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Abstract

We model the dynamics of self-organized robot aggregation inspired
by a study on the aggregation of gregarious arthropods. In swarms of
German cockroaches, aggregation into clusters emerges solely from local
interactions between the individuals, whereas the probabilities to join or
leave a cluster are a function of the cluster size. We propose a non-spatial
population dynamics model that keeps track of the number of robots in
clusters of specific size using control parameters of the individual robots
and the probability of detecting another robot in the environment. The
model is able to quantitatively and qualitatively predict the dynamics
observed in extensive realistic multi-robot simulation, and provides qual-
itative agreement with data obtained from aggregation of Blattela ger-
manica larvae. In particular, we show by analysis, numerical and realistic
simulation that the emergence of a single aggregate requires a minimal
communication range between individuals.

1 Introduction

Aggregation processes are ubiquitous in a multitude of domains ranging from
physics (Zangwill 2001) and biology (Parrish & Hammer 1997), to swarm robotic

∗Parts of the results presented in this paper have been shown in N. Correll and A. Mar-
tinoli. Modeling Self-Organized Aggregation in a Swarm of Miniature Robots. In IEEE 2007
International Conference on Robotics and Automation Workshop on Collective Behaviors
inspired by Biological and Biochemical Systems, Rome, Italy, 2007. Both authors were spon-
sored by a Swiss NSF grant (contract Nr. PP002-68647).
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systems (Martinoli, Ijspeert & Mondada 1999). The processes responsible for
aggregation are likely to share similarities on different scales, from proteins,
to social insects, and mammals (Whitesides & Grzybowski 2002), suggesting a
common methodological framework for modeling their dynamics. In the case
of “self-organized” aggregation (Camazine, Deneubourg, Franks, Sneyd, Ther-
aulaz & Bonabeau 2001), which is a result from purely local interactions with-
out central control or global information exchange, and an intrinsic amount
of randomness, analysis of the resulting complex dynamics becomes cumber-
some. Formal modeling of the underlying processes might lead not only to
a better understanding of natural processes, e.g., the aggregation dynamics
of gregarious insects (Jeanson, Rivault, Deneubourg, Blanco, Fournier, Jost
& Theraulaz 2005), but is also beneficial in an engineering context, for in-
stance for designing nano-structures by self-assembly (Mermoud, Brugger &
Martinoli 2009), self-organized building processes (Martinoli et al. 1999), self-
organized bacteria (Basu, Gerchman, Collins, Arnold & Weiss 2005) or mixed
animal-robot societies (Halloy, Amé, Detrain, Caprari, Asadpour, Correll, Mar-
tinoli, Mondada, Siegwart & Deneubourg 2007) as well as determining their
parameters (Correll & Martinoli 2006). Also, aggregation can be understood as
an important collective behavior in swarm robotics, as it might be the prereq-
uisite for more complex collective tasks that rely on local interactions.

In self-organized aggregation phenomena, structures emerge out of continu-
ous aggregation and disaggregation of clusters. In order for sophisticated struc-
tures to emerge, the behavior of the participating agents needs to change as a
function of the aggregate. This can be achieved implicitly or explicitly. In chem-
ical self-assembly building blocks within cyclic aggregates have a smaller proba-
bility to leave the aggregate as this involves the break of two chemical bonds at
the same time vs. only one in non-cyclic aggregates (Mermoud et al. 2009). So-
cial insects instead explicitly modulate their behavior based on their perception
of the environment (Camazine et al. 2001). Examples involving robot swarms
include aggregation of pucks (Martinoli et al. 1999, Agassounon, Martinoli &
Easton 2004), and collective decisions in mixed animal-robot societies (Halloy
et al. 2007). While preferential attachment in aggregation of pucks is implicit
by the increased detection area of larger clusters, in collective decisions — in
(Halloy et al. 2007) robots and cockroaches collectively decide between two dif-
ferent shelters — both insects and robots join or leave an aggregate as a function
of the estimated cluster size.

1.1 Contribution of this paper

We develop a probabilistic macroscopic model based on (Agassounon & Martinoli
2002) and (Wang & Wu 2005) for modeling the dynamics of a self-organized ag-
gregation process that has been observed in gregarious arthropods (Jeanson
et al. 2005) and has been successfully implemented in miniature robots in the
past (Garnier, Jost, Jeanson, Gautrais, Grimal, Asadpour, Caprari & Theraulaz
2008). In order to study the effect of various design parameters, including the
behavioral parameters of the robot and its communication range, on the ag-
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gregation performance, we perform analysis of the macroscopic equations, nu-
merical simulations, and realistic simulations. We show that solely tuning the
behavioral parameters to that of the cockroach is not sufficient for aggregation
into a single cluster, but robots need a minimum combination of communication
range and locomotion speed in order to aggregate into a single cluster when us-
ing probabilistic aggregation rules. By this, we show that the proposed model
can be used as a design tool for deriving the minimal required speed and/or
communication range in order to achieve a specific average cluster size distribu-
tion. We also show that the proposed model can potentially be used to validate
hypothesis on the average speed and communication range of the model natural
system by comparing model prediction with data from cockroach aggregation
experiments qualitatively.

