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Abstract

The problem of generating uniform deterministic samples over the rotation group, SO(3), is
fundamental to computational biology, chemistry, physics, and numerous branches of computer
science. We present the best-known method to date for constructing incremental, deterministic grids

on SO(3);

it provides: 1) the lowest metric distortion for grid neighbor edges, 2) optimal dispersion-

reduction with each additional sample, 3) explicit neighborhood structure, and 4) equivolumetric
partition of SO(3) by the grid cells. We also demonstrate the use of the sequence on motion planning

problems.

1 Introduction

Numerical computations on continuous spaces often require generation of a representative set
of samples. The performance of various methods in engineering and scientific fields, such as
numerical optimization and integration as well as collisionfree path generation in robot motion
planing, rely heavily on the quality of the sampling technique. Hence, it is important that the
underlying samples are as good as possible.

A particular problem of discretization of SO(3), the space of 3D rotations, arises in applications,
such as biological protein docking problems, robot motion planning, aerospace trajectory
design, and quantum computations. Typical operations on this space include numerical
optimization, searching, integration, sampling, and path generation. Multiresolution grids are
widely used for many of these operations on other spaces which are nicely behaved, such as
rectangular subsets of R? or R,

It would be wonderful to achieve the same for SO(3); however, the space of 3D rotations is
substantially more complicated. In its basic form, SO(3) is defined as a set of matrices that
satisfy orthogonality and orientation constraints. It is an implicitly defined, three-dimensional
surface embedded in R°. One approach is to place a coordinate system on the surface, causing
it to behave like a patch in R. However, many of such coordinates cause metric distortions in
comparison to distances on the original surface. Only few representations of SO(3), such as
quaternions and Hopf coordinates, preserve distances and volumes. They treat SO(3) as a unit
sphere 2 C R* with antipodal points identified. The volumes of surface patches on S3
correspond to the unique Haar measure for SO(3), which is the only way to obtain distortion-
free notions of distance and volume. This implies that if we want to make multiresolution grids
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on SO(3), we are faced with warping them onto S3. It may seem that such curvature prohibits
the introduction of distortion-free grids, similar to the problem of making distance-preserving
maps of the world (e.g., Greenland usually looks too big on a flat map). In addition, the
identification of antipodal points causes a minor complication in which only half of S3 is used,
with unusual connectivity in the equatorial three-plane. However, in this paper we use intrinsic
properties unique to SO(3) (first described in [17]) to build almost distortion-free grids and
avoid the issue of having to identify the antipodal points on S3.

Due to widespread interest in discretizing SO(3) in numerous fields, there have been
considerable efforts in the past. The problem of generating point sets on spheres minimizing
various criteria, such as energy functions, discrepancy, dispersion, and mutual distances, has
been extensively studied in mathematics and statistics [8,15,22,25,28,29]. Random sampling
methods were also developed in [2,24,27,34]. Problems of sampling rotational groups and
spheres have been studied and applied in the context of computational structural biology,
physics, chemistry, computer graphics and robotics [4,7,16,19,%1,26,30,31,32].

In this paper, we introduce the best-known deterministic method to date for SO(3) in terms of
providing:

1. incremental generation,

2. optimal dispersion-reduction with each additional sample,

3. explicit neighborhood structure,

4. the lowest metric distortion for grid neighbor edges,

5. equivolumetric partition of SO(3) into grid regions.

The rest of the paper is organized around the presentation of the method. Section 2 defines the
topological properties of SO(3) together with its representations that are crucial for presenting
our method. Section 3 overviews sampling requirements for the sequence. We discuss the
relevant sampling methods that influenced our work in Section 4. Finally, we present our
method in Section 5; experimental results and its application to motion planning problems in
Section 6. We conclude our work in Section 7.

2 Properties and Representations of SO(3)

The special orthogonal group, SO(3), arises from rotations around the origin in R*. Each
rotation, by definition, is a linear transformation that preserves the length of vectors and
orientation of space. The elements of SO(3) form a group, with the group action being the
composition of rotations. SO(3) is not only a group, but also a manifold, which makes it a Lie

group.

To sample SO(3) uniformly, it is necessary to understand its topology. Any method known to
date that produces uniform rotations relies on topology and Haar measure of SO(3) (see Section
4).

Topology of SO(3)

SO(3) is diffeomorphic to the real projective space, RP, Itis hard to visualize the real projective
space, because it cannot be embedded in R*. Fortunately, it can be represented as

RP?=57/ (- X), the more familiar 3-sphere, S3, embedded in R, with antipodal points
identified. Topologists say that the 3-sphere is a double cover of RF?, since one point of the
projective space has two corresponding points on the 3-sphere.

