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Six-DOF Spacecraft Dynamics Simulator For
Testing Translation and Attitude Control

Farhad Aghili∗

Abstract

This paper presents a method to control a manipulator system grasping a rigid-body
payload so that the motion of the combined system in consequence of external applied
forces to be the same as another free-floating rigid-body (with different inertial proper-
ties). This allows zero-g emulation of a scaled spacecraft prototype under the test in a 1-g
laboratory environment. The controller consisting of motion feedback and force/moment
feedback adjusts the motion of the test spacecraft so as to match that of the flight space-
craft, even if the latter has flexible appendages (such as solar panels) and the former is
rigid. The stability of the overall system is analytically investigated, and the results show
that the system remains stable provided that the inertial properties of two spacecraft
are different and that an upperbound on the norm of the inertia ratio of the payload to
manipulator is respected. Important practical issues such as calibration and sensitivity
analysis to sensor noise and quantization are also presented.

1 Introduction and Motivation

Ground testbed facilities have been used for spacecraft control hardware/software verification
since various space programs began half a century ago [1–4]. Due to the high cost of launch
and operations associated with on-orbit repair, a spacecraft must operate reliably once it is
placed in orbit. Therefore, realistic testing of spacecraft prior to launch, ideally with all hard-
ware/software in place, ought to be undertaken to ensure that the spacecraft functions as
intended. One of the challenges of this approach is that testing must take place in a 1-g envi-
ronment, whereas the actual system will eventually operate in a zero-g environment. This has
motivated building of testbed facilities in various government and university laboratories for
the analysis and testing of spacecraft.

Gas-jet thrusters and reaction/momentum wheels are commonly employed as actuators for
spacecraft attitude and/or translation control [5]. Simulation is widely used for characterizing
the functional behavior of spacecraft control systems [6, 7]. This approach may be inadequate
and it should be highly desirable to be able to test and validate system performance based on the
behavior of actual sensors and actuators, which are difficult to model [5,8–10]. There are many
technologies to address the problem of reproducing the micro-gravity space environment, such as
air bearings, underwater test tanks, free-fall tests, and magnetic suspension systems. However,
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of these, only air bearings have proven useful for testing spacecraft. Achieving weightlessnees
by using natural buoyancy facilities, i.e., water tank, has been used extensively for astronaut
training. However, a functional spacecraft can not be submerged in the water, and in addition
viscous damping does not allow a perfect force-free environment. A free-fall test through
flying parabolas in aircraft can achieve zero-g in a 3-D environment. But only for brief periods.
Magnetic suspension systems provide only a low force-torque dynamic environment with a small
range of motion. Air-bearing tables (also known as planar air-bearings) [11, 12] and spherical
air-bearings [3] are commonly used for ground-based testbeds for testing the translation and
attitude control systems of a spacecraft.

An emulation of zero-g translational motion can be achieved by an air-bearing table on
which a spacecraft translates on a surface perpendicular to the gravity vector while being
floated on a cushion of compressed air with almost no resistance. This technique has been
used for testing various space systems such as formation flying [13,14], free-flying space robots
[15, 16], orbital rendezvous and docking [17, 18], capturing mechanisms of spacecraft [19, 20],
and free-flying inspection vehicles [14, 21], and space robotics [4, 21–28]. Although the air-
bearing table system can be utilized to test some physical components of spacecraft control
systems including the sensors and actuators, this system is limited to a two-dimensional planar
environment. Spherical air-bearings have been used for spacecraft attitude determination and
control hardware/software verification for many years [3]. The earliest development and design
of a satellite simulator based on spherical air-bearing with three axes of rotation was reported
in [29], and has now evolved into modern testbed facilities [30–32]. A spherical air-bearing
yields minimum friction and hence offers a nearly torque-free environment if the center of mass
is coincident with the bearing’s center of rotation. The main problem with the air bearing
system is the limited range of motion resulting from equipment being affixed to the bearing [32].
Also, spherical air-bearings are not useful for simulating spacecraft having flexible appendages,
because the location of the center-of-mass of such spacecraft is not fixed. Although one can
envisage combining the two air-bearing technologies in a testbed for reproducing both the
rotational and translational motions, complete freedom in all six rigid degrees-of-freedom is
still technically difficult to achieve [3].