1.2 Related work: models for aggregation

Our probabilistic modeling approach is complementary to deterministic mod-
els for aggregation from a systems and control perspective (Jadbabaie, Lin &
Morse 2003, Tanner, Jadbabaie & Pappas 2005) as well as models for self-
assembly using graph grammars (Klavins 2007). In the aggregation and flock-
ing literature (flocking is conceptually similar to aggregation but involves also
a coordinated motion of the aggregate), the emerging graph structure that rep-
resents the local neighborhood relations between agents as well as the agent
dynamics, are explicitly modeled. This in turn allows to prove properties such
as convergence analytically by assuming perfect sensors and actuators including
range and bearing on the robotic platform. In our models, the graph structure
is only implicitly modeled by the degree of each aggregate. In the grammar-
based self-assembly literature, grammars determine the possible ways agents can
inter-connect. The population dynamics of the resulting aggregates can then
be described using non-spatial reaction-diffusion equations, whose coefficients
are determined from spatial simulation or experimental data (Klavins 2007). In
our approach, reaction coefficients are explicitly derived from the probabilistic
robot controller, sensor and actuator noise, and the geometric properties of the
environment. Also, instead of modeling particular instances of the system, our
approach predicts the likelihood for the system to be in a particular state by
tracking the average number of robots in clusters of different sizes. The model
proposed in this paper is based on our previous work on aggregation of pucks
by swarms of miniature robot (Martinoli et al. 1999), for which we derived an
analytical model in (Agassounon & Martinoli 2002, Agassounon et al. 2004),
and which have also been studied in (Kazadi, Abdul-Khaliq & Goodman 2002).
The algorithms presented in these papers are similar to those presented here
as clusters are aggregated and segregated probabilistically by mobile robots,
although the pucks are not mobile themselves.

Another perspective on aggregation stems from work on maintaining wire-
less coverage using minimalist robots. For instance, Poduri & Sukhatme (2007)
propose an algorithm and analysis for coalescence of a team of robots to a static
gateway based on random walk. As robots never resume motion once they
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stopped close to the gateway, this work is an instance of aggregation without
edge deletion. An algorithm, in which clusters not only grow but might also
shrink is presented in (Correll, Rus, Bachrach & Vickery 2009). In this work
we also use a probabilistic model for expressing the likelihood that all robots
are part of a single aggregate as a function of robot control parameters. Sim-
ilarly, algorithms for maintaining connectivity in a robot swarm described in
(Nembrini, Winfield & Melhuish 2002) have been modeled using a probabilistic
model similar to that presented in this paper by Winfield, Liu, Nembrini &
Martinoli (2008).

Aggregation dynamics of systems in which aggregates can not only grow but
also disperse have been proposed by (Agassounon & Martinoli 2002, Kazadi
et al. 2002, Lerman & Shehory 2000, Wang, Liu & Jin 2003, Matthey, Berman
& Kumar 2009) and have applications beyond the swarm-robotic domain such
as coalition formation in large-scale electronic markets (Lerman & Shehory
2000), load-balancing in grid computers (Wang et al. 2003), and molecular self-
assembly (Wang & Wu 2005). Aggregation processes with reversible popula-
tion dynamics are also of interest to model chemical reaction networks, which
are usually described by continuous-time differential equations (Feinberg 1995).
For instance, Adleman, Gopalkrishnan, Huang, Moisset & Reishus (2008) prove
uniqueness and global convergence of equilibria in reversible, atomic systems.
Similarly, Anderson & Shiu (2010) prove global convergence of instances of
weakly-reversible systems under certain conditions.

2 Aggregation in Gregarious Arthropods

The aggregation of larvae of the German cockroach (Blattella Germanica) serves
as the behavioral model for robot aggregation in this paper. Cockroach behavior
is known to be gregarious, i.e., individuals tend to associate with others of
their kind, and aggregation is known to be mediated by only local interactions
(Jeanson et al. 2005) between individuals.

Aggregation of a swarm of cockroaches in a bounded arena emerges as
follows. Cockroaches move randomly through the arena (Jeanson, Blanco,
Fournier, Deneubourg, Fourcassié & Theraulaz 2003), eventually stop, and ag-
gregate into clusters of different sizes, in which every cockroach can sense the
presence of at least one other cockroach. Clusters are not persistent, because
cockroaches might resume movement and quit the cluster.

The behavioral parameters as a function of cluster size have been measured
for Blattella Germanica larvae by Jeanson et al. (2005). In their experiments,
Jeanson et al. used first-instar larvae (24h old) in a circular arena and examined
interaction in groups of two to four larvae, and trajectories of individual cock-
roaches. They show that the average time to rest within a cluster is a function
of its size, where larger clusters are preferred over smaller ones.

Assuming that mutual perception takes place solely using their antennae, the
rate at which a larva would stop when it perceived 1, 2 and 3 cockroaches within
its perception radius has been measured in a suite of experiments. The rate
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Table 1: Probabilities to stop (pjoin
n ) and restart (pleave

n ) searching during one
time step (T = 1s) as a function of the number of neighbors within perception
range.

n pjoin
n pleave

c

0 0.03 n.a.
1 0.42 1/49
2 0.5 1/424
3 0.51 1/700
4+ 0.51 1/1306

of stopping when no other larvae are nearby was estimated using experiments
involving a single individual. Similarly, the time until an individual left a cluster
of 1, 2, 3 and 4 cockroaches was used to calculate the rate at which cockroaches
spontaneously left a cluster. Here, Jeanson showed that the resting times follow
a bimodal distribution that correspond to short and long resting periods.

In this paper, we are using the behavioral data collected from the cockroach
to achieve aggregation in a swarm of miniature robots. For simplicity, we chose
a unimodal distribution by averaging the resting times provided in (Jeanson
et al. 2005). Also, although cockroaches in (Jeanson et al. 2005) show varying
behavior as a function of their location within the arena (close to the center or
close to the walls), these effects are neither implemented nor modeled in this
paper.

