at manually
selected positions would lead to even better calibration results.
A comparison between the classic method using consecutive
poses and the method using the data selection proposed in this
paper is therefore presented in Table 7.

Again, the data selection method chosen for this compari-
son was vector quantization of normalized rotation axes with
automatic threshold computation. In all cases, the calibration
with data selection was superior to that using consecutive
poses as is usually done for hand-eye calibration. Except for
ART8 (where the absolute residual error in rotation changed
by 0�154, which is a 23% decrease compared to calibration
without data selection), the rotation residuals did not change
by much. The translational residual error, however, improved
considerably for all datasets, which is a result of using well-
suited data for hand-eye calibration.

The results highlight that even when the user tries to per-
form a small amount of well-described calibration movements
as accurately as possible, using data selection will still increase
calibration accuracy.

5. Conclusion

We have proposed new data selection methods that can im-
prove the accuracy of hand-eye calibration in many cases, and
make it possible in the first place in situations where a manual
selection of positions is inconvenient or even impossible. Ex-
amples include areas other than the classic setup with a robot
manipulator arm and a camera. These include calibration of a
camera mounted on an endoscope where the ‘hand’ data are
provided by an optical tracking system or applications such as
self-calibration of a rigid stereo-camera system. These appear
to be unrelated to hand-eye calibration initially, but neverthe-
less can be solved using algorithms adopted from hand-eye
calibration.

The result of the data selection algorithm is a dataset that
is well suited for hand-eye calibration as it removes relative
movements with small rotation angles and selects those move-
ments where the rotation axes are different. Data selection as
presented in this paper is based on applying a clustering algo-
rithm on the data. For this purpose, we proposed to use vector
quantization, but in general any clustering algorithm is suit-
able.

A variety of methods are proposed, which differ in the di-
mensionality (2D, 3D and 4D) of the vector quantization com-
pared to the degrees of freedom (two or three) and whether
an automatically computed threshold or no threshold at all is
used for incorporation of the rotation angle. The methods us-
ing no threshold are based on 3D and 4D vector quantization
using the axis/angle or quaternion representation of rotations,
respectively. They are a trade-off between the non-parallelism
criterion for the rotation axes and the fact that for movements
with small rotation angles the axis is not well defined. The for-
mer methods remove movements with small angles in a pre-
processing step and use only the differences in the rotation
axes as a selection criterion.

The performance of the proposed vector quantization based
data selection methods was evaluated using data obtained from
an optical tracking system (hand) and an endoscopic camera
(eye) that was calibrated using a calibration pattern.

Firstly, the parameters that influence hand-eye calibration
accuracy were evaluated: the codebook size of the quantizer
and the thresholds used for pre-selection of movements with
respect to their rotation angle. It has been found that the
fluctuations of the residual error for small codebook sizes are
relatively high and become less for increasing codebook size.
According to experimental results, using about 10% of the to-
tal number of relative movements as the codebook size (cor-
responding to about 20–30% of the movements left after pre-
selection), is recommended.

Before vector quantization, a pre-selection step is per-
formed that discards movements with small rotation angles
from the data, as these are not suitable for hand-eye calibration.
The data remaining after this pre-selection has a high influence
on the computation time required during vector quantization.
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These experiments were performed for fixed codebook sizes
(but different sizes for each dataset), while the percentage of
movements that are removed by automatic threshold compu-
tation was varied. High residual errors can be expected when
either most movements have been removed or when all move-
ments have been left in the data used for calibration. In most
cases, a value of 20–40% for the data remaining after pre-
selection is a good choice for automatic threshold computa-
tion.

Next, the different data selection methods proposed in this
paper were compared. The new methods are based on vector
quantization and differ in the parameterization used for rep-
resenting 3D rotation (normalized rotation axes, polar coor-
dinates, axis/angle, quaternions) and in the way the data pre-
selection with respect to the rotation angle is done (automat-
ically computed thresholds or no thresholds). These methods
were compared to using consecutive movements, i.e. using the
movements as they are, without any data selection. As pre-
dicted, using consecutive movements is always the worst case,
with residual errors that render the calibration results totally
useless in most cases.

As expected, the data selection method used has virtually
no influence on the residual errors in rotation, only the trans-
lational residuals differ. To obtain the best results regarding
accuracy, it is recommended to apply the vector quantization
based data selection using normalized rotation axes. It should
be noted, however, that much depends on the dataset itself.
In other words, when the information contained in the move-
ments is not general enough in terms of different rotation axes
and high rotation angles, there is no way to obtain good cal-
ibration results, no matter which data selection or hand-eye
calibration algorithm is used.

