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Abstract

This paper examines the problem of locating a mobile, non-adversarial target in an indoor environ-
ment using multiple robotic searchers. One way to formulate this problem is to assume a known
environment and choose searcher paths most likely to intersect with the path taken by the target.
We refer to this as the Multi-robot Efficient Search Path Planning (MESPP) problem. Such path
planning problems are NP-hard, and optimal solutions typically scale exponentially in the number
of searchers. We present an approximation algorithm that utilizes finite-horizon planning and im-
plicit coordination to achieve linear scalability in the number of searchers. We prove that solving
the MESPP problem requires maximizing a nondecreasing, submodular objective function, which
leads to theoretical bounds on the performance of our approximation algorithm. We extend our
analysis by considering the scenario where searchers are given noisy non-line-of-sight ranging mea-
surements to the target. For this scenario, we derive and integrate online Bayesian measurement
updating into our framework. We demonstrate the performance of our framework in two large-scale
simulated environments, and we further validate our results using data from a novel ultra-wideband
ranging sensor. Finally, we provide an analysis that demonstrates the relationship between MESPP
and the intuitive average capture time metric. Results show that our proposed linearly scalable
approximation algorithm generates searcher paths competitive with those generated by exponential
algorithms.

1 Introduction

The problem of searching for a mobile target in an indoor environment is one that is relevant to
many real-world scenarios. Military and first response teams often need to locate lost team members
or survivors in disaster scenarios. The increasing use of search and rescue robots and mechanized
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infantry necessitates the development of algorithms for autonomously searching such environments.
The major application that has motivated our work is that of locating a lost first responder in an
indoor environment (Kumar et al., 2004). In this application, a moving first responder is lost
during disaster response, and a team of robots must locate the first responder. Noisy non-line-of-
sight measurements may or may not be available to assist in the search. A similar scenario arises
if a group of ground vehicles must locate a target on a road network while an air vehicle provides
surveillance.

The coordinated search problem can be divided into three main categories: efficient search, guar-
anteed search, and constrained search. Efficient search seeks to locate (capture) a non-adversarial
target in the minimum expected time. A target can be considered non-adversarial if its motion
model is independent of the state of the searchers. High-quality searcher paths in the efficient search
domain are those that on average lead to quickly locating a non-adversarial target. A second sub-
problem of coordinated search is guaranteed search, where searchers seek to clear an environment to
ensure that even an adversarial target cannot escape capture.1 Guaranteed search may additionally
seek to minimize capture time, which leads to a multi-objective optimization problem. Finally, con-
strained search performs either efficient or guaranteed search while maintaining some constraints
on the searchers (e.g., remaining within communication range). This paper presents a framework
for solving the efficient search problem, and related work is discussed in other coordinated search
domains.

If non-line-of-sight measurements to the target are available, the efficient search problem is
one of both estimation and control. For instance, searchers may receive range to the target from
ultra-wideband ranging radios capable of providing distance between nodes through walls. If this
information is properly utilized, better estimation can lead to better search paths. However, perfect
estimation is useless without good control strategies. Our algorithm integrates both estimation and
control into a unified efficient search framework by using probabilistic planning alongside Bayesian
measurement updating.

The efficient search problem can be formulated as a Partially Observable Markov Decision
Process (POMDP). The full state of the world is defined by the union of the searcher positions
and the target position. A solution to the POMDP provides a mapping from the estimated state
of the target to searcher actions. The target’s position is partially observed, and observations are
provided by measurements received by the searchers. In the formulation without non-line-of-sight
measurements, the knowledge that the target is not at the same location as the searchers provides
information. In the POMDP formulation, the target’s motion model is assumed to be Markovian
(i.e., it depends solely on the target’s current location in the environment and does not depend
on the history of its paths). The Markov assumption allows for modeling a rich space of motion
models for the target including stationary and random models. The searchers receive reward if they
move to the same location as the target, which is considered capturing the target. A solution to the
multi-searcher POMDP provides paths for the searchers that maximize the probability of capturing
the target over a time interval. While this is not equivalent to minimizing expected capture time,
maximizing probability of capture over a time interval practically relates to low average capture
times.

Solving the POMDP formulation of efficient search quickly grows intractable for large environ-
ments and multiple searchers because it requires considering the joint space (or Cartesian product)

1An adversarial target is one that actively evades capture. A target may also be considered cooperative if it actively
seeks capture. These cases are not considered in this paper.
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of the searchers’ paths.2 The size of this planning space grows exponentially in the number of
searchers. This is an example of explicit coordination during which the searchers explicitly plan for
their teammates. Alternatively, if each searcher plans individually without taking into account the
future actions of its teammates, the size of the search space no longer increases. Since the searchers
are no longer coordinating in any way, this an instance of no coordination. Paths generated with-
out any coordination often perform poorly because the searchers have no mechanism for reasoning
about their teammates’ actions. If the searchers share information about their paths, they provide
valuable information that can improve path quality. In this case, the searchers are not explicitly
planning for their teammates, but they are implicitly coordinating by sharing information about
their paths. Our algorithm utilizes this implicit coordination along with finite-horizon search to
simplify the POMDP formulation and achieve far better scalability. There is a tradeoff, however,
in that implicit coordination does not consider all paths considered by explicit coordination. Thus,
it is possible that implicit coordination might produce paths poorer than those generated by ex-
plicit coordination. On the contrary, our results demonstrate that implicit coordination generates
paths with capture times competitive with those generated by explicit coordination while using
far fewer computational resources. This suggests that situations in which explicit coordination
provides significantly lower capture times than implicit coordination are rare in the efficient search
domain.

This paper presents a bounded approximation algorithm using implicit coordination that solves
the Multi-robot Efficient Search Path Planning (MESPP) problem in indoor environments with
a known floorplan. The proposed algorithm considers both mobile and stationary targets, and it
operates both with and without noisy measurements to the target. Our algorithm is linearly scalable
in the number of searchers and leverages the property of submodularity to provide a constant-
factor approximation guarantee of the optimal solution. An objective function is submodular if it
follows an intuitive property of diminishing returns. The more areas (nodes) in the environment
that the searchers have visited, the less incremental reward is gained. The submodularity of the
MESPP objective function directly leads to bounds on the performance of sequential allocation.
We complement these theoretical results with empirical results both in simulation and using data
from ultra-wideband ranging radio sensors. We originally introduced this algorithm in prior work
(Hollinger et al., 2007b; Hollinger et al., 2007a) and later showed that it provides a bounded
approximation of the optimal solution (Hollinger and Singh, 2008). This journal paper provides
a unified description of the experimental and theoretical results. Additionally, we provide new
analysis on the relationship between the MESPP reward metric and average capture time.

This paper is organized as follows. Section 2 discusses related work in the areas of pursuit-
evasion, multi-robot coordination, and probabilistic estimation. Section 3 formally defines the
MESPP problem and shows that it optimizes a nondecreasing, submodular set function. Section 4
gives a description of our coordination and estimation algorithms and utilizes the result from the
previous section to prove a bounded approximation of the optimal solution. Section 7 presents both
simulated results and results using ultra-wideband ranging radio data verifying the performance of
our algorithm. Finally, Section 8 draws conclusions and discusses avenues for future work.

