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Abstract: We present a simple and natural extension of the multi-robot
motion planning problem where the robots are partitioned into groups (col-
ors), such that in each group the robots are interchangeable. Every robot is
no longer required to move to a specific target, but rather to some target
placement that is assigned to its group. We call this problem k-color multi-
robot motion planning and provide a sampling-based algorithm specifically
designed for solving it. At the heart of the algorithm is a novel technique
where the k-color problem is reduced to several discrete multi-robot mo-
tion planning problems. These reductions amplify basic samples into massive
collections of free placements and paths for the robots. We demonstrate the
performance of the algorithm by an implementation for the case of disc robots
and polygonal robots translating in the plane. We show that the algorithm
successfully and efficiently copes with a variety of challenging scenarios, in-
volving many robots, while a simplified version of this algorithm, that can
be viewed as an extension of a prevalent sampling-based algorithm for the k-
color case, fails even on simple scenarios. Interestingly, our algorithm outper-
forms a well established implementation of PRM for the standard multi-robot
problem, in which each robot has a distinct color.

1 Introduction

Motion planning is a fundamental problem in robotics and has applications
in different fields such as the study of protein folding, computer graph-
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ics, computer-aided design and manufacturing (CAD/CAM), and computer
games.

The problem of motion planning, in its most basic form, is to find a
collision-free path for a robot from start to goal placements while moving
in an environment cluttered with obstacles.

An obvious extension of this problem is multi-robot motion planning, where
several robots share a workspace and have to avoid collision with obstacles
as well as with fellow robots. In many situations it is natural to assume
that some robots are identical, in form and in functionality, and therefore
are indistinguishable. In this setting every target position should be occu-
pied by some robot of a kind (and not necessarily by a specific robot).

Fig. 1: An example of a 3-
color scenario where three dif-
ferent groups of robots occupy
the same workspace. The star-
shaped robots are required to
exchange “rooms” with the
snake robots while the two
puzzle-like robots should re-
turn to their start positions in
the end of the motion.

We consider the problem of k-color multi-
robot motion planning—a simple and nat-
ural extension of the multi-robot problem
where the robots are partitioned into k
groups (colors) such that within each group
the robots are interchangeable. Every such
group has a set of target positions, of size
equal to the number of robots in that group.
Every robot is no longer required to move
to a specific target, but rather to some tar-
get position that is assigned to its group.
However, we still require that all the target
positions will be covered by the end of the
motion of the robots. We term the special
case where k = 1 the unlabeled multi-robot
motion planning problem.

As an example consider a fleet of mobile
robots operating in a factory that are given
the task of cleaning a set of specific loca-
tions. The robots are indistinguishable from
one another, and therefore any robot can be
assigned to any location. Now assume that
in addition to the mobile robots, another
class of maintenance robots is employed by
the factory; again, we consider all the maintenance robots to be of the same
kind and interchangeable for the given task. This turns the unlabeled prob-
lem into a k-color problem, where k = 2 in this case. From now on we will
refer to the classic multi-robot motion planning problem as fully-colored, as
it is a special case of the k-color problem where k is equal to the number of
robots and every group is of size one.
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1.1 Previous Work

Throughout this paper we will assume some familiarity with the basic terms
in the area of motion planning. For more background on motion planning,
see, e.g., [7, 19].

The first efforts in motion planning in general, and the multi-robot case
in particular, were aimed towards the design of complete algorithms, guaran-
teed to find a solution when one exists or report that none exists otherwise.
Schwartz and Sharir were the first to give [26] a complete algorithm for a
multi-robot problem, specifically dealing with the case of coordinating disc
robots in the plane. The running time of their algorithm is exponential in the
number of robots. A work by Hopcroft et al. [12] presented soon after sug-
gested that in some cases the exponential running time may be unavoidable,
showing that even the relatively simple setting of rectangular robots bound
in a rectangular region is PSPACE-hard in the number of robots.

