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Cooperative AUV Navigation using a Single

Maneuvering Surface Cratft

Maurice F. Fallon, Georgios Papadopoulos, John J. Leonadd\dcholas M.

Patrikalakis

Abstract

This paper describes the experimental implementation obrdime algorithm for cooperative lo-
calization of submerged autonomous underwater vehicle/6)\ supported by an autonomous surface
craft. Maintaining accurate localization of an AUV is difiit because electronic signals, such as GPS,
are highly attenuated by water. The usual solution to théolpro is to utilize expensive navigation
sensors to slow the rate of dead-reckoning divergence. Véstigate an alternative approach that utilizes
the position information of a surface vehicle to bound thereand uncertainty of the on-board position
estimates of a low-cost AUV. This approach uses the Woode @aleanographic Institution (WHOI)
acoustic modem to exchange vehicle location estimatesevdiihultaneously estimating inter-vehicle
range. A study of the system observability is presented st asotivate both the choice of filtering
approach and surface vehicle path planning. The first dartton of this paper is the presentation of an
experiment in which an extended Kalman filter (EKF) impletation of the concept ran online on-board
an OceanServer lver2 AUV while supported by an autonomorfacivehicle moving adaptively. The
second contribution of this paper is provide a quantitatiggformance comparison of three estimators:
particle filtering (PF), Nonlinear Least Squares optima@atNLS), and the EKF for a mission using
three autonomous surface craft (two operating in the AU\é)oDur results indicate that the PF and

NLS estimators outperform the EKF, with NLS providing thesbperformance.

. INTRODUCTION
Improved navigation of multiple vehicles is essential tpiove the accuracy and efficiency

of many AUV missions, such as mine-hunting, disaster respoand oceanographic surveys.
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This paper provides an experimental investigation of tephes for cooperative localization of
multiple AUVs, using a single surface vehicle to aid the gation of submerged vehicles. This
work generalizes the moving long baseline (MLBL) navigatapproach originally proposed by
Vaganayet al.[36] and Bahr and Leonard [4], relaxing the requirement teehtwvo vehicles

serving as communication navigation aids (CNAs). The Jehicised in our experiments are

shown in Figure 1.

(@) (b)

Fig. 1. The vehicles used in our experiments: (a) the OcaarBéver2 AUV, (b) the MIT Scout kayak which functioned as
the CNA.

AUV navigation is a difficult problem that has been the subgg@ large amount of research in
the past several decades [39]. The technologies availablerbéviding localization information
to an AUV include: (1) dead reckoning using proprioceptiensng, (2) surfacing for GPS
fixes, and (3) acoustic beacon systems. Proprioceptiveggatiwn refers to using measurements
of the vehicle’s self-motion to deduce the vehicle’s positiThere are two major categories,
based on price: (a) inertial navigation systems (INS) comdbiwith Doppler velocity log (DVL)
sonars and (b) magnetic compass/attitude heading reteirstems. Regardless of sensor cost
and quality, the problem with exclusive reliance on propejative sensing is that position error
increases without bound as the distance traveled by theleeinicreases. The rate of increase
will be a function of ocean currents, the vehicle speed, drel dquality of dead reckoning
sensors. If a vehicle can surface, then GPS can be used faitoopdix. Indeed, many AUVs
have demonstrated this capability [30], [23], [1]. HoweVeequent surfacing is impractical for

deep-water missions and is undesirable for many other AUSSioins of interest.

July 22, 2010 DRAFT



In acoustic navigation, transponders serve as beaconsistram INS/DR error growth without
the need for resurfacing. Two types of systems have beeraghnemployed [15], [17], [25]:
long baseline (LBL) and ultra-short baseline (USBL). Boylstems employ external transducers
or transducer arrays as aids to navigation. Acoustic nfeigaf AUVs is a well-established
technique that has been widely used on many different typeSJ&s [35], [39], [33], [40].
The use of static beacons restricts the area of operatioasféws kn?, making some missions
of interest impractical with this approach.

The desire to extend acoustic navigation to a wider area efatipn motivates a system
in which multiple vehicles can use one another as “mobilecbes’. The majority of modern
AUVs already have an acoustic modem for command and contsotg ranges derived from it
we aim to achieve geo-referenced navigation without addihgdjtional sensors to the vehicles.
Acoustic modems are available from a few thousand dolladsaa@ orders of magnitude cheaper
than low-end DVL or INS units. Our approach instead utilizededicated surface vehicle (with
access to GPS) communicating with a fleet of AUVs so as to ingthbe positioning of the
latter. The main contribution presented in this paper iss® only a single CNA vehicle, instead
of two as in previous work [36], [4]. Our results include thesti(to our knowledge) online
navigation of a submerged AUV using acoustic range measmttransmitted from a single
autonomous surface vehicle. Using only a single surfac&chehas a significant effect on both
the filtering approach used by the AUV and the required miybdf the surface vehicle. We
also present a detailed comparison between the EKF, mafiitdr, and nonlinear least squares
estimators, which illustrates that the latter gives sugrgserformance and should be used going
forward for this application.