Motion table testing systems allow the incorporation of real sensors of a satellite such as
gyros and star trackers in Hardware-In-The-Loop (HIL) simulation loops. However, actua-
tors such as reaction wheels or gas-jet thrusters have been simulated. The main idea in HIL
simulation is that of incorporating a part of real hardware in the simulation loop during the
system development [33]. Rather than testing the control algorithm on a purely mathematical
model of the system, one can use real hardware in the simulation loop [2, 33]. This allows for
detailed measurement for accurate performance assessment of the system under the test. The
concept of the HIL methodology has also been utilized for design and implementation of various
laboratory testbeds to study the dynamic coupling between a space-manipulator and its host
spacecraft operating in free space [11, 34–43]. A system called the Vehicle Emulation System
Model II (VES II) permits the experimental evaluation of planning and control algorithm for
mobile terrestrial and space robot systems by using the so-called ”admittance control” [36].
Similar concepts have been also pursued by other space agencies such as DLR [44], NASA and
CSA [10, 45–47] for different applications.

The existing impedance-controller based HIL simulators only compensate for the effect of
gravity wrench on the force/moment measurement, while the effect of the payload’s inertial
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Figure 1: A ground spacecraft mounted on a manipulator.

forces (the test spacecraft in our case) has not been taken into account. Heavy payloads,
however, not only changes the manipulator dynamics but also, incorporate significant inertial
as well as gravitational force components into the measurement that can fail a conventional
impedance controller to achieve the desired dynamics.

In this paper, we propose a method to control a manipulator with a heavy payload, e.g.,
a test spacecraft, so that the closed-loop system dynamics with respect to external force be
as if the payload is with inertia properties corresponding to a flight spacecraft [1]. Fig. 1
schematically illustrates the test spacecraft, i.e., a scale model of the flight spacecraft, is rigidly
attached to a manipulator arm. A six-axis force-moment sensor is installed at the interface
of the spacecraft and the manipulator, for sensing the external forces – for instance, firing
thrusters – superimposed by gravitational and inertial forces. Upon measurement of the wrist
force-moment and the joint angles and velocities, the signals are used by a control system
that moves the manipulator and the test spacecraft with it appropriately. Such a setup allows
virtually testing the actual control system, electronics, sensors, and actuators of a spacecraft
in a closed-loop configuration in the laboratory environment. The distinct contribution of this
work is a control system which incorporates dynamics models of the test spacecraft (payload),
flight spacecraft as well as the manipulator to accurately replicate the motion dynamics of the
flight spacecraft using a scaled mockup, as presented in Section 2.2. Notably, the controller can
compensate for the inertial forces of the payload without needing any acceleration measurement;
this is not attainable with the conventional admittance controllers. A calibration procedure to
precisely null out the static component of the F/M sensor in addition to sensitivity analysis
are presented in Section 3. Section 4 is devoted to emulation of spacecraft having flexible
appendages, e.g., solar panels.
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2 Control System

2.1 Dynamics Model

The translational and the rotational motion dynamics of a flight spacecraft can be conveniently
expressed in a body-fixed frame {Cs} as

Msν̇s + hs(νs) = Fext, (1)

where

Ms = diag{msI, ICs
} , hs(νs) =

[

msωs × vs
ωs × ICs

ωs

]

,

I denotes the identity matrix, ms and ICs
are the spacecraft mass and inertia tensor, νT

s =
[vTs ωT

s ] is the generalized velocity including the components of the linear velocity vs and
angular velocity ωs of the spacecraft CM, and Fext is the generalized external forces (due to the
spacecraft actuators, e.g., thrusters or reaction wheels). It is worth mentioning that estimation
of the other sources of external forces and torques such as gravity gradient, thin-air drag, and
solar pressure can be added to the right-hand side (RHS) of (1) to achieve a more accurate
result.