The hardness of the multi-robot problem involving a large number of
robots can be attributed to its high number of degrees of freedom (or dofs)—
the sum of the dofs of the individual robots. Some efforts were made in the
direction of reducing the effective number of dofs. Aronov et al. [1] showed
that for systems of two or three robots a path can be constructed, if one
exists, where the robots move while maintaining contact, thus reducing the
number of dofs by one or two, depending on the number of robots. van den
Berg et al. [4] proposed a general scheme for decomposing a multi-robot prob-
lem into a sequence of subproblems, each consists of a subset of robots, where
every subproblem can be solved separately and the results can be combined
into a solution for the original problem. This method reduces the number of
dofs that need to be treated simultaneously from the number of dofs of the
entire problem to the number of dofs of the largest subproblem.

An opposite approach to the complete planners is the decoupled approach,
trading completeness with efficiency. Decoupled algorithms solve separate
subproblems (usually for individual robots) and combine the individual solu-
tions into a global solution. Although this approach can be efficient in some
cases, it does not guarantee finding a solution if one exists and usually works
only for a restricted set of problems. An example of such an algorithm can
be found in the work of van den Berg and Overmars [3] where every robot
is given a priority and for each robot, the motion path is constructed to
avoid collision with both static obstacles and lower-priority robots that are
considered as moving obstacles. In other works, as in Leroy et al. [20], indi-
vidual paths are computed and velocity tuning is performed to avoid collision
between robots.

In recent years, the sampling-based approach for motion-planning prob-
lems has become increasingly popular due to its efficiency, simplicity and the
fact that it is applicable to a wide range of problems. Unlike the complete
planners that explicitly build the configuration space of a given problem, the
state of all possible configurations of a robot, sampling-based algorithms con-
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struct an implicit representation of a robot configuration space by sampling
this space for valid robot placements and connecting nearby samples. The
connections between samples form a roadmap whose vertices describe valid
placements for the robot and the edges represent valid paths from one place-
ment to the other. Due to the implicit representation of the configuration
space and their simplicity, sampling-based algorithms tend to be much faster
than complete planners in practice, and are applicable to problems with a
large number of dofs such as the multi-robot problem. Although these algo-
rithms are not complete, many of them are probabilistically complete, that is,
they are guaranteed to find a solution, if one exists, given sufficient amount
of time. Examples of such algorithms are the PRM algorithm [14] by Kavraki
et al. and the RRT algorithm [18] by Kuffner and LaValle. Such algorithms
can be easily extended to the multi-robot case by considering the fleet of
robots as one large composite robot [25]. Several tailor-made sampling-based
algorithms have been proposed for the multi-robot case [11, 28]. For more
information on sampling-based algorithms see, e.g., [19].

An abstract form of the multi-robot motion planning problem is the pebble
motion on graphs problem [17]. This is a general case of the famous 15-puzzle
where pebbles occupying distinct vertices of a given graph are moved from
one set of vertices to another, where the pebbles are bound to move on the
edges of the graph. In [6] an unlabeled version of the pebble problem is dis-
cussed, as well as other variants, such as a grid topology of the graph. In [10]
the feasibility of a k-color variant of the pebble problem on a general graphs
is discussed. We also mention the work [21] where an algorithm is given for a
fairly general pebble problem. A recent work by Wagner et al. [31] combines
their technique for multi-agent pathfinding in discrete environments [30] with
an implicit representation of the roadmap, presented by Švestka and Over-
mars [28], to yield an efficient algorithm for the fully-colored multi-robot
motion planning problem. In the Conclusion section we discuss more remote
variants of multi-robot motion planning.

1.2 Contribution

In this paper we present a sampling-based algorithm for the k-color problem
(for any k). This algorithm is aimed to solve the most general cases of this
problem and does not make any assumptions regarding the workspace or the
structure of the robots.