3 Robot Behavior

Following the behavioral model described in (Jeanson et al. 2005), every robot is
either moving or resting. For a finite number of robots N0 in the arena, a robot
can be part of a cluster of size 1, 2, 3, . . ., N0. Both the transition probability
for entering the rest state from the move state (pjoin) and resuming to move
(pleave) are given by a non-linear function that is a function of the robots nearby
(see Table 1). Probabilities have been adopted from behavioral parameters of
the insects. However, while the values of pjoin(j) are identical to those reported
in (Jeanson et al. 2005), pleave(j) is the average leaving probability for short and
long stops that lead to a double-exponential distribution in (Jeanson et al. 2005).
Note that the probability pjoin(0) is the probability to stop when no neighbors
are present.

When moving, the robot senses a part of the arena and eventually encounters
other robots with which it might aggregate. The area which the robot sweeps
at every time interval is given by its communication range that is approximated
by a disc with a certain radius in this paper.

The swarm (the ensemble of robots) aggregates within the environment in
clusters of different size. Due to the robots’ preference to stay with larger
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clusters (given by the behavioral parameters extracted from cockroach exper-
iments), robots eventually aggregate into a single aggregate. This behavior is
independent of the initial distribution of robots in the environment.

Notice that as pleave(j) > 0 the single cluster is not a stable state, but robots
continue to steadily leave and re-joining the cluster.

4 A Probabilistic Model for Aggregation Dy-
namics

The individual behavior described above can be represented by a Markov dy-
namical system for every individual, whereas the collective behavior can be
described by averaging over the states of all individuals.

4.1 Individual Dynamics

We describe the dynamics of each individual v by a Markov chain with a set of
states X .

The state space X (v) is discrete, finite, and reflects the size of the aggregate
that a robot is part of. A static robot that does not have any neighbors (other
robots in communication range) is considered an aggregate of size one. For a
finite number N0 of robots, the state space is thus given by

X (v) = j ∈ {0, 1, . . . , N0}, (1)

with j denoting the size of the aggregate the robot is part of, and X (v) = 0
denoting a searching robot.

The conditional probability for a moving robot to join an aggregate of size
j when searching is given by

P (X (v) = j|X (v) = 0) : Z+ → [0, 1], (2)

and will be denoted by pjoin(j) in the remainder of this paper. Similarly the
conditional probability for a robot to leave an aggregate of size j and resume
search is given by

P (X (v) = 0|X (v) = j) : Z+ → [0, 1] (3)

and will be denoted by pleave(j). As the formalism above assumes that all robots
in an aggregate can sense the number of robots in this aggregate, we also refer
to an aggregate as a clique.

Notice that a robot might change its state not only due to its own action,
but also when another robot is added or removed from the aggregate it is part
of.

The state space and possible state transitions are summarized graphically
in Figure 1. This state-machine is similar to that presented in (Martinoli et al.
1999) for the dynamics of clusters of seeds, but is extended by an additional
state that describes a searching robot.

6



pjoin(0)

pcp
join(1)

pcp
join(j-1)

pcp
join(n-1)

pleave(1) pleave(2)

pleave(j)

pleave(n)

pcp
join(1)Ns

pcp
join(j-1)Ns

1-Cluster

2-Clustern-Cluster

j-Cluster

N1

N2Ns

Nj

Nn

Searching

Figure 1: State transition diagram of an individual robot.
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4.2 Mobility

Assuming an uniform distribution of objects in the arena, constant speed, and
constant sensing range, we can approximate the detection of a robot within
the arena by an encountering probability (see for instance (Agassounon et al.
2004, Martinoli, Easton & Agassounon 2004, Correll & Martinoli 2006), and
references therein).

Definition: Encountering Probability An individual moving with constant
speed and constant sensor range within a bounded arena, has a constant prob-
ability pc to encounter another individual of constant size and appearance at
every time step of length T . In environments populated with N individuals that
are uniformly distributed, the probability to encounter one of them is calculated
by Npc (linear superposition of encountering probabilities).

In order for this definition to be valid, the following assumptions have to
hold (Martinoli et al. 2004, Agassounon et al. 2004):

• The distribution of robots and objects in the environment is uniform, i.e.,
the probability for a robot to encounter another robot or an object is
constant through-out the environment.

• The density of robots and objects in the environment is so low that de-
tection areas of robots and objects do not overlap, and the probability to
encounter a robot or object is proportional to its area.

Notice that correlated random walk (Jeanson et al. 2003) in a bounded arena
eventually leads to an uniform probability density function for the location of
every cockroach in the environment (Berg 1983). Also, in our experiments we did
not implement the wall-following behavior that is observed for real cockroaches
(Jeanson et al. 2005), and which promotes aggregation close to the arena border.

In (Martinoli et al. 2004, Correll & Martinoli 2004) we showed that the
following relation holds for the probability pc:

pc ∼
1

Atotal
vrwdT, (4)

with Atotal the area of the arena, vr the average speed of an individual, wd

the individual’s detection width, i.e., the width it sweeps with its sensors while
moving (the sensor range is equivalent to the robot’s communication range in
this case), and the time discretization of the system T . Thus, pc is proportional
to an individual’s speed (given by vr) as well as its communication range (given
by wd).

