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Abstract

In this paper we study the problem of improving human hand pose sensing
device performance by exploiting the knowledge on how humans most frequently
use their hands in grasping tasks. In a companion paper we studied the problem
of maximizing the reconstruction accuracy of the hand pose from partial and noisy
data provided by any given pose sensing device (a sensorized “glove”) taking into
account statistical a priori information. In this paper we consider the dual problem
of how to design pose sensing devices, i.e. how and where to place sensors on a
glove, to get maximum information about the actual hand posture. We study the
continuous case, whereas individual sensing elements in the glove measure a linear
combination of joint angles, the discrete case, whereas each measure corresponds
to a single joint angle, and the most general hybrid case, whereas both continu-
ous and discrete sensing elements are available. The objective is to provide, for
given a priori information and fixed number of measurements, the optimal design
minimizing in average the reconstruction error. Solutions relying on the geomet-
rical synergy definition as well as gradient flow-based techniques are provided.
Simulations of reconstruction performance show the effectiveness of the proposed
optimal design.

1 Introduction

This paper investigates the problem of estimating the posture of human hands us-
ing sensing devices, and how to improve their performance based on the knowledge
on how humans most frequently use their hands. Similarly to the companion paper
[Bianchi et al., 2012b], this work is motivated by studies on the human hand in grasp-
ing tasks [Santello et al., 1998 suggesting hand posture representations of increasing
complexity (“synergies”), which allow to reduce the number of Degrees of Freedom

(DoFs) to be used according to the desired level of approximation. In [Bianchi et al., 2012b],

we analyzed the role of the a priori information for pose hand reconstructions by us-
ing given sensing devices, and showed that acceptable reconstruction results can be
obtained even in presence of insufficient and inaccurate sensing data.
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Figure 1: Examples of continuous and discrete sensorized gloves. On the left, a sensing
glove based on conductive elastomer sensor strips printed on fabric, each measuring a
linear combination of joint angles [Tognetti et al., 2006]. On the right, the Humanglove
(image courtesy by Humanware s.r.l. (www.hmw.it/)), using individual joint angle sen-
Sors.

In this work, we extend the analysis to consider the optimal design of sensing
“gloves”, i.e. devices for hand pose reconstruction based on measurements of few ge-
ometric features of the hand. The problem we consider is to find the distribution of a
number of sensing elements of limited accuracy so as to provide, together with the a
priori information, the optimal design which minimizes in probability the reconstruc-
tion error. The problem becomes particularly relevant when limits on the production
costs of sensing gloves introduce constraints limiting both the number and the quality
of sensors. In these cases, a careful design of sensor distribution is instrumental to
obtain good performance.

Optimal experimental design represents a challenging, widely discussed topic in
literature [Pukelsheim, 2006]. Among all optimal design criteria, Bayesian methods
are ideally suited to contribute to experimental design and error statistics minimization,
when some information is available prior to experimentation (see e.g. [Chaloner and Verdinelli, 1995,
|Ghosh and Rao, 1996, Bicchi and Canepa, 1994] for a review). On the contrary, non
Bayesian criteria are adopted when a linear Gaussian hypothesis is not fulfilled and/or
when the designer’s primary concern is to minimize worst-case sensing errors rather
than error statistics. Criteria on explicit worst-case/deterministic bounds on the errors
and tools from the theory of optimal worst-case/deterministic estimation and/or identi-
fication are discussed e.g. in [Helmicki et al., 1991} |Tempo, 1988| Bicchi and Canepa, 1994,
Bicchi, 1992].

However, most of these approaches refer to cases with a number of basic sensors
which is redundant or at least equal to the number of variables to be estimated. More-
over, no previous example of application to the peculiar problem of exploiting the a pri-
ori psychophysical information on the structure of human hand embodiment for under—
sensorized gloves has ever been reported. In [Sturman and Zeltzer, 1993] an investiga-
tion of “whole-hand” interfaces for the control of complex tasks is presented, along
with the description, design, and evaluation of whole-hand inputs, based on empirical
data from users. In [Edmison et al., 2002]] authors discussed the properties, advantages,
and design aspects associated with piezoelectric materials for sensing glove design, in




an application where the device is used as a keyboard. Finally, [Chang et al., 2007]
authors explored how to methodically select a minimal set of hand pose features from
optical marker data for grasp recognition. The objective is to determine marker loca-
tions on the hand surface that is appropriate for grasp classification of hand poses. All
the aforementioned approaches rely on experimental or qualitative observations: from
actual sensor data, locations that provide the largest and most useful information on the
system are chosen.

In this paper, we investigate in depth the problem of obtaining the optimal distri-
bution of sensors minimizing in probability the reconstruction error of hand poses. We
adopt a classical Bayesian approach to minimize the a posteriori covariance matrix
norm and hence, to maximize the information on the real hand posture available by the
glove measurement.

The a posteriori covariance matrix, P, = P, — P,H' (HP,H" +R)~'HP,, which di-
rectly depends on the sensor design through the measurement matrix H, its noise co-
variance R, and on the a priori information P,, represents a measure of the amount of
information that the observable variables carry about the unknown pose parameters.
Here we explore the role of the measurement matrix H on the estimation procedure,
providing the optimal design of a sensing device able to get the maximum amount of
the information on the actual hand posture.

We first consider the continuous sensing case, where individual sensing elements
in the glove can be designed so as to measure a linear combination of joint angles. An
example of this type is the sensorized glove developed in [Tognetti et al., 2000] (cf. fig-
ure [[(a))), or the SDT Data Glove (5DT Inc., Irvine, CA - USA). Other devices, such
as e.g. the Cyberglove (CyberGlove System LLC, San Jose, CA - USA), or the Hu-
manglove (Humanware s.r.1., Pisa, Italy) shown in figure[I(b)} provide instead discrete
sensing, i.e. each sensor provides a measure of a single joint angle.