A number of previous researchers have performed expergriewmblving an AUV obtaining
range measurements to a single transponder. Larsen dedetop approach termed Synthetic
LBL [22], which used measurements from a single acoustitsfpander at an unknown location
to constrain the error growth of a high performance INS sys{@l]. LaPointe developed
techniques for using range measurements from a singlepwadsr for deep sea positioning,
extending the operating area beyond that of a typical LBhgp@nder network [20]. Vaganay
al. investigated techniques for homing to an acoustic beacoig vs1ly range measurements [34].
Stilwell and colleagues [24], [14], [13] have implementeslyatem in which an AUV can localize

itself by using a single ranging beacon at known positionevaliso measuring the water current.
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Webster, Eustice and colleagues [10], [37], [38] haveaddia single research ship to support
an underwater vehicle navigating using the WHOI acoustidens their approach is closely
related to the approach presented in this paper. Regkat. [31] studied the fusion of USBL
and DVL sensors to form a more accurate geo-referenced atamigsystem with bounded error
underwater which could be mobile beyond a fixed location dimithe Websteet al. and Rigbyet
al. research, the AUV'’s proprioceptive sensors were signifiganore precise than the vehicles
used for our experiments; in addition, the surface vehialendt maneuver autonomously and
only one AUV was considered.

Multiple AUV navigation falls within the broader problem afiulti-robot cooperative local-
ization which has been studied in great depth by Roumelitécolleagues. Mourikiat al.[26]
provides a performance analysis of the cooperative |catadiz problem. More recently, Nerurkar
et al. [27] proposed a Distributed Conjugate Gradient (DG&aximum a posteriori algorithm
for distributed localization of a group of vehicles, deygim efficient methods to limit the
communication cost and computational complexity for langdti-robot teams (with simulation
results presented for a team of 18 robots). Our work tardetsihderwater environment, where
severe communications constraints would make such an agpmifficult to implement.

Meanwhile Djugastet al. [6], [8], [7] have studied localization with range-only nseaements
from stationary radio beacons. Their work has consideraekis such as localization of a moving
indoor robot given poor dead-reckoning or measurementalitsp as well as simultaneous
estimation of the beacon location — a variant of SLAM. Thewrk has also used a polar
coordinate system, rather than Cartesian, so as to moresaelgurepresent the vehicle probability
distributions.

In this paper, we outline the extension of the MLBL conceptuging only one surface
vehicle aiding the navigation of one or more AUVs by provigligeoreferenced range mea-
surements. Utilizing a single surface vehicle requirescaoent operation of surface vehicle
motion planning and filtering algorithms which requires sidleration of system observability
SO0 as to maintain stable and scalable performance. Eachesé tissues are discussed in this
paper. The first experimental contribution of this paperhs presentation of an experiment
in which an EKF-based implementation of the approach ramerdn-board an OceanServer
Ilver2 AUV while supported by an autonomous surface vehictering adaptively. The second

experimental contribution of this paper is to provide a ditative performance comparison of
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three estimators: particle filtering (PF), Nonlinear Le8suares optimization (NLS), and the
EKF for a mission using three autonomous surface craft (tperating in the AUV role).

In Section Il the limitations and assumptions of this bagppraach are discussed. Our
algorithm is outlined in Section Il as well as some analygigch illustrates the importance of
surface vehicle motion planning. Suitable motion planregaviors are also discussed. Section
IV introduces three online filtering and smoothing alganthwhich have been considered for
this application - the Extended Kalman Filter (EKF), the tlR& Filter and Nonlinear Least
Squares (NLS) and discusses the merits of each.

Section V presents the results of several experiments whigdtrate our proposed concept
including an online EKF-based experiment with an OceanSdmer2 AUV. A detailed compar-
ison between the three filtering and smoothing algorithntees presented. Finally, conclusions

drawn from these experiments and directions of future woekdiscussed in Section VI.

[I. UNDERWATER COOPERATIVE LOCALIZATION

While maintaining the core concept introduced in [4], welwviistead assume there to be
only one surface vehicle providing the submerged fleet of AWth its GPS-derived position
information. This vehicle may also be operating as a comoaii@ns moderator — in the dual
role of a Communications and Navigation Aid (CNA, see FiglireMeanwhile each autonomous
underwater vehicle will maintain a dead reckoning filtegwing upon measurements of velocity,
heading and depth.

Communication between the vehicles is possible using th&Wadoustic modem [12]. In our
experiments, this system provides transmission rateseobtter of 32 bytes per 10 seconds.
Transmission of a packet consists of two stages: firgtird packet is transmitted to initiate
the communication sequence. The time-of-flighf,and hence the inter-vehicle range can be
estimated using this mini packet using the speed of soundait@rnzsp = ¢ x ty. Following
this, the information packet is transmitted in a processcivitasts approximately 5-6 seconds.
In all, it is prudent to reserve 10 seconds per transmission.

Time-of-flight is calculated using a precisely synchrodize-board pulse-per-second (PPS)
timing board, as detailed in [10]. The PPS is maintainedgisirCOTS low-power temperature
compensated crystal oscillator combined with a micro-ailetr PCB (for higher-level function-

ality). Experiments by the authors suggested a maximuntriddiiced range bias of 0.45m over
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24 hours.
As the depth of the AUV can be easily and precisely instruednhe 3D range estimate will
be transformed into a 2D planar range at the outset and allaretes to range in what follows

will concern this 2D planar range,

%= /Bpy— (dc—da)? ()

where the depth of the CNA and AUV are given ty andda respectively.