We note that in the aggregation system studied in this paper, the agent
speed, and therefore pc, are analogous to the temperature in a chemical reaction,
where higher temperatures correspond to higher molecule mobility.
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4.3 Collective Dynamics

The behavior of the individual robot can be described by a Markov chain that
describes the probability for a robot to be in a specific state, i.e., the likelihood
for a robot to be in a specific state can be described by a random variable. For
the probability of a random variable p to have the value j at time interval k,
one can write the following time-discrete Master equation

pj(kT + T ) = pj(k) +
∑

j′∈X\j

(pj′j(kT + T )pj′(k)− pjj′(kT )pj(kT )) (5)

where pj′j(kT +T ) is the conditional probability that the system will be in state
j at time kT + T when in state j′ at time kT . Notice, that pj′j(kT + T ) can be
also understood as the transition probability of state j to j′ of a Markov chain
with states X . T is the time discretization of the system and k is indexing the
time-steps. For brevity, T is omitted in the remainder of this paper and we
write pj(k) instead of pj(kT ).

Using pj(k) and the total number of individuals N0, pj(k) can also be inter-
preted as the fraction of robots in state j and N0pj(k) yields the the expected
number of robots in state j. For brevity, it is written

Nj(k) = N0pj(k) (6)

Using this notation, 5 can be written as

Nj(k + 1) = Nj(k) +
∑

i

(pij(k + 1)Ni(k)− pji(k)Nj(k)) (7)

which is a discrete-time Rate equation. This derivation is explained in more
detail in (Lerman, Martinoli & Galystan 2005).

We will now develop a set of difference equations that summarize the average
behavior of an ensemble of Markov chains, and thus keep track of the number
of aggregates of size 1 to N0. This equation set is similar to that we proposed
in (Agassounon & Martinoli 2002) except that elements in the aggregate can
also be mobile, which leads to an additional state. An equivalent system is
described in (Wang & Wu 2005), which additionally considers a continuous
addition of elements, motivated by a molecular beam epitaxy scenario in which
new molecules are continuously provided by a beam.

The ensemble of individuals as well as its structural properties is now repre-
sented by a set of difference equations, which keeps track of the average number
of individuals in each state. Inflow and outflow of each state represents the
average fluctuations between states and are given by the probability for a state
transition to occur and the number of robots in other states.

Relying on Definition 1 and its assumptions, the average number of robots
Nj(k + 1) in an aggregate of size j (with 1 < j < N0) at time k + 1, is then
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given by the following difference equation

Nj(k + 1) = Nj(k) + pcNj−1(k)Ns(k)pjoin(j − 1)j
+pleave(j + 1)Nj+1(k)j
−pcNj(k)Ns(k)pjoin(j)j
−pleave(j)Nj(k)j (8)

The term pcNj−1(k)Ns(k)pjoin(j − 1) corresponds to the number of searching
robots Ns(k) that encounter one of the robots in a cluster of size j−1 (probability
pcNj−1(k)), and decide to join this robot’s cluster with probability pjoin(j− 1).
Then, j more robots would be in a cluster of size j. This is also the case when
any robot in a cluster of size j+1 leaves its cluster with probability pleave(j+1).

The number of robots in a cluster of j diminishes by j when a searching
robot joins a cluster of size j (with probability pcNj(k)Ns(k)pjoin(j)), or when
a robot leaves a cluster of j with probability pleave(j).

Notice that the ensemble of Nj(k), j = {0, . . . , N0} corresponds to the cluster
size distribution of the clusters in the environment.

For an aggregate consisting of N0 robots, (8) simplifies to

NN0(k + 1) = NN0(k) (9)
+pjoin(N0 − 1)NN0−1(k)pcNs(k)N0

−pleave(N0)NN0(k)N0

as there exist no aggregates of size N0 + 1, nor any moving robots in this case.
The number of aggregates of size one, at time k + 1 is given by

N1(k + 1) = N1(k) (10)
−pleave(1)N1(k)
+pleave(2)N2(k)
+pjoin(0)Ns(k)
−pjoin(1)N1(k)pcNs(k)

For a constant number of robots, we can calculate the number of moving robots
by

Ns(k + 1) = N0 −
N0∑

n=1

Nn(k + 1) (11)

We note that maintaining a dedicated equation for every possible cluster-size
seems to let the resulting analysis scale poorly. Due to the repetitive pattern of
the equation system, numerical solutions are easily to obtain and allow to get
quantitative insight into the state-space dynamics orders of magnitudes faster
than using agent-based simulation for the same number of agents (see below),
however.
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4.3.1 Steady-State Analysis

The equation system (8)–(10) can be cast into the system described in (Wang
& Wu 2005). In (Wang & Wu 2005), it is shown that all solutions of (8)–(10)
are always positive for positive values of pjoin(j), pleave(j) and pc. They also
show that its equilibria are unique and stable when either pleave(j) = 0, i.e., no
robot ever leaves a cluster, or pjoin(j) = 0, i.e., no robot ever joins a cluster.

In this paper, we are interested in how different choices of pjoin(j), pleave(j)
and pc affect the behavior of the system at steady-state. Here, our goal is to
derive conditions for pjoin(j), pleave(j) and pc that help us design systems that
aggregate into as large aggregates as possible. Although deriving analytical,
closed-form equations for the steady-state of the difference equations is very
difficult — if not infeasible — due to the high degree of nonlinearity of the
resulting system of equations (except for trivial numbers of robots), we show by
inspection of the system dynamics when N∗j (k + 1)−N∗j = 0 that

1. There exist a unique steady-state solution for N∗j for every N∗s ∈ [0, N0]

2. The proportion of robots in clusters at different size is bound by the ratio
of consecutive elements of pjoin(j) and pleave(j)

3. The system behavior can change between dispersion and aggregation sim-
ply by tuning of pc

Theorem 4.1 For the system with the dynamics defined in (8), (9) and (10),
there exist a unique steady-state solution for all N∗j for every N∗s ∈ [0, N0]

Proof Let N∗j be the expected number of robots in a cluster of size j at steady-
state. By solving (8) for Nj(k + 1)−Nj(k) = 0, we obtain

N∗j−1pcN
∗
s pjoin(j − 1)−N∗j (pcN

∗
s pjoin(j) + pleave(j)) + N∗j+1p

leave(j + 1) = 0
(12)

With j = [1, . . . , N0] and N∗s as a constant this a linear equation system with
N0 + 1 unknowns, but provides only N0 equations. Thus, solutions for N∗j can
be obtained by solving a linear equation system in which we fix one value, e.g.,
N∗s = [0, . . . , N0], and calculate the corresponding steady-state.

