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Abstract

We present a unified filtering framework for hybrid metric/topological robot
global localization and SLAM. At a high level, our method relies on a topological
graph representation whose vertices define uniquely identifiable places in the
environment and whose edges define feasible paths between them. At a low
level, our method generalizes to any detailed metric submapping technique.
The filtering framework we present is designed for multi-hypothesis estimation
in order to account for ambiguity when closing loops and to account for uniform
uncertainty when initializing pose estimates. Our implementation tests multiple
topological hypotheses through the incremental construction of a hypothesis
forest with each leaf representing a possible graph/state pair at the current
time step. Instead of using a heuristic approach to accept or reject hypotheses,
we propose a novel Bayesian method that computes the posterior probability of
each hypothesis. In addition, for every topological hypothesis, a metric estimate
is maintained with a local Kalman filter. Careful pruning of the hypothesis forest
keeps the growing number of hypotheses under control while a garbage-collector
hypothesis is used as a catch-all for pruned hypotheses. This enables the filter
to recover from unmodeled disturbances such as the kidnapped robot problem.

1 Introduction

Simultaneous localization and mapping (SLAM) is the task of mapping an en-
vironment with a mobile robot while simultaneously localizing the robot in the
constructed map. Existing solutions typically rely on one of three map rep-
resentations: obstacle-based grid maps or particle maps (Burgard et al. 1996,
1998; Fox et al. 1999b; Grisetti et al. 2005; Eliazar and Parr 2003), feature-
based metric maps (Smith et al. 1990; Dissanayake et al. 2001; Durran-Whyte
and Bailey 2006; Bailey and Durran-Whyte 2006; Montiel et al. 2006; Civera
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et al. 2007; Tully et al. 2008, 2010; Montemerlo et al. 2002, 2003), and topo-
logical maps (Choset and Burdick 1995; Nourbakhsh et al. 1995; Simmons and
Koenig 1995; Cassandra et al. 1996; Choset and Nagatani 2001; Dudek et al.
1996; Tomatis et al. 2002; Ranganathan et al. 2006; Savelli and Kuipers 2004;
De et al. 2008; Tully et al. 2009; Kuipers and Byun 1991; Tully et al. 2007;
Lisien et al. 2005; Blanco et al. 2008, 2007; Kuipers et al. 2004; Angeli et al.
2008; Kouzoubov and Austin 2004). Arguably, the most efficient of the three
is topological mapping, as it concisely represents an environment as a graph,
whose vertices are interesting “places” and whose edges represent the paths be-
tween them (Kuipers and Byun 1991). Unfortunately, adopting a topological
representation often comes at the expense of environmental detail.

Recently, hybrid methods have been proposed that combine the efficiency
and conciseness of a topological implementation with the detail of metric map-
ping (Lisien et al. 2005; Tully et al. 2007; Blanco et al. 2008, 2007; Kuipers et al.
2004; Angeli et al. 2008; Kouzoubov and Austin 2004; Thrun and Montemerlo
2006). We believe there are three classes of such methods that are commonly
used within the context of localization and mapping: the first includes algo-
rithms that essentially lay down topological vertices intermittently along the
robot path as the robot perceives the surrounding environment (Thrun and
Montemerlo 2006; Angeli et al. 2008). For each vertex, sensed information is
stored that can be used to close loops when, for example, a visual fingerprint
is observed for a second time (Angeli et al. 2008). We should note that, de-
spite its use of graphical vertices for pose inference, this first class also falls into
the category of purely metric methods due to its complete reliance on metric
positioning.

The second class of hybrid topological methods includes algorithms that
subdivide an environment into submaps whose connectivity are represented by
a higher level topological graph but whose placement in the environment are
not precisely defined (Blanco et al. 2008, 2007; Kouzoubov and Austin 2004).
The submaps are typically defined with their own coordinate frame, but the
origins of these coordinate frames do not have any physical meaning. For this
class, the pose of the robot is determined by estimating the submap in which
the robot resides along with the robot’s pose within that submap. Also, due to
the fact that vertices lack physical meaning, the local transformations between
submaps must also be continuously estimated.

The third class (Lisien et al. 2005; Tully et al. 2007; Werner et al. 2009a,b;
Kuipers et al. 2004), to which we believe our work is most closely related,
associates vertices in the topological graph with true anchored points in the
environment with physical meaning that the robot can precisely navigate to in
order to deterministically transition to a new subspace in the global map. Thus,
the representative topology is unique for the environment, is repeatable upon
subsequent experiments, and is, most importantly, stable upon revisiting ver-
tices via sensor-based control. For this reason, true high level estimation can be
performed at the topological level without a dependence on metric positioning.

In our previous work (Tully et al. 2007, 2009), we investigated just two
components of the work that we are presenting in this paper. In (Tully et al.
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2007), we focused on hybrid filtering for metric/topological localization. This
original work did not solve the full SLAM problem, only intermittently up-
dated the robot’s pose estimate, and could not robustly recover from unmod-
eled disturbances. Likewise in (Tully et al. 2009), we investigated SLAM as a
multi-hypothesis topological loop closing problem. Unfortunately, this previous
approach was not designed with a unified framework that could also localize the
robot, did not simultaneously solve the metric component of hybrid estimation,
and was also not robust to unmodeled disturbances.

In this paper, we seek to extend our previous work in each of the aspects that
our previous papers were lacking. We present a unified filtering framework for
performing global localization and SLAM in hybrid metric/topological maps.
Our approach factors the filtering problem into a discrete estimation problem
(estimating a topological graph/state pair) and a continuous problem (estimat-
ing the relative metric pose of the robot along with the set of local metric maps
attached to the topology).

For the discrete component of our factored estimation problem, one challenge
is the so-called loop-closing problem in which the filter must detect when a robot
has returned to a previously visited vertex in the topological graph. This can be
especially difficult for a map with perceptual aliasing, where multiple “places”
are indistinguishable to the robot. To solve this problem, the robot must reason
about the connectivity of the graph via the sequence of observations it obtains
during an experiment. To solve this problem, we introduce a novel algorithm
for the incremental construction of a hypothesis forest that is used to evaluate
possible topological hypotheses. We then infer the most likely topological graph
and robot state by embedding a novel recursive Bayesian update procedure into
the hypothesis expansion process.

The contributions of the work presented in this paper are: 1) the introduc-
tion of a novel hypothesis forest expansion algorithm specific to edge-ordered
graphs for proposing possible topological map/state pairs, 2) a new algorithm
for recursively computing the posterior probability of a topological hypothesis
given a sequence of sensor measurements and a novel prior that favors simpli-
fied maps, 3) the design of conservative pruning rules that reduce the number of
hypotheses in the forest, and 4) the use of a garbage-collector hypothesis that
is a catch-all for evaluating the likelihood of pruned hypotheses.

2 Related Work

When addressing global localization and simultaneous localization and map-
ping (SLAM), every approach must maintain and update a representation of
the robot map/pose probability distribution. For both global localization and
SLAM, the existing approaches can be classified into either metric or topological
methods.

3



2.1 Metric Localization

In (Burgard et al. 1996, 1998; Fox et al. 1999b), Markov localization is used
to determine a robot’s pose spatially in the environment. The method first
discretizes the environment with some desired resolution, then assigns a proba-
bility to every state. Thus, the robot is localized in a fine grid. The number of
states S resulting from this discretization depends on the desired resolution and
the environment scale, and processing this representation has an O(S) complex-
ity (Fox et al. 1999b). This method does not scale well for a fine resolution in
a large environment.

Monte Carlo localization (Fox et al. 1999a; Dellaert et al. 1999; Thrun et al.
2000) is similar in that it represents the probability distribution over robot poses
with a set of weighted samples of the state space, called particles. The update
of M particles can be implemented with complexity O(M) (Thrun et al. 2000).
However, representing the initial uniform probability distribution requires a
sampling of particles over the entire state space. Since the convergence of this
method depends on initializing at least one particle near the true pose, the num-
ber of particles increases with environment size. An example that demonstrates
the inefficiency of this approach is shown in Fig. 1-(a).