The packet transmitted from the CNA shall contain its positfXc ), depth and heading as
well as a UNIX time-stamp. The uncertainty of the CNAs pmsitestimate is not included in
the packet because when operating in the open ocean this wallube static and known to
the AUV in advance. Similarly the AUV will transmit a messagentaining its own position
estimate and associated covariance which can be used tohee{pNA plan its own supporting
motion — also requiring 10 seconds per transmission. Se@o8ektl-B for more discussion
regarding motion planning.

Round Trip Ranging: In terms of scalability, one-way-ranging allows any numbeAUVs
within the broadcast range of the CNA to estimate range arréddeive the CNA tranmissions.
However an alternative feature of the WHOI modem is rouipl+nging for use with modems
without access to accurate time synchronization. One iegfimodem (in our setup the CNA)
transmits a mini-packet (guing) to a specific modem id. The receiving vehicle receives it and
replies after a small, known time. The CNA then receives #myrand measures the elapsed
time and calculates the range using the speed of sound im. Wekéle the elapsed time can be
accurately measured; the range estimate will be less dectitan the one way range estimates
due to the relative movement of the vehicles during transimms Having measured the round-
trip range, the value will be transmitted back to the AUV wiitle corresponding CNA position
in a regular 32 byte pack.

Unlike with the one way range system, this position will bdegtst 10 seconds old (the full
packet transmission time) when received by the AUV. For th&son it is necessary to buffer
the AUV inertial measurements for this period and to cortbetAUV’s corresponding historical
position estimate before integrating the buffer of AUV imrmeasurements up to the current
time (see Figure 2).

While this approach does not require a precisely syncheahctock, it does require ranging
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Fig. 2. Using the Round Trip Ranging mode the filter operateisad sequence. (a) First a round trip range measurement
is received from the CNA (as illustrated in red) which cop@sds to a previous AUV position (the blue dot) rather tham th
current position. (b) Using a buffer of dead-reckoning nueasients the filter position and covariance matrix are reséhe
corresponding values and the usual position optimizationairried out. (c) Finally the buffered dead-reckoning appdied,

giving the AUV a better estimate of its position.

of each vehicle individually which is not a satisfactory lsog (for the same reasons as the
USBL approach in [31]). Nonetheless, the feature has bepiemented as part of our software
implementation as a fallback solution. Experiment 1B int®ecV illustrates that performance

is not significantly worse than one way ranging.

[1l. SINGLE SURFACE CRAFT COOPERATIVE NAVIGATION

Consider a single CNA supportimgunderwater vehicles. Each AUV will maintain an estimate
of its own position,Xa x = [Xak,Yak: fak], and an associated covariance matrix. This estimate
will be regularly propagated (typically at 10Hz) so as toegrate headingé@), forward (i)
and starboard velocityw) measurements. Neglecting the vehicle id for now; at tknthe

propagation equations will be

X = X1+ Ox(Vccosb + Wi sinGy)

Yo = Yk1+ Ax(Ucsing—wicoshy)

& = b (2)
This dead-reckoning estimate will be combined with the CNAge and position information
using a filtering or smoothing algorithm to produce a coedagbosition estimate with reduced
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and eventually bounded uncertainty. Three such algoritiwitidoe discussed in Section IV.
Before discussing the algorithms specifically, it is neagsto consider how measurement

observability effects AUV estimation.

A. Observability Analysis

It is envisaged that MLBL will be integrated within a multit®/ setup in which use of the
communication channel will be shared. As a result the trassion rate of a position/range pair
is likely to be substantially below one measurement per tOrs#s. Furthermore only a portion
of transmitted messages will actually be received. Foretlieasons it is prudent to maximize the
benefit achieved from integrating CNA range measuremenpdanning CNA motion trajectories
which best contribute to AUV localization. This requiresagxnation of the observability of the
AUV given the CNA measurements and the relative positiongheftwo vehicles.

We will first determine the conditions by which the propose@adrized system and the actual
non-linear system are observable. Linearizing the actoatimear system, Gadret al. [13],
[14] have proven that a vehicle which consistently obsertgesange to a beacon located at the
same relative direction is locally unobservable (althopgésented in the less general case of a
stationary range beacon). A path of this type of motion issillated in Figure 3(a). Alternatively,
if the relative positions of the vehicles is varied, as shawRigure 3(b) and Figure 3(c), system
observability can be obtained when using a linearized fikach as an EKF. Since the AUV
mission is usually predetermined, its falls on the CNA tonpda intelligent path to achieve this.

Secondly, for a nonlinear estimator, such as a particle bitenonlinear least square optimiza-
tion (NLS), of a non-linear measurement functidn,can observe the system if the gradient of
the Lie derivative matrixG, is a full rank matrix, according to the weak observabilitgdrem
[32], [16]. The observability matrix is given by

dlo(hy) ... dL%(hm)

dii(hy) ... dii(hp)

Obs= d(G) = (3)

dL? () ... dLY(hm)
whereer“l(hm) Is the Lie derivative of the measuremeantin dimensionn.
While our dynamical system, Equation 2, is a third order esystwe have access to a direct

estimate of the heading. For this reason we can simplify treevability analysis to a second
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order system irx andy, thusn = 2. The continuous system equivalent is given by

Xa = f(Xa,u) (4)
where
f VcosB +Wwsind
f— | T )= - * X (5)
fo Vsin@ —\Wwcoso

For the range-only measurements, with= 1, the non-linear measurement function is given by

h=hy = /(X —X0)T(Xa—Xc) = /(x4 —¥0) 2+ (ya — Yo )2 (6)
the Lie derivatives are as follows
L%h) = h (7)
f
L%(h) = < XAEyC YAEYC ) f (8)
2
which gives
G= & 9
- (XA_XC)fl'I:(YA_YC)fZ (9)
/*\\
* ,* |
\‘ ', \‘ ;I(
\‘ - ‘ /\):
“ ', S - 2
"
(@) (b) (c)

Fig. 3. Observability: Should the AUV (red line) receive garmeasurements from the CNA (black dashed line) from theesam
relative direction,@, then the linearized system will be unobservable, but theahamon-linear system will be observable (a).

