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Abstract

In graph-based simultaneous localization and mapping, the pose
graph grows over time as the robot gathers information about the
environment. An ever growing pose graph, however, prevents long-term
mapping with mobile robots. In this paper, we address the problem
of efficient information-theoretic compression of pose graphs. Our
approach estimates the mutual information between the laser measure-
ments and the map to discard the measurements that are expected to
provide only a small amount of information. Our method subsequently
marginalizes out the nodes from the pose graph that correspond to
the discarded laser measurements. To maintain a sparse pose graph
that allows for efficient map optimization, our approach applies an
approximate marginalization technique that is based on Chow-Liu trees.
Our contributions allow the robot to effectively restrict the size of the
pose graph.Alternatively, the robot is able to maintain a pose graph
that does not grow unless the robot explores previously unobserved
parts of the environment. Real-world experiments demonstrate that
our approach to pose graph compression is well suited for long-term
mobile robot mapping.

1 Introduction

Maps of the environment are needed for a wide range of robotic applications
including transportation and delivery tasks, search and rescue, or efficient
automated vacuum cleaning. The capability of building an appropriate
model of the environment allows for designing robots that can efficiently
operate in complex environments only based on their on-board sensors and
without relying on external reference systems. In the past, several effective
approaches to robot mapping have been developed. A popular approach to
address the simultaneous localization and mapping (SLAM) problem models
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Figure 1: The goal of our work is to compress the SLAM pose graph (top:
2049 nodes, 7190 edges) to maintain a sparse pose graph (bottom: 250 nodes,
324 edges), minimizing the loss of information in the graph and the resulting map.
Although the sparsified pose graph exhibits substantially fewer nodes and edges, the
resulting grid maps are highly similar. In this example, only 1.2% of the grid cells
changed their most likely state (free, occupied, unknown) due to our compression
technique. Most of the cells that changed their most likely state were seen as free
before applying our compression method and are seen as unknown after applying
our technique. This applies, for example, to some of the cells in the partially visited
room at the right hand side of the map. The standard SLAM approach required
32 min to process the dataset, whereas our approach needed 17 min.

the poses of the robot as nodes in a graph. Spatial constraints between
poses that result from observations or odometry are encoded as edges. Often,
graph-based approaches marginalize out features or local grid maps and
reduce the problem to trajectory estimation without prior map knowledge,
followed by mapping with known poses.

Most of the SLAM approaches assume that map learning is carried out
as a preprocessing step and that the robot then uses the acquired model for
tasks such as localization and path planning. A robot that has to extend the
map of its environment during long-term operation cannot apply most of the
existing graph-based mapping approaches since their complexity grows with
the length of the robot’s trajectory. The reason for this is that standard
graph-based approaches constantly add new nodes to the graph. As a
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result, memory and computational requirements grow over time, preventing
long-term mapping applications. A continuously growing graph slows down
graph optimization and makes it more and more costly to find constraints
between the current pose and former poses, i.e. to identify loop closures.
Note that there exist also incremental methods for online corrections that
perform partial optimizations. These methods are mostly orthogonal to our
contribution.

The contribution of this paper is an information-theoretic approach to
lossy pose graph compression to allow graph-based SLAM systems to operate
over extended periods of time. Figure 1 depicts a motivating example.
The top image shows the pose graph and the resulting map obtained by a
standard graph-based approach to SLAM. The bottom image displays the
corresponding pose graph along with the map generated by our information-
theoretic compression approach. The images illustrate that significantly fewer
laser scans are required to provide a comparable mapping result. We present
an approach to select laser scans for removal such that the expected loss of
information with respect to the map is minimized. Our unbiased selection
applies the information-theoretic concept of mutual information to determine
the laser scans that should be removed. In order to keep the pose graph
compact, the pose nodes corresponding to the discarded laser scans need to be
eliminated from the pose graph. We achieve this by applying an approximate
marginalization scheme that maintains the natural sparsity pattern that is
observed in the context of SLAM. Our approach is highly relevant to long-
term mapping, particularly when the robot frequently re-traverses already
visited areas. Our method allows the robot to maintain a pose graph that
does not grow unless the robot explores previously unobserved parts of the
environment, while minimizing the expected loss of information.

This paper extends Kretzschmar et al. (2011) and Stachniss & Kretzschmar
(2011) as it provides a more detailed description of the presented approach
and a more comprehensive experimental evaluation. In addition to that, this
paper relaxes the assumption of our prior work that the a-priori probability
of range readings is governed by an exponential distribution. Instead, the
distribution of range readings is learned.

2 Related Work

In the context of the SLAM problem, Lu & Milios (1997) were the first
who performed global map optimization using a pose graph. Since then,
a large variety of approaches to minimize the error in pose graphs have
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been proposed, for example, Estrada et al. (2005); Folkesson et al. (2005);
Grisetti et al. (2010); Konolige & Agrawal (2008); Ni et al. (2007). Most
of these approaches to SLAM do not provide means to effectively prune
the graph. Instead, they add more and more nodes to the graph over time.
Some approaches, for example the one of Folkesson et al. (2005), group nodes
into rigid local sub-maps. Others, such as the ATLAS framework by Bosse
et al. (2003), subdivide the map into connected frames that contain maps
that capture the local environment. Typically, these methods do not discard
nodes that store information about the environment and therefore do not
prevent the graph from growing.