Fig. 1 illustrates the test spacecraft held by a manipulator. The test spacecraft is of mass
and inertia mm and ICm

, respectively, that are different from those of the flight spacecraft. The
F/M sensor installed in the mechanical interface of the manipulator and the test spacecraft
allows us to measure the force/moment interactions between the two systems. The coordinate-
frame {W} is fixed to the manipulator base and, the origin of body-fixed frame {C} is chosen to
be coincident with the CM of the test spacecraft, and its orientation with respect to frame {W}
is represented by the rotation matrix R. The test spacecraft is exposed to three different forces:
the external force Fext, gravitational force Fg, and force interaction between the test spacecraft
and the manipulator Fs that is measured by the F/M sensor. Note that Fs is expressed in the
body-fixed coordinate frame {S} coincident with the sensor coordinate and parallel to {C}.
Thus

Fg =

[

mmgR
Tk

0

]

, (2)

where unit vector k is aligned with the gravity vector 1 which is expressed in the manipulator’s
base frame {W}, and g = 9.81 m/s2. Similar to (1), the dynamics of the test spacecraft can be
described by

Mmν̇ + hm(ν) = −TFs + Fg + Fext

= −Fsg + Fext. (3)

where T denotes the transformation from frame {S} to {C}, i.e.

T =

[

I 0
−[c×] I

]

, [c×] =





0 −cz cy
cz 0 −cx
−cy cx 0



 ,

1If the z-axis of the coordinate frame {W} is perfectly parallel to the earth’s gravity vector, then k
T =

[ 0 0 −1 ].
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vector c denotes the location of the center-of-mass and

Fsg , TFs −Fg. (4)

2.2 Control Law

We assume that both the test and flight spacecraft experience the same actuation force Fext,
and that their generalized velocities are the same, i.e., ν = νs. Under these assumptions, we can
say the test spacecraft is dynamically equivalent to the flight spacecraft if they produce identical
accelerations, i.e., ν̇ = ν̇s. However, the accelerations are governed by two different equations
of motion, and hence, in general, ν̇ 6= ν̇s. Nevertheless, it is possible to achieve dynamical
similarity if the manipulator is properly controlled. To this end, we define an estimation of the
acceleration ν̇⋆ that is obtained by subtracting (3) from (1), i.e.,

M∆ν̇
⋆ + h∆ = Fsg, (5a)

where

M∆ ,

[

(ms −mm)I 0
0 ICs

− ICm

]

, (5b)

h∆ ,

[

(ms −mm)ω × v
ω × (ICs

− ICm
)ω

]

. (5c)

Assumption 1 In the followings, we assume that M∆ is a non-singular matrix, i.e.,

ms 6= mm and λi(ICs
− ICm

) 6= 0 ∀i = 1, · · · 3. (6)

Notice that ν̇⋆ does not have any physical meaning, rather it is just a definition. Let

J =
[

JT
v JT

ω

]T
represent the manipulator Jacobian expressed in the coordinate frame {C},

where sub-matrices Jv and Jω denote the translational and rotational Jacobians, respectively.
That is v(q, q̇) = Jv q̇ and ω(q, q̇) = Jωq̇, where q is the vector of joint angles. The time
derivative of the velocity equation leads to

ν̇ = Jq̈ + J̇ q̇. (7)

In view of equations (7) and (5a) and Assumption 1, we define q̈⋆ to be an estimation of the
joint accelerations as

q̈⋆ , J−1(ν̇⋆ − J̇ q̇) (8a)

= J−1M−1

∆ Fsg − J−1
(

N + J̇
)

q̇, (8b)

with M−1

∆ h∆ = Nq̇ and

N(q, q̇) ,

[

[Jω q̇×]Jv

(ICs
− ICm

)−1[Jωq̇×](ICs
− ICm

)Jω

]

.