2To formally define the joint path space, consider the possible locations sk(t) ∈ N of K searchers at times
t ∈ {1, 2, . . . , T}. The searchers’ configuration space at time t is Φ(t) = {(s1(t), . . . , sK(t))|s1(t) ∈ N, . . . , sK(t) ∈ N}.
The searchers’ joint path space is defined as the Cartesian product ΨS = Φ(1)× . . .× Φ(T ).
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2 Related Work

Our proposed algorithm provides a solution to the non-adversarial efficient search problem for
multiple searchers in large indoor environments. Related work in the area of coordinated search
either does not directly deal with the efficient search problem or is not scalable to multiple searchers
(or both). In addition, much early related work does not estimate the target’s position, which does
not allow for the use of noisy measurements.

Early research in coordinated search almost exclusively treated the target as an adversarial
evader that actively avoids capture. Parsons developed some of the the earliest methods for solving
the classical adversarial pursuit-evasion problem on graphs (Parsons, 1976). He considered the
graph to be a system of tunnels represented by the edges of the graph in which an evader was hiding,
and he defined the search number of a graph to be the minimum number of pursuers necessary to
catch an adversarial evader with arbitrarily high speed. Determining the search number of a graph
is known to be an NP-complete problem (Megiddo et al., 1988). In this early work in pursuit-
evasion, the evader can only hide in the edges of the graph, and solutions deal with guaranteed or
worst-case search. This does not directly address the efficient search problem for a non-adversarial
target because it does not reason about target motion modeling or uncertainty in the target’s
position.

Guibas and LaValle extended classical pursuit-evasion techniques to guarantee capture in polyg-
onal environments (Guibas et al., 1999). Their algorithm discretizes polygonal environments into
conservative visibility regions and then uses an information space approach to develop complete
algorithms that guarantee capture in 1-searchable graphs. Gerkey applied these ideas to searchers
with limited sensing (Gerkey et al., 2006). For a single pursuer, these algorithms are guaranteed
to find a solution if one exists. When scaled to multiple pursuers, however, they lose this property.
Additionally, these algorithms are difficult to extend to complex environments because of the sheer
number of (often very small) cells necessary in a conservative visibility discretization. These algo-
rithms are also not applicable to complex environments in which capture cannot be guaranteed.
This drawback becomes particularly prominent with limited pursuers and in any environment with
a loop.

The classical pursuit-evasion methods above do not reason about capture time during search,
and they do not account for partial knowledge of the target’s location or its motion model. Our
algorithm uses a probabilistic formulation with dispersion and capture matrices to reason about
target motion and uncertainty. Our formulation takes advantage of the non-adversarial assumption
on the target’s motion model to reason about its expected behavior rather than its worst-case
behavior.

Other researchers have taken different approaches to modeling the probabilistic coordinated
search problem. Adler et al. introduced expected capture time to pursuit-evasion by examining
the hunter and rabbit problem (Adler et al., 2003). They defined the escape length of a strategy as
the worst case expected number of rounds for the hunter to catch the rabbit, and they derive error
bounds for various hunter strategies. Isler et al. advanced the concept of probabilistic pursuit-
evasion to polygonal environments (Isler et al., 2005). They developed coordination strategies for
one or two pursuers in simple polygonal environments based on the assumption that an adversarial
evader does not have knowledge of some actions made by the pursuer. These algorithms still do not
directly solve the efficient search problem because they do not fully relax the adversarial assumption
on the target’s motion.
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Many probabilistic coordinated search problems, including efficient search, can be formulated
as a Markov Decision Process (MDP) if the target’s position is known or a Partially Observable
Markov Decision Process (POMDP) if it is unknown. These formulations provide fully probabilistic
representations of the problem, which can easily reason about uncertainty. Eaton and Zadeh
discussed optimal solutions to the MDP guaranteed search problem (Eaton and Zadeh, 1962). Roy
et al. later discussed how belief compression can be used to make the POMDP guaranteed search
problem tractable for a single pursuer (Roy et al., 2005). Smith developed a Heuristic Search
Value Iteration algorithm for solving general POMDPs, which provides near-optimal solutions
for problems with thousands of states (Smith, 2007). These solutions provide fully probabilistic
solutions to coordinated search problems, but they suffer from poor scalability because they plan
in the joint space of searcher paths. In the multi-robot efficient search domain, the number of
states in the POMDP formulation can easily reach several billion due to exponential scalability in
the number of searchers. For instance, if one wanted to plan paths for six searchers looking for
one target in an environment with 100 cells, a POMDP with 1006+1 = 1014 states would need to
be solved. Solving POMDPs of this size is far outside the reach of even state-of-the-art POMDP
solvers. The (PO)MDP formulation of coordinated search problems provides a fully probabilistic
solution, but it suffers from these scalability issues. In contrast, our algorithm utilizes implicit
coordination to remain tractable even for large numbers of searchers.

Similar to fully probabilistic formulations, researchers have also applied optimization techniques
to the coordinated search domain. Lau et al. presented a dynamic programming approach for
efficiently finding a single non-adversarial target (Lau et al., 2006) and a branch and bound approach
for finding multiple targets (Lau et al., 2005). These techniques provide optimality bounds on their
solutions, but they suffer from poor scalability because they plan in the joint space for multiple
searchers. Calisi et al. also provided a solution to the single robot exploration and search problem
using petri-nets (Calisi et al., 2007). Their solution is domain-specific, and they only formulate it
for the case of a single searcher.

The poor scalability of coordinated search solutions to large environments and multiple searchers
has motivated some researchers to utilize either heuristic methods or auction-based methods. To
our knowledge, no scalable approximation algorithm has been proposed for the efficient search
problem with a mobile, non-adversarial target. Sarmiento et al. presented a framework for finding
stationary targets in polygonal environments with multiple robotic searchers using a one-step cost
heuristic (Sarmiento et al., 2004). Instead of planning in the joint space, their algorithm reduces
reward along previously traveled paths. This can be seen as an instance of implicit coordination.
They do not extend this work to mobile targets, and they do not present results in large-scale
environments.

One popular technique to improve scalability in multi-agent domains is for robots to coordinate
using synthetic “auctions”. The auction-based methods are specifically designed to explicitly co-
ordinate when it is particularly beneficial and implicitly coordinate when it is not. Such methods
are particularly well-suited for problem domains in which agents must occasionally perform a very
tightly coordinated task. Researchers have applied auction methods to multi-agent coordinated
search domains. Kalra showed an application of auction-based plan sharing in a constrained ex-
ploration domain (Kalra, 2006). Her method allows searchers to actively coordinate by running
auctions when they are presented with high-cost situations. Gerkey et al. also developed a parallel
stochastic hill-climbing method for small teams that is closely related to auction-based methods
(Gerkey et al., 2005). His algorithm dynamically forms teams of searchers that work together to
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solve tasks.
While auction-based algorithms are more scalable than joint planning approaches, they still rely

on auctions and/or team formation, which can consume large amounts of communication bandwidth
and planning time. In many domains, implicit coordination is sufficient to produce high-quality
results, and the additional overhead of running auctions is unnecessary. Our results show that
implicit coordination yields low capture times in the efficient search domain without the overhead
of auctions or team formation. We assert that this is the case because situations in which explicit
coordination is beneficial are rare in the efficient search domain.

This paper shows that the MESPP problem requires the optimization of a submodular objective
function, and this key insight provides optimality bounds on sequential allocation, an algorithm
linearly scalable in the number of searchers. Submodularity has been utilized in related domains
to provide theoretical guarantees on sequential allocation. Guestrin et al. used submodular set
functions to develop algorithms for sensor placement problems in Gaussian Processes (Guestrin
et al., 2005) and in more general domains (Krause and Guestrin, 2007). They also extended their
algorithms to robust observation selection against sensor failure (Krause et al., 2007). These appli-
cations deal primarily with placing sensors to monitor information in an environment (e.g., moni-
toring algae blooms in lakes and temperature in a building). These algorithms do not incorporate
moving nodes (searchers) and thus are not suitable for ESPP. Singh et al. developed algorithms for
solving the Multi-robot Informative Path Planning (MIPP) problem, which does allow for moving
nodes (Singh et al., 2007). We extend their theoretical bounds to the MESPP problem. To the
best of our knowledge, our work is the first approximation algorithm with theoretical guarantees
in the MESPP domain.