Int J Rob Res. Author manuscript; available in PMC 2010 July 2.
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Haar Measure on SO(3)

Up to a scalar multiple, there exists a unique measure on SO(3) that is invariant with respect
to the group action. This is called the Haar measure. That is, the Haar measure of a set is equal
to the Haar measure of all of the rotations of the set. In our particular situation, we can think
of the Haar measure as being invariant under all orthogonal coordinate changes. The Haar
measure is an intrinsic property of SO(3) which comes from the group structure, and is
independent of its topological structure.

We have not used any coordinate system or parametrization of SO(3) yet, since the notion of
Haar measure is abstracted from representations of SO(3). One has to use extreme caution
when expressing the measure in terms of any of the representations we describe next. Not all
of these naturally preserve the Haar measure.

Orthogonal Matrices

The elements of SO(3) are defined as 3 x 3 orthogonal matrices with determinant +1. The group
operation is multiplication of matrices. Because rotation matrices are less efficient and less
numerically stable than quaternions, they are generally used less often than quaternions.

Quaternions

One of the most useful representations of the projective space is the set of quaternions. Let
x= (x1, X2, X3, x4) € R* be a unit quaternion, x;+xoi+x3j+x4k,lIxlI=1, representing a 3D rotation.
Because of the topological relationship between the projective space and the 3-sphere, once
the identifications of the antipodal points on the 3-sphere are taken into account, metrics similar
to those defined for the 3-sphere can be used for the projective space. Moreover, such metrics
will respect the Haar measure on SO(3).

The most natural way to define a metric for any two points x,y € SO(3) is as the length of the
shortest arc between x and y on the 3-sphere, which quaternions conveniently allow to do:

Psor (X y)=cos ™ (x- )|, o

in which (x - y) denotes the dot product for vectors in R* and the absolute value, ||, guarantees
that the shortest arc is chosen among the identifications of the two quaternions [11].

Quaternion representation is also convenient for calculating the composition of rotations,
which is expressed as multiplication of quaternions. Any rotation invariant surface measure
on S3 naturally preserves the Haar measure for SO(3) and can be used for quaternions. However,
the surface measure is not straightforwardly expressed using quaternions. Other
representations, such as spherical or Hopf coordinates, are more convenient for measuring the
volume of surface regions.

Spherical Coordinates for SO(3)

Because of the topological relationship between the 3-sphere and SO(3), hyperspherical
coordinates can be used for SO(3). Consider a point (6, ¢, y) € S3, in which y € [0,n/2] (to
compensate for the identifications, we consider only one hemisphere of S3), 6 € [0,1], and ¢
€ [0,2x). For each vy, the full ranges of 6 and ¢ define a 2-sphere of radius sin(y). The quaternion
X = (X1,X2,X3,X4) corresponding to the rotation (6, ¢, ) can be obtained using the formula:
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x1 =cos¥

Xy =sin¥cosd

x3  =sin¥sinfcos¢

x4 =sin¥sinfsing. 2)

The volume element on SO(3) defines the Haar measure and has the following expression in
spherical coordinates:

dV=sin>¥singdodpd¥. ?)
This representation is not as convenient for integration as the Hopf coordinates, which have a

simpler expression for the Jacobian. Spherical coordinates are also cumbersome for computing
compositions of rotations.

Hopf Coordinates for SO(3)

As opposed to spherical coordinates for hyperspheres, the Hopf coordinates are unique for both
SO(3) and the 3-sphere. They naturally describe the intrinsic structure of both of these spaces
and provide a natural tool for obtaining uniform distributions on these spaces.

The Hopf fibration describes SO(3) in terms of the circle S and the ordinary 2-sphere S2.
Intuitively, SO(3) is composed of non-intersecting fibers, such that each fiber is a circle St
corresponding to a point on the 2-sphere. This fiber bundle structure is denoted as

SO 3) = S!® 52 The Hopf fibration has the important property of locally being a Cartesian
product space. The space SO(3), however, is not (globally) the Cartesian product of S2 and
St Intuitively, SO(3) is the product of S2 and St similarly to the way the Mébius band is locally
the Cartesian product of an interval and a circle St. That is, locally, a sequence of coordinates
from each subspace results in a global parametrization of the space, whereas the global
embedding into the Euclidean space introduces a twist, and does not have the Cartesian product
structure. The Hopf coordinates can also be used for the 3-sphere, because of the topological
relationship between the 3-sphere and SO(3).

Each rotation in Hopf coordinates can be written as (6, ¢, y), in which y € [0,27) parametrizes
the circle S, and 6 € [0,1] and ¢ € [0,2r) represent spherical coordinates on S2. The
transformation to a quaternion x = (x1,X2,X3,X4) can be expressed using the formula:

X1 :cosgcos%
X :cos;—’sin%
x3 =sinfcos (¢+%)

X4 :singsin (¢>+ %) .