Our algorithm for the k-color problem—the KPUMP algorithm—reduces
the k-color problem to several discrete pebble problems. Specifically, a sample
generated by KPUMP represents a local k-color problem that is embedded
in a variant of the pebble motion problem. Those pebble problems are con-
structed in a manner that enables the algorithm to transform movements
of pebbles into valid motions of the robots. This allows KPUMP to gener-
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ate a wide range of motions and placements for the robots with minimal
investigation of the configuration space, thus reducing the dependence of the
algorithm on costly geometric tools such as the collision detector.

As reflected in the experiments reported below for the case of disc robots
and polygonal robots translating in the plane, KPUMP proves to be efficient,
even on challenging scenes, and is able to solve problems involving a large
number of robots using a modest number of samples. Interestingly, it performs
well even on inputs of the standard (fully-colored) multi-robot problem.

This algorithm is simple to implement and does not require special geomet-
ric components beyond single-robot local planners and single-robot collision
detectors. We compare the performance of our algorithm with a simplified
version of KPUMP that can be considered as a variant of the PRM algorithm
for the same problem. We note that the latter performs much slower than
KPUMP and fails to solve even problems that are considered to be simple
for KPUMP. Moreover, concentrating on the fully-colored case, KPUMP out-
performs a state-of-the-art implementation of the PRM algorithm. Our dis-
cussion will mainly focus on UPUMP—an algorithm for the unlabeled case,
since its extension for the k-color case, namely KPUMP, is almost straight-
forward. The experiments though will demonstrate the power of KPUMP for
various values of k.

The organization of the paper is as follows. In Section 2 we give formal
definitions of the unlabeled and k-color problems. In Section 3 we present
a variant of the pebble problem and discuss its properties which will be
exploited by our algorithms. In Section 4 we present UPUMP. In the following
section (Section 5) we describe a subroutine that is used by UPUMP, which
we call the connection generator. In Section 6 we describe the changes that are
necessary to transform UPUMP into KPUMP. In section 7 the completeness
of our algorithm is discussed. We present experimental results for the case
of disc robots and polygonal robots moving among polygonal obstacles in
the plane in Section 8 and discuss certain properties of our techniques in
Section 9, as well as further work.

2 Preliminaries and Terminology

Let r be a robot operating in the workspace W . We denote by F(r) the free
space of a robot r—the collection of all collision-free single-robot configura-
tions.2 Given s, t ∈ F(r), a path for r from s to t is a continuous function
π : [0, 1]→ F(r), such that π(0) = s, π(1) = t.

Unlabeled Multi-Robot Motion Planning. We say that two robots r, r′

are geometrically identical if F(r) = F(r′) for the same workspace W . Let

2 We assume that F(r) is an open set. This is not critical in the algorithms below as we
assume that the robot never moves in contact with the obstacles.
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R = {r1, . . . , rm} be a set of m geometrically identical robots, operating in
a workspace W . We may use F to denote F(ri) for any 1 ≤ i ≤ m. Let
C = {c1, . . . , cm|ci ∈ F} be a set of m single-robot configurations. C is a
configuration if for every c, c′ ∈ C, with c 6= c′, the robots r, r′ ∈ R, placed in
c, c′, do not collide. Notice that we reserve the unqualified term configuration
to refer to a set of m collision-free single-robot configurations. Other types
of configurations will be qualified: single-robot configurations and pumped
configurations.

Given two configurations S = {s1, . . . , sm}, T = {t1, . . . , tm}, named start
and target, respectively, we define U = (R,S, T ) as the unlabeled problem,
which is shorthand for the unlabeled multi-robot motion planning problem.
Our goal is to find an unlabeled path πU , defined as follows. Firstly, πU is
a collection of m paths {π1, . . . , πm} such that for every i, πi is a collision-
free path for the robot ri from si to some t ∈ T . Secondly, the robots have
to remain collision-free while moving on the respective paths, i.e., for every
θ ∈ [0, 1], πU (θ) = {π1(θ), . . . , πm(θ)} is a configuration. Notice that this also
implies that πU (1) is some permutation of T .