One way to reduce the number of nodes in the graph is to sample the
trajectory of the robot at an appropriate spatial decimation as done by
Eustice et al. (2006). Similarly, the method of Konolige & Agrawal (2008)
only adds a new node to the graph if it is not spatially close to any existing
node. Konolige & Bowman (2009) presented an approach to lifelong mapping
that uses a single stereo camera and that is able to update the map when
the environment changes. Their method discards views based on a least-
recently-used algorithm. The above-mentioned techniques do not rely on
information-theoretic concepts to determine which measurements to discard.
Similar to that, hierarchical techniques such as the techniques by Grisetti
et al. (2010), Estrada et al. (2005), or Ni et al. (2007) have been employed
to bound the computational requirements by optimizing only higher levels of
the hierarchy.

In contrast to that, Davison (2005) analyzes mutual information, par-
ticularly in the case of Gaussian probability distributions, to guide image
processing. In the vision community, Snavely et al. (2008) aim to find a
skeletal subgraph with the minimum number of interior nodes that spans the
full graph while achieving a bound on the full covariance. Their technique is
used for reconstructing scenes based on large, redundant photo collections.

Kaess & Dellaert (2009) consider the information gain of measurements
in the state estimate within the iSAM framework. In contrast to that, our
approach estimates the mutual information of laser scans and the occupancy
grid map, thus considering the effect on the resulting grid map explicitly. Ila
et al. (2010) propose to only incorporate non-redundant poses and informative
constraints based on the relative distance between poses in information space
and the expected information gain of candidate loop closures. As opposed
to our maximum-likelihood approach to SLAM based on pose graphs, their
method applies an information filter and does not marginalize out poses that
were already added. Eade et al. (2010) presented a view-based monocular
SLAM system that reduces the complexity of the graph by marginalization
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and subsequent suppression of edges incident to nodes of high degrees. Their
heuristic discards the constraints that most agree with the current state
estimate. This, however, introduces a bias into the system.

When discarding laser range scans, our approach marginalizes out the cor-
responding pose node from the pose graph. Exact marginalization, however,
results in a dense pose graph and thus we apply an approximate marginaliza-
tion scheme that is based on Chow-Liu trees. Other researchers in robotics
use Chow-Liu trees to approximate multi-dimensional probability distribu-
tions. For instance, Cummins & Newman (2008) extend the bag-of-words
approach by learning a model for the sensory data in the form of a Chow-Liu
tree. Furthermore, Chli & Davison (2009) use a Chow-Liu tree approximation
to divide large visual maps into a fully hierarchical correlation and clustering
structure.

The idea of using mutual information or expected information gain in
the context of mapping has also been investigated for other means. For
example, Kim & Eustice (2011) propose a system for finding loop closures by
combining the information gain with saliency. Bachrach et al. (2011), Kollar
& Roy (2008), and Stachniss et al. (2005) use this concept to evaluate target
locations during exploration to estimate the amount of novel information
that measurements are expected to provide. Furthermore, He et al. (2008)
estimate the increase of uncertainty within the planning system to select
appropriate actions for a quadcopter.

3 Brief Introduction to Graph-Based SLAM

Graph-Based approaches to SLAM model the poses of the robot as nodes
in a graph. The edges of the graph model spatial constraints between the
nodes. These constraints arise from odometry measurements and from feature
observations or scan matching. The so-called SLAM front-end interprets
the sensor data to extract the constraints. The so-called SLAM back-end
typically applies optimization techniques to estimate the configuration of the
nodes that best matches the spatial constraints.

Our laser-based front-end applies correlative scan matching as proposed
by Olson (2009) to estimate a constraint between the current node and
the previous node. Our method also generates loop closure hypotheses by
matching the current laser scan against a set of scans that is determined by
the relative positional uncertainties and then rejects false hypotheses using
the spectral clustering approach described by Olson (2008). Our approach
incrementally optimizes the pose graph while adding the poses and the
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constraints to it. Once the poses are estimated, the laser scans are used
to render an occupancy grid map of the environment. The robot therefore
stores the laser scans that correspond to the pose nodes in the pose graph.

The back-end aims at finding the spatial configuration x? of the nodes that
maximizes the log-likelihood of the observations. Let x = (x>1 , . . . , x

>
n )> be

a vector where xi describes the pose of node i, and let zij and Ωij be the mean
and the information matrix of an observation of node j seen from node i
assuming Gaussian noise. Furthermore, let eij(x) be an error vector which
expresses the difference between an observation and the current configuration
of the nodes and let C be the set of pairs of nodes for which a constraint
exists. Assuming the constraints to be independent, we have

x? = argmin
x

∑
〈i,j〉∈C

eij(x)>Ωijeij(x). (1)

Our approach applies the technique proposed by Grisetti et al. (2010), which
uses sparse Cholesky factorization to efficiently solve the system of linearized
equations that is obtained from Eq. (1).