Multi-hypothesis Kalman filtering is another popular method for metric lo-
calization that invokes a separate Kalman filter for each pose that could po-
tentially explain the initial sensor measurement (Jensfelt and Kristensen 2001;
Roumeliotis and Bekey 2000). Even this technique can become computationally
expensive in the case of large environments with a commonly repeated feature.
Also, compared to topological localization, which we will discuss shortly, multi-
hypothesis Kalman filtering will typically require more hypotheses for a given
environment (see Fig. 1-(b) vs. Fig. 1-(c)).

2.2 Topological and Hybrid Localization

Topological methods discretize the environment to a minimal number of abstract
vertices in a graph. Thus, topological state space representations generally scale
well with environment size. A common method is to use topological features or
fingerprints to heuristically localize a robot to a vertex in the graph (Tully et al.
2007; Choset and Nagatani 2001). In topologically rich environments, though,
similarity in topological vertex characteristics is common, and additional infor-
mation is necessary to resolve these ambiguities. The choice of detailed informa-
tion attached to the topology varies by implementation, as does the representa-
tion of the robot pose probability distribution. Some researchers apply Markov
methods (Nourbakhsh et al. 1995; Simmons and Koenig 1995; Cassandra et al.
1996), while others apply graph-matching (Choset and Nagatani 2001; Kuipers
and Byun 1991; Dudek et al. 1996), which uses observations of neighboring
vertices to prune a set of candidate locations. The complexity of topological
methods varies with the implementation.

In (Tully et al. 2007), we previously investigated hybrid filtering for met-
ric/topological localization. Unlike the work we are presenting in this paper,
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a)

b)

c)

Figure 1: The required number of instantiated hypotheses for (a) particle filter
localization, (b) multi-hypothesis Kalman filtering, and (c) our hybrid filtering
approach.

our previous work was only designed to update localization hypotheses when
the robot arrived at a new topological vertex after an edge traversal instead
of updating continuously while the robot obtains sensor measurements. Thus,
the algorithm that we presented earlier was essentially forced to pause and wait
until the robot completed an edge traversal before it could apply the sensor
observations that were obtained along the GVG edge. This delay meant that,
unlike our new approach, the robot could not localize as soon as should have
been possible given the sensory information. This initial work was also not
generalized for SLAM, could not recover from pruning errors, and improperly
relied on a heuristic to detect any occurrence of the kidnapped robot problem.

2.3 Metric SLAM

The seminal work by Smith et al. (1990) introduced stochastic mapping to
the robotics community, which led to an intense research effort in SLAM. To
this day, the field is continually refining and improving SLAM algorithms to
achieve maximal accuracy while minimizing computation. One of the most
popular SLAM approaches uses an extended Kalman filter (EKF) to jointly
estimate the probability distribution over robot poses and feature positions.
The typical measurements used for metric mapping are either range/bearing

5



measurements (Dissanayake et al. 2001; Durran-Whyte and Bailey 2006; Bailey
and Durran-Whyte 2006) or bearing-only measurements (Montiel et al. 2006;
Civera et al. 2007; Tully et al. 2008, 2010).

Another metric SLAM algorithm is FastSLAM (Montemerlo et al. 2002,
2003), which factors the SLAM problem into a feature estimation problem that
can be implemented with a bank of independent EKFs and a localization prob-
lem that can be estimated with a particle filter. This method is efficient due
to the independence of feature estimation but can have issues with particle
diversity and closing large loops.

A newer innovation is GraphSLAM (Thrun and Montemerlo 2006), where
the SLAM posterior is formulated as a graph network that includes historical
poses of the robot throughout an experiment. The graph is reduced using a vari-
able elimination method and solved using conventional optimization techniques.
One advantage of GraphSLAM is that features are independently estimated, al-
lowing for efficient mapping in environments with many features. The downside
of GraphSLAM is the complexity of performing global data association to close
large loops in the presence of positional drift.

2.4 Topological and Hybrid SLAM

Topological maps are also commonly used for SLAM due to their efficiency.
But many existing topological mapping methods commit to a loop closure after
observing a similar fingerprint or structural characteristic to that of a vertex
already in the map. For example, Choset and Nagatani (2001) use the degree
and equidistance measures at the vertices of a Voronoi diagram to determine if
the robot has returned to a previously visited vertex. Likewise, Tomatis et al.
(2002) observe when the probability distribution over robot positions splits into
two peaks, suggesting a loop. In both cases, the algorithm is susceptible to the
perceptual aliasing problem, in which many locations are ambiguous.

Recently, multi-hypothesis techniques have emerged to better estimate topo-
logical hypotheses with ambiguous loop closure: Ranganathan et al. (2006);
Ranganathan and Dellaert (2011) perform topological SLAM with a Bayesian
inference method that involves sampling to generate map hypotheses, Savelli
and Kuipers (2004) test a tree of topological hypotheses for planarity to en-
sure that the topological maps are consistent, and De et al. (2008) demonstrate
an EM technique for generating plausible and efficient topological maps that
can explain the data (albeit limited to one-cycle and two cycle graphs). Also,
in (Dudek et al. 1993; Marinakis and Dudek 2010), the authors use hypothe-
sis trees to generate topological hypotheses but do not evaluate the posterior
probability of each hypothesis.

In (Tully et al. 2009), we previously introduced a multi-hypothesis topolog-
ical loop closing method with a recursive Bayesian framework for estimating
SLAM hypotheses. This work introduced a tree expansion algorithm and a
Bayesian method to evaluate the posterior probability of each hypothesis. Un-
like the work presented in this paper, though, our previous work in (Tully et al.
2009) was not yet generalized for localization, did not concern metric estimation,

6



CMU Wean Hall Floor 6

0 1 2 3 4

5

6
78910

Figure 2: The high-level topological graph for the hierarchical atlas is the gen-
eralized Voronoi graph (GVG), whose vertices and edges are shown here in an
example map.

and was not robust to unmodeled disturbances.

3 Constructing a Hypothesis Forest

In this paper, we are introducing a filtering approach that, when implemented,
can be generalized for performing either global localization or SLAM in hybrid
metric/topological maps. This is because our formulation computes a hypothesis
forest, which is a set of multiple trees whose nodes represent possible topological
hypotheses. We must maintain multiple trees for this estimation problem be-
cause it accounts for uncertainty in the robot’s initial state (thus multiple root
nodes in the forest) while at the same time allowing for multiple hypotheses to
be spawned from a single hypothesis due to ambiguous loop closure.

3.1 Hybrid Metric/Topological Map

Before we describe our recursive algorithm for constructing a hypothesis forest
for topological estimation, it is important to define the hybrid map that we are
using for this work. Our hybrid map is based on the hierarchical atlas (Lisien
et al. 2005; Tully et al. 2007), which uses a topology to decompose the space
into smaller subspaces in which local metric maps are defined that are tractable
by conventional filtering methods. This allows for a high resolution representa-
tion of the free space while maintaining low computation and storage costs for
localization and mapping.

The topology used by the hierarchical atlas is based on the generalized
Voronoi graph (GVG) (Choset and Burdick 1995), whose edges are the set of
points equidistant to two obstacles and whose vertices are equidistant to three
or more obstacles, see Fig. 2. A principle benefit is that the vertices have a def-
inite location in the free space and the edges define obstacle-free paths between
neighboring vertices, i.e., the topology is both abstract and embedded in the
free space, and as such can be traversed using sensor-based control. Addition-
ally, a key property of our hybrid map is that metric submaps (e.g., Fig. 3) are
inherently loop-free. This means that loops only exist at the topological level1,

1The cardinality of the first fundamental group for both the free space and the topological

7



(0,0)

GVG Edge

α

y

k

xvk

Figure 3: This is a typical submap for the hierarchical atlas. The destination
vertex and the edge index are used to encode the submap in the robot state.
Point features throughout the submap add metric detail to the map.

and thus the evaluation of loop closure hypotheses need only be performed on
the high level topological graph.