A detailed derivation of the Hopf Coordinates is shown in Appendix 8.1. Briefly, Eq. (4)
represents each rotation from SO(3) as a rotation by angle y € St around the z axis, followed
by the rotation, which places z in a position (0, ¢) € S2. Eq. (4) is obtained after the
composition of these two rotations. The Hopf coordinates define exactly half of S3, since the
coordinate x, never takes negative values. The Hopf coordinates can be extended to the entire
S3 by increasing the range of v to be [0, 4n).

Int J Rob Res. Author manuscript; available in PMC 2010 July 2.
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The volume element on SO(3), which is also the surface volume element on S3, can be computed
from Eq. (4) (see Appendix 8.2 for a detailed derivation), and has the following form:

1
dV==sinddodgd¥V.
g Sn6deds ®)

Note that sin 6 do d¢ represents the surface area on the 2-sphere, and dy is the length element
on S1. This formula additionally demonstrates that the length of a portion of St is multiplied
by the surface area of the base space, S2, to obtain the volume on SO(3). The coefficient 1/8
results from the fact that neither fibers S nor the base space S2 are unit. In fact, in Appendix
8.3 we compute the lengths of the fibers and the surface area of the base space, which is used
later for determining the grid cell sizes for our sequence.

As we have shown, the Hopf coordinates preserve the fiber structure of SO(3) and are
convenient for integration on SO(3). However, composition of rotations is best expressed using
quaternions.

Angle-Axis Representation for SO(3)

One of the most intuitive ways to represent rotations is by using Euler's theorem, which states
that every 3D rotation is a rotation by some angle 8 around a unit axis n = (ny,n»,n3), linll = 1.
The transformation from the angle-axis representation to quaternions is achieved by:

6 .0 .6 . 0
x=|cos—, sin-ny, sin-ny, sin-nz |.

2 2 2 2 (6)

The angle-axis representation is useful for visualizing the projective space in R?. Each rotation
is drawn as a vector with direction n and a magnitude corresponding to 6 (a multiple or a
function of 6 can be used; see Section 5.6, and [3]). Figure 1 shows the visualization of the
spherical and Hopf coordinates on SO(3) using the angle-axis representation. From this
visualization one can immediately notice the singularities introduced by the spherical
coordinates. It is also possible to see the advantage of using Hopf coordinates from this
visualization. Hopf coordinates do not introduce singularities. The circles represented by the
range of the variable y are all of equal length (see App. 8.3) and non-intersecting; they
uniformly cover SO(3). The fiber structure formed by these circles is also seen in the figure.

Euler Angles Representation

Euler angles are often used in robotics to represent rotations. Each rotation is then a vector
(X1,X2,%3),X; € [-,1]/—n ~ 7. The topology of the resulting space is St x S! x 1, and, therefore,
Euler angles do not correctly capture the structure of SO(3). There are many detrimental
consequences of this. Special tricks (see [11]) are needed to implement metric and measure
that preserve Haar measure. Moreover, Euler angles are hard to compose, and present problems
of singularities and the gimbal lock [23].

Understanding and respecting the global topology of SO(3) is crucial for performing other
numerical computations on the space. For example, sampling and interpolation of SO(3) using
Euler angles in [33] led to failure in producing motion planning path on a relatively simple
problem, which was solved in seconds using the correct parametrizations. In the rest of the
paper we use Hopf coordinates and quaternions to represent rotations.

Int J Rob Res. Author manuscript; available in PMC 2010 July 2.
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3 Sampling Terminology and Problem Formulation

In applications such as mation planning, the algorithms are often terminated early and the
particular order in which samples are chosen becomes crucial. Sampling literature distinguishes
between a sample set and a sample sequence. For a sample set, the number of points, n, is
specified in advance, and a set of n points is then chosen to satisfy the requirements of the
method. The notion of ordering between points is not defined for a sample set but becomes
important for sequences. Successive points in a sequence should be chosen carefully so that
the resulting sample sets are all of good quality. Sequences are particularly suitable for motion
planning algorithms, in which the number of points needed to solve the problem is not known
in advance.

Now that the background definitions for SO(3) have been presented in Section 2, to generate
samples over SO(3) we need to formulate the desirable properties for the samples. The first
requirement is that samples form a sequence. We also require that samples get arbitrarily close
to every point in SO(3), i.e. that the sequence of samples is dense in SO(3). Next, we formulate
several requirements on the uniformity properties of samples.

3.1 Discrepancy and Dispersion

Additional requirements that the sequence needs to satisfy are described by the uniformity
measures, discrepancy and dispersion.

Intuitively, discrepancy can be thought of as enforcing two criteria: first, that no region of the
space is left uncovered; and second, that no region is left too full. Dispersion eliminates the
second criterion, requiring only the first. It can be shown that low discrepancy implies low
dispersion [18].