4 Discarding Uninformative Laser Scans

The first contribution of this paper is an approach to select the laser scans
that are most informative with respect to the map estimate. Our technique
aims at minimizing the expected loss of information in the resulting map
without introducing a bias during the selection of the laser scans. Such a
technique is important to allow for long-term robot mapping since a robot
that keeps all scans will run out of resources at some point. In addition to
that, our method can be used to directly implement an any-space SLAM
system. Whenever the memory limit is reached, our algorithm discards the
laser scans that are expected to be least informative about the map and
marginalizes out the corresponding pose nodes.

4.1 Finding the Most Informative Subset of Laser Scans

We define the map M as a random variable describing the state of the
world. It is highly correlated to the random variables Z1:t describing the
laser scans z1:t recorded at the poses x1:t. We use Zji to refer to the random
variable of an individual beam of laser scan Zi. To estimate the state of the
world m, we consider the posterior probability distribution of the map M
given the laser measurements z1:t. In this section, we are interested in finding
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the subset Z? ⊆ Z1:t of at most n laser measurements that is expected to
result in the smallest uncertainty about the map M .

Following the notation of MacKay (2003), the average reduction in the
uncertainty of the map M due to a set Z of laser measurements is given by
the mutual information

I(M ;Z) = H(M)−H(M | Z), (2)

where H is the entropy. Hence, we want to find the subset Z? ⊆ Z1:t of at
most n laser measurements such that the mutual information of the map M
and the subset Z? is maximized, i.e.

Z? = argmax
Z⊆Z1:t,|Z|≤n

H(M)−H(M | Z). (3)

The conditional entropy H(M | Z) of the map M given the set Z of mea-
surements is the expected value, over the space of all possible measurements,
of the conditional entropy of the map given the individual measurements z,
leading to

H(M | Z) =

∫
z
p(z)H(M | Z = z) dz. (4)

4.2 Efficiently Approximating Mutual Information

Computing the map entropy H(M | Z) given in Eq. (4) is infeasible in
general since integrating over the space of all possible combinations of up to
n laser measurements is practically impossible. Furthermore, computing the
map entropy H(M | Z = z) given a set of measurements z requires model
assumptions about the world.

We therefore make the following assumptions to efficiently compute the
entropy H(M | Z). We ignore the distribution over x and operate on the most
likely estimate, which is given in Eq. (1). Like most approaches in robotics,
we furthermore assume that the laser measurements and the individual laser
beams are independent, and we model the map M as a standard occupancy
grid map. An occupancy grid map is a grid of independent discrete binary
random variables C that take the values Val(C) = {“free”, “occupied”}. The
entropy of an occupancy grid map M given a set of measurements z is then
given by

H(M | Z = z) =
∑
C∈M

H(C | Z = z) (5)

= −
∑
C∈M

∑
c∈Val(C)

P (C = c | z) logP (C = c | z). (6)
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Figure 2: Statistics of laser range measurements extracted from a series of robotic
datasets. Top: Learned probability distribution p(z) of the laser range readings.
Bottom: Probability of measuring a cell C that is d1(x?i , C) meters away from the
sensor location x?i .

Furthermore, we need to estimate the probability of sensing an object at
a certain range given no further information about the environment. One
option is to assume that the probability of sensing an object decreases with
range, similar to most works on robot localization. The prior probability
of the range of the jth beam of measurement zi, denoted as zji , without
any knowledge of the map M can then be described by the exponential
distribution

p(zji ) =

{
ηλe−λz

j
i zji ≤ zmax,

0 zji > zmax,
(7)

where zmax denotes the maximum range of the scanner, λ is a parameter of
the measurement model, and η is a normalizing constant.

Alternatively, the distribution p(zji ) can be inferred from data. To do so,
we used our own datasets as well as several publicly available datasets from
the Radish dataset repository (see Howard & Roy (2003)) and computed
statistics about laser range measurements averaged over all beams, scans, and
datasets. The resulting distribution is shown in Figure 2. The plots suggest
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that for range readings larger than 1.5 m, the learned distribution is fairly
similar to the exponential distribution given in Eq. (7). In the experimental
evaluation, we consider both models.