Finally, for the sake of generality, we consider the optimal design of hybrid sensing
devices, which combine continuous and discrete sensors. It is interesting to note that
human hands represent, to some extent, examples of such hybrid sensing: among the
cutaneous mechanoreceptors in the dorsal skin of the hand that were demonstrated to
be involved in the responses to finger movements, [Edin and Abbs, 1991] includes both
Fast Adapting (mainly FAI) afferents, with localized response to movements about one
or, at most, two nearby joints; and Slow Adapting (SA) afferents, whose discharge rate
is influenced by several joints interactively. Note also that FA units are found primarily
close to joints, while SA units are more uniformly distributed.

To validate our technique we consider hand posture reconstruction using a lim-
ited number of measurements from a set of grasp postures acquired with an opti-
cal tracking system, providing accurate reference poses. Experiments and statisti-
cal analyses demonstrate the improvement of the estimation techniques proposed in
[Bianchi et al., 2012b]] by using the optimal design proposed in this paper.

2 Problem Definition

For reader’s convenience we summarize here the definitions and results of [[Bianchi et al., 2012bl|]
used in the following. Let us assume a n degrees of freedom kinematic hand model and



let y € R™ be the measures provided by a sensing glove. The relationship between joint
variables x € R"” and measurements y is

y=Hx+v, (D)

where H € R™*" (m < n) is a full row rank matrix, and v € R™ is a vector of measure-
ment noise. In [Bianchi et al., 2012b]], the goal is to determine the hand posture, i.e. the
joint angles x, by using a set of measures y whose number is lower than the number
of DoFs describing the kinematic hand model in use. To improve the hand pose re-
construction, we used postural synergy information embedded in the a priori grasp set,
which is obtained by collecting a large number N of grasp postures x;, consisting of n
DoFs, into a matrix X € R™¥. This information can be summarized in a covariance
matrix P, € R"*", which is a symmetric matrix computed as P, = W, where X
is a matrix n X N whose columns contain the mean values for each joint angle arranged
in vector U, € R".

Based on the Minimum Variance Estimation (MVE) technique, in [Bianchi et al., 2012b]|
we obtained the hand pose reconstruction as

=P, +H R'H) "(HTR 'y + P, o), )

where matrix P, = (P, ! + H'R™'H)~! is the a posteriori covariance matrix. When
R tends to assume very small values, the solution described in (2)) might encounter
numerical problems. However, by using the Sherman-Morrison-Woodbury formulae,
can be rewritten as

£=u,—PH (HP,H" +R)"'(Hu, —v), A3)

and the a posteriori covariance matrix becomes P, = P, — P,H T (HP,H r —|—R)_1H P,.

The a posteriori covariance matrix, which depends on measurement matrix H, rep-
resents a measure of the amount of information that an observable variable carries about
unknown parameters. In this paper we will explore the role of the measurement matrix
H on the estimation procedure, providing the optimal design of a sensing device able
to obtain the maximum amount of the information on the actual hand posture.

Let us preliminary introduce some useful notations. If M is a symmetric matrix with
dimension 7, let its Singular Value Decomposition (SVD) be M = Uy Xy U, A{,, where X,
is the diagonal matrix containing the singular values 61 (M) > 6,(M) > --- > 6,(M)
of M and Uy, is an orthogonal matrix whose columns u;(M) are the eigenvectors of M,
known as Principal Components (PCs) of M, associated with 6;(M). For example, the
SVD of the a priori covariance matrix is P, = Up, Zp, UZ,;, with 0;(P,) and u;(P,), i =
1,2,...,n, the singular values and the principal components of matrix P,, respectively.

3 Optimal Sensing Design
We first analyze the case that individual sensing elements in the glove can be designed

to measure a linear combination of joint angles (continuous sensing devices), and pro-
vide, for given a priori information and fixed number of measurements, the optimal



design, minimizing in average the reconstruction error. We then consider the case
where each measure provided by the glove corresponds to a single joint angle (discrete
sensing devices). For these types of gloves we determine which joint should be individ-
ually measured in order to optimize the design. Finally, we will consider the case that
both continuous and discrete sensor elements are used in the achieve sensing devices,
defining a procedure to obtain the optimal hybrid sensing glove design.

In the ideal case of noiseless measures (R = 0), P, becomes zero when H is a
full rank n matrix, meaning that available measures contain a complete information
about the hand posture. In the real case of noisy measures and/or when the number
of measurements m is less than the number of DoFs n, P, can not be zero. In these
cases, the following problem becomes very interesting: find the optimal matrix H*
such that the hand posture information contained in the fewer number of measurements
is maximized. Without loss of generality, we assume H to be full row rank and we
consider the following problem.

Problem 1. Let H be an m X n full row rank matrix with m < n and Vy(P,,H,R) :
R"™" — R be defined as V\(P,,H,R) = ||P, — P,HT (HP,HT +R)~'HP,|%, find

H* = argn}}n Vi(P,,H,R)

where || - || denotes the Frobenius norm defined as |A||F = \/tr(AAT), for A € R™",

To solve problem [I] means to minimize the entries of the a posteriori covariance
matrix: the smaller the values of the elements in P,, the greater is the predictive effi-
ciency.

In order to simplify the analysis, in the following we will analyze separately the
design of continuous, discrete and hybrid sensing devices.

3.1 Continuous Sensing Design

For this case, each row of the measurement matrix H is a vector in R” and hence can
be given as a linear combination of a IR” basis. Without loss of generality, we can
use the principal components of matrix P,, i.e. the columns of the previously defined
matrix Up,, as a basis of R". Consequently the measurement matrix can be written
as H=H,U ;0 , where H, € R™*" contains the coefficients of the linear combinations.

Given that P, = Up,Xp,U, g} , the a posteriori covariance matrix becomes
P, =Up, [Zo — S H, (H.E,H] +R)'H.E,| UL, 4)

where, for simplicity of notation ¥, = Xp,.