As solving the system for all possible combined values of pjoin(j) and pleave(j)
is infeasible, we will investigate the system by considering joining and leaving
actions independently from each other. We also notice that the existence of an
equilibrium for a certain N∗s does not allow to draw conclusions on its stability.
For instance N∗s = N0 is a possible state for the system for an infinite number
of different pjoin(j) and pleave(j), but is only a stable equilibrium for the subset
where pjoin(j) = 0. However, one can show that a unique, stable equilibrium
exist by applying Feinberg’s Zero Deficiency theorem (Feinberg 1995), which
has been shown in (Matthey et al. 2009) for an equivalent system. For a numer-
ical stability analysis, the reader is referred to (Wang & Wu 2005), who derive
stability analytically for N0 ≤ 3 and numerically for N0 > 3.
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Lemma 4.2 For the system with the dynamics defined in (8), (9) and (10) with
pjoin(j) > 0, but pleave(j) = 0, N∗j is not a function of N∗s .

Proof We denote steady-states of the system with pleave(j) = 0 by Ńj
∗
. When

considering (12) for pleave(j) = 0, i.e., no robots ever leave, we obtain

Ńj
∗

=
pjoin(j − 1)

pjoin(j)
´Nj−1
∗

(13)

and

Ń1
∗

=
pjoin(0)

pjoin(1)pc
(14)

using (10) for pleave(j) = 0. By plugging in (14) into (13) and calculating Ń∗2 ,
and hence Ń∗3 and so forth, the solution for Ń∗j is given by

Ń∗j =
pjoin(0)

pjoin(j)pc
(15)

Thus, the ratio of robots per cluster-size is solely determined by pjoin(0), pjoin(j)
and pc.

Remark Looking at (9) at steady-state for pleave(j) = 0, we obtain

pjoin(N0 − 1) ´N∗N0−1pcŃs
∗
N0 = 0 (16)

As pjoin(j) > 0, pc > 0, N0 > 0 by definition, it follows that ´NN0−1
∗

> 0 using
(15). Therefore, Ń∗s is equal to zero at steady-state.

Remark All Ńj
∗

= pjoin(0)
pjoin(j)pc

are stable equilibria of the system as clusters
cannot disperse with pleave(j) = 0, see also (Wang & Wu 2005).

Lemma 4.3 For the system with the dynamics defined in (8), (9) and (10) with
pleave(j) > 0, but pjoin(j) = 0, N∗j is not a function of N∗s .

Proof We denote steady-states of the system with pjoin(j) = 0 by Ǹj
∗
. By

solving for the special case of `N∗N0
and pjoin(j) = 0, we obtain

0 = pleave(N0) `N∗N0
N0 (17)

where all terms except `N∗N0
are positive by definition. By using the recurrence

equation

`N∗j+1 =
pleave(j)

pleave(j + 1)
Ǹ∗j (18)

which can be derived in a similar fashion as for the case with pleave(j) = 0, we
can see that actually all Ǹ∗j are zero at steady-state and therefore Ǹ∗s = N0.
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Remark As the system will reach Ǹ∗s = N0 independent of the values of
pleave(j) and as there is no aggregation possible because of pjoin(j) = 0, Ǹ∗s =
N0 is a stable equilibria (see also (Wang & Wu 2005)).

The system that combines preferential attachment and detachment there-
fore balances two different behaviors: aggregation into fixed clusters that are
distributed according to the values of pjoin(j) and dispersion into a steady-state
where all robots are searching (Ǹ∗s = N0). As detachment does not contribute
to cluster growth, and as attachment and detachment can be considered inde-
pendent behaviors, i.e., a robot either detaches or attaches, we conclude that
the maximum cluster size at steady-state is bound by (15). We conjecture that
detachment actually only helps to increase the mixing in the system by increas-
ing N∗s , i.e., the number of robots that are searching. Here, higher probabilities
for leaving a smaller cluster over a larger cluster might bias the system to pro-
mote larger clusters. There is a trade-off, however, with the fact that too high
probabilities to leave a cluster will not give this cluster enough time to grow.
We will address this issue further down.

Theorem 4.4 For the system with the dynamics defined in (8), (9) and (10),
the proportion of robots in clusters at different size is bound by the ratio of
consecutive elements of pjoin(j) and pleave(j).

Proof By inspection of (12) we observe that all terms are larger than zero by
definition. We can therefore establish the following relationship between cluster
sizes at steady-state and joining and leaving probabilities: if N∗j−1p

join(j −
1) < Njp

join(j), i.e., if smaller clusters grow slower than larger clusters, then it
follows N∗j+1p

leave(j + 1) > N∗j pleave(j) in order for (12) to be zero. Likewise,
if N∗j−1p

join(j − 1) > Njp
join(j), i.e., if smaller clusters grow faster than larger

clusters, then it follows N∗j+1p
leave(j + 1) < N∗j pleave(j).