Should the CNA maneuver to achieve radial coverage by zigiing (b) or encircling the AUV (c), then the CNA path can be

fully observed. These two motion plans are demonstrate@rarpntally in Section V. Each marker represents the réisjgec

vehicle locations during a measurement/transmission.
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(@) (b) (©)

Fig. 4. Despite moving directly away from a stationary CNA, AJV can remain observable using a non-linear estimator.
(a) Having received a range measurement from a static CNAit{poed at the red star), the AUV (at an unknown position)
moves relatively as indicated by the black arrow and traedlaange circle. (b) If another range measurement is regdiom
the CNA, a (non-linear) particle filter could estimate thesiion of the AUV (as indicated by the non-parametric digition

in red). (c) Meanwhile an EKF would badly represent the nesmbinformation and would typically diverge.

Our specific observability matrix is formed from the gradiehG with respect to the AUV state

vector Xa
L?(h)
Obs = d(G)=d (10)
Lt(h)
(Xa—x*c) (Ya—Yc)
= 2 " ) (11)
(yaA—Yc) f1—(X|¢3—Xc)(YA—YC)f2 _(XA—XC)(YA_YF(]:?)) fi+(xa—Xxc)fo

This system is observable if the observability matrix id fahk. Thus, if

—fi(ya—yc) + fa(xa—Yc)
2

Except for some trivial special cases, the system identételeing unobservable for linearized

det{Obs) = #0 (12)

systems, [13], is now observable for nonlinear systemrmg &s the CNA-AUV range changes.
This is illustrated graphically in Figure 4. Nonethele$she relative positions of the vehicles are
not varied, the uncertainty in the axis perpendicular to@GNA-AUV axis will remain large —
even with successive ranging steps — which again motivateligent CNA motion planning.
In summary, the observability of the linearized system igvgted by the relative motion

between the vehicles, but can be improved upon by the usigttual nonlinear system as
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well as CNA motion planning.

B. Surface Craft Path Planning

Within the constraints of its command and control functigdhe CNA will plan a path so as
to transmit from the locations which best allow the AUVs taluee their uncertainties. How
this path should be planned depends upon how dedicated thegnication system is to the
task of cooperative localization as well as the mobility leé CNA when compared to the AUV

fleet. Consider three scenarios:

« Transmission only when a sufficient uncertainty reductian be accrued.
« Maintenance of a certain upper bound on the vehicle uncéytai

« Complete or significant usage of the communication channel.

The first scenario considers the role of MLBL as part of a wiebgrerimental system and would
require a mission dependent solution. See [2] for a more tampliscussion of this scenario.
The second scenario is more general, and in this case thizeelalocities of the vehicles would
be a important limiting factor.

The final scenario is the most basic operational scenarichasdeen explored in the exper-
iments in Section V for the two different motion behaviolsistrated in Figure 3(b) and (c). It
should be noted that uncertain path planning is part of a meneral field of research and is not
fully examined in this publication. In related work on th@ptc in the context of MLBL, Bahr
and Leonard [3] investigated motion strategies for the CNAMinimize trilateration errors.

We have implemented two conservative greedy algorithmseicti& V which illustrate the
concept. One maintains a 45 degree zig-zagging patterndhéine AUV while the other encircles
the AUV continuously. Both keep a significant standoff dista — calculated using the AUV
position estimate and uncertainty — so as to avoid baselmgiguity. In each case the CNA
chooses a new wavpoint based on the AUV’s current positiimag and uncertainty. During
transit it will communicate with the AUV several times, upidg its knowledge of the AUV's
status. Upon reaching the waypoint, a new waypoint will aga determined using the AUV

position estimate.
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IV. MEASUREMENT FILTERING AND OPTIMIZATION

Thus far we have not specifically discussed the fusion of thenoceptive and exteroceptive
measurements. Our earlier work, [4], proposed an algoritinich utilized the on-board dead
reckoning estimate of the AUV and a pair of CNA range estim&tgroduce a complete estimate
of the AUV state vector as well as a measure of confidence.ridagollated these measures
for all such pairs of estimates, a best estimate of the jpositias proposed. This approach was
predicated upon an assumption that the range measurensgnibudtion was multi-modal.

The seabed, the water surface and deep sea thermoclings with water body have the
ability to cause significant multi-path signal interfererand the receipt of a substantial amount
of infeasible outlier measurements. A typical Long Baselranging data set is illustrated in
Olson et al. [29], illustrating the potential difficulty in processingBL data. However the
advanced processing within the WHOI modem decoder has thigy b suppress the bulk
of these effects, such that the received range measurenesdded by the modem contain only
a moderate amount of noise, as shown in Figure 5. The disitibis experimentally studied in
Section V-A.