Next sections are dedicated to describe the optimal continuous sensing design both
in a numerical and analytical way. For this purpose, let us introduce the set of m x n
(with m < n) matrices with orthogonal rows, i.e. satisfying the condition HH” = I,,,5,,
and let us denote it as Oy, x,,.



3.1.1 Analytical Solutions

We first consider the case of noiseless measures, i.e. R = 0. Let A be a non-negative
matrix of order n. It is well known (cf. [Rao, 1964])) that, for any given matrix B of
rank m with m <n,

min|A — BI[F = ag .+ + a7, )

where @; are the eigenvalues of A, and the minimum is attained when
B=ouwiwi’ 4+ QW (6)

where w; are the eigenvector of A associated with ¢;. In other words, the choice of B
as in (0) is the best fitting matrix of given rank m to A. By using this result we are able
to show when the minimum of (@), hence of

1Z0 — ZoH] (HeEoH! ) ' HeZo |7, )

can be reached. Let us preliminary observe that the row vectors (%;). of H, can be
chosen, without loss of generality, to satisfy the condition (h;).Z, (). =0, i # J,
which implies that the measures are uncorrelated ([Rao, 1964])). Let &), denotes the
set of m X n matrices, with m < n, whose rows satisfy the aforementioned condition,
i.e. the set of matrices with orthonormal rows (HeHeT =1I). By using (5)), the minimum
of (/) is obtained when (cf. [Rao, 1964]])

ZOHZ (HEZOHZ)_IHEZO = 0] (Zo)ul (Zo)u{ (Z()) +-+ )
+ O (X))t (Zo )l (Zo) -

Since X, is a diagonal matrix, u;(¥,) = e;, where ¢; is the i-th element of the canon-
ical basis. Hence, it is easy to verify that holds for He = [In|Opx(n—m)]- As
a consequence, row vectors (h;) of H are the first m principal components of F,,
ie. (h)=u;(P)T, fori=1,...,m.

From these results, a principal component can be defined as a linear combination of
optimally-weighted observed variables meaning that the corresponding measures can
account for a maximal amount of variance in the data set. As reported in [Rao, 1964],
every set of m optimal measures can be considered as a representation of points in
the best fitting lower dimensional subspace. Thus the first measure gives the best
one—dimensional representation of data set, the first two measures give the best two—
dimensional representation, and so on.

In the noisy measurement case, can be rewritten as

Y H!I (HXH! +R)H,Z, — 01(Zp)u (Zo)ul (o) + -+
+ Gm(zo)um(zo)uz;l(z(’) =A
In this case, A = 0 can not be attained for any finite H: indeed, for unconstrained
H, infy Vi (Py,H,R) would be attained for ||[H|| — e, i.e. for infinite signal-to-noise

ratio. The problem can be recast in a well-posed form by imposing a constraint on
the magnitude of the measurement matrix. Up to a possible renormalization of R, we



can search the optimum design in the set &/ = {H : HH' =1I,,}. This problem was
discussed and solved in [Diamantaras and Hornik, 1993]], showing that, for arbitrary
noise covariance matrix R,

oi(P,) 1

mmV + oi(Py), ©
He 1 1:21 1+Gl ())/Gm l+l(R) i:%l l( 0) )

which is attained for

H=Y upn is1(R)ui(P,). (10)
i=1

Hence, if o consists of all matrices with mutually perpendicular, unit length rows,
the first m principal components of P, are still the optimal choice for H rows. The
alternative case that the solution is sought under a Frobenius norm constraint on H,
i.e. o ={H :||H||r <1} is discussed in [Diamantaras and Hornik, 1993]].

3.1.2 Numerical Solution: Gradient flows on 7,

In this subsection we describe a different approach to the solution of problem|[T]} which
consists of constructing a differential equation whose trajectories converge to the de-
sired optimum. The method lends itself directly to efficient numerical implementations.
Although a closed-form solution has been proposed in the previous subsection, the nu-
merical solution considered here is very useful when constraints are imposed on the
measurement structure (as they will be for instance in the hybrid sensor design), where
closed form solutions are not applicable.

The following proposition describes an algorithm that minimizes the cost function
Vi(P,,H,R), providing the gradient flow which will be useful in the method of steepest
descent.

Proposition 1. The gradient flow for the function V\(P,,H,R) : R™*" — R is given by,
H=—V|P|[} =4 [P PH"E(H)]" (1n

where L(H) = (HP,H” +R)~!

Proof. See Appendix. O

Let us observe that rows of matrix H can be chosen, without loss of generality,
such that H,-POH]-T =0, i # j which imply that measures are uncorrelated, i.e. satisfying
the condition HHT = I,,. Of course, in case of noise—free sensors, this constraint is
not strictly necessary. On the other hand, in case of noisy sensors, the minimum of
Vi(P,,H,R) can not be obtained since it represents a limit case that can be achieved
when H becomes very large (i.e. an infimum) and hence increasing the signal-to-noise
ratio.

A reasonable solution for the constrained problem will be provided by using the
Rosen’s gradient projection method for linear constraints [Rosen, 1960], which is based
on projecting the search direction into the subspace tangent to the constraint. Hence,
given the steepest descent direction for the unconstrained problem, this method consists



on finding the direction with the most negative directional derivative which satisfies the
constraint on the structure of the matrix H, i.e. HHT = I,,. This can be obtained by
using the projection matrix

W=1I,—HH'H)'HT, (12)

and then projecting the unconstrained gradient flow (I1) into the subspace tangent to
the constraint, obtaining the search direction

s=WV|B|7. (13)

Having the search direction for the constrained problem, the gradient flow is given
by
i 2T T
H=—4W [P,P,H"Z(H)] (14)

where Y(H) = (HP,H" + R)~'. The gradient flow ([T guarantees that the optimal
solution H* will satisfy H*(H*)T = I,,, if H(0) satisfies H(0)H(0)" =1I,,, i.e. H €
ﬁmxn‘

Notice that both &, ,, and V; (P,, H,R) are not convex, hence the problem could not
have a unique minimum. However, in case of noise—free measures, the invariance of
the cost function w.r.t. changes of basis, i.e. Vi (P,,H,0) = V| (P,,MH,0) with M € R™
a full rank matrix, suggests that there exists a subspace in R” where the optimum
is achieved. Indeed, gradients become zero when rows of matrix H are any linear
combination of a subset of m principal components of the a priori covariance matrix.
Unfortunately, this does not happen in case of noisy measures and gradients become
zero only for a particular matrix H which depends also on the principal components of
the noise covariance matrix.