This leads to the following inequalities that the resulting steady-state will
obey if smaller clusters grow slower than larger ones

N∗j−1

N∗j
<

pjoin(j)
pjoin(j − 1)

and
N∗j−1

N∗j
<

pleave(j)
pleave(j − 1)

(19)

and to
N∗j−1

N∗j
>

pjoin(j)
pjoin(j − 1)

and
N∗j−1

N∗j
>

pleave(j)
pleave(j − 1)

(20)

if smaller clusters grow faster than larger ones.

Based on the preceding theorems and lemmas, we will now show that

Theorem 4.5 For the system with the dynamics defined in (8), (9) and (10),
the system behavior can change between dispersion and aggregation simply by
tuning of pc as long as the inequalities for pjoin(j) and pleave(j) are satisfied.
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Figure 2: The miniature robot Alice (left), and its simulated counterpart (right).

Proof Solving (9) for NN0(k + 1)−NN0(k) = 0, we obtain

N∗N0

N∗N0−1

=
pjoin(N0 − 1)

pleave(N0)
pcN

∗
s (21)

We have shown in Lemmas 4.2 and 4.3 that N∗s is only a function of the values
of pjoin(j) and pleave(j) and will assume a value in the interval of [0, N0]. Thus,
whether the system’s behavior is governed by N∗N0

> NN0−1, or N∗N0
< NN0−1,

which corresponds to aggregation into a super-cluster or aggregation into any
other steady-state cluster distribution, respectively, can be controlled by pc,
provided that condition (19) from Theorem 2 is satisfied.

5 Experimental Setup

We wish to show that the macroscopic aggregation model developed above is
indeed relevant to model the average dynamics of a physical system that aggre-
gates based on probabilistic attachment and detachment, and moreover, that
the results of the steady state analysis (Lemmas 4.2, 4.3 and Theorem 4.5) gives
relevant guidelines for the design choices of such a system. As there a N0 pro-
files Nj(k) which describe the average number of robots in a cluster of size j,
large amounts of experimental data are necessary for a quantitative comparison
of model prediction and the behavior of a real system. We therefore rely on the
realistic simulator Webots, which has shown to faithfully reproduce collective
behavior of miniature robots in the past (Michel 2004, Martinoli et al. 2004)
to gather data for simulated miniature robots. The behavior of the robots was
here tuned based on behavioral data obtained from a systematical study with
larvae of the species Blattela Germanica (Jeanson et al. 2005).

5.1 Robotic Platform

The Alice robot (Caprari & Siegwart 2005) has a size of 2cm×2cm×2cm, a
differential wheel drive that reaches speed of up to 4 cm

s , four infrared distance
sensors for obstacle detection (up to 3cm), and 4Bit/s local communication up
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Figure 3: The communication range of each individual is shown by super-
imposed discs. The scenario shows six clusters of 1 individual, and two clusters
of 3 individuals.

to 6cm, which can serve as well as crude low-range and bearing sensor (Figure
2). The robot as well as its sensors and actuators is faithfully implemented in
Webots (see below).

In the simulator, robots have a speed of 4cm/s and can evaluate the number
of neighbors using local communication (we assume that each robot has an
unique ID or can randomly choose its ID from a sufficiently large set). Notice
that behavioral probabilities in our model are independent from the robots’
speed.

A random communication network topology is depicted in Figure 3 where
the communication range (here 10cm) of each individual is depicted by a circular
disc. We refer to the ensemble of robots that can communicate with themselves
directly or indirectly as a cluster.

The arena has a diameter of 1m.

5.2 Simulator

The experimental setup and hardware described above was implemented in We-
bots (Michel 2004) a submicroscopic, realistic simulator that is able to accurately
model the non-linear sensor and actuator characteristics of the Alice robot, in-
cluding Gaussian noise on the sensors as well as wheel-slip.

For this case study, Webots simulations allow us to collect results about 3
to 4 times faster than in equivalent experiments involving real robots. Using
a computational cluster equivalent to 35 Pentium IV processors, we are able
to collect a sufficient amount of data for quantitatively studying the robots’
performance and its distribution for different control parameters. Using this
configuration, we obtained around 120 simulations per hour with up to 12 robots.
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In contrast, gathering quantitative data on the state-space dynamics using
the macroscopic model takes only a few seconds for 12 agents, which corresponds
roughly to four orders of magnitude speed-up when using the macroscopic model
instead of the realistic simulator. In addition for being computationally more
expensive due to faithful simulation of sensors and kinematics, a large number of
experiments is needed in order to obtain smooth average data, as the number of
possible states of the system is very large (all possible combinations of cluster
sizes), and some conformations can be observed less often than others (e.g.,
there is more data available on clusters of size 1 than for clusters of size 12).

For all simulations, the robots were deployed with random position and
orientation in the arena so that there communication radii do not intersect, i.e.,
all robots are initially searching (Ns(0) = N0).

6 Results

For all data presented in this paper, difference equations are solved by numerical
integration for 3h of simulated time (time discretization of the system T = 1s)
with Ns(0) = N0 = 12 as initial condition. For experimental reasons related to
the Webots simulator we do not distinguish between moving robots and robots
in clusters of size 1. Therefore, we add up Ns(k) and N1(k) when comparing
simulation and modeling results.

First, we would like to test whether Theorem 4.5 holds. For this, we tested
the steady-state behavior of our model for different values of pc (0 ≤ pc ≤ 0.1),
and plot the resulting cluster size distribution for selected values in Figure 4.
We clearly observe a shift in system behavior from steady-states in which all
robots are scattered to steady-states where robots tend to aggregate in a single
cluster.