Instead we will consider three filtering and smoothing teghes in this paper:

« Extended Kalman Filter

« Particle Filter

« Nonlinear Least Squares Optimization.

Initially an Extended Kalman Filter (EKF) was implemented on-board our vehicle fleet. Both
imprecise CNA GPS position estimates and biased or nomliAB& actuation measurements
have been observed to lead to unpredictable correctionsetddEKF position estimate. These
erroneous corrections require a significant period of tinre¢ote re-convergence to the true
estimate. Nonetheless, this approach have been testee alolé to its simplicity and is presented
in Section V-B.

Its prediction step is as in Equation 2 while the measuremesitual equation is as follows

Yk = Zc— Hil [ Xak — X (13)

wherez is the range measurement aHg the Jacobian measurement matrix.
Particle Filtering is an alternative recursive state estimator which uses glsabased ap-

proach to represent a probability distribution. It has théditst to capture both nonlinearity in
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the motion model and non-Gaussianity in the measuremermti@um[9]. In particular we are
interested in its ability to properly represent the amhbigwuring baseline crossings and to
facilitate uncertain vehicle initializations (SectionD)- Particle filters also have the ability to
function successfully when sensors measurements aredbosidenown to be poorly calibrated,
as recognized by [31].

In Section V-C, we have implemented a basic bootstrap filién %500 particles, which was
sufficient for stable performance. Resampling occurs fdfecive sample size below 0.5. More
advanced sample strategies could have been consideretl whidd have lead to more stable
and accurate filtering, in particular reinitialization [Mould aid our problem. However for the
purpose of this qualitative comparison we consider thiscbparticle filter sufficient.

Because of the significant time-step (multiples of 10 sespriie computational draw of these
algorithms is not considered an important factor as longhasailgorithm scales linearly with
time. In terms of computation the EKF implementation is, oficse, insignificant. A particle
filter's computation is linear and is typically a function tife number of particles, in our case
off-line testing with 1500 particles was orders of magnéuddster than real-time on a 2.2GHz
Core-Duo with 2GB of RAM.

Thirdly, a nonlinear optimization of the entire vehiclejéetory could be carried out. As an
example we have implementedNanlinear Least Squares (NLS) optimizer which iteratively re-
optimizes the full path of the AUV when each new measurementégeived, using the previous
NLS estimate up to that point as the initial condition. Iiakly, the computation required for
each successive optimization increases as the number iables to be optimized grows. To
avoid this, one could implement either a windowed estiméiar forgetting factor) using only
the most recent portion of the data [10]. Alternatively orauld carry our efficient matrix
factorization so as to allow optimization of the full pathtlvinear-constant computation cost,
for example using iISAM [19].

A real-time implementation of the latter has recently beemgleted and experimental testing
is in progress; initial results calculated in post-progegsre presented in Section V-C. Given
our measurement frequency (less that 1 per 10 seconds)irttasconstant has been observed

to have negligible effect in our proposed application domai
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V. EXPERIMENTAL TESTING

A series of experiments were carried out in the Charles Radjacent to MIT, to demonstrate
the concept of Moving Long Baseline using the Surface Ciaft©ceanographic and Undersea
Testing (SCOUT) kayaks designed in MIT and the low-cost2veom OceanServer (see Figure
1). Each of the kayaks was equipped with a WHOI modem, a cosmrad a GPS sensor while
the Iver’s basic sensor suite consisted of only a compasaaNéiOl modem. The Iver2’s only
velocity estimate was aonstant value of 1028 m/s (2 knots) specified by the mission plan.
This value was determined by the manufacturer in advanceliyrating the prop input current
to output velocities curve. No feedback was used in exeguttis velocity.

Each vehicle’s on-board computer ran an implementatiohne@MOOS software platform [28].
Maintaining an accurately synchronized clock is esseritialthe estimation of inter vehicle
ranges; to do so the Iver2 utilized a precisely synchrontmadthg board developed by Eustice
et al. [10] while the SCOUT kayaks used the Pulse-Per-Se¢®®E) contained within its

received GPS data messages.

A. Distribution of Range Measurements

Previousproof-of-concept experiments illustrated that the measured range varianbeoadly
independent of range itself, however detailed examinatiaiis was not carried out [5]. In this
previous work, the modem transducer was directly clampethe@ounderside of the kayak. In
the experiments reported here, the transducer was hung et&srbelow the kayak hull; this
configuration encounters less noise interference from #yalk motor and less reflections from
the water surface.

Figure 5 illustrates the WHOI modem range data plotted \we@RS-derived ‘ground truth’, as
measured in our experimental configuration. Note that teethe ground truth distance between
the two vehicles was determined using imprecise GPS meaasuts, it is difficult to precisely
estimate the distribution of the range measurements. lralblsence of precise ground truth, we
estimate the range variance to be between 4-8m.

Finally as the vehicles were moving during the experimda a@ccuracy of the ranging function
is likely to have been reduced when compared to stationaagdyeranging. However, as the
vehicle will be moving we believe that the numbers suggeatene are indeed relevant for our

scenario.