To define discrepancy, choose a range space, , as a collection of subsets of SO(3). LetR €
denote one such subset. Range spaces that are usually considered on spheres are the set of
spherical caps (intersections of the 3-sphere with half-spaces) or the set of spherical slices
(intersections of two 3-hemispheres) [20], which can be used on SO(3) once the identifications
of the 3-sphere are taken into account.

Let u (R) denote the Haar measure of the subset R. If the samples in the set P are uniform in
some ideal sense, then it seems reasonable that the fraction of these samples that lie in any
subset R should be roughly p (R) divided by n (SO(3)) (which is simply 72, see App. 8.3). We
define the discrepancy [18] to measure how far from ideal the sample set P is:

, PAR u®)
D(P,%)=s - 5
B = =N~ m500) @

in which | - | applied to a finite set denotes its cardinality. Figure 2 (a) demonstrates the notion
on the 2-sphere.
While discrepancy is based on measure, a metric-based criterion, dispersion, can be introduced:

0(P,p)= max min(q, p).
(P,p) o, iy (g,p) ®

Above, p denotes any metric on SO(3) that agrees with the Haar measure, such as (1).
Intuitively, this corresponds to the spherical radius of the largest empty ball that fits in between
the samples (assuming all ball centers lie on SO(3)). See Figure 2(b) for an illustration.

Int J Rob Res. Author manuscript; available in PMC 2010 July 2.
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3.2 Problem Formulation
In summary, the goal of this paper is to define a sequence of elements from SO(3) which:

e isincremental,
* is deterministic,
* minimizes the dispersion (8) and discrepancy (7) on SO(3),

» has grid structure with respect to the metric (1) on SO(3).

4 Sampling Methods Overview

Our work was influenced by many successful sampling methods developed recently for spheres
and SO(3). As demonstrated in Table 1, several of them are highly related to the problem
formulated in Section 3.2. However, none of the methods known to date has all of the desired
properties.

Random Sequences of Elements from S¢

To generate uniformly distributed random points on a hypersphere S9, spherical symmetry of
the multidimensional Gaussian density function can be exploited [6]. For each of the i = 0...
d +1 coordinates use a zero-mean Gaussian distribution with the same variance to generate
Xj. This is done approximately by generating k uniformly distributed values from the interval
[-1,1] and adding them following the Central Limit Theorem. In practice, any k> 12 isa
reasonable choice. Then the normalized vector (xj/lix;ll) is uniformly distributed over the
hypersphere S¢.

Random Sequence of SO(3) Rotations

There are several ways of sampling the space of rotations uniformly at random [2,24,27,34].
The main difficulty in doing so is the choice of a convenient parametrization of SO(3). If a
parameter space is sampled uniformly, the resulting samples on SO(3) are not necessarily
uniform. As was shown in Section 2, not all of the parametrizations of SO(3) are natural
representations of rotations, and some of them lead to measure distortions, and even
singularities. Only few parametrizations, such as the Hopf coordinates, resultin a local isometry
to SO(3).

It is easy to make the mistake of sampling rotations using a wrong parametrization [1]. The
subgroup algorithm [5] for selecting random elements for SO(3) is the correct and most popular
method for uniform random sampling of SO(3). It uses the fact that any Lie group can be
uniformly sampled, by combining elements from a subgroup (in case of SO(3) it is S?), and
the quotient, or coset space (S?) at random. Essentially, this method utilizes the Hopf
coordinates. Random sequences of rotations are used in many applications. However, they lack
deterministic uniformity guarantees, and the explicit neighborhood structure.

Successive Orthogonal Images on SO(n)

Related to the subgroup method for generating random rotations, is the deterministic method
of Successive Orthogonal Images [17], which generates lattice-like sets with a specified length
step based on uniform deterministic samples from the subgroup, S?, and the coset space, S2.
The method utilized Hopf coordinates, and is also generalized to arbitrary SO(n).

The deterministic point sets from [17] can be applied to the problems in which the number of
the desired samples is specified in advance. If the set of samples on S is chosen so that it has
a grid structure, the resulting set of samples on SO(3) has the explicit neighborhood structure.

Int J Rob Res. Author manuscript; available in PMC 2010 July 2.
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Part of the current work will be in applying this method in a way that provides the incremental
quality necessary for our motion planning applications.

Layered Sukharev Grid Sequence for Spheres and SO(3)

Uniform, deterministic sequences were first designed for the unit cube [0,1]4[13]. To minimize
dispersion, the method places one resolution of grid at a time inside of the unit cube. A
discrepancy-optimal ordering is then generated for each resolution. The sequence can be
extended to spheres and SO(3) [33] using the projection from faces of an inscribed cube. For
SO(3), though, the distortions produced by the method result in some grid cells being four
times the volume of others.

The general method for designing Layered Sukharev Grid sequences inside Cartesian products
was later presented in [14]. Our current paper builds on top of these works by combining the
method in [14], with the Successive Orthogonal Images [17] generation of rotations, Hopf
coordinates, and the HEALPix spherical sampling method [7] described next.