3.2 Discrete Sensing Design

When each measure y;, j = 1,...,m provided by the glove corresponds to a single joint
angle x;, i = 1,...,n, the problem is to find the optimal choice of m joints or DoFs to
be measured.

Measurement matrix becomes in this case a full row rank matrix where each row is
a vector of the canonical basis, i.e. matrices which have exactly one nonzero entry in
each row.

Let 4;,x, denote the set of m X n element-wise non-negative matrices, then &, =
Ormscn NV Nxn, Where Py, is the set of m X n permutation matrices (see lemma 2.5 in
[Zavlanos and Pappas, 2008]]). This result implies that if we restrict H to be orthonor-
mal and element-wise non-negative, we get a permutation matrix. In this paper we
extend this result in R”*", obtaining matrices which have exactly one nonzero entry in
each row. Hence, the problem to solve becomes:

Problem 2. Let H be a m x n matrix with m < n, and V\(P,,H,R) : R™" — R be
defined as Vi (P,,H,R) = ||P, — P,HT (HP,H" + R)"'HP,||%, find the optimal mea-
surement matrix

H" = argn}_}n Vi(P,,H,R)

st. He Pv,.



In this case a closed-form solution is not available. Nonetheless, as the model hand
adopted has usually a low number of DoFs, the optimal choice H* can be computed by
exhaustion, substituting all possible sub—sets of m vectors of the canonical basis in the
cost function V; (P,,H,R). In next section, a more general approach to computing the
optimal matrix will be provided in order to obtain a result also when a model with a
large number of DoFs is considered.

3.2.1 Numerical Solution: Gradient Flows on &2,

In this section, we describe an alternative approach to the solution of problem [2]based
on a gradiental method. Once again, although the enumeration approach can solve the
problem in practical cases, the numerical solution based on the method here presented
will be useful in the design of hybrid sensors.

A numerical solution for problem 2] can be obtained following a method presented
in [Zavlanos and Pappas, 2008]], which consists in defining a function V,(P) with P €
R™*" that forces the entries of P to be as positive as possible, thus penalizing negative
entries of H. In this paper, we extend this function to measurement matrices H € R"™*"
with m < n. Consider a function V5 : 0,,,«, — R as

Va(H) = %tr [H"(H—(HoH))], (15)

where A o B denotes the Hadamard or elementwise product of the matrices A = (a;;)
and B = (b;;),i.e. AoB = (a;;b;;). The gradient flow of V> (H) is given by ([Zavlanos and Pappas, 2008])

H=-H|[HoH)"H-H"(HoH)], (16)

which minimizes V,>(H) converging to a permutation matrix if H(0) € Oyxp.

The two gradient flows given by and (T6), both defined on the space of or-
thogonal matrices, tend to respectively minimize their cost functions. By combining
these two gradient flows we can achieve a solution for Problem 2] An interesting result
applies to the dynamics of the convex combination of these gradients, which can be
stated as follows.

Theorem 1. Let H € R™*" with m < n be the measurement process matrix and as-
sume that H(0) € Ox,. Moreover, suppose that H(t) satisfies the following matrix
differential equation,

H=4(1-kW [P2PHTE(H)]" +
+kH|[(HoH)"H—H"(HoH)], A7)
where k € [0, 1] is a positive constant and *(H) = (HP,HT +R)~'. For sufficiently

large k, lim; o H(t) = Hw exists and approximates a permutation matrix that also
(locally) minimizes the squared Frobenius norm of the a posteriori covariance matrix,

1P 7

The proof of this theorem is a direct extension of results in [Zavlanos and Pappas, 2008]],
and is omitted for brevity.



As in most numerical optimization algorithms, the non-convex nature of the cost
function and of the support set implies the need for multi-start approaches. A possible
technique to help converge towards the global optimum consists in increasing k during
the search procedure (cf. [Zavlanos and Pappas, 2008]).

3.3 Hybrid Sensing Design

In this section we analyze the sensing device with both continuous and discrete sensors.
Up to rearranging the sensor numbering, we can write a hybrid measurement matrix

H.q € R™" as
[ H
HC,d - |: Hd :| I

where H, € R™<*" defines the m. continuous sensing elements, whereas H; € 924 *"
describes the m, single-joint measurements, with m. 4+ m,; = m. Neither the closed-
form solution valid for continuous sensing design, nor the exhaustion method used for
discrete measurements are applicable in the hybrid case. Therefore, to optimally design
hybrid pose sensing systems, we will recur to gradient-based iterative optimization
algorithms.

We first consider the case that noise is negligible (R ~ 0). By combining the con-
tinuous and discrete gradient flows, previously defined in and (T6), respectively,
we obtain

T
Heyg=4(1—k) [PoPH! X(Hoq)] +
+kI:Id [(I:Id OHd)THd—Hf(Hd OI'_Id)] s (18)

where k € [0, 1] is a positive constant, (H. ;) = (H.4P,H,)~!, and

gd:[omcxn}_

On the basis of Theorem |1} the gradient flow defined in converges toward a
hybrid sensing system (locally) minimizing the squared Frobenius norm of the a pos-
teriori covariance matrix. Multi—start strategies have to be used to circumvent the
problem of local minima.

When noise is not negligible, the gradient search method of would tend to pro-
duce measurement matrices whose continuous parts, H., are very large in norm. This
is an obvious consequence of the fact that, for a fixed noise covariance R, larger mea-
surement matrices H would produce an apparently higher signal-to-noise ratio in (T)).