The state of the system for this type of hybrid map can be encoded as
[Xk, Sk,Mk, Gk], where Xk represents the relative metric pose of the robot in
its local submap, Sk represents the set of local metric maps, Mk designates the
topological state of the robot (i.e., in which submap the robot currently resides),
and Gk represents the topological graph and its connectivity. While the explicit
definition of Sk can vary depending on the metric submapping technique that
is adopted, the other terms can be defined as follows,

Xk =





xk

yk
θk



 Mk =

[
vk
αk

]

Gk =

[
Nk

Lk

]

,

where vk is the GVG vertex the robot departed when entering submap Mk and
αk is the index of the edge the robot is traversing (relative to a reference edge
of vertex vk). The origin of submap Mk coincides with the location of vertex
vk, and the coordinate frame of the submap is defined such that the departing
angle of the Voronoi edge aligns with the x-axis. The robot’s metric pose in
the submap is denoted by xk, yk, and θk, which are all in the local coordinate
frame. The term Nk defines the number of vertices in the topological graph
and Lk represents a set of circular neighbor lists (one list per vertex) that de-
fine the neighboring vertices for each vertex in the topology, as in (Vijayan and
Wigderson 1982). For example, Lk(vk) stores the vertices in the graph that are
neighbors of vertex vk in the order they occur (counter-clockwise from the first
mapped edge). An element of the neighbor list Lk(vk, j) represents the neigh-
boring vertex of vk along the j-th edge. Fig. 5 shows two edge-ordered graphs
with similar topologies but different edge-orderings. The following variable list
will serve as a reference when we formulate our hybrid filtering scheme.

map embedded in the free space is the same.
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k = 0           k = 1           k = 2          k = 3           k = 4          k = 5

(a) SLAM with no a priori

graph information.

k = 0             k = 1          k = 2             k = 3           k = 4

(b) Global localization with a
fully explored graph.

k = 0            k = 1          k = 2           k = 3           k = 4          k = 5

(c) Partial map localization
and SLAM

Figure 4: This figure shows three types of hypothesis forests that could arise
using our filtering algorithm. In (a), without any a priori information, we ini-
tialize one hypothesis for SLAM and due to multihypothesis loop closure, a tree
expands. In (b), with a known graph, we must filter on multiple starting posi-
tions. In (c), having a partially explored map and uncertainty in the starting
position on the graph requires a hypothesis forest.

2  (1,3)
a) b)

2  (1,3)1  (4,2,3)

1  (4,3,2)

3  (2,4,1)4  (3,1) 4  (3,1) 3  (2,4,1)

Figure 5: This is an example of two edge-ordered graphs. The values next to
each vertex are the vertex indices, while the parenthetical sequences represent
the edge-ordered neighbor lists associated to each vertex. The first mapped edge
for each vertex is shown with an arrow.

Xk → Local Metric Pose
Sk → Set of Local Metric Maps
Mk → Discrete Robot State
vk → Departing Vertex Index
αk → Departing Edge Index
xk → Relative Metric x Coordinate
yk → Relative Metric y Coordinate
θk → Relative Metric Heading
Nk → Number of Topological Vertices
Lk → Neighbor Lists

For this work, we also consider partially explored maps. In this case, a
neighbor list in the graph can contain one or more entries marked as unexplored,
which means, according to that hypothesis, the robot has not yet traversed the
edge associated with that entry of the neighbor list.
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3.2 Incremental Construction of a Hypothesis Forest

The first goal is to incrementally build a set of hypotheses that can completely
reproduce the possible topological graph/state pairs at every time step k given
the topological transitions performed by the robot. We will designate (Mh

k , G
h
k)

to be a possible graph/state pair hypothesis at time step k that is indexed by h.
To recursively construct the set of hypotheses, we maintain a hypothesis forest
where each level of the forest represents a different time step in the experiment.
Therefore, a level of the forest is indexed with time step k. The forest structure
we maintain is comprised of multiple hypothesis trees, each of which is similar to
that in (Dudek et al. 1993; Marinakis and Dudek 2010; Remolina and Kuipers
2004).

The robot begins an experiment at one vertex in the map. The robot has
no other information except for the degree of that vertex, δ0, which equals the
number of edges emanating from the vertex. If the topological graph is known
a priori or is partially explored, then we must initialize multiple root nodes in
our hypothesis forest for each possible starting submap state Mh

k in the existing
a priori known graph hypothesis Gh

k . For the case of a partially explored map,
specifically, we must also add an additional root node that hypothesizes that the
robot is starting the experiment in a topological state that is not represented
by the partially explored graph.

If the topology is completely unexplored, we initialize a single root node of
the hypothesis forest as follows: h = 0, k = 0, Nh

k = 1, vhk = 0, and αh
k = 0.

The circular list for the first vertex, Lh
k(0), is initialized as a list of length δ0

for which each entry is labeled as unexplored. All hypotheses in this single-tree
forest are ultimately spawned from this initial root hypothesis.

In Fig. 4, we show three possible examples for how a hypothesis forest can
be initialized and expanded as an experiment progresses. In Fig. 4-(a), the
robot begins without any a priori information and thus there is a single root
node initialized in the forest that can spawn multiple hypotheses over time due
to multi-hypothesis loop-closure. This equates to pure topological SLAM. In
Fig. 4-(b), the robot is given a completely explored map and thus initialization
is ambiguous (causing multiple root nodes) but loop-closure no longer spawns
multiple hypotheses because all loops are known a priori. This equates to a pure
global localization problem. Fig. 4-(c) is an example that demonstrates a typical
hypothesis forest for a robot performing SLAM while also localizing globally in
a partially explored map. This example applies to a robot that is continuing a
previous SLAM experiment on a partially explored graph but without a known
initial state.

The robot is continuously moving from vertex to vertex in the topology.
When the robot arrives at a new vertex at time step k, the robot chooses a
motion input uk in order to transition to another vertex. The motion input
is a relative offset from the arrival edge into the vertex βk, and produces the
following departure edge αk,

αk = (βk + uk) mod δk, (1)
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where βk is again the arrival edge when the robot arrived at the new topological
vertex. After departing along edge αk, the robot drives to a new vertex along
the GVG edge of the environment and arrives at another vertex in the graph.

We assume that the robot correctly performs the motion input uk at each
time step and therefore leaves the previous vertex via the appropriate depar-
ture edge. This has been an accurate assumption experimentally, most likely
due to the robust sensor-based control of the robot we use for experiments.
Nevertheless, we provide a discussion of how to recover from the failure of this
assumption in Sec. 5.

Algorithm 1 Expanding the Hypothesis Tree

1: for all h ∈ Hk−1 do

2: [vhk−1, αh
k−1, Nh

k−1, Lh
k−1]← LoadHypothesis(h)

3: if Lh
k−1(v

h
k−1, αh

k−1) = unexplored then

4: h′ ← CreateChildHypothesis(h)
5: Lh′

k = Lh
k−1

6: vh
′

k = Nh
k−1

7: Lh′

k (vh
′

k , 0) = vhk−1

8: for e = 1 to δk − 1 do

9: Lh′

k (vh
′

k , e) = unexplored

10: end for

11: Lh′

k (vhk−1, αh
k−1) = vh

′

k

12: αh′

k = (0 + uk) mod δk

13: AddChild(h′, vh
′

k , 0, Nh
k−1 + 1, Lh′

k )

14: for v = 0 to Nh
k−1 − 1 with v 6= vhk−1 do

15: for all e s.t. Lh
k−1(v, e) = unexplored do

16: h′ ← CreateChildHypothesis(h)
17: Lh′

k = Lh
k−1

18: Lh′

k (v, e) = vhk−1

19: Lh′

k (vhk−1, α
h
k−1) = v

20: αh′

k = (e+ uk) mod δk

21: AddChild(h′, v, αh′

k , Nh
k−1, Lh′

k )
22: end for

23: end for

24: else

25: h′ ← CreateChildHypothesis(h)
26: vh

′

k = Lh
k−1(v

h
k−1, αh

k−1)

27: βh′

k = e s.t. Lh
k−1(v

h′

k , e) = vhk−1

28: αh′

k = (βh′

k + uk) mod δk

29: AddChild(h′, vh
′

k , αh′

k , Nh
k−1, Lh

k−1)
30: end if

31: end for

When the robot arrives at a new vertex and chooses a new motion input uk,
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1  (3,2)

3  (2,1)

2  (1,3)

4  (3,•)

3  (2,•)

a)

b) c)

d) e) f)

Figure 6: This is an example of expanding the hypothesis tree due to robot
motion. Hypothesis (a) spawns (b) and (c) after one edge traversal. After
another edge traversal, hypothesis (b) spawns (d) and (e) while hypothesis (c)
spawns only (f). The location of R in the figure marks the robot’s state.

we must update the hypothesis forest by expanding all of the Hk−1 leaf nodes
of the forest (the leaf nodes being the set of hypotheses at time step k−1). The
new hypotheses that are spawned become the new leaf nodes of the forest for
time step k. The algorithm for expanding the tree is outlined in Alg. 1.