Note that (8b) is obtained assuming that kinematic singularity does not occur.
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Assume that the manipulator dynamics are characterized by inertia matrix Mr(q) and the
nonlinear vector hr(q, q̇), which contains Coriolis, centrifugal and gravitational terms. One can
show that the equations of motion of the combined system of the manipulator and the payload
can be written in the standard form as:

Mtq̈ + ht(q, q̇) = τ + JTFext (9a)

where τ denotes the joint torques, and

Mt(q) , JTMmJ +Mr(q), (9b)

ht(q, q̇) , hr(q, q̇) + JThm(q̇) + JTMmJ̇ q̇ −mmgJ
T
v R

Tk (9c)

Now, the objective is to force the manipulator to follow the trajectory dictated by (8b). Al-
though it seems that this goal can be achieved by using an inverse-dynamics controller [48–50]
based on the manipulator dynamics, such a controller will lead to an algebraic loop that is
not legitimate from the control point of view. Note that the force sensor signal contains com-
ponents of the inertial forces due to the acceleration. Thus, compensating for Fs results in a
torque control law which has a direct component of the acceleration, while the acceleration is
algebraically related to the joint torques. This problem can be alleviated by using an inverse-
dynamics controller based on the complete model (9a) and by compensating for an estimation
of the external force Fext. That is

τ = Mt(q)q̈
⋆ + ht(q, q̇)− JTF⋆

ext

+Mt(q)
(

Kd

(

∫

q̈⋆dt− q̇
)

+Kp

(

∫ ∫

q̈⋆dt− q
)

)

, (10)

with Kd = kdI and Kp = kpI being the controller gains and F⋆ being an estimation of the
external force. In the following analysis, we will show that the above inverse-dynamics controller
in conjunction with a force estimator lead to exponential stability. Let ¨̃q , q̈⋆ − q̈ denotes the
joint acceleration error, then the corresponding Cartesian acceleration error is readily obtained
from definition (8a) as

˙̃ν , ν̇⋆ − ν̇ = J(q)¨̃q. (11)

Substitution of ν̇⋆ obtained from (5a) into the above equation yields

ν̇ = M−1

∆ Fsg −Nq̇ − J ¨̃q.

Now, upon substitution of the acceleration from the above into (3), we can write the expression
of the external force as:

Fext = F⋆
ext + F̃ext,

where
F⋆

ext =
(

I +MmM
−1

∆

)

Fsg + hm −MmNq̇ (12)

is the estimation of the external force and

F̃ext = −MmJ ¨̃q (13)

is the force estimation error. Clearly, the force estimation error goes to zero only if the accel-
eration error does so. We will show that under a mid condition, controller (10) in conjunction
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with force estimator (12) results in exponential stabling of the motion and force errors. To this
end, substitution of F⋆

ext and q̈⋆ obtained from (12) and (8b), respectively, into (10) yields the
expression of the control law as:

τ = JT
(

MCr(q)M
−1

∆ − I
)

Fsg + hr(q, q̇)−Mr(q)J
−1(N(q, q̇) + J̇)q̇

−mmgJ
T
v R

Tk +Mt(q)
(

Kd

(

∫

q̈⋆ dt− q̇
)

+Kp

(

∫ ∫

q̈⋆ dt− q
)

)

, (14)

where MCr , J−TMrJ
−1 is the Cartesian inertia of the manipulator. Stability of closed-loop

system remains to be proved. Knowing that (14) becomes equivalent to (12) if the force term,
Fext, of the former equation is replaced by F⋆

ext = Fext − F̃ext, we can arrive at the equations
of the motion and force errors by substituting (14) into system (9a), i.e.,

Mt

(

¨̃q +Kd
˙̃q +Kpq̃

)

= −JT F̃ext.

Moreover, we know that the force and acceleration errors are related by (13). Thus

Mr
¨̃q +Mt

(

Kd
˙̃q +Kpq̃

)

= 0,

which can be rewritten as:

¨̃q +Kd
˙̃q +Kpq̃ +Q(q)

(

Kd
˙̃q +Kpq̃

)

= 0, (15)

where
Q , M−1

r

(

JMmJ
T
)

. (16)

We will show that system (15) remains stable if the coefficient matrix of the additive term,
Q, is sufficiently small. Let assume that xT = [q̃T ˙̃qT ] represent the sate vector. Then, (15)
can be written as

ẋ = Ax+ ǫ(t, x) (17)

where

A =

[

0 I
−Kp −Kd

]

and ǫ(t, x) = −Q

[

0

Kpq̃ +Kd
˙̃q

]

.