HEALPix Multiresolution Grids on S2

The HEALPix package [7] was designed for efficient and incremental discretization of full-
sky maps in application to the satellite missions to measure the cosmic microwave background
in astrophysics. It provides a deterministic, uniform, and multiresolution sampling method for
the 2-sphere. Moreover, it possesses additional qualities, such as equal area partitioning of the
2-sphere, and isolatitude sampling on the 2-sphere, which make computations of the spherical
harmonics integrals even more efficient.

The method takes advantage of the measure preserving cylindrical projection of the 2-sphere.
This intrinsic property of the 2-sphere cannot be generalized directly to higher dimensional
spheres. However, this work shows that an extremely uniform grid can be constructed on such
anon-trivial curvature space as the 2-sphere. It is also not difficult to make this grid incremental
using the method from [14]. We have done this as part of our implementation for the current
work, and the code can be found at [9].

5 Our Approach

In this section we present our approach of sampling SO(3) which satisfies all of the
requirements of Section 3.2, and Table 1. The fiber bundle structure of SO(3) locally behaves
similarly to the Cartesian product of two spaces, S and S2. Therefore, the method presented
in [14] for constructing multiresolution grid sequences for Cartesian products of spaces, can
be used for constructing a grid sequence on SO(3). The resulting rotations are computed using
the Hopf coordinates, as was first described in [17]. It is a much simpler problem to construct
nicely behaved grids on the 1-sphere and 2-sphere. Hopf coordinates allow the two grids to be
lifted to the space of rotations without loss of uniformity. Next, we outline the details of this
construction.

5.1 Description of the Grid Structure on SO(3)

Let y be the angle parametrizing the circle, S, and (0, ¢) be the spherical coordinates
parametrizing the sphere, S2. Using these coordinates, define Ty to be the multiresolution grid
over the circle and T, to be the multiresolution grid over the 2-sphere. Let m; and m, be the
number of points at the base resolution 0 of the grids T and T, respectively.

There are numerous grids that can be defined on S? (see Figure 3 for an illustration of some).
In this work we have selected the HEALPix grid [7] on S2, and the ordinary grid for S1. Both
of these grids are uniform, have simple neighborhood structure, and can have multiple
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resolutions. Moreover, HEALPix divides the surface of the 2-sphere into subregions of equal
area. After multiplying these by equal length fibers of S1, this results in equivolumetric partition
of SO(3) into the grid regions.

Next, consider the space g2 s !. The multiresolution grid sequence that we define for SO(3)
has m; -m, - 23! points at the resolution level I, in which every 23 points falling into a single
grid cell comprise a cube in Hopf coordinates. Each element of the sequence is obtained by
combining the corresponding coordinates in the subspaces, S and S2, using the Eq. (4). The
dispersion and discrepancy of the resulting sequence can then be computed using the
representation for the metric and volume element from Eqg. (1) and (5).

5.2 Choosing the Base Resolution onS! andS?2

One of the issues arising when combining the two grids from St and S? is the length of a grid
cell edge along each of the coordinates. For this, we have to match the number of cells in each
base grids on both of the subspaces, so that they have cell sides of equal lengths [17]. That is,
the following equation should hold for m; and my:

u(s') I (52)
mp B ny ’ (9)

in which p (1) is the circumference of the circle St and p (S?) is the surface area of S2. In
Appendix 8.3 we explicitly show that both of these values are equal to .

In our particular case, the base HEALPix grid consists of my = 12 cells (Figure 4). Therefore,
the number of points in the base resolution of the grid on St is m; = 6. The base grid of the
sequence for SO(3) then consists of my -m, = 6:12 = 72 points (the projections of the grid
regions on the Hopf coordinates are shown in Figure 5).

5.3 Choosing the Base Ordering

The next step is to choose the ordering of the m = mym, points within the base resolution on
SO(3). In general, the initial ordering will influence the quality of the resulting sequence, and
a method similar to [14] can be used for deciding the ordering of the base sequence.

In our case, we have to define the ordering on the first 72 points of the sequence (see Figure 5
for the illustration of the associated grid regions). In our implementation [9] we have manually
selected such an ordering. However, it is possible to design a program that would run through
the orderings and select the one that minimizes the discrepancy or any other desired property.
For the purpose of further analysis we assume that such an optimal ordering function

Srase:'N — [1,...72]is available.

In our implementation [9] we first have selected an ordering of the 12 base points on S2 and 6
base points on S (these orderings are shown in Figure 5). For each point on S2 we then
generated the 6 points on S according to the S ordering. The points on S are chosen according
to the S2 ordering.