It has also been found that even in situations where cali-
bration data are acquired using a small number of manually
selected positions, applying an additional data selection can
improve the accuracy of hand-eye calibration over the classic
approach using consecutive movements. Even when the user is
asked to perform a small number of well-described calibration
movements, applying data selection on the acquired data will
still result in improved accuracy of the hand-eye transforma-
tion.
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Appendix: 3D Rotation Parameterization

As the data selection algorithms presented in Section 3 make
extensive use of various representations of 3D rotations, a brief

overview of the commonly used rotations is given here. A rota-
tion in 3D is usually given by a rotation matrix R� �3�3 with
the property that the column (and row) vectors are orthonor-
mal, i.e.

RRT � I3�3� det�R� � 1� (18)

A rotation matrix R therefore has nine elements but only three
degrees of freedom. The set of all these matrices forms the
rotation group SO(3).

A.1. Cardan and Euler Angles

We discuss the Cardan and Euler angle representations only
briefly as they are not employed for data selection due to in-
herent problems. However, as both representations are widely
used, they should not be completely omitted.

To obtain the Cardan angle representation, an arbitrary ro-
tation matrix R is decomposed into a product of three rotations
by the angles �, � and � about the x , y and z axes of the co-
ordinate system. In contrast to the Euler angle representation,
the Cardan angles �, � and � are defined with respect to the
axes of the original coordinate system.

In the Euler angle representation, an arbitrary rotation ma-
trix R is also decomposed into a product of three rotations by
the angles �, � and �, where

� � defines a rotation about the z axis of the original co-
ordinate system�

� � defines a rotation about the x � axis, which is the image
of the x axis of the original coordinate system after the
first rotation� and

� � defines a rotation about the z�� axis, which is the image
of the z axis of the original coordinate system after the
previous two rotations have been computed.

Cardan and Euler angles are probably the most well-known
parameterizations for rotations in 3D. These two representa-
tions sometimes become confused in literature, but usually the
conclusions drawn for Cardan and Euler angles stay the same.
One of the main drawbacks is that since matrix multiplica-
tion is not commutative, the Cardan/Euler angle representa-
tion is not unique meaning that a permutation of the order of
the rotations about the coordinate-system axes yields different
Cardan/Euler angles. Probably the most important drawback
of these parameterizations is the existence of so-called gimbal
lock singularities, where one degree of freedom is lost, i.e. two
of the three angles belong to the same degree of freedom. For
a more detailed discussion see Watt and Watt (1992).
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A.2. Axis/Angle

An arbitrary rotation R can be represented as a rotation about
one axis r� �3 by the angle 	 . This will be denoted here as
axis/angle representation. Since only the direction of the rota-
tion axis r is of importance, r has only two degrees of freedom
and thus can be normalized to one. Hence, axis and angle can
be combined into a single vector ��� with three degrees of free-
dom, its direction giving the rotation axis and its length the
rotation angle, thus making it a minimal parameterization:

��� � 	r� and for 	 �� 0: 	 � ������ r � ���

����� � (19)

Computing a rotation matrix R from ��� can be done using
Rodrigues’ formula (Faugeras 1993� Hartley and Zisserman
2003)

R � I3�3 � sin 	

	
[���]� � 1� cos 	

	2 [���]2
�

� I3�3 � sin 	[r]� � �1� cos 	�[r]2
�� (20)

where [x]� denotes the skew-symmetric matrix that represents
the outer vector product of x and y as a matrix multiplication:

x� y � [x]�y �

�			�
0 �x3 x2

x3 0 �x1

�x2 x1 0

�


� y� (21)

The computation of axis and angle from a rotation matrix
R is carried out as follows. Eigen-decomposition of R yields
the three eigenvalues 1 and cos 	 � i sin 	 . The axis r is the
eigenvector corresponding to the eigenvalue 1. The angle 	 is
calculated from one of the remaining eigenvalues. Note that
the axis/angle representation is not unique: a rotation about an
axis r by an angle 	 is the same as a rotation about the axis
�r by the angle 2� � 	 . Therefore, one has to check the con-
sistency of the direction of the axis and the angle, which can
be done by inserting both into Equation (20). Another problem
arises for a rotation angle of 0, i.e. if R � I3�3. In this case,
all three eigenvalues are equal to one which results in a non-
unique rotation axis. This is obvious, since for an angle of 0
no rotation is done at all, meaning that the axis can obviously
be chosen arbitrarily.

A.3. Quaternions

Quaternions are numbers i.e. they form one of the four existing
normed division algebras. (The others are the real and complex

numbers and the Octonions� Conway and Smith 2003� Baez
2001.) They are in a certain sense similar to complex num-
bers: instead of only one imaginary part, quaternions have
three of them. The concept of quaternions was introduced by
Sir William Rowan Hamilton and presented to the Royal Irish
Academy in 1843 (Hamilton 1844, 1847, 1848). The set of
quaternions is usually denoted as �. Unit quaternions form
the special unitary group SU(2), which can be represented as
all complex unitary 2 � 2 matrices having determinant one.
Since SU(2) is a double cover of the special orthogonal group
SO(3), there exist two quaternions for each rotation matrix.
More details on quaternions can be found in Faugeras (1993)�
Kuipers (1999)� Conway and Smith (2003).