The aforementioned assumptions allow us to efficiently compute the
conditional entropy H(M | Z = z) of the occupancy grid map M given a
measurement z. To facilitate the computation of the entropy H(M | Z)
defined in Eq. (4), we propose to consider the measurement outcomes of
a laser beam with respect to a particular grid cell, instead of integrating
over the space of all possible range measurements. There are three possible
measurement outcomes of a laser beam with respect to a particular grid cell
that is located along the ray of the beam. The laser beam either traverses
the cell and thus observes the cell as free, the laser beam ends in the cell
and thus observes the cell as occupied, or the laser beam does not observe
the cell. Given no prior map information, the probability distribution of the
outcome can be computed by integrating over the density p(zji ), leading to

P (Zji does not observe C) =

∫ d1(x?i ,C)

0
p(zji ) dz

j
i (8)

P (Zji observes C as occupied) =

∫ d2(x?i ,C)

d1(x?i ,C)
p(zji ) dz

j
i (9)

P (Zji observes C as free) =

∫ zmax

d2(x?i ,C)
p(zji ) dz

j
i , (10)

where d1(x
?
i , C) is the distance between the pose x?i from which the laser

scan Zi is taken and the closest border of the grid cell C in the direction
of the jth beam, i.e. the border where the beam enters the cell. Similarly,
d2(x

?
i , C) is the distance to the border of the grid cell C in the direction of

the jth beam that is furthest away from x?i , i.e. the border where the beam
leaves the cell.

Exploiting the probability distribution of the measurement outcome
expressed in Eqs. (8) to (10) allows us to avoid integrating over the space of
all measurements z. Instead, we consider the effects of the measurements on
the estimates of the grid cells, yielding the mutual information

I(C;Z) = H(C)−
∑
z′∈AZ

P (z′)H(C | z′) (11)

of the grid cell C and the set Z of laser measurements. AZ is the set of all
possible measurement outcomes z′ with respect to the grid cell C of all laser
scans that are recorded close enough to potentially measure the cell.
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Figure 3: Space of measurement outcomes of a grid cell given k = 2 laser scans,
where free is denoted by f, occupied by o, and unknown by u. Left: In general, there
are 3k measurement outcomes, which is exponential in k. Right: The number of
measurement outcomes is quadratic in k when taking into account the measurement
model.

In general, the number of possible combinations of grid cell measurement
outcomes is exponential in the number k of laser scans, which is illustrated
in Figure 3. It is therefore infeasible to enumerate all the combinations in a
tree. However, our approach relies on a standard inverse measurement model,
p(c | zji ), for laser range scanners that updates each cell using the values lfree,
locc, and l0. Most importantly, these values do not depend on the sensed range.
Therefore, the effect of a set of observations on a particular cell exclusively
depends on the number of free and occupied observations, i.e. the histogram
of measurement outcomes. Furthermore, the effect does not depend on the
order in which the measurements were obtained. This allows us to combine
all nodes in the tree that represent the same histogram of measurement
outcomes. See Figure 3 for an illustration. The number of measurement
outcomes is given by the number of ways to sample k elements from the set
of 3 laser measurement outcomes with replacement and disregarding different
orderings, leading to

#outcomes(k) =
k∑
i=0

(
k−i∑
j=0

1) =
k2

2
+

3

2
k + 1 ∈ O(k2), (12)

which is quadratic in k.
Note that the probability of each of these outcomes would be given by a

multinomial distribution if the free and occupied measurements were equally
likely for all laser scans. However, Figure 2 suggests that the probability
of observing a cell depends on the distance from the sensor to the cell.
Algorithm 1 computes the probabilities of the outcomes by propagating the
probability mass through the graph, using a hash table P (〈·, ·, ·〉) that is

10



Algorithm 1 Compute the probabilities of the measurement outcomes with
respect to a grid cell

Input: set of k laser measurements Z, cell C
Output: probabilities P (〈·, ·, ·〉) of the outcomes (free, occupied, not ob-

served)
P (〈0, 0, 0〉) = 1
for r = 1 . . . k do
for all 〈f, o, u〉 with f + o+ u == r do
P (〈f + 1, o, u〉) + = P (〈f, o, u〉)P (Zji observes C as free);

P (〈f, o+ 1, u〉) + = P (〈f, o, u〉)P (Zji observes C as occupied);

P (〈f, o, u+ 1〉) + = P (〈f, o, u〉)P (Zji does not observe C);
end for

end for
return P (〈·, ·, ·〉)

indexed by the measurement histograms. The number of probabilities that
the algorithm needs to consider is given by

3
k∑
i=1

#outcomes(i) =
3

2
k3 +

9

2
k2 + 3k ∈ O(k3), (13)

leading to cubic complexity in the number k of measurements that potentially
observe the grid cell C.

The number k of scans that the algorithm needs to consider is typically
small because our technique discards laser scans online while building the
graph (see Section 4.3 below). Furthermore, the maximum measurement
range of laser scanners restricts the set of scans that can measure a cell.
We can reduce the computational burden by only considering the l laser
scans that most affect the mutual information between the measurements
and the grid cell, i. e., the scans with the highest likelihood of measuring C.
These are the l scans that are recorded closest to C. The approximation of
using only l instead of k scans is appealing because it yields a complexity
that is linear in k since choosing these l scans is linear in k. However, the
approximation neglects a subset of the scans when computing the mutual
information between the measurements and the grid cell.