Throughout this paper, we use the notation r(c) ⊂ C, for c ∈ F , to repre-
sent the portion of the configuration space covered by a robot r ∈ R placed in
the single-robot configuration c. Note that two robots from R collide, when
placed in c, c′ ∈ F , if r(c) ∩ r(c′) 6= ∅.
k-Color Multi-Robot Motion Planning. The k-color problem L is de-
fined by the set of unlabeled problems {U1, . . . ,Uk}, where Ui = (Ri, Si, Ti)
and |Ri|= mi. The definition of the solution to this problem, namely a k-
color path, immediately follows. A special case of this problem, usually named
simply multi-robot motion planning, is a k-color problem where for every Ui
it holds that |Ri|= 1. In our context we call this special case fully-colored.

3 The Pebble Motion Problem

In preparation for the algorithm presented in the next section, we discuss
a variant of the problem of pebble motion on graphs. This problem is a
discretization of the unlabeled problem. This discretization is defined in a
manner that will allow us to transform local unlabeled problems into peb-
ble problems such that a movement of the pebbles can be transformed back
into valid robot motions. We explain below where our formulation is different
from the standard presentation of the pebble-motion problem.
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3.1 Formal Definition

A pebble problem [17] P(G,S, T,m) is defined by an undirected graph G =
(V,E), and two sets of vertices S, T ⊆ V , where |S|= |T |= m. A pebble
placement is an ordered set of m distinct vertices of V . Initially, m identical
pebbles τ1, . . . , τm are placed in S. We wish to find a chain of placements π∗ =
P1, . . . , P`, called a pebble path, which obeys the following set of rules. Firstly,
we demand that P1 = S. Secondly, for every two consecutive placements
P = {p1, . . . , pm}, P ′ = {p′1, . . . , p′m} and every 1 ≤ i ≤ m it holds that
(pi, p

′
i) ∈ E or pi = p′i, i.e., the pebble τi is allowed to stay in its current

vertex or move to a neighboring vertex in the graph.
Next we depart from the problem definition in [17]. We demand that P` is

some permutation of the elements of T . (The original formulation [17] speci-
fied which pebble will reside on which specific vertex of T .) We do, however,
impose an additional requirement—the separation rule—which requires that
the pebbles will move separately, i.e., for every two consecutive placements
P, P ′, as defined above, exactly one pebble τi makes a move on an edge, while
the other pebbles remain stationary. More formally, there exists 1 ≤ i ≤ m
such that (pi, p

′
i) ∈ E and for every j 6= i it holds that pj = p′j . The reason

for this restriction will become clear later on.

3.2 Solvability

We provide a simple test to identify whether a given pebble problem has a
solution. We start with a pair of basic definitions.

Definition 1. Let V ′ be a pebble placement of a pebble problem P(G,S, T,m)
and let {G1, . . . , Gh} be the set of maximal connected subgraphs of G, where
Gi = (Vi, Ei). The signature of V ′ is defined as sig(G,V ′) = {|V ′ ∩ Vi|}hi=1.

Namely, the signature of a placement is the number of pebbles in every con-
nected component. Using this definition we define an equivalence relation
between placements.

Definition 2. Let V ′, V ′′ be two placements of P(G,S, T,m). We say that
the two placements are equivalent if sig(G,V ′) = sig(G,V ′′) and denote this
property by V ′ ≡ V ′′.

We note that this equivalence relation is defined between placements of the
same graph. The variant of the pebble problem used in this paper possesses
the following property, which states that there exists a pebble path between
every two equivalent pebble placements. This property plays a cental role in
the design of the UPUMP algorithm, presented in the next sections.
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Lemma 1. For every pebble problem P(G,S, T,m) such that S ≡ T , there
exists a pebble path from S to T .

This lemma is a generalization of [16, Section 3, first Lemma] where an
algorithm for the case of a connected graph is given. We mention that this
algorithm constructs a spanning tree of G and restricts the movements of the
pebbles to the edges of the tree.

From now on, we will refer to the algorithm that solves the pebble problem
as pebble solver, which given a pebble problem returns a pebble path.