Prior work in target estimation is also relevent to the MESPP problem. Ferris et al. used
Gaussian Processes to estimate the position of a moving target using wireless signal strength (Fer-
ris et al., 2006). Their algorithm discretizes the environment in a similar manner to ours and
then uses a particle filter to estimate position. Our proposed method provides an alternative for
position estimation that closely couples with planning and remains computationally tractable. Our
algorithm also does not require prior training data, and it is completely online. As a tradeoff, our
method is less appropriate than theirs for sensors with very complex or unknown noise models. Fer-
ris et al. later extended their technique to allow for unknown access point locations using GPLVMs
(Ferris et al., 2007). We showed that a similar technique can be used effectively with ranging radios
for both known and unknown radio node locations (Hollinger et al., 2008). This suggests a possible
extension of our efficient search algorithm to domains with unknown searcher locations.

3 Problem Setup

This section formally defines the problem of locating a mobile, non-adversarial target with multiple
searchers (the MESPP problem). It also shows that the MESPP problem optimizes a submodular
objective function.

To formulate the MESPP problem, the environment in which the searchers and target are
located needs to be described. First, divide the environment into convex cells (see algorithm
description below). Taking into account the cell adjacency in a discretized map yields an undirected
graph that the searchers can traverse. Let G(N, E) be the undirected environment graph with
vertices N and edges E. At any time t, a searcher exists on vertex s(t) ∈ N . The searcher’s
movement is deterministically controlled, and it may travel to vertex s(t+1) if there exists an edge

6



between s(t) and s(t + 1). A target also exists on this graph on vertex e(t) ∈ N . The target moves
probabilistically between vertexes. The searcher receives reward by moving onto the same vertex as
the target, s(t) = e(t), and no reward is gained after this occurs. Refer to this as a capture event.
Reward is discounted by γt, where γ is a constant discount factor. Thus, the searchers receive more
reward for finding the target at a lower t. This discount factor corresponds to the probability that
the search will end at a given time. For instance, the target may leave the search area or expire.
This necessitates locating the target in a short time.

The target’s movement model is known to the searcher, and it is independent of the searcher’s
position on the graph. Further assume that the target’s motion model is Markovian (i.e., it depends
solely on its current cell). This assumption allows for a rich space of motion models including those
followed by randomly moving and stationary targets. The searcher knows its own position and it
has knowledge of the target’s position at a time t in the form a belief distribution over all vertices,
b(t). Since b(t) can be an arbitrary distribution, this formulation allows multi-modal estimates of
the target’s position. Call the problem so far the Efficient Search Path Planning (ESPP) problem.

To extend to MESPP, place K searchers on the vertices; the location of the k-th searcher at
time t is sk(t) ∈ N (for k = 1, 2, ..., K and t = 1, 2, ..., T ). The searchers now gain reward if any
of them are on the same vertex as the target. Incorporating additional searchers forces both the
state and action space to grow exponentially. Refer to the combined action space of all searchers as
the joint action space. The MESPP can be formulated as a Partially Observable Markov Decision
Process (POMDP) with the reward function below:

J (U(1), . . . , U(T )) =
T∑

t=0

γtP (∃k : sk(t) = e(t)), (1)

where U(1), . . . , U(T ) are the deterministic actions, with U(t) = [U1(t), . . . , UK(t)] being a K-
dimensional control vector specifying the location of each searcher (i.e., sk(t) = Uk(t)). The goal is
to choose U(1), . . . , U(T ) so as to maximize J(U(1), . . . , U(T )) as given by Equation 1.

The reward function J is both nondecreasing and submodular on the set of nodes of the time-
augmented search graph. Intuitively, the meaning of these terms is the following (exact definitions
are given in the Appendix).

1. A set function is nondecreasing if adding more nodes to the observed set always increases
reward. This is clearly the case in MESPP since visiting more places can only increase
likelihood of capture.

2. A set function is submodular if it satisfies the notion of diminishing returns. In other words,
the more places in the environment that have been visited, the less can be gained by visiting
more.

3. The time-augmented search graph G′ is a directed graph and is obtained from G as follows: if
u is a node of G then (u, t) is a node of G′, where t = 1, 2, ..., T is the time stamp; if uv is an
edge of G, then (u, t) (v, t + 1) and (v, t) (u, t + 1) are directed edges of G′ for every t. There
is also a directed edge from (u, t) to (u, t + 1) for all u and t. In other words, G′ is a “time
evolving” version of G and every path in G′ is a “time-unfolded” path in G.

Searchers choose a feasible set of paths that maximizes the expected probability of intersecting
the target’s path at the earliest possible time (before reward is heavily discounted). Any such set
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of paths involves a set of G′ nodes, call it A ⊆ G′ (note that A encodes both which nodes of the
original G have been visited and at which times). Hence the reward J (U(1), . . . , U(T )) can also
be written as J (A). Now we write J (A) in more detail as follows: let Y denote a path (in G′)
taken by the target, let P (Y ) be the probability of this path, let Ψ be the space of all possible
target paths; finally, let FY (A) be the discounted reward received by searcher paths A if the target
chooses path Y . This gives us the reward function in Equation 2.

J(A) =
∑

Y ∈Ψ

P (Y )FY (A) (2)

We now have a theorem concerning the properties of J (U(1), . . . , U(T )) = J (A).

Theorem 1 The objective function optimized by the MESPP problem is J(A), and this is a non-
decreasing, submodular set function.

The proof of Theorem 1 is given in the Appendix along with more formal definitions of terms.
This result is used in the next section to show bounds on the performance of sequential allocation
in this domain. Since the Markov assumption is made on the target’s motion model, calculating
the expectation in Equation 2 can be done using dispersion matrices. This greatly simplifies the
computation of F (A) over the space of searcher paths. This is explained in more detail below.

4 Environment and Target Modeling

4.1 Map Discretization

The formulation of the efficient search problem requires the discretization of continuous environ-
ments into discrete cells. Partitioning the environment into cells allows for planning on a finite
graph and greatly reduces the complexity of planning and estimation. One method for discretiza-
tion takes advantage of the inherent characteristics of indoor environments. To discretize an indoor
map by hand, simply label convex hallways and rooms as cells and arbitrarily collapse overlapping
sections. This method is simple enough that it can be performed by hand even for large maps.
Alternatively, a suitable discretization can be found automatically using a convex region finding
algorithm (such as Quine-McClusky (Singh and Wagh, 1987)). Taking into account the cell adja-
cency in a discretized map yields an undirected graph that the searchers can traverse. Figure 1
shows an example discretization of a small house environment and the resulting undirected graph.
Subsequent sections refer to this simple example for explanatory purposes.

This method for discretization has the advantage of ensuring that a searcher in a given convex
cell has line-of-sight to a target in the same cell. This allows the capture event to be reduced to
the attainment of line-of-sight to the target. This makes intuitive sense because gaining line-of-
sight effectively collapses the unknown state of the target to a known state. Gaining line-of-sight
is relevant to many sensors that a robotic searcher would possess including cameras and laser
rangefinders.