Finally, the mutual information I(M ;Z) of the map M and the set Z of
laser scans is given by

I(M ;Z) =
∑
C∈M

I(C;Z). (14)
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Algorithm 2 Compress the pose graph such that it has at most n nodes
and laser scans

while number of laser scans > n do
for all remaining laser scans Zi ∈ Z do
IGZi ← I(M ;Z)− I(M ;Z \ {Zi}) // see Eq. (14) and Alg. 1

end for
Z̃ ← argminZi

IGZi

Z ← Z \ {Z̃} // discard laser scan Z̃

marginalize out node corresponding to Z̃ // see Section 5

end while

Algorithm 3 Discard laser scans less informative than ε and marginalize
out the corresponding pose nodes

repeat
for all remaining laser scans Zi ∈ Z do
IGZi ← I(M ;Z)− I(M ;Z \ {Zi}) // see Eq. (14) and Alg. 1

end for
Z̃ ← argminZi

IGZi

if IGZ̃ < ε then

Z ← Z \ {Z̃} // discard laser scan Z̃

marginalize out node corresponding to Z̃ // see Section 5

end if
until IGZ̃ ≥ ε

All terms needed to compute the subset Z? of laser scans that maximizes
the mutual information of the map M and the subset Z? given in Eq. (3)
are specified and can be approximated efficiently.

4.3 Greedily Discarding Laser Scans Online

Computing the optimal subset Z? of n measurements that most reduces
the uncertainty of an estimate of the state of the world has been shown by
Krause & Guestrin (2005) to be at least NP-hard. Fortunately, the problem
is submodular. Hence, greedily selecting measurements results in obtaining a
set of measurements that is at most a constant factor (1− e−1 ≈ 0.63) worse
than the optimal set. Motivated by this insight, our approach estimates
the subset Z? by successively discarding laser scans. In each iteration, it
identifies and discards the laser scan that is expected to be least informative.

Our approach is able to restrict the size of the pose graph, resulting
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in an any-space SLAM system. Alternatively, our approach is capable of
discarding uninformative laser scans by setting a threshold on the expected
information gain of laser scans. Pseudo-code of our greedy approach to
online pose graph compression, as laser scans are acquired by the robot, is
sketched in Algorithm 2 and 3. In practice, most of the mutual information
values I(C,Z) do not change when incorporating new laser scans. Therefore,
these values can be cached and do not need to be recomputed in each step.
The algorithm only needs to recompute I(C;Z) for cells that are in the
measurement range of laser scans that are incorporated into or discarded
from the belief.

5 Maintaining a Sparse Pose Graph

The previous section presented our method to estimate the mutual informa-
tion between the laser measurements and the grid map to identify laser scans
that provide little information about the map. Our approach subsequently
marginalizes out the nodes from the pose graph that correspond to the
discarded laser scans. This section presents an approximate marginalization
technique that maintains a sparse pose graph that allows for efficient map
optimization.

A pose graph can be seen as a Gaussian Markov random field (GMRF)
that models the belief of the robot. In this view, each pose is a random
variable that is represented as one node in the GMRF and each constraint
between two poses in the pose graph is a binary potential between the
nodes in the GMRF. Marginalizing out a pose node from the graph implies
summarizing the information stored in the edges that connect that node
and storing that information in the edges between nodes that are kept.
The main problem of exact marginalization is that it introduces new edges
between all pairs of variables that are directly related to the eliminated
variables, adding a so-called elimination clique to the graph. This destroys
the natural sparsity pattern that typically occurs in SLAM. Our approach
aims at preserving sparsity by means of approximate marginalization while,
at the same time, seeking to minimize the loss of information. Here, we
assume measurements that yield full rank constraints in the pose graph, such
as the constraints obtained from laser range data, and refer the reader to the
work by Cheeseman & Smith (1986) for a discussion on how to compound
and merge geometric constraints with associated errors.
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5.1 Marginalization Ceases Sparsity

The GMRF framework helps us understand the effects of marginalization
on the belief of the robot. Suppose the belief is given by the joint Gaussian
probability distribution p(α, β) over two stacked vectors α and β which
together comprise the poses of the robot. In information form, the belief
p(α, β) can be expressed as

p(α, β) = N−1
([

ξα
ξβ

]
,

[
Ωαα Ωαβ

Ωβα Ωββ

])
, (15)

where ξ are information vectors and Ω information matrices. To remove β
from the belief, we compute the marginal density p(α) =

∫
p(α, β) dβ. In

information form, marginalization requires computing the Schur complement
over the variables which should be kept. Hence, the parameters of p(α) are

ξ = ξα − Ωαβ Ω−1ββ ξβ, (16)

Ω = Ωαα − Ωαβ Ω−1ββ Ωβα. (17)

Unfortunately, the Schur complement in Eq. (17) introduces new constraints
between all pairs of variables that are directly related to the eliminated
variables, adding a so-called elimination clique to the graph. This fill-in
destroys the natural sparsity pattern that is typical to SLAM problems. See
Eustice et al. (2006) for more details and Figure 4 for an illustration.