Since the perturbation term ǫ satisfies the linear growth bound

‖ǫ‖ ≤
√

k2
p + k2

d‖Q‖‖x‖,

system (17) is in the form of vanishing perturbation [51]. Moreover, since A is Hurwitz, there
exists Lyapunov function

V (x) = xTPx (18)

with P > 0 satisfying
PA+ ATP = −I. (19)

The derivative of V (x) along trajectories of perturbed system (17) satisfies

V̇ ≤
(

− 1 + 2
√

k2
p + k2

dλmax(P )‖Q‖
)

‖x‖2 (20)
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On the other hand, the solution of the Lyapunov equation (19) is given by

P =
1

2kpkd

[

kp(kp + 1) + k2
d kd

kd kp + 1

]

,

which verifies

λmax(P ) ≤
(kp + 1)2 + k2

d

2kpkd
.

Therefore, according to the stability theorem of perturbed system [51, p. 206], the origin of
(17) is globally exponentially stable if

‖Q‖ ≤ α(kp, kd) =
kpkd

(

(kp + 1)2 + k2
d

)
3

2

. (21)

Using the norm properties in (16), we obtain a conservative condition for the stability as:

λmax(Mm) ≤ α(kp, kd)
λmin(Mr)

λmax(JJT )
. (22)

Now, if (21) is satisfied, then there must exist scalar Ω > 0 such that ‖x‖ ≤ ‖x(0)‖e−Ωt.
Therefore, it can be inferred from (15) that

‖¨̃q‖ ≤ ae−Ωt, (23)

where a = (k2
p + k2

d)(1 + ‖Q‖)‖x(0)‖.
Now, we are ready to derive the input/output relation of the closed loop system under the

proposed control law. Adding both sides of (3) and (5a) yields

Msν̇ +M∆ν̇
⋆ + hs = Fext. (24)

Finally, using (11) in (24), the equations of motion of the test spacecraft become

Msν̇ + hs(ν) = Fext + δ, (25a)

where
δ(t) = M∆J ¨̃q (25b)

is a non-vanishing perturbation. Since J is always a bounded matrix, we can say

σ = max
q

√

λmax(JTJ),

where λmax(·) denotes the maximum eigenvalue of a matrix. It follows from (23) and (25b) that

‖δ‖ ≤ σaλmax(M∆)e
−Ωt, (26)

which means that the perturbation exponentially relaxes to zero from its initial value. The
above development can be summarized in the following.

Proposition 1 Let a rigid-body object with generalized inertia Mm attached to a manipulator
with inertia Mr. Assume that the force/moment developed at the interface of the object and
the manipulator is sensed and fed back to the manipulator according to the control law (14).
Moreover, assume that (6) and (21) are satisfied. Then, the motion of the object in response
to external force Fext obeys equation of motion of another rigid-body object characterized by
generalized inertia Ms.

8



2.3 Force Feedback Gain

Ideally, the controller of the emulating system can change the inertia of the test spacecraft to
any desired value. However, there are constraints (6) and (22) on the inertia matrices of the
test and flight spacecraft as well as the manipulator that must be considered in the design.
Assuming a steady-state mode in which the control error reaches zero, we can express the
torque-control input by

τ = JT (MCrM
−1

∆ − I)Fsg + η(q, q̇), (27)

where η(q, q̇) represents the motion dependent portion of the feedback, while the first term in
the RHS of equation (27) is force feedback. In the following we examine two extreme cases of
the force feedback gain.