July 22, 2010 DRAFT



15

0.16¢
150 M x4 ﬁ%&
E 3 . %&% Yy 0.14}
L 100} & ok :
=) L . X
% - X X % 012 r
4 0»@ ¥ X
5 | | * 5 01
50 100 150 200 &
T 0.08f
o
[a
) ] 0.06
>
S 0.04}
31. ctmmes setn o & cmes  simm mem  semmunen
8 0.02}
0 . o ®
- - - 0
50 100 150 200 20 -10 0 10 20

Transmission No. Range Difference [m]
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transmission period. Lower Left: lllustration of the fremey of successful transmissions. Category O represenentirely
failed transmission; Category 1: successful range trassom; Category 2: successful range and packet transmisSategory
2 corresponds to the modem ranges in upper left plot. Rigigtogram of range error (using estimated range versus GPS
‘ground truth’ range), also illustrated is a normal distition fitted to the data (red, = 0.66m oy = 7.5m) and the normal

distribution used in the experiments in Section V with (gyas- 0m, g; = 5m). This data set corresponds to Experiment 1A.

B. Online Experimental Tests
Experiment 1A: Our initial testing was carried out using a SCOUT kayak desigd as the

‘AUV’ (but using real acoustic modem hardware). It comptei@ survey-type mission while
another kayak maintained a zig-zag motion planning patbeirind the ‘AUV’ — taking on the
CNA role. The on-board GPS sensor was used to determine tndrtruth position. As the
vehicles had no direct velocity sensors, the GPS velocitynase was used simulate forward
and starboard velocity measurements. Measurements drawnthe CNA transmissions were
used by the ‘AUV’ to reduce its uncertainty. The designat®dV’ carried out 1.5 circuits of
a rectangle, covering approximately 1800 meters in total @vperiod of 37 minutes while the
CNA maintained a supporting pattern behind the ‘AUV’, aswhan Figure 6(a).

Note the temporary increase in the error of the position mressent towards the end of the
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Fig. 6. Paths taken by the simulated AUV and CNA during Experit 1A and Experiment 1B. CNA measurements were
transmitted from the black dots. (a) In Experiment 1A the Y8lWvas enabled for one-way ranging while its CNA carried out
a zig-zag motion pattern. (b) In Experiment 1B the ‘AUV’ usibé fallback of round-trip ranging while its CNA carried carn

encircling motion pattern.

experiment. This was caused by two factors: (1) the CNA pmsiestimation was poor, due to
only 4 GPS satellites being visible, and (2) the CNA moved drapectory that was close, yet
parallel, to the AUV, which caused an EKF baseline crossing i unobservability. While this
could have been avoided with the use of a more accurate GR®mby forbidding the CNA
from taking such a close trajectory, this also provides evad that the EKF is not the ideal
filtering approach.

The following are a number of metrics for this test: mean ret@.5m, mean ‘AUV’ velocity
0.82m/s, mean CNA velocity 1.08m/s. There were 205 trarsoms of which 130 were fully
successful, 63 resulted in a failed packet transmissioralsiiccessful range estimate while 12
resulted in complete transmission failure. The algoritran be seen to bound the error of the
position estimate to approximately 10—-15m.

Experiment 1B: Again using one SCOUT kayak in the CNA role and a second sitimgla
the AUV, round-trip ranging (Section 1) and an AUV encinglent motion planning behavior
was tested. The results are shown in Figure 6(b). The expatilmad a duration of 40 minutes,
however only 25 minutes of the trajectory is shown for claat the figure, to prevent overlap.)

The algorithm performed in much the same way as for one-waging and the error was
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comparable.

However, due to the three step process involved in round raiming, the frequency of
successful measurements was much lower, leading to nengastability during measurement
blackouts. In particular, in the final third of the experirea series of failed transmissions
caused the CNA to pass very close to the AUV resulting in lresedmbiguity (which was
quickly resolved).

X GPS surfaces e
—50[ e DRONly
—e— MLBL .
_1001 CNA Path
-150 A
£
S -200
0
(]
g 250t /9>
\
O
-300
o
-350
-400

-300 -250 -200 -150 -100 -50 0 50 100 150 200
Meters East

Fig. 7. Paths taken by the OceanServer Iver2 AUV and CNA duBmperiment 2. See Section V for more details. CNA

measurements were transmitted from the black dots. Lotatid the vehicles at the surface positions are shown wittkengr

Experiment 2: In a third fully realistic experiment, the OceanServer B&JV carried out a
predefined ‘lawnmower’ pattern running at a depth of 2.4mlevthe SCOUT kayak supported
by transmitting its GPS position to the AUV via the WHOI mode@perating the MLBL EKF
algorithm entirely online, the Iver2 transmitted its own position estimates to the CNAe

CNA then used the estimate to plan locations from which tosmait.

July 22, 2010 DRAFT



18

Figure 7 illustrates the path taken by the vehicles. The leeged 28 minutes and in total
the Iver2 traveled 2 km. The AUV surfaced twice as a safetyaurgon. After 9 minutes the
AUV first surfaced and received a GPS fix at (-201.6, -242.03lasvn as a red cross, at that
time the front seat filter estimated a position of (-258.76-8) while the MLBL filter estimate
(-208.9,-238.1) giving an error of 66.7m and 8.3m error eesipely (87% lower). When the
Iver surfaced for the second time (after 19 minutes), theesponding errors were 53.7m and
14.1m (74% lower).