4 The Unlabeled Case: Pumped Configurations

In this section, we present our main contribution — a sampling-based algo-
rithm for the unlabeled problem. At a high level the UPUMP algorithm bears
some resemblance to the PRM algorithm, as they both generate a collection
of samples that form a roadmap. However, the structures and subroutines
used by UPUMP are quite different from the ones used by PRM. Thus, we
describe UPUMP independently from PRM.

UPUMP generates a collection of geometrically-embedded graphs. These
are called pebble graphs and enable the mapping of valid movements of peb-
bles from one pebble placement to the other on these graphs, into motions
of robots between configurations. The vertices of such pebble graphs are
single-robot configurations while the edges represent single-robot paths. We
generate a pebble graph by sampling a set of single-robot configurations,
called pumped configurations, of size larger than the actual number of robots,
to seemingly accommodate an increased number of robots.

This technique makes use of the fact that our problem does not involve one
complex robot, but rather a collection of robots operating in the same con-
figuration space. This is in contrast with a popular sampling-based technique
that considers the group of robots as one composite robot. In our opinion, the
latter suffers from an acute disadvantage compared to our technique. We will
demonstrate this claim experimentally and discuss the benefits of UPUMP
and KPUMP in depth later on.

After discussing the construction of pebble graphs and exploring their
various properties we show that they can be connected to generate more
complex paths where the robots not only move within a single pebble graph
but also between different pebble graphs on collision-free paths. We conclude
this section with a description of the sampling-based algorithm.
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4.1 Construction of Pebble Graphs

We now define more formally some of the aforementioned structures. Recall
that a configuration is a collection of m single-robot configurations, where
m is the actual number of robots, i.e., |R|= m, for which the m robots are
collision-free.

Definition 3. Let V = {v1, . . . , vn} for n ≥ m be a set of single-robot con-
figurations such that for every v ∈ V it holds that v ∈ F , where F = F(r)
for some r ∈ R. V is a pumped configuration if for every v, v′ ∈ V two robots
placed in these single-robot configurations do not collide.

Note that this implies that every subset of size m of a pumped configu-
ration is a configuration, i.e., if C ⊂ V, |C|= m then C is a configuration.
Additionally, it follows that a pumped configuration can accommodate an
increased number of robots, n to be exact. A possible implementation of a
procedure that generates a pumped configuration is given in Algorithm 1.

Given a pumped configuration V we construct the graph G = (V,E) where
the edges represent paths in F for individual robots. We call it a pebble graph,
and view it as embedded in the free configuration space. To generate the
edges of G, and the respective paths, we utilize the edge planner mechanism
that is described below. This, in turn, relies on the local planner component,
that traditionally attempts to connect two single-robot configurations with a
straight-line path, although a more sophisticated technique can be used.

Let v, v′ ∈ V be two distinct single-robot configurations of the pumped
configuration V , and let π be a path for r ∈ R from v to v′ that was generated
by the local planner. If for every u ∈ V , where u 6= v, v′, the robot r, while
moving on π, does not collide with a (geometrically identical) robot placed
in u, then the edge planner returns π. Otherwise, it reports failure. Thus, the
edge planner returns only paths for which a robot moving between two single-
robot configurations does not collide with other stationary robots placed in
other single-robot configuration of V .

To construct a pebble graph from a pumped configuration V , the edge
planner is applied on every pair v 6= v′ in V . Upon successful generation
of a path πv,v′ the edge (v, v′) is added to G. An example of a pumped
configuration, as well as its underlying graph, are given in Figure 2. A formal
definition of the pebble graph is given constructively in Algorithm 2.

4.2 Properties of Pebble Graphs

We now discuss the various properties of this special graph. We first note
that every configuration C ⊂ V is also a pebble placement for some pebble
problem that is defined on G. A less obvious property of the pebble graph G,
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V

C ′

C

2

1

G

3

(a) (b)

Fig. 2: (a) Pumped configuration V with m = 3, n = 7, for the problem of disc robots in the
plane. C,C′ are two configurations such that C,C′ ⊂ V . (b) The pebble graph G is induced

by V using an edge planner that tries to connect pairs of single-robot configurations with a
straight-line path. In addition, a path induced by a pebble path, from C to C′, is described,

where the arrows describe the movements of the robots from one single-robot configuration

to its neighbor, and the numbers indicate the order in which those movements occur.