Figure 2 shows example discretizations of the office building and museum environments used for
simulated testing. Both of these environments are larger and more complex than those discussed
in previous work in coordinated search (Guibas et al., 1999; Lau et al., 2005; Sarmiento et al.,
2004). The museum environment is particularly challenging because it contains many cycles by
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Figure 1: Example discretization of house environment (left) and undirected graph resulting from
the house discretization (right). Searchers plan paths on the undirected graph that maximize
capture probability of a non-adversarial target.

Figure 2: Example floorplans of environments used for efficient search trials. The larger maps (left
and middle) were used for simulated testing. The smaller map (right) was used for “hybrid” trials
in which simulated searchers found a Pioneer robot with measurements from an experiment.

which the target can avoid detection. In contrast, the office environment has two major cycles that
correspond to the hallways.

In comparison with the visibility-based discretization proposed by LaValle and Guibas (Guibas
et al., 1999), this discretization technique yields far fewer cells making it more applicable to large,
complex environments. The tradeoff is that this method does not provide a discretization suitable
for use with LaValle and Guibas’s visibility-based guaranteed search algorithms. The large number
of cycles in the museum and office make these environments poorly suited for these guaranteed
methods anyway.

4.2 Target Motion Modeling

To integrate a motion model of the target into the efficient search framework, “capture” and
“dispersion” matrices can be applied to the target’s state vector. This formulation greatly simplifies
the calculation of Equation 2 and its optimization.

The location of the target is represented by a belief vector b(t) = [b0(t), . . . , bN (t)] where b0(t)
represents the probability the target has been captured by time t (the capture state), and bn(t)
represents the probability that at time t the target is in the n-th discretized cell. Mathematically
represent a capture event on that state vector by defining a matrix that moves all probability from
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all cells visible from searcher k’s current cell sk(t) to the capture state. The capture matrix can also
contain non-unity values if the probability of seeing a target when it is in a searcher’s line-of-site
is less than one. The appropriate capture matrix Csk(t) for cell sk(t) is applied at time t as in
Equation 3.

b(t + 1) = b(t)Csk(t) (3)

For example, if it is assumed that the searcher cannot see through doorways, the capture matrix
for a searcher in cell one would be the (N +1)× (N +1) identity matrix with the second row unity
value shifted to the first column.

Similarly, define dispersion matrices to represent the expected motion of the target in the
environment. The discretization of the environment yields an undirected graph of possible target
movements between cells. Based on a motion model, assign probabilities to each of these movements
and define a matrix that properly disperses the target’s probable location. This assumes that the
target’s motion model obeys the Markov Property. This is equivalent to saying that the probability
of the target moving to a given cell is dependent solely on the target’s current cell. This assumption
allows for the representation of many motion models including random and stationary. It also allows
for the target’s motion model to be modified based on the size of the cells or the probability that
the target will move through certain areas of the map.

The dispersion matrix formulation also has the advantage that the target’s probability distri-
bution is fairly insensitive to changes in the motion model. Since the transition probabilities are
solely dependent on the current state, changing the probability of moving between cells slightly will
not cause large changes in the probability distribution.

The dispersion matrix D at time t can be applied to yield a new target state vector at time t+1
as in Equation 4. If a stationary model for the target is preferred, D can be set to the identity.

b(t + 1) = b(t)D (4)

For instance, if it is assumed that the target will remain in its current cell or move to any
adjacent cell with equal probability at the next time step, the dispersion matrix for the house
environment in Figure 1 is given below. Note that this is only one of the many motion models
expressible by dispersion matrices.

D =




1 0 0 0 0 0 0 0 0 0
0 1

3 0 0 1
3 0 0 0 1

3 0
0 0 1

3 0 0 0 0 0 1
3

1
3

0 0 0 1
2

1
2 0 0 0 0 0

0 1
6 0 1

6
1
6

1
6

1
6 0 0 1

6

0 0 0 0 1
3

1
3 0 1

3 0 0
0 0 0 0 1

3 0 1
3

1
3 0 0

0 0 0 0 0 1
3

1
3

1
3 0 0

0 1
3

1
3 0 0 0 0 0 1

3 0
0 0 1

3 0 1
3 0 0 0 0 1

3




The top row of the dispersion matrix corresponds to the capture state. For reference, row 5
(emboldened) corresponds to the probabilities associated with cell 4. If the target’s cell transitions
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were not equally likely, the row values would no longer be equal. It is important to note that while
there are as many capture matrices as there are cells in an environment, there is a single dispersion
matrix for the entire environment.

The capture matrix of a searcher k and the dispersion matrix can be multiplied yielding a new
target state vector as in Equation 5.

b(t + 1) = b(t)DCsk(t) (5)

In larger environments, it is desirable to use multiple searchers. The capture matrices for all
searchers can be multiplied to yield the new state as in Equation 6. To perform this step, it is
necessary for the searchers to communicate their states at each time step.

b(t + 1) = b(t)D[
K∏

k=1

Csk(t)], (6)

where K is the number of searchers.
A state evolution equation can now be written for the system of searchers and target. The state

vector at time t is S(t) = [s1(t), . . . , sK(t), b0(t), . . . , bN (t)], and the state evolution equation has
the form:

S(t + 1) = f(S(t), U(t + 1)), (7)

where U(t + 1) = [U1(t + 1), . . . , UK(t + 1)] is a K-dimensional control vector specifying the
next location of each searcher (as described in Section 3), and the evolution of the probabilities
b0 (t + 1) , . . . , bN (t + 1) is determined by Equation 6.

Recall that the reward function is:

J(U(1), . . . , U(T )) =
T∑

t=0

γtP (∃i : si(t) = e(t)), (8)

where T is some finite ending time.
Hence, our MESPP optimization problem is to maximize Equation 8 subject to the state evo-

lution shown in Equation 7.3

The computational complexity of the dispersion and capture matrix application is determined
by the number of cells in the environment (the size of the matrices) and the number of searchers. It
is O(K|N |3), where K is the number of searchers and |N | is the number of cells in the environment.
While O(|N |3) may grow intractable for very large numbers of cells, we stress that many competing
methods scale exponentially in both |N | and K (e.g., polygonal search using visibility graphs
(Guibas et al., 1999)). We also stress that the matrices are often quite sparse, which reduces the
complexity of applying the dispersion and capture matrices.

4.3 Measurement Incorporation

If non-line-of-sight measurements of the target’s location are available during ESPP, searchers
can utilize them to assist in search. After receiving a new measurement, searchers can replan
using the new belief distribution on the target’s location. Since searchers replan after receiving

3Also recall that Equation 1 can be used as the reward function in a POMDP formulation of MESPP.
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measurements, online measurement incorporation heuristically improves path quality but does not
affect theoretical guarantees. In the next section, we show how combining sequential allocation,
finite-horizon path enumeration, and Bayesian measurement updating yields a scalable and online
algorithm for solving the MESPP problem.

5 Coordination Methods

5.1 Explicit Coordination

Having properly modeled the target’s motion, the searchers can look for paths on the discretized
floorplan with high reward. One method is to use a centralized planner to solve the full POMDP
for the infinite horizon. This method grows intractable very quickly, so an alternative is to search
all possible joint paths on the floorplan graph to a given depth. This outputs paths for all searchers
that maximize reward. This algorithm can be decentralized by assigning identification numbers to
the searchers and forcing each searcher to plan as if it were the centralized solver (the searchers
must still communicate their state). We refer to this method as explicit coordination because each
searcher explicitly plans for its teammates.