For each experiment, the MLBL filter estimates were withins&®confidence interval when
the vehicle came to the surface. After each time the AUV sedait transited from the GPS

location back to its planned location on the mission pathotgefdiving and continuing the

mission.
250
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Fig. 8. Results for Experiment 2. Left: Modem range estimatih successful packet transmission (red dots) and modeger
estimates but failed packet transmission (black crosg&ght: 95% confidence for the MLBL algorithm (blue) and theade

reckoning along (green). Note the two long portions of the iruwhich ranges were determined but no packet was sucdgssfu
transmitted and the resultant growth in position uncetyain

It should be mentioned that between 4-8 and 12-18 minutesankefs were successfully
received by the AUV and as a result no MLBL corrections werssie (See Figure 8). This
can be attributed to a number of factors:

« The CNA was positioned behind the AUV and as a result churnattmwfrom the AUV

propeller is likely to have reduced communication captéedi

« The AUV and CNA separated to a range of 225m, which is consdtléong for this

experimental river environment. (However note that the imax range of the WHOI

modem in the open ocean is of the order of 2-3 kilometers.)
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« The presence of a tourist cruise ship nearby.

In future tests, precautions will be taken to avoid thesedss

C. Comparison of Filtering Algorithms

To perform an experimental between the EKF, particle fileerd nonlinear least squares
estimators, we utilized data from an extended 70 minuteitegthich one CNA localized two
kayaks operating as simulated ‘AUVsS’. The experiment alkstrated that by using one-way
ranging, one surface vehicle can support multiple AUVs gishre MLBL approach.

To better approximate realistic operation in a challendiigh current environment, in post-
processing we add a simulated drift of 0.125 m/s, applied sowath-westerly direction, to the
velocity estimates of the simulated AUVs. This simulateidt ¢thelps to match the conditions that
we would expect to encounter with real low-cost AUVs opergibn a long-duration, large scale
ocean experiment. The effect of dead-reckoning drift issillated in Figure 9 (top) — without
outside correction the dead-reckoning of the surrogate #\ii¢reases substantially with time
as the mission progresses. The additional error helps terb#tistrate the performance of the
different state estimators, and matches the situationweaexpect to encounter for our target
application of low-cost vehicles operating in the preseoicecean currents.

In the experiment, AUV 1 operated from the beginning of th@eziment for the full 70
minutes in the southern portion of the operating area. AUVa3 wdded to the northern portion
of the operating area after 32 minutes for the remaining 38utes of the experiment. The
paths that the vehicles took are illustrated in Figure 9. TINA transmitted its position every
30 seconds, leaving two transmission slots in which the ‘AU¥éplied with their position
estimates (although in this case the CNA did not use thisrimédion for adaptive planning).
Note that the average velocity of AUV 1 was 1.38 m/s and thaAWd¥ 2 was 0.68 m/s while
the CNA velocity was 1.17 m/s. Out of 145 transmissions frédra €NA, 113 transmissions
(78%) were received at AUV 1 while out of the 79 transmittechi AUV 2 was operating,
75 transmissions (95%) were received at AUV 2. A passing baased significant interference
to the acoustic communications between 22 and 25 minutes.

The lower figures show th¥ andY paths the two AUVs traveled, as well as the effect that
the velocity bias would have had on dead-reckoning durirag time. Over the course of the

experiment, the dead-reckoning (only) filter estimate icuatlly accrues increasing error, as its
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actuator measurements have essentially been biasedalrhigtresults in an error of 550 meters
at the end of the experiment. By contrast the MLBL solutiontfiis case a NLS optimization)
can remove the bias by fusing the CNA positions and rangds thé biased dead-reckoning.

Results comparing the post-processed performance of the ptticle filter and NLS esti-
mates are presented in Table I. The results presented fquatttiele filter are averaged over 50
representative runs. Two results are presented for NLSertfoe for the final optimized trajectory
incorporating all of the measurements and the error for gtenate of the vehicle’s location,
as estimated on-line. The former is a measure of the qudlitiieopost-processed re-navigated
trajectory while the later figure can be compared directlyhwthe EKF and is the position
estimate that the vehicle could have acted on so as to naviBath were useful in different
circumstances.

The error metrics displayed in Table | are the mean error, tigan of the sum of the

maximum squared errors, maximum error and the mean abseiube measured relative to

the measurements; which are defined as

£ = (%é) /N (14)

(% sﬁ) /N (15)

Erms -

Emax = Mmaxg) Vi (16)
N

Emeas = <Z| | Xai—Xc| | _Zi|> /N (17)

respectively. The latter is explicitly what the NLS minirag The particle filter position estimate
was formed as the simple weighted mean of the particle sbpwdh a kernel estimate would
perhaps have been more accurate.

While the experiment was not intended to definitively meaghbe relative performance of the
three algorithms, nonetheless we believe that it allow®utnpare the traits of the algorithms.
Firstly, we can see that typically the patrticle filter apmio@ut-performs the EKF. This is to be
expected as the particle filter more accurately capturesdnelinear range measurement. This
is particularly important for the segments of the missiorwimich poor relative vehicle motion
results in poor AUV observability.