Algorithm 1 PUMPED CONFIGURATION(n)

1: V ← ∅
2: while |V |6= n do

3: v ← RANDOM SAMPLE()
4: valid← TRUE

5: for all v′ ∈ V, v 6= v′ do
6: if r(v) ∩ r(v′) 6= ∅ then
7: valid← FALSE

8: if valid then

9: V ← V ∪ {v}
10: return V

Algorithm 2 PEBBLE GRAPH(n)

1: V ← PUMPED CONFIGURATION(n)
2: E ← ∅
3: for all v, v′ ∈ V, v 6= v′ do
4: πv,v′ ← EDGE PLANNER(V, v, v′)
5: if πv,v′ 6= ⊥ then

6: E ← E ∪ {(v, v′)}
7: return G = (V,E)

which is described in the following proposition, allows us to transform pebble
paths into robot paths.

Proposition 1. Let G = (V,E) be a pebble graph and let C,C ′ ⊂ V be
two configurations such that C ≡ C ′. Then there exists a path πU ′ for U ′ =
(C,C ′).

Proof. By Lemma 1 there is a pebble path π∗ for the pebble problem
P(G,C,C ′,m). We transform the movements of the pebbles into π∗ to a
valid motion of the robots in the following manner. A movement of the peb-
ble τi on the edge (v, v′) ∈ E is transformed to the motion of the robot ri
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along the path πv,v′ . Notice that a collision between a robot and an obstacle
cannot occur since the path was generated by the edge planner. Additionally,
a moving robot cannot collide with another “stationary” robot that resides
in some other vertex u ∈ V . Finally, a collision between two moving robots
cannot occur since the pebble path π∗ must respect the separation rule (Sec-
tion 3), which states that at most one pebble is allowed to move at a given
time. ut

4.3 Connecting Pebble Graphs

Proposition 1 implies that certain unlabeled problems can be solved using a
single pebble graph. However, this statement does not hold for many other
instances of the unlabeled problem. As an example, consider an unlabeled
problem U = (S, T ) in which there exists at least one pair s ∈ S, t ∈ T, s 6= t,
such that a robot r ∈ R placed in s overlaps with another robot r′ ∈ R placed
in t. Thus, s, t cannot be in the same pumped configuration.

Fortunately, we can combine several graphs in order to find paths for more
general unlabeled problems. For instance, robots may move from a pebble
graph GS = (V,E) where S ⊂ V , through several other pebble graphs until
they will finally reach GT = (V ′, E′) where T ⊂ V ′.

We first show that given two pebble graphs and an unlabeled path con-
necting two configurations, one from every graph, the robots can move from
the first pebble graph to the second. This path serves as a “bridge” between
the two graphs and connects not only the two configurations but many other
configurations from the two graphs as well. Before describing a mechanism
to generate such paths we provide a concrete description of the property dis-
cussed here in the form of the following lemma. We omit its proof, which is
straightforward.

Lemma 2. Let C ⊂ V,C ′ ⊂ V ′ be two configurations of the pebble graphs
G = (V,E), G′ = (V ′, E′) and let πC,C′ be a path for the unlabeled problem
U ′ = (C,C ′). In addition, let D,D′ be two configurations such that D ⊂
V,D′ ⊂ V ′ and D ≡ C,D′ ≡ C ′. Then there exists a path πU ′′ for U ′′ =
(D,D′).

An example of a path, as described in Lemma 2, is given in Figure 3. Paths
similar to πC,C′ described above are generated using the following component
which generalizes the component local planner used in standard sampling-
based algorithms. We postpone a detailed description of this component to
Section 5.