This problem can be circumvented by constraining the solution in the sub-set J7 ; =
{H.,: HHI =1,_}. A solution for this problem can be obtain by the following gra-
dient flow

. T
Heyg=4(1—k)Wq [PoPHLZ(H, 4)]

+
+kI:Id [(I:Id OI:Id)TI:Id —I:IZ;(I:IL[ OI‘_Id)] , (19)



where k € [0, 1] is a positive constant, P, = P, — PH! ;(HeaPoH? ;+R) ™' He aPs, and
L(Heq) = (Hc,dPoHZd +R)~!. With the choice

Ly, —H-(HTH) ' HT Oppsm,

Omd Xme Imd Xmg

Wc,d =

for the projection matrix, and starting from any initial guess matrix H. 4 € JZ. 4, the
gradient flow remains in the sub-set J#. 4, and converges to a (local) minimum for the
problem. Also in this case, multistart strategies can circumvent the problem of local
minima.

4 Results

In this section we will describe how the information available by measurement pro-
cess increases with the minimization of the squared Frobenius norm of the a posteriori
covariance matrix as well as increasing the number of measures, leading to better esti-
mation performance.

First, based on the a priori covariance matrix obtained with the a priori data set
described in section 3 of [Bianchi et al., 2012b], we will show the optimal distribution
of sensors on the hand in case of continuous and discrete sensing devices. We will
also show that, although the number of measures used with the optimal matrix is less
than the five measures available by matrix H; (cf. [Bianchi et al., 2012bf]), the hand
posture information achievable with the optimal measurement matrix H} related to a
discrete sensing device, is greater, i.e. Vi (H}) < Vi(Hy), leading to a better hand pose
estimation performance.

Second, we will compare the hand posture reconstruction obtained by means of
matrix Hy with the one obtained by using the optimal matrix H; with the same number
of measures. Additional random normal noise v with standard deviation of 7° on each
measure is also considered to evaluate the performance in case of noisy measures.

4.1 Continuous, Discrete and Hybrid Sensing Distribution

As shown in section [3| in case of continuous sensing design, the optimal choice H
of the measurement matrix H € R™*" is represented by the first m principal compo-
nents (synergies) of the a priori covariance matrix P,. Figure 2] shows the hand sensor
distribution related to each synergy.

In case of discrete sensing, the optimal measurement matrix H;, related to a discrete
sensing device, for a number of noise—free measures m ranging from 1 to 14, is reported
in table|1] Notice that, H; does not have an incremental behaviour, especially in case
of few measures. In other words, the set of DoFs which have to be chosen in case of m
measures does not necessarily contain all the set of DoFs chosen for m — 1 measures.
Moreover, noise randomness can slightly change which DoFs have to be measured
compared with the noise—free case.

Figure [ shows the values of the square Frobenius norm of the a posteriori covari-
ance matrix for increasing number m of noise—free measures. The best performance



Legend (cf. figure 2) First PC Second PC Third PC

Figure 2: Optimal continuous sensing distribution for the first PCs of P,. The greater
is the absolute coefficient w; of the joint angle in the PC, the darker is the color of that
joint. We assume the coefficient of the i-th joint in the PC to be normalized w.r.t. the
maximum absolute value of the coefficients that can be achieved all over the joints.

[m [TA TR TM [TT[IA [M [P MM MPRA RMRPLALMEP] Vi |

1 X 7.12-1072
2 X X 2.39.1072
3Ix X [X 6.59-1073
4[x X X X 3.30-103
5 (X X X |X [ X 1.90-1073
6|x X X X [X[x 5.32-10~%
71X X X [X X [X [xX]292-107%
8 [[X X |X X | X X [ X [xX|1.98-107%
9 [|x X[X| [X|X X [X X [x[1.30-107%
10][x XXX XX X [X [ X [X[l6.86-107
11X [X XXX XX X [X X [x12.70-107°
12[x [x XIX[XX]|X [x X [X [X [X]1.40-107
BX XX XIX[XX]X [X X [X X [x][3.39-10°°
X [X|Ix XIX[xX]|X [X[X X[ X |x [x1.32-10°

Table 1: Optimal measured DoFs for H; with increasing number of noise—free mea-
sures m (cf. figure[3).

is obtained by the continuous sensing design, as aspected. Indeed, principal compo-
nents are considered the optimal measures for the representation of points in the best
fitting lower dimensional subspace [[Rao, 1964]). The hybrid performance is better than
the discrete one, thus representing a trade-off between the quality of estimation of the
continuous sensing design and feasibility and costs of the discrete one. Moreover, V;
values decrease with the number of measures, tending to be zero (cf. figure E[) This
fact is trivial because increasing the measurements, the uncertainty on the measured



Middle

Index Ring
Little

DoFs Description
TA Thumb Abduction
TR Thumb Rotation
™ Thumb Metacarpal
TI Thumb Interphalangeal
1A Index Abduction
M Index Metacarpal
P Index Proximal
MM Middle Metacarpal
MP Middle Proximal
RA Ring Abduction
RM Ring Metacarpal
RP Ring Proximal
LA Little abduction
LM Little Metacarpal
LP Little Proximal

Figure 3: Kinematic model of the hand with 15 DoFs. Markers are reported as red
spheres.

variables is reduced. When all the measured information is available V; assumes zero
value with perfectly accurate measures. In case of noisy measures, V| values decrease
with the number of measures tending to a value which is larger, depending on the level
of noise.

For noise—free measures, if we analyze how much V; reduces with the number
of measurements w.r.t. the value it assumes for one measure, reduction percentage
with three measured DoFs is greater than 80%. This result suggests that with only
three measurements, the optimal matrix can furnish more than 80% of uncertainty
reduction. This is equivalent to say that a reduced number of measurements is suf-
ficient to guarantee a good hand posture estimation. In [Santello et al., 1998|] and
[[Gabiccini and Bicchi, 2010f], under the controllability point of view, authors state that
three postural synergies are crucial in grasp pre-shaping as well as in grasping force op-
timization since they take into account for more than 80% of variance in grasp poses.
Here, the same result can be obtained in terms of measurement process, i.e. from the
observability point of view: a reduced number of measures coinciding with the first
three principal components enable for more than 80% reduction of the squared Frobe-
nius norm of the a posteriori covariance matrix.