5.4 The Sequence

The sequence for SO(3) is constructed one resolution level at a time. The order in which the
points from each resolution level are placed in the sequence can be described as follows. The
ordering f;,..:N — [1,...,m]of the first m points in the base resolution determines the order
of the grid regions within SO(3) and is taken from the previous section. The points in other
resolutions fall into the base resolution grids according to the function fpage(i) = fpase(imodm).

Int J Rob Res. Author manuscript; available in PMC 2010 July 2.
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Every successive m points in the sequence should be placed in these grid regions in the same
order. Each of the grid regions is isomorphic to the [0,1]3, and is subdivided into 8 grid regions
in each successive resolution. Where exactly each point should be placed within each of the
grid regions is determined by the ordering f,,,.:N — [ 1, ... 8]and recursion procedure defined
for the cube [0,1]3 in [13].

The resulting procedure for obtaining the coordinates of the ith element in the sequence is the
following:

1. Assign fiase(i) to be the index of the base grid region that the i-th element has to be
placed within.

2. Assign the floor of the division, igype = Li/ml, to be the number of subregions already
generated in the base grid region. This index then determines the subregion of the
region fyase(i) that the i-th element has to be placed within.

3. Call the recursive procedure from [13] to determine the coordinates of the subregion
of the cube [0,1]2 determined by the indeX i¢,pe and the ordering fope. The i-th element
is then placed within this subregion of the fya5e(i) region.

Several claims, similar to those obtained in [13], can be made for the new approach. The most
important distinction is that the new sequence provides equal volume partition of SO(3) which
results in a strong dispersion guarantee.

Proposition 0.1. The dispersion of the sequence T at the resolution level | satisfies:

2
6(1) < 25in”! (% » <T2)+(L) ]

m121

in which & (T,) is the dispersion of the sequence T, defined over S2.

Proof: It was shown in [17] that the fibers S! are locally orthogonal to the base space S? in the
sense that an equivalent of the Pythagorean theorem holds for the Hopf coordinates. The bound
follows directly from the Pythagorean theorem, and the dispersion bound on the ordinary grid
on S at the resolution level I. o

Proposition 0.2. The sequence T has the following properties:

» Itis discrepancy-optimal with respect to the set of axis-aligned grid regions defined
over St and S2.

»  The position of the i-th element of T can be generated in O(logi) time.

*  For any i-th sample, any of the 2d nearest grid neighbors from the same layer can be
found in O((logi)/d) time.

Proof: The proof closely follows similar considerations in [13]. o

5.6 Visualization of the Results

To visualize our sequence and compare it with other sequences designed for SO(3), we use the
angle-axis, (6,n), representation from Section 2. It can be shown that if the rotations are

uniformly distributed, then the distribution of the angle 6 is (sin(0)—0)/x. This allows us to draw
the elements of SO(3) as the points inside a ball in such a way that every radial line has uniform
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distribution of elements. This provides a more intuitive visualization, which partially preserves
the uniformity. See Figure 6 for visualization of several of the methods of sampling over SO
(3), compared to the proposed approach. Specifically, the images show points in the direction
of the axis of rotation and with distance to the origin equal to (sin(6)—0)/x. Using this
representation, the distribution of points increases linearly as a function of distance from the
origin. In comparison, a set of points that was uniform with respect to the measure on R would
have a distribution that varies as the cube of distance from the origin.

6 Implementation and Application to Motion Planning

We have implemented our sampling algorithm in C++ as part of the new library publicly
available at [9]. The experiments reported here were performed on a 2.2 GHz Pentium IV
running Linux and compiled under GNU C++,

We first compared the uniformity of the new sequence with the Layered Sukharev sequence
and random sequence. To demonstrate the importance of understanding the topology of SO
(3), we have included the evaluation of uniformity for random Euler angles in this experiment.
For each of the deterministic sequences, we generated a fixed set of points, in the range 50 to
100,000, which is shown on the x axis of the graph in Figure 7. We then calculated the distance
from a randomly generated point on SO(3) to the nearest neighbor in each of the sets, and
selected the largest such distance among 10,000 random points. We have averaged the same
computations over 10 runs for each of the random sequences. The obtained value approximates
the dispersion. The results are shown for each of the sequences as a separate curve in Figure
7. In all of the cases, the smallest obtained value was the one generated with our new method,
which demonstrates that the resulting samples are more uniformly distributed compared to
other sequences known for SO(3). Even though it might appear that the actual difference in
dispersion is not significant for data sets of a particular size, there is another interpretation of
the results on the graph. Consider a particular value of dispersion on the graph, for example,
d =0.06. If asample set has this dispersion then no ball of radius r > 0.06 can be placed between
the samples. To achieve such dispersion, the Hopf sequence required around 50,000 samples,
whereas the sample set generated using random Euler angles with twice as many points does
not reach the same resolution (see Fig. 7(b)).

We also used our library as the sampling method in the implementation of PRM-based planner
[10] in the Motion Strategy Library [12]. It is important to note that the experiments we present
here are just one of possible applications of the developed sequences to motion planning

problems. Alternate applications may exist in other areas of computer science, or related fields.