A quaternion q is defined as follows:

q � qr � q1i� q2j� q3k� qr� q1� q2� q3 � �� (22)

where qr is the real part and q1� q2� q3 are the imaginary parts.
Multiplication and summation are done component-wise, with

i2 � j2 � k2 � ijk � �1 (23)

which is equivalent to

i2 � j2 � k2 � �1�

ij � �ji � k� jk � �kj � i� ki � �ik � j� (24)

A quaternion is often written as a 4-tuple

q � �qr� q1� q2� q3� or q � �qr� qim

�
� (25)

where qim is a 3-vector containing the imaginary parts. In con-
trast to complex numbers, the commutative law of multiplica-
tion is not valid (Equation (24)), i.e.

�q1� q2 � �� where q1q2 �� q2q1� (26)

Similar to complex numbers, a conjugate quaternion is defined
as

q� � qr � q1i� q2j� q3k� (27)

The norm of a quaternion q is given by

�q� �qq� �q�q �
�

q2
r � q2

1 � q2
2 � q2

3 � : (28)

The multiplicative inverse of q is

q�1 � 1

qq�
q�� (29)

Hence, for a unit quaternion (�q� � 1), the inverse of multipli-
cation equals the conjugate, i.e. q�1 � q�.

Just as the multiplication of two unit complex numbers
defines a rotation in two dimensions, a multiplication of two
unit quaternions yields a rotation in 3D. Let p be a 3D point
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to be rotated, r a rotation axis with �r� � 1 and 	 the angle of
rotation about this axis. Define the quaternions

q �
�

cos
	

2
� sin

	

2
� r
�
�

p� � �0� p�� (30)

Then
p�rot � qp�q�1 � qp�q� (31)

since q is a unit quaternion. p�rot is the quaternion correspond-
ing to the rotated point.

Since a quaternion representing a rotation is computed from
axis and angle, it is not unique as the two quaternions

q1 �
�

cos
	

2
� sin

	

2
� r
�

and

q2 �
�

cos
2� � 	

2
� sin

2� � 	
2

� ��r�
�

�
�
� cos

	

2
�� sin

	

2
� r
�

define the same rotation. Which of the two quaternions is used
does not matter, but one has to be careful when measuring the
distance of two rotations (e.g. for describing rotation residual
errors) by the distance between quaternions. However, in con-
trast to the axis/angle representation where R � I3�3 results in
an undefined rotation axis r, the corresponding quaternion is
defined and equals 1 (i.e. �1� 0� 0� 0�).

The computation of a quaternion from a rotation matrix
is carried out using the axis/angle representation as shown in
Equation (30). The computation of a rotation matrix R from a
quaternion can be done as follows (Faugeras 1993):

R �
�

r1 r2 r3

�
� (32)

where

r1 �

�			�
q2

r � q2
1 � q2

2 � q2
3

2�q1q2 � qrq3�

2�q1q3 � qrq2�

�


� �

r2 �

�			�
2�q1q2 � qrq3�

q2
r � q2

1 � q2
2 � q2

3

2�q2q3 � qrq1�

�


� �

r3 �

�			�
2�q1q3 � qrq2�

2�q2q3 � qrq1�

q2
r � q2

1 � q2
2 � q2

3

�


� � (33)

A.4. Discussion

The different representations for rotation matrices introduced
in this section model 3� 3 rotation matrices, which have nine
elements but only three degrees of freedom with less than nine
parameters.

Due to the many disadvantages of Euler and Cardan an-
gle representations, using these should be avoided whenever
possible. Axis/angle is a minimal parameterization having the
drawback that, for rotations with small angles, the rotation axis
is not well defined. This problem does not occur when using
unit quaternions. However, quaternions are a non-minimal pa-
rameterization as they have four elements with three degrees
of freedom. Both axis/angle and quaternions are non-unique,
i.e. there are always two different representations for the same
rotation. However, this causes only slight problems in prac-
tice which are not comparable to the non-uniqueness of Car-
dan and Euler angle representations. Therefore, due to their
advantages, the rotation representation of choice for estimat-
ing rotation is either axis/angle or quaternions, depending on
the application.

An interesting result supporting this conclusion is based on
the fact that quaternions as well as axis/angle representation
are a so-called fair parameterization of 3D rotations, while
Cardan and Euler angles are not (Hornegger and Tomasi 1999).
A parameterization is fair if it does not introduce more numer-
ical sensitivity than is inherent to the problem itself, which is
guaranteed if any rigid transformation of the space to be para-
meterized results in an orthogonal transformation of the para-
meters.
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