The advantage of explicit coordination is that each searcher takes the future positions of the
other searchers into account during planning. However, the dimensionality of the search space grows
such that explicit coordination scales exponentially with the number of searchers. The number of
cells that must be searched is O(bdK) where K is the number of searchers, d is the lookahead depth,
and b is the maximum branching factor of the cell graph. This does not lead to a tractable solution
for more than a small number of searchers with a short lookahead.

5.2 No Coordination

To decouple planning during efficient search, each searcher can plan for itself while assuming that
the states of the other searchers are fixed. This prevents the search space from growing in complexity
as the number of searchers increases. With this assumption, each searcher must simply plan for
its optimal path given the current state information of the other searchers. The complexity of this
planning algorithm on each searcher is not affected by the number of searchers: O(bd). The total
complexity is thus O(Kbd), linear in the number of searchers. Even though each searcher’s planning
is independent of its teammates’ future actions, the current positions of other searchers provide
information that the target is not in that cell. For this purpose, searchers must communicate their
locations at each time step.

5.3 Implicit Coordination

Without coordination, the searchers cannot reason about the future actions of their teammates. To
overcome this disadvantage, a coordination method can be introduced that is intermediate between
explicit coordination and no coordination at all. During implicit coordination, the searchers share
their current paths after planning. Other searchers then plan for their own paths while assuming
that the transmitted paths will be followed. This strategy leads to higher quality solutions than
the no coordination strategy with the same scalability on each searcher: O(bd).

The major cost of implicit coordination is that searchers must now communicate their entire
paths rather than just their current locations. Since the environment is coarsely discretized, this
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(a) Time = 0 s (b) Time = 10 s

(c) Time = 20 s (d) Time = 32 s

Figure 3: Snapshots of implicit coordination during coordinated search at different time steps until
capture event. The searchers (labeled P1 and P2) branch into the two major cycles on the map to
search for the target (labeled E). Darker cells denote more probable target locations.

does not lead to much increase in communication bandwidth. However, implicit coordination does
lead to a broadcast communication requirement, which can delay communication in large networks.
In this case searchers may need to plan with outdated information. This problem is alleviated by
the sparsity of the network because searchers will typically only communicate with teammates in
close proximity. This gives them up-to-date information from searchers near them and somewhat
outdated information from searchers far away. Since planning is up to a finite horizon, information
from near searchers is more important. Thus, network delay will have minimal affect on solution
quality in sparse networks. In addition, communication complexity can be reduced using heuristics,
such as broadcasting paths only to searchers within the horizon length.

Figure 3 shows how implicit coordination can lead to high quality searcher paths. In this
example, the searchers correctly branch into the two major cycles on the map. Searcher two
communicates its intention to move left to searcher one. Searcher one then uses that information
to choose the path to the right.

This leads to an implicit coordination algorithm utilizing sequential allocation. The searchers
plan one-at-a-time and share their paths with the other searchers. Each searcher takes into account
information from their teammates but can only modify its own path.

6 Proposed Algorithm

This section describes our algorithm for non-adversarial search with multiple robots utilizing se-
quential allocation and finite-horizon planning. Theoretical performance bounds are shown using
the nondecreasing submodularity of the MESPP objective function. This somewhat surprising re-
sult shows that sequential allocation, an algorithm linearly scalable in the number of searchers,
generates near-optimal paths in the MESPP domain.

Algorithm 1 gives pseudocode for the MESPP sequential allocation algorithm. The algorithm
maintains a list of nodes V ⊆ N ′ that have been visited by the searchers. Note that N ′ is the
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time-augmented version of the nodes N in the environment, which allows for nodes in the original
graph to be revisited at later times. The searchers choose paths Ak that maximize the objective
function F (V ∪Ak) and then add the nodes they have visited to V . Effectively, subsequent searchers
treat the paths of previous searchers as “given”, and they are not allowed to change them. Sharing
nodes to update V is an instance of implicit coordination as described above. Since the search
space does not grow with the number of searchers, the complexity of sequential allocation is linear
in the number of searchers. It is important to note that while path planning occurs sequentially,
the execution of paths is simultaneous.

Algorithm 1 Sequential allocation MESPP algorithm
Input: Multi-agent efficient search problem
% V ⊆ N ′ is the set of nodes visited by searchers
V ← ∅
for all searchers k do

% Ak ⊂ N ′ is a feasible path for searcher k
% Finding this arg max solves the ESPP for searcher k
Ak ← arg maxAk

F (V ∪Ak)
V ← V ∪Ak

end for
Return Ak for all searchers k

Algorithm 1 requires maximizing the objective function for the ESPP problem as a subroutine.
Any algorithm for solving the ESPP problem can be inserted here. However, if the ESPP solver
is bounded, the nondecreasing submodularity of the objective function leads to guarantees on
the performance of sequential allocation. Theorem 2 from previous work shows that sequential
allocation leads to theoretical guarantees in the informative path planning domain.

Theorem 2 From Singh et al. (Singh et al., 2007): Let κ be the approximation guarantee for the
single path instance of the informative path planning problem for any nondecreasing, submodular
function. Then sequential allocation achieves an approximation guarantee of (1 + κ) for the multi-
robot informative path planning problem.

The findings in Theorem 1 can be leveraged to extend these results to MESPP. Corollary 1
states that if an ESPP solver has an approximation guarantee of κ, then sequential allocation on
the MESPP will yield an approximation guarantee of (1 + κ).

Corollary 1 If a solver achieves an approximation guarantee of κ for the ESPP problem, sequential
allocation yields an approximation guarantee of (1+κ) for the Multi-robot ESPP (MESPP) problem.

Proof The proof of Corollary 1 is immediate from Theorem 2 and Theorem 1. Theorem 2 states
that sequential allocation achieves this bound for any single-agent path planning problem optimizing
a nondecreasing, submodular function. Theorem 1 shows that the ESPP problem requires the
optimization of such an objective function.

Here an approximation guarantee κ states that if the MESPP solver returns a set of nodes
A ⊆ N ′, then F (A) ≥ 1

κF (AOPT ), where AOPT is the set of nodes visited by the optimal paths.
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Clearly, κ ≥ 1 since F (A) cannot be greater than the optimal reward. The case where κ = 1
corresponds to solving the ESPP problem optimally. In this case, sequential allocation can achieve
no worse than half the optimal reward. This theoretical result allows single-agent peformance
bounds to be extended to the multi-agent case using a linearly scalable algorithm, albeit with a
loss in approximation quality. The next section presents a bounded algorithm for solving the ESPP
problem using finite-horizon path enumeration.

6.1 Finite-Horizon Planning

In large environments, even the single-agent ESPP may be intractable to solve optimally (or even
near-optimally) due to the computational overhead of considering many infinite-horizon paths. In
these cases, one option is for the searchers to plan a finite number of cells ahead and choose the best
path to that horizon. At any time while traversing this path, the searcher can plan again utilizing
new information on a new horizon. This leads to an online solution to MESPP, and it allows for
the incorporation of measurements of the target’s position as they become available. Algorithm 2
gives pseudocode for solving the ESPP problem using finite-horizon path enumeration. Because
the finite-horizon method relies on path enumeration to solve ESPP, it scales exponentially with
the search depth: O(bd), where b is the maximum branching factor of the search graph, and d is
the search depth in cells.

Algorithm 2 Finite-horizon path enumeration for ESPP
Input: Single-agent efficient search problem
for All feasible paths A to horizon d do

Calculate F (A)
end for
Return A ← arg maxA F (A)

Lemma 1 derives optimality bounds for finite-horizon path enumeration, and the result extends
to the multi-robot case with sequential allocation as in Theorem 3.