Alg. 1 expands all Hk−1 leaf nodes of the hypothesis forest in the following
way. If, according to a hypothesis h, Lh

k−1(v
h
k−1, α

h
k) (which is the neighbor

of the previous vertex vhk−1 that is associated to the departing edge αh
k) is

not unexplored, then we copy the hypothesis to a single child hypothesis but
move the robot’s state to the new vertex and update the departing edge. If
Lh
k−1(v

h
k−1, α

h
k) is unexplored, then the algorithm considers several possibilities

that would agree with the hypothesis: the first possibility is that the robot has
traversed the unexplored edge and has arrived at a new vertex (one hypothesis
is spawned for this possibility). Additionally, the algorithm considers that a
loop is closed and the robot arrives at a previously visited vertex via one of its
unexplored edges. One hypothesis is spawned for each unexplored edge in the
graph except for the current departure edge.
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Fig. 6 demonstrates the expansion of the hypothesis forest. In this example,
an edge traversal causes (a) to spawn hypotheses (b) and (c). This accounts
for the possibility of either visiting a new vertex or closing a loop with vertex
1. After a second edge traversal, hypothesis (b) spawns hypotheses (d) and (e)
for the same reasoning. Hypothesis (c), though, is a complete graph with no
unexplored edges, and therefore spawns just one hypothesis, (f), in which the
state has moved according to the robot motion.

4 A Unified Bayesian Framework for Global Lo-

calization and SLAM

In order to solve the problem of topological global localization and SLAM, we
must determine which hypotheses among the leaf nodes of the hypothesis forest
are likely to represent the true state and the true graph. In addition, we need to
compute the metric pose of the robot within the topological submap associated
with each hypothesis and we also need to estimate the local maps for each metric
submap in the topology. To do this, we compute the posterior probability of
each hypothesis given a sequence of sensor measurements and robot motion
inputs: the hypothesis that better fits the sensor data will produce a higher
probability measure and is therefore more likely to represent the true state and
graph.

4.1 Bayesian Filtering Framework

The overall filtering goal is to estimate a probability distribution over the hybrid
state of the robot [Xk, Sk,Mk, Gk], as follows,

p(Xk, Sk,Mk, Gk|uk, zk, νk, ζk).

where uk is the sequence of metric motion inputs obtained during an experiment,
zk is the sequence of metric measurements, νk is the sequence of topological
motion inputs, and ζk is the set of topological measurements sensed during
submap transitions. The following variable list is provided as a reference.

uk → Metric Motion Sequence
zk → Metric Measurement Sequence
νk → Topological Motion Sequence
ζk → Topological Measurement Sequence

The high level posterior probability estimation problem can be factored, as
in (Blanco et al. 2008), using the definition of conditional probability,

p(Xk, Sk,Mk, Gk|uk, zk, νk, ζk)

= p(Xk, Sk|Mk, Gk, u
k, zk, νk, ζk)

︸ ︷︷ ︸

Relative Metric Filtering

p(Mk, Gk|uk, zk, νk, ζk)
︸ ︷︷ ︸

Topological Filtering

.

13



The posterior is now separated into a metric filtering problem and a discrete
topological filtering problem. The next step we can take is to separate the
topological filtering problem into a likelihood term and a prior using Bayes rule,

p(Mk, Gk|uk, zk, νk, ζk)

= η p(zk, ζk|Mk, Gk, u
k, νk)

︸ ︷︷ ︸

Likelihood Term

p(Mk, Gk|uk, νk)
︸ ︷︷ ︸

Prior Term

. (2)

The scalar value η in Eq. 2 is used for normalization over the probability distri-
bution.

Our approach is to estimate a discrete probability distribution over possible
topological hypotheses (that are by design generated by our hypothesis forest).
Thus we are estimating a posterior probability for each hypothesis [Mh

k , G
h
k ]. We

are also estimating Xk and Sk with a bank of continuous filters (one continuous
filter per topological hypothesis [Mh

k , G
h
k ]).

4.2 Relative Metric Filtering

To solve the metric filtering problem, we want to estimate

p(Xk, Sk|Mh
k , G

h
k , u

k, zk, νk, ζk)

for each topological hypothesis [Mh
k , G

h
k ] that is generated by the hypothesis

forest described in Sec. 3.
When the robot transitions to a new submap, we know that the robot is

positioned on the origin of the new local submap. This is because the robot
hones into a GVG vertex upon transitioning to a new GVG edge. Thus, upon
transitioning to a new submap, we can initialize a Kalman estimate for the pose
of the robot as follows,

X̂k = 03×1 for uk = ∅, νk 6= ∅

Pk =





σ2
x 0 0
0 σ2

y 0
0 0 σ2

θ



 for uk = ∅, νk 6= ∅

where the diagonal elements are nonzero variances to define the initial uncer-
tainty in the robot pose in relation to the submap origin. We initialize a bank of
Kalman filters this way for each hypothesis in the topological hypothesis forest.

Each filter in the bank of Kalman filters that estimate Xk will also include an
estimate of the local metric submap SMk

k . Defined this way, the set SMk

k for all
Mk defines the term Sk. Upon transitioning to a new submap, the local submap
estimate SMK

k is either 1) retrieved from a prior estimate if the topological edge
has been explored previously, or 2) initialized as an empty map that will be
created online using a local metric SLAM approach.

In general, if the submap Mk in graph Gk is already explored, the estimation
of the continuous distribution p(Xk, Sk|Mk, Gk, u

k, zk, νk, ζk) is more closely re-
lated to using a Kalman filter (EKF) to track the robot pose given exteroceptive
sensor measurements zk to features in the previously mapped submap SMK

k .
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If the submap Mk in graph Gk has not yet been explored according to a
hypothesis, then the robot does not have the metric submap with which to
localize. In this case, the robot will perform local metric SLAM along the GVG
edge of the topology to create a new feature map SMk

k that can be attached
to the topological hypothesis for use with localization when traversing the edge
again. The algorithm that is used to build the metric feature map within the
topological edge is not important (the algorithm generalizes to any local metric
SLAM algorithm).

4.3 Topological Likelihood Estimation

In the previous section, we describe a metric localization and mapping frame-
work that tracks the pose of the robot in each topological hypothesis with a
bank of EKF’s. In a sense, our formulation is related to performing multi-
hypothesis Kalman filtering for SLAM and localization. The task that remains
is determining which of these metric Kalman filters is tracking the true pose
and estimating the true graph. To do this, we need to estimate the likelihood
term from Eq. 2, for each hypothesis h,

p(zk, ζk|Mh
k , G

h
k , u

k, νk), (3)

To reduce storage and computation, this likelihood term can be computed re-
cursively for a hypothesis h′ given the likelihood of the parent hypothesis h in
the hypothesis forest, i.e.,

p(zk, ζk|Mh′

k , Gh′

k , uk, νk)

= p(zk, ζk|zk−1, ζk−1,Mh′

k , Gh′

k , uk, νk) p(zk−1, ζk−1|Mh′

k , Gh′

k , uk, νk)

= p(zk, ζk|zk−1, ζk−1,Mh′

k ,Gh′

k ,u
k, νk)p(zk−1, ζk−1|Mh

k−1,G
h
k−1,u

k−1, νk−1) (4)

In Eq. 4, the likelihood function has been split into two terms using the defi-
nition of conditional probability: the second term can be viewed as a prior on
the likelihood function for the recursion, while the first term represents the up-
date to the likelihood after receiving a new measurement at time step k. This
means that we can take the likelihood of a parent hypothesis in the hypothesis
forest, expand the children of the hypothesis using the motion of the robot,
and then recursively update the likelihood by multiplying by an update term
p(zk, ζk|zk−1, ζk−1,Mh′

k , Gh′

k , uk, νk).
The likelihood update that we use experimentally can be written as follows,

p(zk|zk−1, ζk−1,Mk, Gk, u
k, νk) ∝

e−
1
2 (zk−h(X̂k))

TR−1(zk−h(X̂k)), (5)

which we can generalize for the topological measurement ζk as well with an inde-
pendent multiplication by an equivalent term. The matrix R in this formulation
is the measurement covariance matrix. The term zk is the metric measurement
obtained at time step k and the term h(X̂k) is the expected measurement given

15



the pose of the robot and the metric submap. This type of update can be used
for, say, a range or bearing measurement to a metric feature in the topologi-
cal submap. We note that this likelihood update process is performed for each
submap simultaneously as new measurements are obtained. This means that
at the beginning of an experiment, when the robot arrives at a new vertex, the
likelihoods of many hypotheses will be high. Eventually, though, as new infor-
mation is incorporated using this filtering update, the likelihood of the wrong
hypotheses will tend to zero.