Representing a dense matrix typically requires significantly more memory
resources than representing a sparse matrix. Furthermore, the density
adversely affects the computational costs of subsequent marginalizations and
of the underlying pose graph optimization. In the worst case, the number of
dependencies increases quadratically with the number of variables. Hence,
exact marginalization ceases the sparsity of the belief and therefore introduces
a complexity that is not suited for long-term map learning.

5.2 Approximate Marginalization

We propose to reduce the number of edges in the elimination cliques, which
emerge when marginalizing out pose nodes. We motivate this technique by
the fact that this part of the graph has just become dense due to the fill-in
resulting from marginalization.

To measure the effect of the approximation, we make use of the relative
entropy or Kullback-Leibler divergence, which is a standard measure of the
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Figure 4: Eliminating a pose node from the belief of the robot. The left column
depicts the GMRFs, and the right column shows the corresponding information
matrices, where gray shades indicate nonzero values. Top: x9 is slated for removal.
Middle: Belief after having marginalized out node x9. The former neighbors of x9
form an elimination clique making the graph dense. Bottom: Belief resulting from
Chow-Liu tree approximation of the elimination clique.

difference between two probability distributions p and q. It is given by

DKL(p || q) =

∫
x
p(x) log

p(x)

q(x)
dx. (18)

Let x̃ = (x>1 , . . . , x
>
k )> be the stacked vector of the set of variables in

the elimination clique. Furthermore, let p(x̃) be the density which arises
from the constraints within the clique. The key idea of our approach is to
reduce the computational burden by approximating the density p(x̃) with a
distribution that has fewer conditional dependencies. This implies treating
some pairs of variables as conditionally independent.
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Figure 5: Chow-Liu tree approximation. Left: Graphical model of a probability
distribution, where the mutual information between the pairs of random variables is
indicated by the thickness of the edges. Right: Chow-Liu tree approximation.

5.3 Chow-Liu Tree Approximation

We propose to reduce the number of constraints in the elimination cliques by
locally approximating the density p(x̃) with a probability distribution q(x̃)
such that each variable is only conditioned upon one of the other variables:

p(x̃) = p(xk)

k−1∏
i=1

p(xi | xi+1, . . . , xk) (19)

≈ p(xk)
k−1∏
i=1

p(xi | xi+1) = q(x̃). (20)

Consequently, the graphical model of q(x̃) is tree-shaped. Note that
we do not propose to transform the entire graph into a tree, but only the
resulting elimination clique. Importantly, our approximation preserves the
global graph structure and, in particular, global loop closures.

Chow & Liu (1968) propose to approximate a probability distribution p(x̃)
by a distribution qopt(x̃) such that each variable is conditioned upon at most
one other variable and such that the Kullback-Leibler divergence between
p(x̃) and qopt(x̃) is minimized. Let the mutual information graph of a
probability distribution be a graph such that each edge between two nodes
xi and xj has weight equal to the mutual information I(xi;xj) of these
variables. Chow and Liu proved that the optimal approximation qopt(x̃) with
first-order tree dependence to the probability distribution p(x̃) has the same
structure as the maximum-weight spanning tree of the mutual information
graph of p(x̃).

The maximum-weight spanning tree of the mutual information graph
can be computed efficiently using Kruskal’s algorithm (see Figure 5 for an
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illustration). As shown by Davison (2005), the mutual information I(xi;xj)
of two normally distributed random variables xi and xj is given by

I(xi;xj) =
1

2
log2

(
|Σ̃ii|

|Σ̃ii − Σ̃ijΣ̃
−1
jj Σ̃ji|

)
, (21)

where Σ̃ij refers to the entry in the covariance matrix Σ̃ that relates xi and xj .
The covariance matrix Σ̃ of the elimination clique is obtained by marginal-

izing the inverse of the information matrix Ω of the linearized system. How-
ever, to avoid the costly matrix inversion, we approximate Σ̃ by marginal-
izing Ω and then inverting the resulting sub-matrix. This approximation
of the clique covariance matrix neglects the constraints in the pose graph
that are in the remainder of the pose graph. Consequently, the tree-shaped
approximate marginalization is local to the elimination clique. Inverting
the sub-matrix is efficient since it is typically small due to the sparsity of
the graph. The tree-shaped approximation allows us to use the elimination
clique distribution, which is in information-form, to compute the non-linear
constraints that are kept in our pose graph. We compute these non-linear
constraints using the corresponding marginals of the clique distribution.
Summing up, our technique allows for efficient marginalization and preserves
sparsity in the pose graph while seeking to minimize the loss of information.

6 Experimental Evaluation

To evaluate the presented approach, we carried out several experiments using
a real ActivMedia Pioneer-2 robot equipped with a SICK laser range finder.
In addition to that, we applied our method to popular SLAM datasets. We
compare our approach with the performance of the same technique when no
scans are discarded, which is referred to as the “standard approach”. Our
experiments demonstrate that our approach to pose graph compression is
well suited for long-term mobile robot mapping and for standard SLAM
problems.