In our experimental setup we consider the rotation-only models for which the configuration
space is SO(3). For the two problems shown in Figure 8 we have compared the number of
nodes generated by the basic PRM planner using the pseudorandom sequence (with quaternion
components [24]), the layered Sukharev grid sequence, and the new sequence. For the first
problem the results are: 258, 250, and 248 nodes, respectively. To solve the second problem
the PRM planner needed 429, 446 and 410 nodes, respectively. In each trial a fixed, random
quaternion rotation was premultiplied to each deterministic sample, to displace the entire
sequence. The results obtained were averaged over 50 trials.

Based on our results we have observed that the performance of our method is equivalent or
better than the performance of the previously known sequences for the basic PRM-based
planner. This makes our approach an alternative approach for use in motion planning. It is
important to note, however, that for some applications, such as verification problems, only
strong resolution guarantees are acceptable.
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7 Conclusions

In conclusion, we have developed and implemented a deterministic incremental grid sequence
on SO(3) that is highly uniform, can be efficiently generated, and divides the surface of SO(3)
into regions of equal volume. Sequences that minimize uniformity criteria, such as dispersion
and discrepancy, at each step of generation are especially useful in applications in which the
required number of samples is not known in advance.

In the paper we report the performance of the deterministic sequence on motion planning
examples for demonstration purposes only. We believe that the value of this method is in
providing strong provable guarantees (the bound on dispersion, neighborhood structure, and
deterministic generation). These guarantees are not always required in motion planning.
Therefore, we do not perform extensive experimental evaluation. However, for the motion
planning examples in Section 6, the provable guarantees of the method come at no additional
cost. Moreover, it is consistent with the performance of other deterministic sampling methods
on Euclidean spaces we have observed on numerous motion planning examples in our previous
works. Therefore, we conclude that the sequence can be applied in the context of motion
planning, in case deterministic guarantees are required, or in any other applications with such
guarantees.

There are anumber of ways to improve the current work which we consider as future directions.
It is an interesting problem to determine the criteria for an optimal selection of the base
sequence on SO(3) to improve the performance of the sequence. It is also tempting to assess
the general rate of convergence for motion planning solutions using different sampling
sequences.

There are many general open problems related to the presented work. Nicely distributed grids
are not yet developed for general n-spheres, n > 3. Implicitly defined manifolds, such as the
ones arising from motion planning for closed linkages, are very hard to efficiently and
uniformly sample. Such manifolds also arise as the conformation spaces of protein loops. In
such cases, efficient parametrization is the bottleneck for developing sampling schemes.
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8 Appendix

8.1 Derivation of the Hopf Coordinates

The group of all 3D rotations, SO(3), has a subgroup of all planar rotations, S. Therefore, SO
(3) can be represented as a disjoint union of all of the cosets of this subgroup. Consider a
subgroup St of all rotations around z axis by angle y € [0,27). Such rotations can be represented
by a unit quaternion of the form:

b o v
111:(cos5,0, 0, sing).

To obtain the left coset of this subgroup, the z axis should be placed in an arbitrary position on
the sphere S2. If the sphere is parametrized using the spherical coordinates 6 € [0,x] and ¢ €
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[0,2r), then the rotation of the z axis to the (8, ¢) position on the sphere corresponds to the
quaternion of the form:

h—( '0 'n()"n "ne O)
H= cosz,m 251 P, si 2cos¢), .

To obtain the Hopf coordinates for an element x € SO(3), we compose the two rotations x =
hy * h, and obtain the expression in Eq. (4):

sin—, cos—sin— | .

_ ‘0 “I’ . 9‘. +‘I’ i +‘P
= coszcosz,sm sin | ¢ > ,cos|¢ 2 > 2

2 2

8.2 Derivation of the Volume Element Using the Hopf Coordinates
The Jacobian, J = (6x/00,0x/0vy,0x/0$), of the coordinate transformation in Eq. (4) is the

following:
Lo Bnne _LooeBain ¥
—ilsm %cos 2 12005{}2 sm\y2 0
—3Sinzsiny 5COS5sin> 0

J=

1

- ¥ Llainfa0g ¥ sinZcos ¥

5C0s5sIn (¢+ > ) 538In5c0s (¢+ > ) Sinzcos (¢+ > )
9 cos ¥) _1g ¥\ain? —sinlsi ¥

5C085COS (¢+ 5 ) 78in (¢+ 5 ) sinz sinzsin (¢+ > )

We next compute the volume element of the transformation by taking a square root of the
following determinant:

1
dV= y/det (J7 J)dodpd¥= gSinfdadsd?.