When applying the likelihood update, it may not seem apparent that the
robot will know how to compute the expected measurement given the local
metric map associated to the topological edge. If this were the case, the robot
would not be able to compute h(X̂k) in Eq. 5. This is because, at first glance, the
equations do not seem to account for the robot’s orientation difference between
a past visit to this submap and the robot’s current visit. But this is actually not
the case. When the local feature-based submap is visited for the first time, the
robot creates a map that is relative to the departing angle of the robot (i.e. the
x-axis aligns with the departing angle of the robot, as seen in Fig. 3). When
the robot visits this submap again, and as long as it zeros its heading when
departing the GVG vertex, all of the landmarks will be relative to the robot’s
new coordinate frame.

Eq. 5 does not account for when a robot receives a false-positive measure-
ment. This means that a measurement was obtained that could not be associ-
ated to anything in the map. This is depicted in Fig. 7-(c). In this case, we
assign a maximum likelihood penalty to the likelihood function. The intuition
is that we would like to penalize this hypothesis because in this situation, the
submap hypothesis says that there should not have been a measurement when
there was, thus the hypothesis itself may not be correct.

Another case that Eq. 5 does not account for is when there is a landmark
in the local metric map nearby the robot that should have produced a sensory
measurement, but for some reason the robot did not observe any measurements.
In this case, we choose not to modify the likelihood at all (except for possible
effects from normalization). This is because feature detection, in general, is not
always a dependable measurement and thus it would not make sense to penalize
this situation.

In Fig. 7, we show three examples of what can occur during a robot’s traversal
of a topological submap. In (a), the robot measures a metric feature, and
because the measurement aligns well with an associated feature in the stored
map, the likelihood update in Eq. 5 will favor this hypothesis. In (b), we show
a measurement not aligning well with the stored map. The likelihood update
will penalize this hypothesis accordingly. In (c), we show a situation in which
the measurement cannot be associated with a feature in the map. This suggests
that the robot is actually in a different submap than the one hypothesized, and
thus this node in the hypothesis forest will be given a maximum penalty for
the likelihood term. In (d), we give an example of the the robot passing by a
landmark (according to the hypothesis) but no measurements are received by
the onboard sensing. In this case, we do not penalize the likelihood term.
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Submap 1

Submap 2

Submap 3

a)

b)

c)

d)

Figure 7: In (a), there is good alignment between the measurement and the
expected landmark location, which will cause increase the likelihood. In (b), a
measurement is associated but does not align well, which will negatively impact
the likelihood. In (c), a measurement that cannot be associated to any known
landmark will apply the maximum likelihood penalty. Lastly, in (d), missing a
nearby measurement will not be penalized.

4.4 Topological Prior Estimation

Neglected thus far in our discussion is the prior term p(Mk, Gk|uk, νk) which,
when combined with the recursive likelihood computation and the metric local-
ization and SLAM, completes the terms required to jointly estimate the prob-
ability distribution over the hybrid state space [Xk, Sk,Mk, Gk]. We compute
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this prior for each hypothesis h. This term can be factored as follows,

p(Mh
k , G

h
k |uk, νk) = p(Mh

k |Gh
k , u

k, νk)
︸ ︷︷ ︸

State Prior

p(Gh
k |uk, νk)

︸ ︷︷ ︸

Graph Prior

. (6)

The term p(Mh
k |Gh

k , u
k, νk) is a prior on the submap the robot is in (given

a graph), which essentially decides the weighting of a hypothesis upon initial-
ization: for global localization, this distribution would be uniform over many
submaps in a single graph; for SLAM, there would be one initialized hypothesis
and this hypothesis would have a prior of 1.0.

The term p(Gh
k |uk, νk) in Eq. 6 is a graph prior that weights the hypothesized

graphs according to their a priori likelihood. In other words, this term repre-
sents, without any sensor information, the probability that the robot happens to
be placed in an environment with a topology Gh

k . What should this distribution
be? We believe there is actually no correct way to define this distribution.

But we can do better than a uniform distribution. Consider the following
situation: a robot is circling a triangle topology, as in Fig. 8 (a), with three dif-
ferent edges. Over time, it would appear that a sensor measurement is repeated
every third time step because the robot is traversing the same three edges over
and over. The triangle, as the correct map, would fit the sensor data very well.
On the other hand, the topology in Fig. 8 (b) would also fit well for the same
measurement sequence due to perceptual aliasing. Which topology should be
preferred? In some sense, topology (b) is over-fitting the data. Like Occam’s
razor, the graph that explains the sensor data with the simplest solution should
be chosen. We use the following distribution for experiments,

p(Gh
k |uk, νk) ∝ exp

(
−Nh

k log k
)
,

where Nh
k is the number of topological vertices in the graph according to hy-

pothesis h.

a)
2  (1,3)1  (3,2)

3  (2,1)

b)
2  (1,3)

1  (6,2)

3  (2,4)

4  (3,5)

5  (4,6)

6  (5,1)

Figure 8: This is an example of two different topologies that can result in a
situation of perceptual aliasing. Both topologies fit the sensor data well.

When two hypotheses have a similar likelihood, this prior will give preference
to the smaller graph. This makes sense, because we would like to prevent over-
fitting the data. It turns out that this formulation is equivalent to using the
Bayesian information criterion (Schwarz 1978) for model selection. The Akaike
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information criterion (Akaike 1974) is related and is used in (De et al. 2008)
with considerable success for a limited class of topologies.

By combining in Eq. 2 the prior developed here with the likelihood function
of Eq. 4, we are effectively trying to capture the perfect balance between small
concise maps that would make sense for a structured environment and large
intricate maps that better fit the data.

5 Pruning Hypotheses

The forest expansion algorithm described in Sec. 3 exhaustively considers all
possible loop closures during an experiment. Therefore, even for a small map,
the number of leaf hypotheses in the forest can grow very quickly (even to a
size that is not computationally feasible). To keep the forest size bounded, we
apply a series of pruning tests to the leaf hypotheses at each time step. In
addition to a pruning step, we introduce a new method called the garbage-
collector hypothesis that is a catch-all for pruned hypotheses and that can help
the algorithm recover from unmodeled disturbances.

5.1 Topological Hypothesis Pruning

Our pruning stage is crucial in the success of the algorithm and allows for the
processing of large and ambiguous maps. We apply only conservative rules to
prune hypotheses in order to reduce the chance of eliminating the hypothesis
that represents the true map/state.

5.1.1 Degree Test

In Alg. 1, when Lk−1(vk−1, βk) = unexplored, the hypothesis tree adds a child
hypothesis for every possible loop closure that connects the previous vertex
with another vertex v that also has a dangling unexplored edge. If the mea-
sured degree δk is unequal to the degree of vertex v, then that child hypothesis
is immediately discarded. This test involves no risk of eliminating the true
hypothesis as long as the degree is measured accurately.