The above reported result seems logic considering the duality between observabil-
ity and controllability. Moreover, under an engineering point of view, it is reasonable
that those actuators which are used the most being also the most monitored and hence
the most sensor endowed.
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Figure 4: Squared Frobenius norm of the a posteriori matrix with noise—free measures
in case of H, H} and H ; (m; = 1).

5 Discussion
In this section, we will compare the hand posture reconstruction obtained by applying

the hand pose reconstruction techniques described in [Bianchi et al., 2012b]] to m = 5
measures provided by matrix H and by optimal matrix Hj.

5.1 Estimation Results with Optimal Discrete Sensing Devices

Measures are provided by grasp data acquired with the optical tracking system as
in [Bianchi et al., 2012bf], where degrees of freedom to be measured are chosen on
the basis of optimization procedure outcomes, while the entire pose is recorded to
produce accurate reference posture. In figure [5] sensor locations related to matrix H
and H are represented. In order to compare reconstruction performance achieved
with H; and H; we use as evaluation indices the average pose estimation error and
average estimation error for each estimated DoF. Maximum errors are also reported.
These errors as well as statistical tools are chosen according to the ones considered
in [Bianchi et al., 2012b]], where it is possible to find a complete description of the here
adopted. Both noise-free and noisy measures are analyzed.




Legend (cf. figure |3I)

Measured joints: TM, IM, MM, RM and LM Measured joints: TA, MM, RP, LA and LM

Figure 5: Discrete sensing distributions for matrix Hy, on the left, and H ;, on the right
(cf. figure [3). The measured joints are highlighted in color.

5.1.1 Noise-Free Measures

In terms of average absolute estimation pose errors ([°]), performance obtained with
H} is always better than the one exhibited by H, (3.6740.93 vs. 6.6942.38). More-
over, H exhibits smaller maximum error than the one achieved with H, (i.e. 8.25°
for H vs. 13.18° for Hy). Statistical differences between results from H, and H; are
found (p ~ 0, T,.,). In table 2] average absolute estimation errors with their cor-
responding standard deviations for each DoF are reported. For the estimated DoFs,
performance with H}; is always better or not statistically different from the one referred
to H;. Maximum estimation errors underline cases where H furnishes smaller values
and vice versa, since they strictly depend on peculiar poses; however, results from the
two matrices are globally comparable.

In figure [7] squared Frobenius norm for the a posteriori covariance matrix of Hy
with m = 5 measures, and H; with m = 2,3,4,5 measures, in case of noise-free mea-
sures is reported. Notice that squared Frobenius norm is significantly smaller in the
optimal case, even when a reduced number of measures is considered.

5.1.2 Noisy Measures

In case of noise, performance in terms of average absolute estimation pose errors ([°])
obtained with H} is better than the one exhibited by H, (5.961+1.42 vs. 8.18+2.70).
Moreover, maximum pose error with H} is the smallest (9.30° vs. 15.35° observed
with Hy). Statistical difference between results from H; and H are found (p=0.001,
Theq)-

In table 3] average absolute estimation error with standard deviations are reported
for each DoF. For the estimated DoFs, performance with H} is always better or not
statistically different from the one referred to H,;. Maximum estimation errors with H}
are usually inferior to the ones obtained with H;.

Figure [ shows the squared Frobenius norm for the a posteriori covariance matrix
of H; with m = 5 measures, and H ; with m =2, 3, 4, 5 measures, in case of noise. Also
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Posture estimation by using noise—free measures

MVE with Hj| MVE with H

MVE with H; | MVE with Hj

Figure 6: Hand pose reconstructions MVE algorithm by using matrix H; which allows
to measure TM, IM, MM, RM and LM and matrix H; which allows to measure TA,
MM, RP, LA and LM (cf. figure E[) In color the real hand posture whereas in white the
estimated one.

in this situation, squared Frobenius norm is significantly smaller in the optimal case,
even if a reduced number of measures is considered, thus suggesting that an optimal
design leading to error statistics minimization can be achieved using optimal matrix
with an inferior number of measured DoFs w.r.t. H;. Notice that in this case, squared
Frobenius norm values are larger than the corresponding ones obtained in absence of
noise, as expected.

Finally, in figure [f] some reconstructed poses with MVE algorithm are reported by
using both H; and H ; measurement matrix, with and without additional noise. Under a
qualitative point of view, what is noticeable is that reconstructed poses are not far from



Mean Error [°] Hy vs. Hj|Max Error [°]
H, | H; |p-values|| H, | H;

TA® ||10.74+8.45 0 0 31.65( O
TR || 7.16+4.54 | 6.84+4.75 19.50| 20.13

TMo 0 2.1742.21 0 0 | 13.04
TI 4.81+3.68 | 5.33+4.16 19.68| 15.15

IA 11.96+5.33|10.55+£5.65|] 0.14 (|26.35] 26.15

DoF

IMo 0 4.02+£3.43 0 0 | 16.01
P 13.26+7.06| 5.424+-6.44 0 27.46| 43.86
MMo® 0 0 — 0 0

MP |[12.35+7.75/490£291 || 0% [[29.94] 9.91
RA [[3.45+2.43 [ 3.8242.94 N0 | 9-51 | 12.68
0
0
0

RMo 0 6.68+3.68 0 | 16.01
RP® ||13.40£9.65 0 39.33] 0
LA® |[11.33:£5.87 0 2447 0
LMo® 0 0 - 0 0