Given two pumped configurations V, V ′ the connection generator returns
q several paths such that every returned path πC,C′ is a solution for some
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unlabeled problem U ′ = (C,C ′) where C,C ′ are configurations such that
C ⊂ V,C ′ ⊂ V ′.

By Lemma 2, a single connection implicitly connects a collection of config-
urations with a specific signature from the first graph with a similar collection
in the second graph. We require from the connection generator to create sev-
eral such connections in order to connect a variety of signatures between the
two graphs.

4.4 Description of UPUMP

Next, we extend Lemma 2 to describe still more complex paths. The UPUMP
algorithm has a preprocessing phase and a query phase. In the first phase it
samples a collection of pebble graphs and connects them using the connection
generator. Those connections represent edges in a roadmap H whose vertices
are configurations from the different pebble graphs. Additional edges, that
represent paths between configurations within the same pebble graph, are
added to H afterwards. In the query phase, given start and target configura-

D
G

2

1

CG G,G′

C ′

C

(a) (b) (c)

G′

C ′

1

2

G′

D′

(d) (e)

Fig. 3: An illustration of a path between two pebble graphs, as described in Lemma 2,
from a configuration D of the pebble graph G, to a configuration D′ of G′. G consists

of five vertices and two connected components, as illustrated in (a),(b), and G′ consists
of four vertices with two connected components, as shown in (d),(e). In (a) the starting

configuration D of the two robots is shown. In (b) the robots move according to a pebble-
induced path to the configuration C. In (c) the robots move from G to G′ by a path that
connects C with C′. In (d) and (e) the two robots move from C′ to D′ according to a

pebble induced path on G′. Notice that C ≡ C′, D ≡ D′, as required.
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tions S, T , UPUMP generates two pebble graphs that contain them. These
two graphs are connected to other previously sampled pebble graphs. We give
a more formal description below, along with the description of the parameters
used by UPUMP.

Parameters. g is the number of sampled pebble graphs; n represents the size
of a sampled pumped configuration; q is the maximal number of connections
between two pebble graphs.

Preprocessing (Algorithm 3). UPUMP samples a collection of g pebble
graphs G (line 3). For every pair of sampled pebble graphs G = (V,E), G′ =
(V ′, E′) we apply the CONNECT procedure (line 6) that generates several
connections between the two pebble graphs, and updates the roadmap ac-
cordingly. Then, we add edges to H that represent connections that follow
from Proposition 1 (line 8). We remind the reader that two configurations
are equivalent only if they were taken from the same pebble graph, and their
signatures are identical. We draw an edge between them but do not generate
the respective paths at this point, as only some of them will eventually partic-
ipate in a path returned in the query phase (an economical “lazy” approach)
This concept is further discussed in the paragraph describing the
path retrieval stage below.

Algorithm 3 PREPROCESS(g, q, n)

1: V ← ∅; E ← ∅; H = (V, E)
2: G ← ∅
3: for i = 1→ g do

4: G← PEBBLE GRAPH(n)
5: G ← G ∪ {G}
6: for all G,G′ ∈ G do

7: CONNECT(G,G′,H, q)
8: for all C,C′ ∈ V where C ≡ C′ do
9: E ← E ∪ {(C,C′)}

Connect (Algorithm 4). This is an auxiliary method that uses the con-
nection generator component to connect two given pebble graphs (line 1).
For every path πC,C′ returned by the connection generator, where C,C ′ are
configurations of G,G′, respectively, C and C ′ are added as vertices to the
roadmap H together with an edge between them. As this edge may be used
later on as a part of a path for the robots, we attach to it the actual path
πC,C′ , which was generated by the connection generator.

Query (Algorithm 5). In this phase, UPUMP is given the start and target
configurations. As S, T can be considered as pumped configurations (contain-
ing m single-robot configurations) we generate the respective pebble graphs
GS , GT (line 1). We then connect GS , GT to previously sampled pebble
graphs using the connection generator and add relevant vertices and edges
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to H (CONNECT procedure described in Algorithm 4). Finally, if S, T are
connected in H a path retrieval is carried out.