5.1.2 Likelihood Update Test

When updating the likelihood for a new hypothesis recursively via Eq. 4, we
observe whether p(zk, ζk|zk−1, ζk−1,Mh

k,G
h
k,u

k, νk) exceeds a 4-sigma error bound.
If true, this would imply that the new measurements do not agree with the mea-
surements already associated to the corresponding edge/vertex and are therefore
relative outliers in the data. This hints at an incorrect loop closure and thus
the hypothesis is pruned. This test has an extremely small but nevertheless
non-zero chance of eliminating the true hypothesis.

19



5.1.3 Planarity Test

As in (Savelli and Kuipers 2004), we use a strict test to eliminate hypotheses
whose topological graphs are not planar. For more intricate graphs, and those
with many loops, the addition of this test can often prune a large number
of hypotheses without the risk of discarding the correct hypothesis. We use
the algorithm in (Vijayan and Wigderson 1982) to test planarity because it is
specifically designed for edge-ordered graphs. The benefit is that we can prune
even more graphs, e.g., those that are planar in a conventional sense but not
planar when considering edge-ordering. An example is the graph in Fig. 5 (b).

5.1.4 Posterior Probability Test

Our least conservative pruning rule is to eliminate any hypothesis whose pos-
terior probability drops below a threshold. This implies that the hypothesis
is either a very poor fit to the sensor data or is dominated by a hypothe-
sis that can explain the sequence of measurements just as well with a smaller
map representation. A hypothesis is pruned when the posterior of a hypothesis
p(Mh

k , G
h
k |zk, uk, νk, ζk) exceeds a 4-sigma error.

5.2 Garbage-Collector Hypothesis

Unfortunately, by choosing to prune hypotheses that have a nonzero probability,
we are sacrificing the Bayes optimality of our hybrid filtering approach. To
regain this optimality, we collect the leftover probability from pruned hypotheses
into a garbage-collector hypothesis. The garbage-collector hypothesis is a catch-
all for hypotheses that have been eliminated. More specifically, the garbage-
collector hypothesis estimates the probability that the true topological location
no longer exists in our current set of hypotheses and must have been wrongly
pruned from the hypothesis list. For this reason, this extra hypothesis is a safety
net for our filter that can detect when an unmodeled disturbance has led the
estimation process astray. We provide a custom Bayesian filter framework to
continually update this garbage-collector hypotheses with sensor measurements
obtained by the robot. Our solution to this problem is related to the work
by Jensfelt and Kristensen (2001).

In this formulation, we choose to only update the garbage collector hypoth-
esis when a topological measurement is obtained. The metric feature measure-
ments within the submap do not play a part in the determination of the garbage
collector probability.

The posterior probability of the garbage-collector hypothesis Ck can be writ-
ten as follows,

p(Ck|uk, zk, νk, ζk)

where uk, zk, νk, and ζk are the motion and measurement input sequences, as
before. p(Ck|uk, zk, νk, ζk) starts at zero, for at the beginning of an experiment,
without having pruned any hypotheses, we know that the true state is still
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completely covered by the hypothesis set and so the likelihood of the robot
being somewhere else is zero.

During our test for pruning, which we apply to each submap Mk, we check if
the probability associated with that submap has dropped below a threshold. If
it has, that probability is added to the garbage-collector hypothesis, as follows,

p(Ck|uk, zk, νk, ζk) =

p(Ck|uk, zk, νk, ζk) + p(Mh
k , G

h
k |uk, zk, νk, ζk)

for all [Mh
k , G

h
k ] s.t. p(Mh

k , G
h
k |uk, zk, νk, ζk) < γ. (7)

By keeping the portion of total probability that would have been pruned out,
the normalization step will no longer inflate the remaining hypotheses to accom-
modate for the lost probability. We note that the garbage-collector hypothesis
is included when normalizing.

When we perform the measurement update for the likelihood term for all
of the topological hypotheses, we also update the probability for the garbage-
collector hypothesis. The measurement update is,

p(Ck|uk, zk, νk, ζk) ∝
p(ζk|Ck,u

k,zk−1,νk,ζk−1)p(Ck|uk−1,zk−1,νk−1,ζk−1)

which uses Bayes law to split the posterior into a likelihood term and a prior
on the posterior. Some of the exponents have been decremented on the RHS
in order to depict this update in a recursive form. This is allowed because
the extra motion terms uk and νk that were dropped from the prior term on
the RHS do not add information to the garbage-collector hypothesis. Only
measurements can help resolve whether the state is somehow in one of the
pruned hypotheses. Also, the most recent metric measurement zk is dropped
from the RHS because in this formulation, we choose to only update the garbage-
collector with measurements at the vertex, in which case zk is undefined.

The measurement likelihood can be computed by adding a hidden variable
using the law of total probability,

p(ζk|Ck, u
k, zk−1, νk, ζk−1)

=

∫
∞

−∞

p(ζk|wk, Ck, u
k, zk−1, νk, ζk−1) ×

p(wk|Ck, u
k, zk−1, νk, ζk−1) dwk (8)

The hidden variable wk is the true measurement (for example an equidistance
range value at a vertex of the GVG) at the current robot location (which of
course we do not know according to the garbage collector but we can marginalize
over it). The first term in the integral, p(ζk|wk, Ck, u

k, zk−1, νk, ζk−1) is the
likelihood of measuring an equidistance ζk given that the true equidistance is
wk. The second term is the distribution over what the true equidistance could
be given no other information other than the fact that we know the robot is not
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in one of the existing hypotheses. This is essentially a prior over possible true
equidistance values and is difficult to define. We choose a uniform distribution
over a fixed range of positive equidistance values [0,wmax], as seen in Fig. 9.

After inserting the appropriate models into the measurement likelihood in
Eq. 8, we arrive at the following,

p(ζk|Ck, u
k, zk−1, νk, ζk−1)

=
1√
2σ2π

∫ wmax

0

e
−(ζk−wk)2

2σ2

(
1

wmax

)

.

=
1

2wmax

(

Erf

(

ζk
√

2σ2
T

)

− Erf

(

ζk − wmax
√

2σ2
T

))

(9)

where σ2
T is again the variance on the equidistance measurement ζk.

ζ k

p(w )
k

μk

wmax

Figure 9: This shows the garbage collector hypothesis measurement update step.
Compared to the known equidistance µk of the only remaining submap hypoth-
esis, the measured equidistance ζk is very different, suggesting that the robot is
not where it expects. In this case, the probability of the hypothesis drops and
the garbage collector hypothesis probability increases through normalization.

In Fig. 9, we show an example visualization of the garbage-collector measure-
ment update process. In this situation, a noisy measurement ζk is obtained by
the range sensor of the robot. Associated with this measurement is a Gaussian
uncertainty (as can be seen in the figure). There happens to be one remaining
hypothesis Mk that has a true equidistance range µk, depicted by a dotted line
in the figure. It is easy to note that the measurement does not align well with the
expected true equidistance value for the submap in which we expect the robot
to be. Two things will happen in this situation. The first is that the remaining
submap hypothesis will be severely penalized by the disagreement of the sensor
measurement through the topological measurement update. The second is that
the garbage-collector hypothesis will not be severely penalized because the mea-
surement aligns well with the range of possible true equidistances [0,wmax] (for
any other previously hypothesized submaps). After the normalization step, the
garbage-collector hypothesis will then be pushed higher while the probability
of the one remaining submap hypothesis will drop. If measurements continue
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to disagree with the existing submap, the garbage-collector will dominate the
probability distribution and localization or SLAM should be reset.

6 Evaluation

To validate our hybrid filtering algorithm, we conducted several experiments
with a mobile robot in an office-like environment to test global localization
with an a priori map, the kidnapped robot problem, topological SLAM in an
ambiguous map, and metric localization/SLAM.

6.1 Experimental Setup

For all of our hybrid topological localization and SLAM experiments, we used a
two wheeled differential drive robot that has an array of sonar sensors configured
in a ring around the robot. The robot also has an omnidirectional camera
system that is implemented with a conventional firewire camera pointing up at
a parabolic mirror. An example of the omnidirectional camera image that we
use is shown in Fig. 10. Additionally, encoders on the wheels of the robot are
used to measure the robot’s translational and rotational velocity as it navigates
the environment.