We evaluated our approach using four datasets. We used a self-recorded
dataset in which the robot traveled in our lab environment for an extended
period of time (see Figure 6), and a previously recorded dataset from a
computer science building in Freiburg, which was also used by Grisetti et al.
(2007) (see Figure 7). Furthermore, we used the FHW dataset (see Figure 1)
and the Intel Research Lab dataset (see Figure 8) by Dirk Hähnel.

Figure 6 shows four maps resulting from our experiments. The first image
depicts the map and the pose graph obtained by the standard approach. The
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Figure 6: The robot moved around in an office environment for an extended period
of time, visiting the rooms and the corridor many times. First: Standard approach.
2597 laser scans, 15695 edges Second: Our approach at an intermediate time step,
200 laser scans, 264 edges. Third: Our approach, 200 laser scans, 315 edges. Fourth:
Our approach when setting a threshold for the mutual information, 148 laser scans,
250 edges instead of a fixed value.
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Figure 7: Map and pose graph obtained when mapping the FR101 dataset. Top:
Standard approach, 408 nodes, 723 edges. Bottom: Our approach, 200 nodes,
246 edges. Since the robot does not frequently re-traverse previously visited terrain,
few scans were discarded.

second and the third image show the maps and pose graphs resulting from
our approach when restricting the size of the pose graph to 200 nodes. More
precisely, the second image depicts the state of our approach before the robot
has entered the left side of the corridor. The 200 nodes are used to model the
right part only. The third image shows the pose graph modeling the entire
environment. Note how our approach has redistributed the nodes in the
environment, still complying with the limit of 200 nodes. Finally, the fourth
image shows the map when setting a threshold on the mutual information.
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Figure 8: Map and pose graph obtained when mapping the Intel Research Lab. Left:
Standard approach, 1802 laser scans, 3916 edges. Right: Our approach preserves the
sparsity of the pose graph, 250 laser scans, 349 edges. Arrows indicate locally blurred
areas or small alignment errors in the map obtained by the standard approach. In
contrast to our approximate marginalization technique, exact marginalization would
result in 13052 edges.

Figure 9: Intel Research Lab: 3σ covariance ellipses of the poses. Blue: Standard
approach. Red: Our approach. The estimates of our approach are typically larger
since less observations are used.
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6.1 Approximate Marginalization

We quantitatively evaluated the estimate of the pose graphs generated by
our approach to graph compression. We analyzed the mean and uncertainty
estimates of the robot’s poses and compared them to the corresponding
estimates generated by the standard approach. Figure 9 depicts the 3σ
covariance ellipses of the pose estimates. In this experiment, our approach
kept less than 9% (349 of 3916) of the edges of the original pose graph.
As a result, 2.8% of the probability mass of the original pose graph is not
covered by our approximation, and the covariance estimates are 41% more
conservative.

6.2 Measurement Probability Distribution

We briefly analyzed the effects on the compressed pose graph when using
different measurement probability distributions p(z). We performed the same
mapping experiment using the exponential probability distribution given
in Eq. (7) as well as using the probability distribution that was learned
from data (see Figure 2). Since the exponential function and the learned
function are similar except of the first 1.5 m, we expected that the effect
on the resulting pose graph and the grid map is small. As can be seen in
Figure 10, different nodes have been selected, but the overall structure of
both pose graphs is similar in terms of topology and local density of the
nodes. The same applies to the resulting occupancy grid maps. Given our
experiments, we cannot argue that one approach outperforms the other.

6.3 Memory Requirements and Runtime

Our approach to pose graph compression causes a computation time overhead
that only pays off when the robot frequently re-traverses previously visited
parts of the environment. We evaluated the memory requirements of our
approach in terms of the size of the resulting pose graphs and measured the
runtime of our SLAM system on a 2.6 GHz Intel CPU system. Note that our
current implementation is not optimized for speed. A significant speedup
can be expected by caching intermediate results (see Section 4.3).

When the robot stays in the same environment and rarely explores new
terrain, the loop closing component of the SLAM front-end, which performs
scan matching to find constraints between the current scan and all former
scans that were recorded in the vicinity of the robot, needs to consider an
ever increasing number of nodes in each step. Furthermore, the pose graph
optimization scales with the number of edges, which in this case increases
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Figure 10: Maps and pose graphs obtained using different measurement proba-
bility distributions p(z) when mapping the FHW dataset. Top: The exponential
probability distribution given in Eq. (7). Bottom: The probability distribution
learned from robotic datasets plotted in Figure 2. The resulting node densities are
fairly similar in both settings.

roughly quadratically. In contrast to the standard approach, our approach
compresses the pose graph such that the number of nodes in the graph
remains low.

In the experiment depicted in Figure 6, the robot moved around in our lab
environment for an extended period of time. The corresponding plots shown
in Figure 11 and 12 clearly suggest that the experiment leads to an explosion
in terms of memory requirements when using the standard approach. In the
experiment depicted in Figure 11, the size of the graph was restricted to
200 nodes. In the experiment corresponding to Figure 12, a threshold on
the mutual information was set, and, as a result, the complexity does not
grow as long as the robot does not explore new terrain. Our compression
method kept 148 of 2597 laser scans. The graph generated by our approach
has 250 edges, whereas the graph obtained by the standard approach has
15695 edges. The standard approach required a total of 129 min to process
the dataset. Despite the computation time overhead, the SLAM system only
needed 87 min when applying our graph compression technique.