Lemma 1 Finite-horizon path enumeration on the ESPP problem achieves a lower bound of:

F (AFH) ≥ F (AOPT )− ε, (9)

where AFH is the path returned by finite-horizon path enumeration, AOPT is the optimal feasible
path, and ε = Rγd+1.

Proof Finite-horizon path enumeration achieves the optimal reward inside the horizon depth for
ESPP because it checks all paths. The maximum reward that could be gained outside the horizon
depth is given by ε = Rγd+1, where R is the reward received for locating the target, γ is the
discount factor, and d is the search depth. The bound is immediate.

Theorem 3 Finite-horizon path enumeration with sequential allocation on the K-robot MESPP
problem achieves a lower bound of:

F (AFH
1 ∪ . . . ∪AFH

K ) ≥ F (AOPT
1 ∪ . . . ∪AOPT

K )− ε

2
(10)
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Proof The maximum reward outside the horizon remains the same as in Lemma 1 (i.e., ε is
unchanged). Since the single robot case achieves the optimal reward within the finite-horizon (i.e.,
κ = 1), sequential allocation yields an approximation guarantee as in Corollary 1 as κ + 1 = 2.

Intuitively, as search depth increases, the bound tightens. Additionally, decreasing the discount
factor tightens the bound. This is because lesser discount factors more heavily weight reward
gained earlier, which is more likely to be within the finite-horizon. It is important to note that
the quality of the bound is independent of the number of searchers. This is a worst-case bound for
arbitrary starting distributions and motion models. In practice, searchers can run finite-horizon
path enumeration repeatedly on a receding horizon, which leads to performance that far exceeds
this lower bound.

6.2 Bayesian Measurement Updating

This section presents a discrete Bayesian method for modifying the target’s state probability vector
given new sensor data. Suppose at time t we receive a measurement zt. We are interested in
computing the conditional probability pi

t = P (et = i|z1, . . . , zt).4

In other words, pi
t is the probability that the target is in node i at time t, conditioned on

measurements z1, ..., zt. Note that in previous sections we were computing P (et = i), i.e., the
probability of the target being at node i without any measurment conditioning. We are also given
a known motion model, which provides P (et = i|et−1 = j) for all cells i and j. This is encoded in
the dispersion matrix D.

Using standard recursive Bayesian updating (Thrun et al., 2005), we can write a recursive
update as in Equation 11. Note that if a measurement is not received at time t, we would simply
apply the motion model at that time step.

pi
t = ηP (zt|et = i)

∑

j

P (et = i|et−1 = j)pj
t−1, (11)

where η is a normalizing constant.
Assuming a known motion model, this reduces the problem of calculating the posterior to that

of calculating a likelihood term P (zt|et = i). Since each cell is represented as a continuous set
of points in the map plane, this calculation is difficult. To reduce the complexity of the problem,
further discretize each cell into small subcells and calculate a likelihood at the center of each subcell.
We denote the M i subcells of cell i as mij for all j ∈ {1, . . . ,M i}. The calculation of P (zt|et = i)
is now one of calculating a likelihood at many points and then taking the sum of these likelihoods.

For range measurements, the problem of calculating P (zt|et = i) is simply that of determining
the expected range value for the center of each subcell. Let qij be the Euclidean distance from the
ranging sensor to subcell mij , and let rt be the received range measurement with assumed Gaussian
noise variance σ2. The likelihood is then calculated as in Equation 12.

P (zt|et = i) =
M i∑

j=1

N(rt; qij , σ2) (12)

4Note: we denote the target’s location e(t) as et for this section to simplify notation.
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To improve accuracy using the discrete Bayesian method, an element-based discretization
method can also be incorporated (Furukawa et al., 2007). Element-based methods use irregular
polygonal discretizations to interpolating the posterior between points. The proposed framework
allows for this extension if greater accuracy is necessary than that provided by a regular grid.

We have extended this framework to scenarios in which the locations of the radio nodes are ini-
tially unknown (Hollinger et al., 2008). This technique uses probabilistic dimensionality reduction
with Gaussian Process Latent Variable Models (GPLVMs) to reconstruct a preliminary path of the
target. The path is then used to map the locations of the radio nodes on an occupancy grid. The
reconstructed node locations can be used for subsequent tracking. This provides a measurement
incorporation framework for efficient search in environments without pre-installed infrastructure.

7 Results

7.1 Simulated Results

To test our proposed MESPP algorithm, we ran simulated trials using a multi-agent coordinated
search simulation in C++ on a 3.2 GHz Pentium 4 processor. This simulation allows for multiple
searchers and both stationary and moving targets. It was assumed that the average speed of
the target is 1 m/s and that it moves holonomically between cell boundaries. The searchers also
move with a maximum speed of 1 m/s, which would be a reasonable speed for state-of-the-art
autonomous vehicles. The searchers start in the same location for all trials, and the location of
the target is initialized at random on the map. Simulated experiments were run in the museum
(150 m× 100 m) and office (100 m× 50 m) environments shown in Figure 2. These environments
are considerably larger than those searched by many authors using comparable methods (Guibas
et al., 1999; Sarmiento et al., 2004; Roy et al., 2005; Gerkey et al., 2005).

In all tests, the performance metric is the average reward received over many trials. For a given
trial, reward received is calculated as R(tc) = Rγtc , where R is the reward for locating the target,
γ is the discount factor, and tc is the time at which the target was found. The reward and discount
factor were arbitrarily set to R = 1 and γ = 0.95 for all experimental trials. Extension 1 shows
animations of these trials.

Figure 4 compares finite-horizon path enumeration (horizon depth five) to the infinite horizon
POMDP solution for a single searcher. With a single searcher, the POMDP formulation of ESPP
is still solvable using Heuristic Search Value Iteration (HSVI2) (Smith, 2007). These results show
that, for the single searcher case, finite-horizon path enumeration yields average rewards competitive
with those generated by the HSVI POMDP solution. Trials with two searchers were attempted
with HSVI but were unsuccessful because the exponentially increased state-action space would not
fit in memory. This demonstrates the poor scalability of the POMDP formulation of the MESPP
problem.

Since solving the POMDP formulation is intractable for multiple searchers, trials were run
using a finite-horizon explicit coordination algorithm that is identical to Algorithm 2 except that it
enumerates paths for all searchers in the joint space. This scales O(bdK), where b is the branching
factor, d is the search depth, and K is the number of searchers. Figure 5 gives a comparison of
reward received by sequential allocation and this explicit coordination algorithm. Since explicit
coordination grows intractable at large lookahead depths, a depth of two was used for comparison.
Figure 5 also shows a lower bound for sequential allocation calculated from Corollary 1 using the
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explicit coordination results. This bound is the lowest reward that sequential allocation could
achieve if explicit coordination yielded the optimal reward. On both maps, sequential allocation
greatly outperforms its lower bound.

These simulated experiments demonstrate that implicit coordination with sequential allocation
yields results nearly equivalent to those achieved through explicit coordination. In sharp contrast
with explicit coordination’s exponential scalability, sequential allocation is linearly scalable in the
number of searchers. Figure 6 demonstrates the scalability of sequential allocation by showing
reward received with up to five searchers in the museum and office.
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Figure 4: Comparison of finite-horizon path enumeration (lookahead depth five) versus the POMDP
solution for a single searcher in two complex simulated environments. The POMDP solution with
two searchers was not tractable. Error bars are one standard error of the mean (SEM), and averages
are over 200 trials. Target and searchers move at a maximum speed of 1 m/s.
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Figure 5: Comparison of sequential allocation versus explicit coordination in two complex simu-
lated environments. Finite-horizon path enumeration with lookahead depth two was used for both
methods. Explicit coordination with more than two searchers was intractable. Error bars are one
standard error of the mean (SEM), and averages are over 200 trials. Target and searchers move at
a maximum speed of 1 m/s. Sequential allocation greatly outperforms its lower bound.