2.3.1 Zero Gain

Equation (27) implies that the force feedback is disabled if MCr = M∆ or

MCr(q) +Mm = Ms. (28)

Clearly, to implement the emulation controller without force feedback requires satisfying (28)
for all possible postures. However, with the exception of Cartesian manipulators, most manipu-
lators are of configuration-dependent inertia matrix, whereas the spacecraft inertia are constant
matrices. This means that the condition (28) can be satisfied only for few isolated postures
at best. It is worth mentioning that the case of Ms = Mm becomes a favorable condition if
MCr

≡ 0, i.e., the manipulator inertia is negligible; see (28). However, a manipulator with zero
mass (and zero joint friction) can be though of as an air-bearing simulator system, which has
its own shortcomings as descried in Section 1.

2.3.2 Infinite Gain

It is apparent from (27) that for the control torque effort to be bounded requires that M∆

be a non-singular matrix, i.e., condition (6) is satisfied. At first glance, this result seems
counterintuitive. But, it can be seen from (5a) that the acceleration and thus the subsequent
motion trajectory can be uniquely estimated only ifM∆ is a full-rank matrix. It is also apparent
from (1) and (3) that the only possibility for the flight and test spacecraft with the same mass
and inertia to produce similar velocity and acceleration trajectories with respect to external
force Fext is that the interaction force Fsg becomes zero. Clearly, in such as case, it is not
possible to predict the position and velocity trajectories from the estimated acceleration and
hence the feedback is meaningless.

3 Simulating a Micro-G Environment

3.1 Precise Gravity Compensation

Performing a high-fidelity zero-g emulation critically relies on a precise force/moment feedback
which, in turn, is determined by: (i) Accuracy of the gravity compensation; (ii) the resolution
of the F/M sensor. These issues are discussed below.
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3.1.1 Calibration

The static components of the F/M sensor output include the sensor offset and the payload
gravitational force, which are not distinguishable from each other. Nevertheless, if a sequence
of sensor readings is recorded by locating the manipulator in several known poses, it is possible
to identify the sensor offset together with all the gravity parameters that are required to null
out the static components of the sensor.

If the gravity were completely compensated, then for every position we would have Fsg = 0,
i.e., T (Fs − F0) − Fg = 0, where FT

0 =
[

fT
0 nT

0

]

denotes the sensor offset. Now, we consider

{F0, mm, c, k} as the set of uncertain parameters that are be identified. Defining vector w ,

mmk and knowing that [c×]RTw = −[(RTw)×]c, we can break up Fs = T−1Fg + F0 into two
linear regression equations as

fs =
[

I gRT
]

[

f0
w

]

, (29a)

ns =
[

I −gmm[(R
Tk)×]

]

[

n0

c

]

, (29b)

where FT
s =

[

fT
s nT

s

]

. Now stacking p measurements yT1 = [fT
s1, f

T
s2, · · · , f

T
sp] and yT2 =

[nT
s1, n

T
s2, · · · , n

T
sp], that are obtained by configuring the manipulator at p different positions

{q1, q2, · · · , qp}, we can derive two linear matrix relation y1 = Ψ1(q)Θ1 and y2 = Ψ2(q,Θ1)Θ2

from (29a-29b), where vectors Θ1 and Θ2 contain the parameters of interest. Finally, assuming a
sufficient number of independent equations, one can obtain the vectors of estimated parameters
Θ̂1 and Θ̂1 consecutively by using the least squares method from

Θ̂1 = Ψ+
1 y1, and Θ̂2 = Ψ+

2 (Θ̂1)y2,

where Ψ+
i = ΨT

i (ΨiΨ
T
i )

−1 is the pseudo-inverse of Ψi. Note that the mass and the gravitational
vector can be retrieved from

m̂m = ‖ŵ‖ and k̂ =
ŵ

‖ŵ‖
.

3.1.2 Position Errors and Accuracy of the Gravity Compensation

Error between the measured joint angles used by the gravity compensator and the true joint
angles will result in a small residual static force acting on the payload. One source of this error
is measured quantization. In order to minimize the residual force induced by the quantization as
much as possible, we need to employ high-resolution encoders at the joints so that the induced
error becomes at least comparable to the F/M sensor resolution. In the following we relate the
errors in the gravity compensation and the that of joint angles.