Figure 10: This is an example of the omnidirectional images that we obtain for
metric measurements as the robot navigates along a GVG edge in the environ-
ment.

We have implemented a sensor-based control law for the robot to navigate
along the an edge of the Voronoi diagram using the sonar ring onboard the
robot. Our implementation is similar to that which is presented in (Choset
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and Nagatani 2001). The edge tracing algorithm essentially uses the sonar ring
to measure local minima in the sensed range to the obstacles surrounding the
robot. The control law seeks to steer the robot so as to equalize the range to
the nearby obstacles, thus achieving two-way equidistance. For more details
see (Choset and Nagatani 2001).

The sonar ring is also used to detect the GVG vertices in the environment.
If, while computing the local minima of the range to the surrounding obstacles,
three-way equidistance is observed, then the robot will apply a different control
law to drive the robot onto the true GVG vertex position. This is a very
robust homing process, which is particularly important for the algorithm we are
introducing, as it provides a guarantee that the starting position of the robot
upon subsequent visits to the same submap will be repeatable. For more details
see (Choset and Nagatani 2001).

While the sonar sensors are used to navigate the GVG, we do not use them
for metric feature sensing within the submaps. This is because feature extraction
from range data is not necessarily robust. Also, we instead choose to use an
inexpensive omnidirectional camera, which can be used to detect robust features
in the environment. To perform feature extraction, we have implemented a
custom Hough transform that detects vertical lines in the environment that
typically correspond to doorways. The reason for using two sensors (sonar
and vision) is that both have their advantages in the implementation of our
algorithm.

6.2 Global Localization

To validate the use of our approach for solving global localization with an a
priori map, we built a large dataset with which we post-process the data offline
in order to test various localization tasks. The experiment was performed in an
office-like building at Carnegie Mellon University. The dataset spans 5 separate
floors of an office building and provides a large discontinuous global map with
numerous ambiguities that, for this reason, creates a challenging environment
for mobile robot localization. We captured this dataset by having the robot
autonomously trace the edges of the GVG while it gathered metric sensor data
from the omnidirectional camera and topological sensor data from the sonar
range sensors.

The high level topological graphs corresponding to the floor plans of the
experimental map are shown in Fig. 11. There are a total of 47 topological
vertices in the environment and a total of 106 different submaps in which the
robot may reside during localization. The submaps correspond to the GVG
edges in the topological graph (two submaps are stored per edge corresponding
to one submap per direction of travel along the edge).

For one of the experiments, we had the robot travel from vertex 23 to vertex
22 and then to vertex 25 within the 6-th floor of the building. In Fig. 12, we
show the state of the filtering process throughout this experiment. The submap
hypotheses all started with equal probability at the beginning of the experiment
(signifying the robot’s uncertainty in its location). Then, after sensing the clos-
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Figure 11: This is the global map for our experiments which is comprised of
a disconnected topological graph that includes several floors of an office-like
environment.

est vertex in the GVG, the robot acquires an equidistance measurement and
applies a topological measurement update. This boosted the probabilities of
submaps that have similar known equidistance values and lowered the probabil-
ities of submaps for which the stored equidistance was very different than what
was observed. The effect of this update can be seen in region R1 in Fig. 12.

The robot then initialized the bank of metric tracking filters for metric lo-
calization so that it could estimate its pose within each of the submaps. The
robot departed the GVG vertex towards vertex 22. While traveling within the
submap, the robot measured visual features that were detected by the omnidi-
rectional camera and applied a measurement update to correct the metric filters
as well as the discrete probability distribution over topological hypotheses. The
effect of the metric measurements on the topological submap hypotheses can be
seen in Fig. 12 (Region R2). The majority of submap hypotheses are pruned
out because the alignment and association of the measurements do not agree. In
this case, only two hypotheses remain (the correct hypothesis and the equivalent
hypothesis on the 7-th floor that is ambiguous).

The robot then updates its distribution with another vertex equidistance
measurement and another edge traversal with metric measurements (see Fig. 12:
Regions R3-R5). Throughout this edge traversal, two hypotheses are still am-
biguous. It is not until the robot makes a third vertex equidistance measurement
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Figure 12: In this experiment, the robot travels from vertex 23 to vertex 22
and then to vertex 25 in the topological graph. In R1, the vertex equidistance
measurements favors some of the hypotheses. In R2 the landmark measurements
along the GVG edge rule out all but two hypotheses. In R3 and R4, the motion
model is applied and another equidistance measurement is made. In R5 more
landmark measurements are made. In R6 and R7, the robot eliminates all but
the correct topological submap hypothesis.

(see Fig. 12 Region R7) that the correct hypothesis is detected and dominates
the probability distribution. In this experiment, localization was performed
successfully without prior information of the robot’s location.

The run-time for performing localization with an a priori map scales with
the number of submaps in the stored map. In realistic environments, we achieve
real-time performance. For a theoretical map with an extremely large number
of submaps, the performance would degrade.

6.3 Kidnapped Robot

The second experiment demonstrates the robot’s ability to recover from the so
called “kidnapped robot” problem. In this experiment, the robot again travels
from vertex 23 to vertex 22 and upon arriving at vertex 22, the robot is deliber-
ately moved to a vertex on a completely different floor (the 7-th floor) without
the robot knowing. This is an unmodeled disturbance for localization and rep-
resents a challenging situation for the system. The robot must determine that
the current hypotheses, in which it has developed trust, are not correct.

In Fig. 13, we can see the submap hypotheses as they evolve throughout
the experiment. In red, we show the garbage collector hypothesis. The robot
is kidnapped at approximately time step 1000. At first, due to ambiguity be-
tween the expected hypothesis equidistance and the measured equidistance at
the kidnapped location, the robot trusts the current set of hypotheses (the
garbage collector has a low probability). Eventually though, after updating the
garbage-collector hypothesis three times, the robot has lost it confidence in the
current set of hypotheses and believes confidently that its location is in one of
the pruned hypotheses (the garbage collector has a high probability). This is
a successful kidnapped robot detection. At this point, the global localization
algorithm can be reset.
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Figure 13: This shows a kidnapped robot localization experiment. Along the
first traveled edge, the robot resolves its pose to one of two submap hypotheses.
The robot is then carried to another floor in the building. The robot detects
the kidnapped robot occurrence with its garbage collector hypothesis after two
vertex equidistance measurements.

6.4 Hybrid SLAM

To test SLAM, we recorded a library of data from real experiments that were
performed in the map depicted in Fig. 2. During the experiments, we had
the robot store a distance traveled measurement for each GVG edge and an
equidistance measurement for each GVG vertex over many trials. By creating
this large library of measurement data, we are able to post-process the data
and completely recreate in simulation the robot performing real experiments
and acquiring real sensor measurements but with the added benefit that we can
alter the path that the robot takes through the graph by simply reordering the
measurement sequence that is provided to the robot.

For validation, we ran a challenging experiment that is based on a ground
truth map that has a much larger amount of ambiguity than the map shown
in Fig 2. The graph we used for this experiment is shown in Fig. 14, and was
made by adding a number of extra vertices and edges to the original floor plan
of Fig. 2. This example is used to demonstrate our algorithm’s ability to handle
the problem of perceptual aliasing because of the large amount of ambiguity.
Although this map is artificial, the vertices and edges are duplicated from the
original map and therefore we can still recreate real sensor measurements as if
the robot were actually traveling in this environment.

We ran the experiment in the map depicted in Fig. 14 with the robot per-
forming 500 random edge traversals and fully exploring the map. The number
of hypotheses tracked with our hypothesis forest throughout the experiment is
shown in Fig. 15 (a). In the beginning of the experiment, the number of hy-
potheses grows quickly because of the large amount of ambiguity in the map.
Eventually, pruning begins to reduce the number of hypotheses. At the end of
the experiment, there is only one hypothesis that remains and it is the correct
state and map.