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Number of searchers

A
ve

ra
ge

 r
ew

ar
d 

re
ce

iv
ed

 

 

Office Environment
Museum Environment

Figure 6: Multiple searcher scalability trials for finite-horizon path enumeration (lookahead five)
and sequential allocation in simulated environments. Error bars are one standard error of the mean
(SEM), and averages are over 200 trials. Target and searchers move at a maximum speed of 1 m/s.



7.2 Ranging Radio Measurements

One major application of MESPP is that of finding lost first responders in disaster scenarios. To
better model this scenario, an urban response test environment was set up using a Pioneer robot
and five Multispectral ranging radio nodes (Multispectral Solutions, Inc, 2008). These sensors use
time-of-flight of ultra-wideband signals to provide inter-node ranging measurements through walls.
They have an effective operating distance of about 30 m indoors and provide ranging accuracy
approximately within 1 − 2 m. In experiments, the Pioneer robot acted as a lost first responder
and was teleoperated around the environment carrying a ranging radio node. Four stationary nodes
were placed in surveyed locations around the environment to provide range to the Pioneer. The
Pioneer also carried a SICK laser rangefinder, and its location was found using laser AMCL-SLAM
methods from the Carmen software package (Thrun et al., 2005). The Pioneer’s laser localization
was used for ground truth but was not used to assist in search. The Pioneer’s maximum speed
was set to 0.3 m/s, the maximum that provided consistent laser localization. Figure 7 shows a
photograph of the Pioneer robot as well as the office environment used for testing, and Extension
2 shows animations of these trials.

After gathering data from the ultra-wideband ranging sensors, simulated searchers were added
to the environment. These searchers have access to the ranging measurements from the stationary
nodes in the environment, which allows them to utilize real range data from the experiment to find
the target in the simulated world. The searchers were given a maximum speed of 0.3 m/s to match
that of the Pioneer target. Our recursive Bayesian measurement incorporation method was used
in these trials. Computational limits allowed for cell sizes of approximately 10 cm× 10 cm.

Figure 8 shows the results for one and two searchers in these “hybrid” trials. As in purely
simulated trials, the finite-horizon path enumeration method provides nearly equivalent reward
as the POMDP solution. Sequential allocation is competitive with explicit coordination in these
results as well. These results show that our measurement incorporation framework is effective with
real data from ultra-wideband ranging sensors.

Since the experiments are run in playback, we can vary the number of sensors used by turning off
some sensors’ data streams. Figure 9 shows average rewards using an increasing number of ranging
radio nodes. The zero node case corresponds to search without non-line-of-sight measurements. The
results show that adding more searchers leads to decreasing capture times. Increasing the number
of measurement beacons also leads to decreasing capture times. These results suggest that if a
small number of searchers are available, this can be compensated with more measurement beacons,
and vice versa. In this environment, adding more than three searchers and/or four measurement
beacons no longer improves performance.

20



Figure 7: Photograph of Multispectral ultra-wideband ranging radio mounted on Pioneer robot
(left) and floorplan of testing environment (right). The robot was teleoperated around the envi-
ronment to act as the moving target.
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Figure 8: Left: Comparison of finite-horizon path enumeration (lookahead depth five) versus the
POMDP solution for a single searcher using ultra-wideband ranging radio measurements from
experimental trials. Right: Comparison of sequential allocation versus explicit coordination with
two searchers using ranging radio measurements. As in simulated trials, sequential allocation
greatly outperforms its lower bound. Both: Error bars are one standard error of the mean (SEM),
and the searchers move at a maximum speed of 0.3 m/s.
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Figure 9: Multiple searcher scalability trials for finite-horizon path enumeration (lookahead five)
and sequential allocation with ranging radio measurements. Error bars are one standard error of
the mean (SEM). Target and searchers move at a maximum speed of 0.3 m/s. The zero node case
corresponds to the absence of radio measurements.



7.3 Relationship to Average Capture Time

The results presented above use the discounted reward metric. This is an important metric because
it relates the efficient search problem to similar problems in probabilistic planning. In real scenarios,
however, average capture time may be a more relevant metric. This section presents results showing
that the proposed algorithm reduces average capture time as well as discounted reward.

Figure 10 shows a comparison of different coordination strategies and planning horizons in the
museum and office using the average capture time metric. The results show that myopic planning
(one-step lookahead) does not perform as well as using a five-cell lookahead. Further simulated
testing (not shown), suggests little improvement in average capture times with lookahead greater
than five cells. The results also show that implicit coordination provides low average capture
times in these environments. Due to its poor scalability, we could not run explicit coordination
with a five-step lookahead. However, the improved scalability of implicit coordination allows for
non-myopic planning and the lowest capture times.

For further comparison, Figure 11 shows average capture times for our proposed method (with-
out non-line-of-sight measurements) against a random search strategy. In the random search strat-
egy, the searchers randomly move between cells in the environments. The proposed method using
implicit coordination and finite-horizon path enumeration yields nearly a factor of five improvement
over the random strategy in many cases.

Figure 12 shows the average capture times from the “hybrid” trials with real data and simulated
searchers. This graph shows average capture times using an increasing number of ranging radio
nodes. The zero node case corresponds to search without measurements. The results show that
adding more searchers or increasing the number of measurement beacons leads to decreasing capture
times. The graphs also show the point at which adding more searchers or measurements does not
improve performance.

We also implemented the proposed framework on a single mobile robot searcher using the Player
software (Gerkey et al., 2003) in a laboratory environment. These results further confirm the trends
above (Hollinger et al., 2007a).

0

20

40

60

80

100

120
Office: Moving Target, Two Searchers

A
ve

ra
ge

 ti
m

e 
to

 c
ap

tu
re

 (
se

co
nd

s)

 

 

No Coordination: Horizon 1
No Coordination: Horizon 5
Explicit: Horizon 1
Implicit: Horizon 1
Implicit: Horizon 5

0

20

40

60

80

100

120

140

160
Museum: Moving Target, Two Searchers

A
ve

ra
ge

 ti
m

e 
to

 c
ap

tu
re

 (
se

co
nd

s)

 

 

No Coordination: Horizon 1
No Coordination: Horizon 5
Explicit: Horizon 1
Implicit: Horizon 1
Implicit: Horizon 5

Figure 10: Comparison of different coordination methods during efficient search. Results show that
implicit coordination yield capture times competitive with explicit coordination. Two searchers
were used in all trials. Error bars are one SEM, and averages are over 200 trials. Target and
searchers move at a maximum speed of 1 m/s.
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Figure 11: Simulated coordinated search results comparing the proposed method to random search.
The proposed method uses implicit coordination without non-line-of-sight measurements. Graphs
show average capture times versus number of searchers for a stationary target (left) and a moving
target (right). Error bars are one SEM, and averages are over 200 trials. Target and searchers
move at a maximum speed of 1 m/s.
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Figure 12: Average capture times using ultra-wideband ranging radio measurements in an office
environment. Simulated searchers find a real target using ultra-wideband ranging radio data.
Searchers move at a maximum speed of 0.3 m/s. The x-axis shows the number of ranging nodes
used for estimation. The zero node case corresponds to search without range measurements. Results
show that capture time decreases with more searchers and/or more measurement beacons. Error
bars are one SEM.