8.3 Lengths of the S Fibers and the Area of the S2 Base Space for the Hopf
Coordinates

By fixing 6 and ¢ in Eq. (4) we obtain half circles on the hypersphere S2 (which are St fibers
on SO(3), after the identifications of the antipodal points are taken into account on S3). To
compute the length of a fiber, we follow similar derivations to the Appendix 8.2. For the fixed
values of 8 and ¢, the Jacobian of the resulting transformation is the matrix:
—%cos%sin%
1 ¥

—COSQCOS—
J=0x/0®)| | 2, %22

: ¥
7s1n§cos(¢+7)
L ¥)sin
—isln(¢+2)sm2

Then the length element for St is:

1
Jdet (JT J)dw= Sd¥.
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Therefore, the length of each fiber is:

1 o
3 [y d¥=r.

The area of the corresponding base sphere, S2, is then obtained from the volume V(SO(3)) =

2

as the remaining contribution. Therefore, it is . Note, that these derivations demonstrate

that the base space S and the fibers St are not unit for the Hopf fibration.
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(a) (b)

(c) (d)

Fig. 1.

Visualization of the spherical and Hopf coordinates on SO(3) using angle and axis
representation. This representation corresponds to a projection of the S® onto the equatorial
solid sphere which we draw in R>. (a) The full range of the spherical coordinate y € [0,7/2] is
shown while the coordinates (0,¢) form a discretization of size 20 over S2. (b) The half-spheres
show the full ranges of the spherical coordinates 6 € [0,x], and ¢ € [0,2x), while y takes four
discrete values over [0,7/2]. (c) The full range of the Hopf coordinate y € [0,2x) is shown
while the coordinates (6,¢) form a discretization of size 12 over S2. (b) The spheres show the
full ranges of the Hopf coordinates 6 € [0,x] and ¢ € [0,2x), while y takes four discrete values
over [0,2m).
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(b)

Fig. 2.

An illustration of the notions of dispersion and discrepancy for a set of points on a 2-sphere.
(a) The discrepancy searches for the subset R for which the deviation from the measure of R
to the number of samples placed inside R is the largest. (b) The dispersion searches for a point
g on the sphere which is the farthest from the sample points.
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(d)

Fig. 3.
Different sampling methods on S2. (a) 200 random samples (b) 192 Sukharev grid samples
[33] (c) icosahedron samples (d) 216 HEALPix samples [7]
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cosvu

Fig. 4.

The base grid of the HEALPIix sequence consists of 12 points. The cylindrical projection of
the grid cells from S2 to (cos(6),4) coordinates is shown. Each next resolution subdivides each
of the spherical squares into 4 squares of equal area [7].
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cos 6

Fig. 5.

The base grid of the proposed SO(3) sequence consists of 72 points. For the Hopf coordinates
(0,4,v) the projections of the grid cells on each of the coordinates are shown. Grid cells for
v are chosen according to the ordinary grid on St. The grid cells for (cos(6),¢) are obtained
using HEALPix. The manually selected ordering of the cells is shown for both of the
projections, ST and S2.
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(d)

Fig. 6.
Different sets of samples on SO(3) (a) 2000 random samples (b) 2048 Sukharev grid samples
(c) 1944 icosahedral samples (d) 1944 HEALPix samples
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Coverage Results

—+—Euler

——Random

Layered
007 ~——Hopf
006

005

004
20000 40000 60000 80000 100000

Fig. 7.

(a) For each of the deterministic sequences, we generated a fixed set of points, in the range 50
to 100,000, which is shown on the x axis of the graph. We then calculated the distance from a
randomly generated point on SO(3) to the nearest neighbor in each of the sets, and selected the
largest such distance among 10,000 random points. The obtained value approximates the
dispersion and is shown on the y axis for each of the sequences. We have averaged the same
computations over 10 runs for each of the random sequences. A portion of the graph is
magnified in (b).
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(a)

Fig. 8.

Motion planning problems involving: a) moving a robot (black) from the north pole to the
south pole. Multiple views of the geometry of the problem are shown (obstacles are drawn in
lighter shades); and b) moving a robot along the corridor.

Int J Rob Res. Author manuscript; available in PMC 2010 July 2.



Page 24

Yershova et al.

"spoyiaw asay Jo saiuadoud palisap ay1 01 puodsallod SMoJ 8yl g'S UoI19aS Jo wajgod ayp 01 pare|al spoylsw Burjdwes Jualajlip Jo uosLredwod ay L

NIH-PA Author Manuscript

(€)os zS u$ PUE (€)0S (Wos (e)os saoeds
sak sak sak sakjou ou pub
sak sak sak sak ou | ansiulwialep
sak sak ou sak sak wojlun
sak ou sak ou sak |eluBWaIoUL

Mdomsiyy | XidTvaH | nAeseyyng passhe] | sabew] 'y 09ns | wopuey

T 3lqel

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Int J Rob Res. Author manuscript; available in PMC 2010 July 2.