Assume that ∆q and ∆fs denote small errors in measured joint angles and the computed
gravity force, respectively. Using the Taylor series of (29a) leads to

‖∆fs‖ ≤ gmm

∥

∥

∥

∥

∂

∂q
RT (q)k

∥

∥

∥

∥

‖∆q‖. (30)
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Using the facts that all elements of the rotation matrix are sinusoidal functions of q and that k
is a unit vector, one can show that a conservative bound on the first norm of the RHS of (30)
is 6. Thus, a bound on the force error can be found as

‖∆fs‖ ≤ 6gmm‖∆q.‖ (31)

Similar argument shows that a conservative bound on the magnitude of moment error ∆ns can
be found as

‖∆ns‖ ≤ 6gmm‖c‖‖∆q.‖ (32)

3.2 Assessing the Quality of the Micro-Gravity Environment

Emulation in a zero-gravity environment requires the static component of the F/M sensor is
perfectly nulled out. However, in practice, this requirement can not be completely satisfied
due to errors. A natural question rises; what is the quality of the emulator in simulating a
weightlessness environment? To answer this question, let us assume that δf̄sg denote the average
magnitude error of the compensated F/M sensor output over several payload static poses. Then,
the average acceleration introduced to the emulating system can be simply obtained by dividing
the magnitude of this force by the inertia of the spacecraft being simulated. Normalizing the
acceleration w.r.t. the Earth gravity constant, we define the following dimensionless index

γ ,
¯δfsg

gms

× 106 =
‖
∑n

i fsi −Ψ1iΘ̂1‖

ngms

× 106 (33)

to measure the virtual gravity of the simulated environment. In other words, the payload (test
spacecraft) experiences as though it moves under a gravitational field with intensity of γ · g
rather than a zero-g environment. It is worth pointing out that γ can be also interpreted as
the drift exhibited by the emulation system. Similarly, the micro-gravity environment for the
rotational motion can be defined as

‖
∑n

i nsi −Ψ2iΘ̂2‖

ng‖c‖mm

× 106.

3.2.1 Resolution of F/M Sensor

At best, the force error δf̄sg can be reduced down to the resolution of the F/M sensor. The
resolution of a F/M sensor depends on its sensing range; a sensor with large sensing range tends
to have lower resolution and vice versa. Since the F/M sensor is located at the manipulator-
payload interface, the sensor should be selected so that its sensing range matches the weight
of payload, i.e., the test spacecraft. Therefore, the ratio of the sensor resolution to its sensing
range is the emulation system limitation in achieving the lowest micro-g.

Fig. 2 illustrates the best achievable micro-g’s versus different spacecraft masses that is
calculated from the resolutions and the sensing ranges of the commercial ATI F/M sensors [52].
Here, we assume that the scaling factor of the emulated spacecraft is two. It is evident from the
figure that in the emulation of small to medium size spacecraft with mass of up to 500kg, the
sensor resolution is sufficient for achieving accuracy of 16× 10−6g (it almost remains constant
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Figure 2: The best achievable micro-g environment, computed from the resolutions of a series
of commercial F/M sensors, for emulation of spacecraft with different masses.
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in that range). However, the value of the virtual gravity dramatically increases, when the
spacecraft mass exceeds that critical mass. This is due to the fact that commercial F/M
sensors with large load capacity come with relatively low resolution. In order to improve the γ
factor, one may use a mechanism to counter the effects of gravity in rigid-bodies [53–56]. For
example, using a passive counterweight [53] can substantially reduce the static load on the F/M
sensor, thereby allowing smaller and more precise sensor to be selected. The main disadvantage
of this method is introduction of additional inertia. However, this is not an issue here because
the controller can scale the inertia of the payload down or up to any desired value.