LP |[11.94+9.52| 6.27+3.97 || 0.0002 |[36.58| 16.63

1+4 0
p-values

© indicates a DoF measured with H,
@ indicates a DoF measured with Hj

Table 2: Average estimation errors and standard deviation for each DoF [o] for the
simulated acquisition considering H; and H}; both with five noise free measures. Maxi-
mum errors are also reported as well as p-values from the evaluation of DoF estimation
errors between Hy and Hj. ¢ indicates T, test. § indicates Ty, test. When no symbol
appears near the tabulated values, U test is used. Bold value indicates no statistical
difference between the two methods under analysis at 5% significance level. When
the difference is significative, values are reported with a 10~# precision. p-values less
than 10~ are considered equal to zero. Symbol “~” is used for those DoFs which are
measured by both Hy and H}.

the real ones for both measurement matrices. Moreover, it is not surprising that some
poses seem to be estimated in a better manner using Hy and vice versa, even if from the
previously described statistical results H; provides best average performance. Indeed,
MVE methods are thought to minimize error statistics rather than worst-case sensing
errors related to peculiar poses [Bicchi and Canepa, 1994].
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Figure 7: Squared Frobenius norm for the a posteriori covariance matrix of H; with
m =5 measures, and Hj with m = 2, 3, 4, 5 measures, in case of noise—free measures.
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Figure 8: Squared Frobenius norm for the a posteriori covariance matrix of Hy; with
m = 5 measures, and H; with m = 2, 3, 4, 5 measures, in case of noisy measures.

6 Conclusions

In this paper, optimal design of sensing glove has been proposed on the basis of the
minimization of the a posteriori covariance matrix as it results from the estimation
procedure described in [Bianchi et al., 2012b]. Optimal solution are described for the
continuous, discrete and hybrid case.

In the continuous sensing case, optimal measures are individuated by principal
components of the a priori covariance matrix, thus suggesting the importance of pos-




DoF Mean Error [°] H; vs. H; Max Error [°]
Hy | Hj | p-values| Hj | H)
TA® 6.7+5.62 | 4.87+3.57 0.19 |[|23.35| 15.93
TR 7.65+£5.57 | 7.54£5.00 27.46| 22.73
TMo || 2.81+1.75 |2.63+1.90 7.2 | 8.78

TI 6.08+4.63 |5.424+4.74 0.32 19.6 | 19.10
1A 10.74£5.6 [11.52+£5.81|| 032 |[{27.31| 28.46
IMo || 4.15£3.17 | 6.91£5.00 || 0.003 |[11.66| 21.49
P 14.61£7.93 | 6.611+6.01 0 31.85| 38.07

MMo®|| 4.59+£3.08 [4.7143.19 11.43] 15.72
MP® || 13.71+8.07 | 4.08+2.98 || 0% |37.61] 13.71
RA || 3.12+2.37 [3.28+2.45 9.18 | 9.37

RMo || 4.03+3.07 | 6.304+4.72 | 0.01% [/12.94| 12.91
RP ||16.78+11.07| 6.89+3.82 0% 50.66| 16.34
LA 8.97+5.11 [9.86+5.45 || 0.38¢ |20.86| 21.48
LMo® || 3.82£3.05 | 4.82+4.30 0.44 |[/11.33] 14.26
LP® || 14.64+£9.68 | 3.94+£2.95 0 48.61| 11.03

1+4 0
p-values

© indicates a DolF measured with Hj
® indicates a DoF measured with H ;

Table 3: Average estimation errors and standard deviation for each DoF [o] for the
simulated acquisition considering Hy and H; both with five noisy measures. Maximum
errors are also reported as well as p-values from the evaluation of DoF estimation errors
between H and H. ¢ indicates T, test.  indicates T, test. When no symbol appears
near the tabulated values, U test is used. Bold value indicates no statistical difference
between the two methods under analysis at 5% significance level. When the difference
is significative, values are reported with a 10~ precision. p-values less than 10~ are
considered equal to zero. Symbol “—" is used for those DoFs which are measured by
both Hy and Hj.

tural synergies not only for hand control.
The reconstruction performance obtained by combining the estimation technique
proposed in [Bianchi et al., 2012b]] and the optimal design proposed in this paper is sig-
nificantly improved if compared with non-optimal measure case. Therefore, [Bianchi et al., 2012b]
and [Bianchi et al., 2012a]] provide a complete procedure to enhance the performance
and for a more effective development of both sensorization systems for robotic hands
and active touch sensing systems, which can be used in a wide range of applications,
ranging from virtual reality to tele-robotics and rehabilitation. Moreover, by optimiz-
ing the number and location of sensors the production costs can be further reduced




without loss of performance, thus increasing device diffusion.

Acknowledgment

Authors gratefully acknowledge Marco Santello and Lucia Pallottino for the inspiring
discussion and useful suggestions.

References

[Bianchi et al., 2012a] Bianchi, M., Salaris, P., and Bicchi, A. (2012a). Synergy-based
hand pose sensing: Optimal glove design. The International Journal of Robotics
Research. Submitted.

[Bianchi et al., 2012b] Bianchi, M., Salaris, P.,, and Bicchi, A. (2012b). Synergy-
based hand pose sensing: Performance enhancement. The International Journal of
Robotics Research. Submitted.

[Bicchi, 1992] Bicchi, A. (1992). A criterion for optimal design of multiaxis force
sensors. Journal of Robotics and Autonomous Systems, 10(4):269-286.

[Bicchi and Canepa, 1994] Bicchi, A. and Canepa, G. (1994). Optimal design of mul-
tivariate sensors. Measurement Science and Technology (Institute of Physics Jour-
nal “E”), 5:319-332.

[Chaloner and Verdinelli, 1995] Chaloner, K. and Verdinelli, I. (1995). Bayesian ex-
perimental design: A review. Statistical Science, 10:273-304.

[Chang et al., 2007] Chang, L. Y., Pollard, N. S., Mitchell, T. M., and Xing, E. P.
(2007). Feature selection for grasp recognition from optical markers. In Intelligent
Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on,
pages 2944-2950.

[Diamantaras and Hornik, 1993] Diamantaras, K. and Hornik, K. (1993). Noisy prin-
cipal component analysis. Measurement ‘93, pages 25 — 33.