Second, we would like to test whether changing the communication range in
the robotic simulator has the same effect. We performed 1500 runs in Webots
for 3h of simulated time each, and the number of robots in clusters of 1 to 12
individuals was counted every 10 seconds. The communication range, i.e., the
maximal distance other agents can be sensed, was set to 7cm, 10cm, and 12cm.

Indeed, results from simulation with communication ranges of 7cm, 10cm
and 12cm (Figure 5) show a similar trend. In addition, results from realistic
simulation and numerical integration of the macroscopic model show quantita-
tive agreement. Figure 6 compares results for a communication range of 10cm
in realistic simulation (Figure 5) and pc = 0.0102, which can be derived using
(4), in the macroscopic model for the specific case of a cluster of 12 individu-
als. Specifically, we used the following values for calculating pc: vr = 0.04m/s,
Atotal = 0.785m2 and wd = 0.2m, which corresponds to the programmed robot
speed in the simulation, an arena of 1m diameter, and a communication range
of 10cm, respectively. Figure 6 also shows that the steady-state is only reached
asymptotically.

We are also interested in understanding the relevance of the proposed model
to cockroach aggregation. Figure 7, right, shows the temporal evolution of the
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Figure 4: Cluster size at steady state as a function of the encountering proba-
bility (0 ≤ pc ≤ 0.1). Values are shown for the number of robots in a cluster
of size 1 or searching, in a cluster of 6, in a cluster of 11, or in a cluster of 12,
the latter corresponding to all robots aggregating in a single aggregate. For a
critical value of pc, the system shows the tendency for aggregation to a single
aggregate.

mean size of the largest aggregate in 20 experiments with 10 living cockroaches
(from (Jeanson et al. 2005)). On the left of Figure 7, numerical solutions for the
size of the average aggregate in a system of 10 elements are shown for different
values of pc and the behavioral parameters from Table 1. The encountering
probability pc has been intentionally kept a free parameter of our system as we
do not have experimental evidence of the communication range of the cockroach
larvae in (Jeanson et al. 2005). Instead, (Jeanson et al. 2005) derives a possible
detection distance of wd,l = 12mm based on measurements of the cockroaches’
antenna length. Together with the mean speed of the larvae when outside of the
periphery of the arena of vl = 11mm/s, and the arena diameter of 11cm that
has been used in Jeanson’s experiment, we calculate an encountering probability
pc ≈ 0.017. Indeed, the curve with pc = 0.02 in Figure 7 shows the closest
qualitative and quantitative agreement with the experimental data.

Notice that the representation of the data in Figure 7 is different from those
in the previous Figures, e.g., Figure 6. Whereas our model describes the av-
erage number of robots in a cluster of size j, (Jeanson et al. 2005) provides
measurements for the average of the largest cluster in their experiments. Al-
though we cannot capture this quantity with our model, we believe that the
average cluster size, i.e.,

∑N0
j=0 jNj(k)∗/N0 with N0(k) = Ns(k), is a reasonable

approximation especially toward the end of the experiment, where the overall
number of clusters becomes low.
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(a) 7cm communication range

(b) 10cm communication range

(c) 12cm communication range

Figure 5: Average cluster size after 3h of simulated time for 7cm, 10cm and 12cm
communication range (center to center). 1500 simulations per communication
range, the cluster size was recorded every 10 seconds.
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Figure 6: Model prediction using pc = 0.0102 given by (4) vs. simulation results
(average over 1500 simulation) for the average number of robots in a cluster of
12 for 10cm communication range (see Figure 5).

Figure 7: Left: Macroscopic simulation of a system of 10 agents with pjoin(j)
and pleave(j) according to Table 1 showing the temporal evolution of the aver-
age cluster size for various pc. Right: Experimental and simulation data from
cockroach aggregation. Reprinted from (Jeanson, 2005), Copyright 2005, with
permission from Elsevier.

19



7 Discussion

The tendency of whether the system aggregates into a single cluster or remains
scattered in the environment is a function of pc. We observe a change of the
qualitative behavior of the steady-state distribution from an unimodal distribu-
tion to a bimodal distribution for certain values of pc (Figure 4) or the actual
communication range in the realistic simulator (Figure 5). At this point, the
average number of robots that are searching and that are within a single large
cluster are equal. Upon further increasing pc (or the communication range in
realistic simulation), the average number of robots in a single large cluster in-
creases at cost of those searching. Indeed, the parameter pc is a function of the
robot’s speed, and its communication (or team-mate sensing) range (Definition
1). Low values correspond to a low probability to encounter other robots in the
arena, either due to reduced mobility or due to limited communication range. It
seems that a minimal amount of either mobility or communication range is nec-
essary to achieve aggregation. While we provide experimental evidence based
on submicroscopic, realistic simulation only for the influence of communication
range but not for the locomotion speed, we conjecture that low communication
ranges can be counter-effected with increased mobility, and vice versa.

We also show that the same macroscopic modeling framework that we use
for analyzing the robotic simulation can be used to predict the dynamics of
a cockroach swarm. This has been possible, as all the behavioral data, i.e.,
the probabilities to join and leave a cluster as well as the average cockroach
speed, and the experimental setup has been made available. Figure 7 suggests,
however, that the proposed model can potentially be used to infer missing data
and validate hypothesis on parameters, which can not be directly measured
such as the effective communication range as in this example. In fact, the
effective communication range is the only parameter in (Jeanson et al. 2005) that
has not been measured from experimental data, but derived from geometrical
considerations based on the assumption that cockroaches communicate via their
antennas, which have a limited length.