When mapping the FHW dataset (see Figure 1), our approach retained
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Figure 11: Size of the pose graph when moving around in an office environment
for an extended period of time. In this experiment, our approach restricted the
total number of nodes to 200.
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Figure 12: Size of the pose graph when moving around in an office environment
for an extended period of time. In this experiment, our algorithm discarded all laser
scans whose expected information gain was below a given threshold.
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dataset #scans #scans (our approach) changed grid cells [%]

Intel Research Lab 1802 349 0.9%
FR079 long term 2597 148 1.6%
FHW museum 2049 250 1.2%

Table 1: Percentage of cells that changed their most likely state when applying
our compression approach.

250 of 2049 laser scans and 324 of 7190 edges. The standard approach
required 32 min, whereas our approach needed 17 min. When mapping the
Intel Research Lab dataset (see Figure 8), our approach kept 250 of 1,802
laser scans and 349 of 3,916 edges. The standard approach required 9 min,
whereas our approach needed 26 min. When mapping the Intel Research
Lab dataset, the computation time overhead of our method does not pay
off because the robot mostly explores new terrain and only revisits the
comparably small corridor.

6.4 Effects on the Most Likely Grid Map

We furthermore analyzed the effects of our pose graph compression approach
on the resulting occupancy grid maps. We therefore compared the maps at a
resolution of 10 cm and counted the number of cells that changed their most
likely state (free, occupied, and unknown) when applying our compression
technique.

We evaluated the grid maps using three different datasets. Table 1
summarizes the results. When mapping the Intel Research Lab, our pruning
approach retained 349 of 1802 laser scans, but only 0.9% of the cells changed.
In the long-term experiment, our method kept 148 of 2597 laser scans, and
1.6% of the cells changed. When mapping the FHW, our approach maintained
250 of 2049 scans, and 1.2% of the cells changed. These results suggest that
the changes in the most likely maps are small. Most of the cells that changed
their most likely state were seen as free before applying our compression
method and are seen as unknown after applying our technique because no
beam covers the cells anymore. This effect can, for example, be seen in
Figure 1 where some of the cells in the partially visited room at the right
hand side of the map are unobserved.
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6.5 Scan Matching and Grid Map Quality

We furthermore evaluated the effects of our online pose graph compression
technique on the quality of the resulting grid maps. In theory, the more
observations are available, the better is the estimate. Ignoring measurements
will lead to a belief with higher uncertainty. However, today’s occupancy
grid-based mapping approaches typically rely on some kind of scan alignment
techniques such as scan matching, which aligns the scans to extract spatial
constraints. These systems have disadvantages when it comes to long-term
mapping. Whenever the robot obtains a laser measurement, the scan matcher
aims at aligning the new scan with existing scans in order to solve the
data association problem. The probability that the scan matcher thereby
makes a small alignment error is nonzero. A scan that is incorporated at
a slightly wrong position blurs the map. As a result, the probability that
the scan alignment procedure poorly aligns subsequent scans increases since
matching is performed with misaligned scans. Hence, the probability of
making alignment errors increases with the number of incorporated scans. In
the long run, the map tends to become increasingly blurred and the mapping
approach can diverge.

Figure 6 and 8 depict the maps and graphs obtained from the long-term
experiments conducted in our office environment and the Intel Research
Lab dataset. The grid maps generated by the standard approach exhibit
visibly more blur in several parts of the maps, which can be attributed to the
scan alignment procedure. In general, the more often the robot re-traverses
already visited terrain, the more blur is added to the maps. In contrast
to the standard approach, our method produces maps with less blurred
obstacle boundaries, particularly when the robot frequently re-traverses
already visited places.

Although we do not claim that such maps are better estimates of the
environment from an information-theoretic point of view, our compression
technique facilitates scan matching and therefore mitigates the risk of di-
vergence in the mapping process. All in all, the maps resulting from our
graph compression technique are well suited for navigation tasks such as
localization and path planning.

7 Conclusion

In this paper, we presented a method for information-theoretic compression
of pose graphs in graph-based SLAM. This is relevant for long-term mapping
applications. Our approach seeks to select the most informative set of laser
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scans and allows for restricting the size of the pose graph either based
on a memory limit, resulting in an any-space mapping system, or based
on a threshold on the minimum amount of information that a laser scan
is expected to provide. Our approach maximizes the mutual information
between the laser measurements and the resulting occupancy grid map.
When marginalizing out pose nodes from the graph, exact marginalization
leads to a densely connected graph. To preserve the sparsity of the pose
graph, we proposed to approximate the elimination cliques by local Chow-Liu
trees, seeking to minimize the loss of information. Real world experiments
illustrate the effectiveness of our method for computing compressed pose
graphs in the context of graph-based SLAM.
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