4 Emulation of Flexible Spacecraft

Many spacecraft have flexible appendages, e.g. satellites with solar panels, that can significantly
affect their dynamics. However, testing a flexible spacecraft in a 1-g environment poses many
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difficulties due to large deformation induced by gravity. Indeed, the structure of a solar panel
cannot even hold itself against gravity when it is fully deployed. Moreover, the location of the
CM of a flexible spacecraft is no longer fixed as it depends on the flexural coordinates whose
direct measurement is not usually available. In the following, we extend the emulation concept
for the case where the test spacecraft is rigid while the target flight spacecraft is flexible. It
is assumed that the actuators are mounted to the rigid part of the test spacecraft. The test
spacecraft lacks any flexible hardware, such as solar panels. Yet, motion perturbation caused by
the flexible appendages is generated by simulation and then superimposed on the trajectories
that subsequently drive the manipulator.

Let ξ denote the flexural coordinates of a flexible spacecraft. Then, the equations of motion
for the entire system can be written in the partitioned mass matrix form

[

Ms Msf

MT
sf Mf

] [

ν̇

ξ̈

]

+

[

hsr(ν, ξ, ξ̇)

hsf(ν, ξ, ξ̇)

]

=

[

Fext

0

]

, (34)

where Mf is the flexural inertia matrix, Msf is the cross inertia matrix, hsr and hsf are the
nonlinear vectors associated with the rigid and flexural coordinates. Analogous to the case of
rigid spacecraft, subtracting equation (34) from (3) eliminates Fext from the the equations of
motion. Defining M̄∆ = M∆ −MsfM

−1

f MT
sf and h∆ = hsr − hm, we can write the accelerations

of the rigid and the flexural coordinates by

q̈⋆ = −J−1(N + J̇)q̇ − J−1M̄−1

∆ MsfM
−1

f hsf + M̄−1

∆ Fsg, (35)

and
ξ̈ = −M−1

f (I +M−1

f MT
sfMsfM

−1

f )hsf −M−1

f MT
sfM̄

−1

∆ (Fsg − h∆). (36)

Equation (35) can be substituted in (14) to obtain the control law. However, to calculate
the acceleration from (35) requires the value of the flexural states because hsr and hsf are
functions of ξ and ξ̇. An estimation of the flexural states can be obtained by simulation. First,
the acceleration of the flexural coordinate can be computed by making use of the acceleration
model (36), and then the flexural states are obtained as a result of numerical integration.

The architecture of the zero-g emulating testbed for spacecraft is illustrated in Fig. 3. To
summarize, the emulation of flexible spacecraft may proceed as the following steps:

i. start at a time when all of the system states, i.e., {q, q̇, ξ, ξ̇} are known,

ii. estimate the joint acceleration from (35) (use (8b) instead for rigid spacecraft),

iii. apply control law (14) to the manipulator;

iv. obtain the flexural states as a result of the consecutive integration of the acceleration
obtained from (36) – skip this step for rigid spacecraft – and then go to step ii.

5 Conclusions

A control system for a manipulator carrying a rigid-body payload has been developed in order
to modify the motion dynamics of the combined system in consequence of external according
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Figure 4: The spacecraft simulator using actively controlled manipulator.

to that of a free-floating body which has different inertial properties from the payload. This
allowed zero-g emulation of the scaled prototype of a spacecraft (with non-negligible inertia) in
a 1-g laboratory environment. It was shown that the controller in conjunction with the motion
and force estimators could drive the manipulator so as to achieve dynamical similarity between
the test and flight spacecraft. Notably, the controller can compensate for the inertial forces of
the heavy payload (test spacecraft) without needing any acceleration measurement.

The stability of the closed loop system was analytically investigated. The results showed
that system remains stable provided that mass and inertia of the test and flight spacecraft are
not the same and that the norm of the inertia ratio of the payload to manipulator is upper
bounded by a scaler which is a function of the controller gains. Finally, the methodology was
extended for emulation of spacecraft having flexible appendages, e.g. solar panels.

A calibration procedure to precisely null out the static component of the F/M sensor was
developed that tunes the gravity, kinematic, and sensor parameters all together. A sensitivity
analysis showed that the position and force sensors have to be with specified resolutions in
order to achieve a certain level of micro-gravity.
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