[Edin and Abbs, 1991] Edin, B. B. and Abbs, J. H. (1991). Finger movement re-
sponses of cutaneous mechanoreceptors in the dorsal skin of the human hand.
Journal of neurophysiology, 65(3):657-670.

[Edmison et al., 2002] Edmison, J., Jones, M., Nakad, Z., and Martin, T. (2002). Using
piezoelectric materials for wearable electronic textiles. In Wearable Computers,
2002. (ISWC 2002). Proceedings. Sixth International Symposium on, pages 41 —
48.

[Gabiccini and Bicchi, 2010] Gabiccini, M. and Bicchi, A. (2010). On the role of
hand synergies in the optimal choice of grasping forces. In Robotics Science and
Systems.



[Ghosh and Rao, 1996] Ghosh, S. and Rao, C. R. (1996). Review of optimal bayes
designs. In Design and Analysis of Experiments, volume 13 of Handbook of Statis-
tics, pages 1099 — 1147. Elsevier.

[Helmicki et al., 1991] Helmicki, A. J., Jacobson, C. A., and Nett, C. N. (1991). Con-
trol oriented system identification: a worst-case/deterministic approach in h™. Au-
tomatic Control, IEEE Transactions on, 36(10):1163 —1176.

[Pukelsheim, 2006] Pukelsheim, F. (2006). Optimal Design of Experiments (Classics
in Applied Mathematics) (Classics in Applied Mathematics, 50). Society for In-
dustrial and Applied Mathematics, Philadelphia, PA, USA.

[Rao, 1964] Rao, C. R. (1964). The use and interpretation of principal component
analysis in applied research. The Indian journal of statistic, 26:329 — 358.

[Rosen, 1960] Rosen, J. B. (1960). The gradient projection method for nonlinear pro-
gramming. part i. linear constraints. Journal of the Society for Industrial and Ap-
plied Mathematics, 8(1):181 — 217.

[Santello et al., 1998] Santello, M., Flanders, M., and Soechting, J. F. (1998). Postural
hand synergies for tool use. The Journal of Neuroscience, 18(23):10105 — 10115.

[Sturman and Zeltzer, 1993] Sturman, D. J. and Zeltzer, D. (1993). A design method
for “whole-hand” human-computer interaction. ACM Trans. Inf. Syst., 11(3):219-
238.

[Tempo, 1988] Tempo, R. (1988). Robust estimation and filtering in the presence of
bounded noise. Automatic Control, IEEE Transactions on, 33(9):864 —867.

[Tognetti et al., 2006] Tognetti, A., Carbonaro, N., Zupone, G., and De Rossi, D.
(2006). Characterization of a novel data glove based on textile integrated sen-
sors. In Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, EMBC06, Proceedings., pages 2510 — 2513.

[Zavlanos and Pappas, 2008] Zavlanos, M. M. and Pappas, G. J. (2008). A dynamical
systems approach to weighted graph matching. Automatica, 44(11):2817 — 2824.

A Appendix

This appendix is devoted to the derivation of the gradient equation given in proposi-
tion [l

Proof of Proposition 1 The Frobenius norm of a matrix A € R"*" is given as
n
IAllF = /tr(ATA) = |} oF,
i=1

|\P,—P,HT (HP,HT +R)"'HP,||% = tr(P!P,) (20)

and hence,



where P, = P, — P,HT(HP,HT +R)"'HP,. To find the gradient flow, we need to
compute
ot(Prp, d(Pr'P, oPT P,
(£ p):tr (Fp Fr) =tr| =% P, +PI £
0H 0H 0H P oH

oP) P, el
—«| 2P T
tr(aH P,,> +ir (P,, aH) 21r < ! aH) [e3))
as d(XY) = (dX)Y +X(dY) and tr(AT) = tr(A). Moreover, from differentiation rules

of expressions w.r.t. a matrix X, we have oX1=_Xx"1 (ax)xfl and hence, assuming
Y(H) = (HR,H! +R)~!, we obtain

T = omTeenm " (5 e xanon ) |, =

= —P, [(0H)"S(H)H — H" (Z(H) (JHP,H" +
+HP,(0H)" ) L(H)H +X(H) 0H)] P, 22)

Substituting (22) in (2T)) and by using a well note trace property (tr(A + B) = tr(A) +
tr(B)) we obtain

8tr(PpT P,)

S =2 [—te(P) P,(0H)"£(H)HP,) + tr(P] P,H £(H)JHP,H" £(H)HP,)+

+tr(P) P,H" S(H)HP,(0H)" £(H)HP,) — tr(P} P,H  £(H)0HP,)] .
(23)

As tr(AB) = tr(BA), we obtain

dtw(P!P, )

T 2 [~ t((0H)"£(H)HP,P} P,) + tr(P,H  £(H)HP,P) P,H" %(H)oH)+

+tr((0H)"S(H)HP,P] P,H"(H)HP,) — tr(P,P} P,H' £(H)0H)| (24)

and as tr(AT) = tr(A) we have

otr(PIP,
% =2[-u(P/P,PH"S(H)" 0H) +tr(P,H" £(H)HP,P} P,H £(H)JH)+
+te(P H'S(H)"HP] P,P] H'£(H)" 0H) — tr(P,P} P,H" %(H)0H)] ,
(25)
whence,
(PP,
72 I’; v _ 2[-P]P,PIH"L(H)" + P,H"X(H)HP,P} P,H £(H)+

(
+PTHTY(H) HPI P,PTHT S (H)" - P, PTP HTY(H)

] =
=2[(P,H"X(H)H —I)P,P} P,H"S(H) + (P] H'£(H)"H —I)P] P,P H'£(H)"] .

(26)



Matrices P,, P, and Y(H) are symmetric, and hence, for this particular case we obtain

dte(PIPy)

T
=4 [P2RHTS(H)|" (27)

with X(H) = (HP,HT +R)~.
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