8 Conclusions

This paper has presented a scalable algorithm for solving the Multi-robot Efficient Search Path
Planning (MESPP) problem of locating a non-adversarial target using multiple robotics searchers.
We have defined the MESPP problem and shown how it can be modeled using a Partially Observ-
able Markov Decision Process (POMDP). We have also shown that current POMDP solvers are
incapable of handling large instances of MESPP. Our proposed algorithm uses sequential allocation
and finite-horizon path enumeration to remain computationally tractable for multiple searchers in
large environments. We have given a rigorous theoretical analysis that shows the near-optimality of
sequential allocation in this domain by exploiting the nondecreasing submodularity of the MESPP
objective function. Sequential allocation is an instance of implicit coordination during which mul-
tiple robots share information rather than planning in the joint path space. Implicit coordination
is linearly scalable, and it remains tractable in large problem instances when exponential methods
using explicit coordination are far beyond computational limits. Our simulated and experimental
results using ultra-wideband ranging radios show the performance of our algorithm in complex
environments.

One extension is to apply our algorithm to the case where actions of searchers are no longer
fully deterministic. For instance, a searcher may have a fifty percent chance of failing to move
because of rubble blocking the way. The POMDP formulation of MESPP can easily express this
scenario. The solution to this POMDP would no longer be a deterministic searcher path, but it
would instead be a distribution over paths. Even though submodular set analysis does not directly
apply, the resulting objective function on distributions over paths may still show qualities related
to submodularity leading to theoretical guarantees for sequential allocation.

One important avenue for future work is a more comprehensive analysis of the communica-
tion requirement of implicitly coordinated solutions. For moderately sized teams, such as those
examined in this paper, full broadcast communication is still tractable, but increasing team size
can lead to a communication bottleneck. Distributed communication solutions have been proposed
in the POMDP literature, which could potentially alleviate this problem for very large implicitly
coordinated teams (Roth, 2007).

Throughout this paper, we have made the assumptions that the target’s motion model is both
known and non-adversarial. We have shown that these assumptions lead to theoretical guaran-
tees on the performance of sequential allocation during MESPP. If either of these assumptions
are violated, the performance of our algorithm is no longer bounded. An extension would be to
develop an algorithm robust to worst-case and unknown target motion models. This would require
approximately solving the Multi-robot Guaranteed Search Path Planning (MGSPP) problem. To
the best of our knowledge, a scalable and bounded approximation algorithm for MGSPP is still an
open problem. However, methods utilizing implicit coordination show great promise in providing
near-optimal solutions in the MGSPP domain.
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Appendix: Index to Multimedia Extensions

The multimedia extensions to this article can be found online by following the hyperlinks from
www.ijrr.org.

Table 1: Index to multimedia extensions
Extension Media Type Description

1 Video Simulated coordinated search trials
2 Video Coordinated search with ultra-wideband ranging radio data

Appendix: Proof of Theorem 1

First, we give the formal definitions of nondecreasing and submodular. In what follows, we make
use of the time-augmented search graph G′ = (N ′, E′) as defined in Section 3. P(N ′) denotes the
powerset of N ′, i.e., the set of (time stamped) node subsets.
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Definition A function F : P(N ′) → <+
0 is called nondecreasing iff for all A,B ∈ P(N ′), we have

A ⊆ B ⇒ F (A) ≤ F (B).

Definition A function F : P(N ′) → <+
0 is called submodular iff for all A,B ∈ P(N ′) and all

singletons C = {(m, t)} ∈ P (N ′), we have

A ⊆ B ⇒ F (A ∪ C)− F (A) ≥ F (B ∪ C)− F (B).

We are now ready to restate and prove Theorem 1.

Theorem 1 The objective function optimized by the MESPP problem is J(A), and this is a non-
decreasing, submodular set function.

Proof It is immediate that J(A) as defined in Equation 2 is simply another way to write J (U (1) , ..., U (T ))
as defined in Equation 1. Let us now prove it is nondecreasing and submodular.

In the following, for a given Y ⊆ N ′ and any A ⊆ N ′, we define tA = min {t : (m, t) ∈ A ∩ Y }
and FY (A) = γtA , with the understanding that γ ∈ (0, 1), min ∅ = ∞, and γ∞ = 0.

We first show that the function FY (A) is nondecreasing for every Y ⊆ N ′. Take an arbitrary
Y , and fix it for the proof. Take any A,B ⊆ N ′ and any C = {(m0, t0)} ⊆ N ′. We have:

tA = min{t : (m, t) ∈ A ∩ Y },
tB = min{t : (m, t) ∈ B ∩ Y },
tC = min{t : (m, t) ∈ C ∩ Y }.

And

A ⊆ B ⇒ {t : (m, t) ∈ A ∩ Y } ⊆ {t : (m, t) ∈ B ∩ Y } ⇒ tA ≥ tB ⇒ FY (A) = γtA ≤ γtB = FY (B).

Hence, FY (·) is nondecreasing.
Regarding submodularity of FY (A), note that, since C is a singleton, we have two cases: either

C ∩Y 6= ∅ and so tC = t0 < ∞; or C ∩Y = ∅ and so tC = ∞. We examine the two cases separately.
Case I, tC < ∞. In this case we have three subcases.

1. tB ≤ tA ≤ tC . Then FY (B ∪ C) = γtB , FY (B) = γtB , FY (A ∪ C) = γtA , FY (A) = γtA and
FY (A ∪ C)− FY (A) = γtA − γtA = 0 = γtB − γtB = FY (B ∪ C)− FY (B) .

2. tB ≤ tC ≤ tA. Then FY (B ∪ C) = γtB , FY (B) = γtB , FY (A ∪ C) = γtC , FY (A) = γtA and
FY (A ∪ C)− FY (A) = γt

C − γtA > 0 = γtB − γtB = FY (B ∪ C)− FY (B) .

3. tC ≤ tB ≤ tA. Then FY (B ∪ C) = γtC , FY (B) = γtB , FY (A ∪ C) = γtC , FY (A) = γtA and
FY (A ∪ C)−FY (A) = γtC −γtA ≥ γtC −γtB = FY (B ∪ C)−FY (B) , since tA ≥ tB ⇒ γtA ≤
γtB ⇒ −γtA ≥ −γtB .
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Case II, tC = ∞. Then we have a single subcase: tB ≤ tA ≤ tC from which follows FY (A ∪ C)−
FY (A) = 0 = FY (B ∪ C)− FY (B) as already seen.

In every case the submodularity inequality holds.
For one searcher, the reward function J(A) (where A is the searcher’s path) is defined by

J(A) =
∑

Y ∈Ψ

P (Y )FY (A),

where the summation is over all possible target paths Ψ, and P (Y ) is the probability of the target
taking path Y . The K-searcher reward function J(A1, ..., AK) (where Ak is the path of the k-th
searcher) is defined by

J(A1 ∪ . . . ∪AK) =
∑

Y ∈Ψ

P (Y )FY (A1 ∪ . . . ∪AK).

We now show that for any K = 1, 2, ... and every Y ⊆ N ′, the function J(A1 ∪ . . . ∪ AK) is
nondecreasing and submodular. Nondecreasing submodularity is closed under nonnegative linear
combinations (and hence expectations). Here F (A1 ∪ . . . ∪ AK) is the expected value of FY (A),
where A = A1 ∪ . . . ∪ AK , FY (·) is an nondecreasing submodular function, and the expectation is
taken over all possible target paths.
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