Secondly the online NLS algorithm marginally out-perforthge particle filter. In the case
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Metric EKF PF NLS (online) NLS (post)‘ ‘

Mean Error (n) 20.843 15.753 15.127 11.661
Root Mean Squared Erromj 23.529 17.799 18.647 14571 ;
Max. Error (m) 48.994  44.575 55.322 48.352 2
Mean Abs. Measurement Errom( | 8.233 5.372 0.213 0.210
Mean Error (n) 19.484 14.356 14.263 5.710
Root Mean Squared Erromj 22.177 17.121 16.622 6.259 :
Max. Error (n) 44.211 36.383 35.133 11.940 2
Mean Abs. Measurement Errom) | 6.613 2.867 0.169 0.154
TABLE |

Results of the multi-vehicle Cooperative Navigation experiments discussed in Section V for an Extended Kalman Filter, Particle

Filter and Nonlinear Least Squares Optimization (with results for online estimates as well subsequently optimized estimates.)

of AUV 2, the online estimate from the NLS algorithm achiewserror of 14.26m while the

particle filter is slightly higher with 14.35m error. The fmmance margin is wider in the case of
AUV 1. This can be attributed to the higher mean velocity @ttehicle (1.38m/s vs. 0.68m/s)
which causes the particles to be more widely dispersedngatiti occasions in which only a
small number of particles are located in the vicinity of atinreated range, until the particle
filter can recover.

The final post-processed NLS solution gives a mean error @6hi and 5.71m respectively,
which represents the best estimate. However the final NL8igo®stimates would not have
been available online to the AUV for motion planning.

Finally, we would like to reemphasize that the tracking ex@ues presented in Table | were,
for the most part, caused by artificial drift added to the meaments. When the measurements
of each sensor are unbiased, each of the three algorithmf@mpermuch better (with a mean

error of a few meters for the data shown above).

D. AUV Position Initialization

An additional experiment was carried out to demonstratenéialization of the cooperative
navigation system mid-experiment. A sequence of imagestitting this is presented in Figure
10. The AUV had been operating for over an hour and had acatedikignificant uncertainty,
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as illustrated by the blue ellipse in Step 1. A range and [wsiheasurement was then received
from the CNA.

Instead of correcting its position using the EKF correctstep, which would be unpredictable
given the AUV’s own uncertainty, the vehicle chose to indteatialize a particle cluster around
the range circle circumference (as illustrated in Step 2)enTover the course of successive
corrections the particles converged into a unimodal dhistion (illustrated successively in Step
3, from black to red to blue).

Finally the particle cluster was replaced with an EKF filtethvihe same mean and covariance
matrix, which then continued to operate as usual for a digtasf over 4km (Step 4-5). Note
that experiment was carried out in the open ocean, unlikeothers, hence the much longer

range measurements and distances involved.

VI. CONCLUSIONS ANDFUTURE WORK

The concept of a single maneuvering surface vehicle sujpgothe localization of a fleet
of AUVs has been described. The approach requires con¢uoperation of vehicle motion
planning and filtering algorithms which required considiera of system observability so as to
maintain stable and scalable performance. As well as dallastrative simulations, a full online
experiment with a single CNA supporting an Iver2 was presgnt

The resultant position estimate was shown to be more aectinanh the vehicle’s own on-
board navigation filter. While the AUV experiment illustedta reduction in error of about 80%,
future open water testing will aim to illustrate that thisagris in fact bounded by the navigation,
ranging and GPS sensors.

Performance comparisons illustrated that both partidieriiig and NLS solutions out perform
the EKF. An efficient NLS optimization algorithm (based oM [19]) has been implemented;
work in progress is evaluating this estimator on a HydroidVRES 100 AUV.

Other future work will focus on extending this framework Bmultaneous operation on three
Iver2 vehicles and eventually towards the scenario in whicket of heterogeneous vehicles
are continuously submerged with only a single vehicle docadly surfacing to access GPS
measurements [11].

Finally, the performance of the algorithm is directly detered by the quality and frequency

of received measurements. We will consider the optimimatibthe transmitted messages (and
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the re-transmission of failed data) so as to reduce the ptiopcof useless or partial messages
received by the AUV . In this work the CNA motion paths was eith repeating zig-zag or an
encirclement pattern. Advanced motion planning of the GN#sith — which takes into account

the mission plan of the full AUV fleet — will also be carried autfuture.
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CNA and AUV Motion
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Fig. 9. Motion of the 3 vehicles used in the experiment in BecY-C. Upper: An overhead view of 7 minutes of the simulated
AUV moation (which was repeated for the duration). Illusttis the ground truth (solid lines) and the current-biaseade

reckoning (dashed lines) as well as the locations from whiiehCNA transmitted (black dots). AUV 1 and the CNA moved
anti-clockwise while AUV 2 moved clockwise. Lower: the X aidmotion of the simulated AUVs. The upper plots correspond
to AUV 1 and the lower plots to AUV 2. The ground truth duringetlexperiment (solid lines), the biased dead-reckoning
(dashed lines), the CNA transmission locations (dots) &edMLBL solution formed by fusing the dead-reckoning and the

CNA positions and ranges (crosses) are illustrated. NateAbV 2 was introduced to the mission after 32 minutes.
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Step 1: Very Uncertain AUV Step 2: Particle Filter Initialized Step 5 - Continue Cooperative Navigation
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Fig. 10. Re-initialization of the AUV position estimate ngia particle filter. An uncertain AUV position estimate (@|Step
1) is replaced by a particle cluster scattered around a rangeposition measurement (black, Step 2). Successivectione
steps cluster the particles in a unimodal cluster (blackhlee, Step 3) until finally the EKF recommences using themeand
covariance of particle cluster as its starting point whicmtmues to track (Step 4-5). Only a portion of the partices the

correction steps are illustrated. See Section V-D for mataits.
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