Although suitable values for pjoin(j) and pleave(j) can be calculated for ev-
ery desired combination of N∗j and N∗s by solving a system of linear equations,
it is yet unclear whether this equilibrium is stable. Although we are able to
provide bounds on the relation between cluster sizes and transition probabil-
ities, further work in the stability analysis of the proposed model is required
to create detailed design tools for probabilistic aggregation systems. Neverthe-
less, the results of our steady state analysis can give already useful guidance
in the design process of such self-organized systems. For instance, despite the
algorithmic requirements for the proposed algorithm are very well suited for
resource-constrained platforms such as the Alice, its communication range does
not appear to be sufficient for reliably achieving aggregation into a single aggre-
gate (the communication range of the real Alice robot is limited to 3-4cm) at
the chosen speed (4 cm

s ) . We also note that for a real application the achieved
performance (i.e., reliability of aggregation and time to achieve a single aggre-
gate) might be unsatisfying, but for simpler platforms than the Alice robot,
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e.g., genetically modified cells (Basu et al. 2005) or the I-Swarm robot (size
below 3mm) (Valdastri, Corradi, Menciassi, Schmickl, Crailsheim, Seyfried &
Dario 2006), the proposed algorithm might be the only alternative for achieving
aggregation.

Better results could be achieved by preventing robots from leaving a cluster
and performing collective motions of the aggregates if cluster growth stagnates,
which has been proposed in (Poduri & Sukhatme 2007). This strategy is poten-
tially feasible on the Alice platform, and would allow for coherence of aggregates
while preventing deadlocks in sub-optimal solutions (multiple static clusters in
the environment).

Another possible improvement is suggested by the motivating cockroach ex-
perimental data. Although the proposed model shows close qualitative agree-
ment with the data gathered from experiments with real cockroaches (Jeanson
et al. 2005), our model does not explicitly capture an important feature of the
real cockroaches. Instead of using a constant probability for leaving a cluster
of a certain size as our model does, the cockroaches randomly choose between
two values for the probability to leave a cluster. The resulting resting times are
drawn from a bimodal distribution with means that are up to two orders of mag-
nitude different. As cockroaches have the same average resting time due to our
choice of leaving and joining probabilities and the qualitative behavior of model
and experimental data is similar, it is unclear, what the role of the observed bi-
modal distribution is. The short resting periods strongly affect the coalescence
of the system because clusters are becoming more attractive during this short
interval, as the temporarily joining cockroach increases the cluster’s likelihood
to be encountered and its likelihood to be joined. As changing the encountering
probability pc can have a similar effect, we conjecture that the cockroaches uses
the mechanism of drawing resting times from a bimodal distribution to indeed
make aggregation more efficient. Whether this is indeed the case might be an-
swered in the future by carefully estimating pc for the cockroach species and by
extending the proposed model to arbitrary, possibly bimodal distributions, for
instance using the Gillespie method (Gillespie 1977) for numerical simulation.

We notice that both potential improvements, moving as an aggregate and
relying on bimodal leaving-probability distributions, cannot be captured by the
current model, which is limited to changes in cluster size by one agent at a time
and constant rates. The former limitation is particularly important, as existing
clusters could form new ones also in the system proposed in this paper. This
is the case when a robot enters the space between two existing clusters. Simi-
larly, our model does not capture cases in which robots leave from the middle
of a cluster and leave two clusters of approximately half the size behind. We
observed these behaviors to be unlikely in our experimental setup where robots
are clustered tightly. Its likelihood increases, however, with increasing commu-
nication range of the robots that leads to more sparse deployments. Similarly,
specific settings for pjoin(j) and pleave(j) could promote aggregates with mini-
mal connectivity such as lines (Evans, Mermoud & Martinoli 2010). Such lines
could then be broken apart by a robot leaving from the middle. In these cases,
the geometry of the resulting clusters is becoming an important aspect of the
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model.

8 Conclusion

We adapt a probabilistic model for modeling aggregation phenomena that ex-
hibit not only cluster growth but also cluster dispersion to aggregation of minia-
ture robot swarms. The model links processes that affect the structure of the
emerging cluster distribution with the mobility and communication range of
individual robots, and is capable of quantitative prediction of self-organized
robotic aggregation dynamics. This model has the potential to not only model
aggregation in robotic swarms but also self-assembly phenomena on other scales
that are be governed by similar construction rules.

We also show that aggregation into a single cluster can be achieved by tun-
ing the behavior of the robots according to behavior observed in gregarious
arthropods, but is contigent on a minimal communication range between the
robots.

Although the proposed models allow us to qualitatively and quantitatively
predict the system dynamics of robot aggregation, and to a limited extent also of
cockroach aggregation, its use as a design tool is limited to understanding trade-
offs between communication range and speed as well as bounds on the ratio of
aggregation and segregation probabilities. In future work, we are interested in
using numerical solutions to the system — whose stability we can assess by
inspection — in an optimization framework to find optimal control parameters
for the system, which would allow us to generate control parameters that lead
to any desired steady-state distribution of aggregates. This is currently not
possible as we can assess stability only for special cases of the system.

The model reaches its limitations when the resulting clusters are not tightly
packed, but sparse, or form lines. In these cases joining or leaving robots might
join multiple clusters or break single clusters apart, which is not captured by our
current model. This limits our model to scenarios where aggregates are tightly
packed and preferably are disc-shaped. Studying the effect of the various control
parameters of the system on the resulting cluster geometry and macroscopic
models that allow for the resulting additional state transitions are subject to
further work.
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