In Fig. 15 (b), the posterior probability for the correct hypothesis is dis-
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Figure 14: This is a map created to simulate a much larger and more ambiguous
version of Wean Hall at Carnegie Mellon University. Each number next to a ver-
tex represents the corresponding true vertex from which this newly added vertex
has been copied. Each number next to an edge represents the corresponding
true edge from which this newly added edge has been copied.

played throughout the 500 edge traversals for Experiment 2. There are certain
times during the experiment when the robot associates a very low probability
to the correct hypothesis. This could be caused by the existence of a different
hypothesis that has a smaller map but also conforms to the sequence of mea-
surements that was obtained. Eventually though, as seen in Fig. 15, this other
hypothesis becomes inconsistent and is discarded. The correct hypothesis then
reemerges as a good candidate with a high probability.

In Figure 13, the lower part of the map consists of vertices numbered 0 and
edges numbered 14. Because all of these vertices and edges are equivalent, it
leads to a highly ambiguous mapping task for the robot. But despite the ambi-
guity, our algorithm remarkably maps this topology accurately and efficiently.
The reason that our approach can handle this extreme case of perceptual aliasing
is that the filtering algorithm is naturally (over multiple time steps) evaluat-
ing hypotheses based on the sequence of observations that the robot obtains.
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Figure 15: (a) This is a plot of the number of hypotheses throughout our SLAM
experiment. (b) This is a plot that shows the posterior probability tracked for
the correct hypothesis during our SLAM experiment.

And because there is sufficient uniqueness in neighboring vertices to this am-
biguous region, there can only be one map that would explain the sequence of
observations that are obtained.

In comparison, we note that the implementations in (Dudek et al. 1993;
Savelli and Kuipers 2004) only remove hypotheses in the tree when the graph
becomes inconsistent or when planarity fails. If these implementations were run
on our data set, we would expect the number of hypotheses to grow beyond
what is computationally feasible.

The complexity of performing hybrid SLAM to map the topology of an envi-
ronment scales with the number of hypotheses that are stored in the hypothesis
forest. This number is difficult to predict, and thus the run-time for a given
experiment can vary. In general, the number of hypotheses will depend on the
complexity of loop-closure and the ambiguity in the map. For extremely large
maps, there will be significantly more hypotheses to evaluate which may slow
down the processing of this algorithm.

6.5 Metric Localization

When the robot is performing global localization, there are two aspects of de-
termining the robot’s position: the discrete localization problem to estimate

29



the submap the robot is in and the metric problem of localizing the robot in
the submap. The metric localization task is achieved by using metric mea-
surements obtained along the traversal of the GVG edge to update a bank of
extended Kalman filters (one for each submap hypothesis) that is estimating
the metric pose (x,y,θ) of the robot in each submap.

For our experiments, the robot obtains bearing measurements to doorway
features in the omnidirectional camera images using a line detector. The bearing
measurements are used to update the EKF for each submap via a nonlinear
measurement model. In Fig. 16, we depict an example of the robot having
traversed a GVG edge with bearing measurements to doorway features. Also
in Fig. 16, the performance of our metric localization process is compared with
an odometry-only result. Using metric localization, the robot was localized to
within 0.18 meters of the ground truth position at the end of the edge traversal.
On the other hand, using odometry only, the error was 1.92 meters.

Figure 16: This demonstrates the metric localization performance of our al-
gorithm. The metric estimate using the EKF is shown aligning well with the
ground truth position (a GVG vertex location) while the odometry path (dotted
line) has significant error.

The run-time for the metric component of our hybrid localization scheme
scales with the number of hypotheses. This is because we are running an EKF
for each submap hypothesis and each EKF is updated in constant-time (with
just estimated 3 parameters for each EKF). We note that only with extremely
large maps (with many submaps) will this become computationally intensive.

6.6 Metric SLAM

In the global localization experiment, we assumed an a prior known map to
test the robot localizing without a priori knowledge of its location. Instead, if
the local metric maps attached to each topological edge are not known before
hand, the robot must construct each metric submap as it performs the hybrid
metric/topological SLAM algorithm presented in this paper.

In Fig. 17, we show the result of an edge traversal performed by the robot in
which the line features extracted from the omnidirectional camera are treated
as bearing-only landmark measurements and are mapped with an Iterated Ex-
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tended Kalman filter (IEKF). This local metric SLAM approach is based on
some of our previous work in bearing-only SLAM (Tully et al. 2008, 2010).

The resulting map is shown in Fig. 17 with small (almost fully converged)
uncertainty ellipses It is important to show the performance of this local met-
ric approach as it justifies the use of our hybrid filtering algorithm for hybrid
metric/topological SLAM. The average error between a mapped landmark loca-
tion and its ground ground truth location during this edge traversal was 0.1356
meters.

Figure 17: This validates the accuracy of our feature-based metric SLAM
method for mapping local maps along a GVG edge.

The run-time of this algorithm will scale with the complexity of conventional
metric EKF feature-based SLAM. The implementation is an O(N2) algorithm,
where N in this case is the number of features in the map. On the other hand,
it is reasonable to assume that the length and number of features within each
topological edge are small. The mapping of each edge with an EKF, therefore,
can be performed in real-time.

7 Conclusion

We have presented a novel unified filtering framework for achieving localization
and mapping in hybrid metric/topological maps. The contributions of this work
are: 1) the introduction of a novel hypothesis forest expansion algorithm specific
to edge-ordered graphs for proposing possible topological map/state pairs, 2) a
new algorithm for recursively computing the posterior probability of a topologi-
cal hypothesis given a sequence of sensor measurements and a novel topological
prior, 3) the design of conservative pruning rules that reduce the number of
hypotheses in the forest, and 4) the use of a garbage-collector technique that is
a catch-all for evaluating the likelihood of pruned hypotheses.

In this work we have improved our previous work (Tully et al. 2007, 2009)
in several ways. In our original algorithm, we had the robot wait until reaching
a topological vertex to apply sensor measurements to the filtering algorithm.
Our new algorithm applies this information continuously throughout an edge
traversal, which can allow the robot to localize more quickly. Our new approach
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is also more robust, with a built in method to detect unmodeled disturbances,
and improved processing of sensor information within the recursive likelihood
update.

When the map has a large number of ambiguities, the size of the tree can
grow quickly. The complexity of the algorithm can even become intractable
for large ambiguous maps. To approach this problem, we suggest the following
implementation change, which is a subject of future work: the algorithm will
invoke a cap on the number of hypotheses to avoid complexity issues. But,
if good hypotheses are unfairly pruned out due to the cap, the algorithm can
eventually revive them and replay the measurement sequence stored in memory
to bring them back up to speed at the current time-step. With a cap of 1
this would equate to a depth first search of the correct inferred hypothesis tree
instead of what we presented, which is essentially a breadth first search.

In our experiments, we show a robot localizing as well as mapping quickly
and efficiently in a large office-like environment with numerous ambiguities.
We demonstrate an example localization experiment that localizes properly to
a metric location within the correct topological submap. We also show an
example experiment that tests our algorithm’s ability to handle the so-called
“kidnapped robot problem.” Lastly, we show an example in which SLAM is
performed successfully to determine the correct topology of an environment
despite numerous cases of perceptual aliasing.

One weak point of this algorithm is that it is designed for structured en-
vironments. Despite this fact, we believe that there are significant academic
contribution that we are presenting here. The method we propose is useful for a
variety of indoor environments that have structure, thus the work is applicable
to robots navigating indoor environments. Also, the method is very generaliz-
able to any local metric method that can be used, as long as the environment
can be subdivided using a higher level topological graph. Lastly, in the future,
it may be that hybrid approaches, such as the one we present here, will improve
the accuracy and efficiency of SLAM and localization in outdoor environments
as long as appropriate topologies and control laws can be defined.

The overall impact of our work is that we can achieve global localization
or SLAM more efficiently than conventional metric methods. When an algo-
rithm like GraphSLAM (Thrun and Montemerlo 2006) attempts to close a large
loop, it must perform a global data association problem to associate a sensor
measurement with one of many vertices in the graph network. This can be
infeasible with large loops and long paths, especially when their is significant
positional drift. Instead, we can perform data association at a higher level (on
the a topological representation of the environment), thus drastically reducing
the number of hypotheses that need to be evaluated. While it is the topological
nature of our solution that allows for efficient estimation, we believe it is our
algorithms that can make topological mapping and localization work robustly
and effectively.
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