Path Retrieval (Algorithm 6). Using a graph search algorithm, a path
is found between S and T in H (line 2). Then, it is transformed into a
solution to the unlabeled problem U = (R,S, T ). If two consecutive con-
figurations Ci−1, Ci on the path are equivalent, then the respective pebble
path is produced (line 6) and converted to a path for the unlabeled problem
U = (R,Ci−1, Ci), following the process described in Proposition 1. If on the
other hand Ci−1 6≡ Ci, then the path πCi−1,Ci , that was generated by the
connection generator, is used.

Notice that whileHmay contain many equivalent configurations that share
an edge in H, the actual paths between such configurations (that are induced
by pebble problems) are only generated if these configurations appear on a
path that is found in the retrieval stage.

Algorithm 4 CONNECT(G = (V,E), G′ = (V ′, E′),H = (V, E), q)

1: {(C1, C′1), . . . , (Cq , C′q)} ← CONGEN(V, V ′, q)
2: for i = 1→ q do
3: V ← V ∪ {Ci, C

′
i}

4: E ← E ∪ {(Ci, C
′
i)}

Algorithm 5 QUERY(S, T, q)

1: GS = (S, ∅); GT = (T, ∅)
2: for all G ∈ G do

3: CONNECT(G,GS ,H, q)
4: CONNECT(G,GT ,H, q)
5: if S, T not connected in H then

6: return FAILURE

7: return RETRIEVE PATH(H, S, T )

Algorithm 6 RETRIEVE PATH(H, S, T )

1: Π← ∅
2: {C0, . . . , C`} ← GRAPH PATH(H, S, T )

3: for i = 1→ ` do
4: if Ci−1 ≡ Ci then

5: G← pebble graph of Ci

6: π∗ ← PEBBLE SOLVER(G,Ci−1, Ci)

7: π ← TRANSFORM PATH(π∗)
8: Π.append(π)
9: else

10: Π.append(πCi−1,Ci
)

11: return Π
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5 The Connection Generator

We describe an algorithm for the connection generator component (CON-
GEN), used by UPUMP. Recall that the connection generator is given two
pumped configurations V, V ′ and an integer q that represents the number of
desired connections. Throughout this section we will use the local planner
mechanism, that was used in the implementation of the edge planner (Sec-
tion 4.1). Recall that given two single-robot configurations v, v′ ∈ F the local
planner attempts to construct a path πv,v′ for a robot r ∈ R from v to v′.

The algorithm transforms the problem of finding paths between pumped
configurations into the problem of finding an independent set in an undirected
graph. We generate the set of pairs D = {(v, v′)|v ∈ V, v′ ∈ V ′, πv,v′ 6= ⊥}.
Namely, these are pairs of elements from V, V ′ for which the local planner
successfully generated a path. We say that two pairs (v, v′), (u, u′) ∈ D in-
terfere if there exists θ ∈ [0, 1] such that a robot r ∈ R placed in πv,v′(θ)
collides with another robot r′ ∈ R placed in πu,u′(θ). Notice that every two
pairs (v, v′), (u, u′) ∈ D, such that v = u or v′ = u′, interfere by definition.
We construct the interference graph I whose vertices are the elements of D,
i.e., every vertex of I represents a path. We connect a pair of vertices of I
by an edge if they interfere.

Notice that by definition, every independent set of size m of the vertices
of I represents a collection of m non-colliding single-robot paths. Note that
the problem of finding an independent set is known to be NP-Hard [22].

We devised the following heuristic to find several independent sets: vertices
of the graph are examined one by one, when the order is determined by a
random permutation of the vertices. A new vertex is added to the set only if
it is not connected to other vertices that are already in the set.

Remark. We concede that our approach to finding an independent set is
not guaranteed to find a solution. This may impede attempts to prove the
completeness of the UPUMP algorithm. We address this issue in Section 7
and state the modification that could lead to a probabilistic completeness
proof of UPUMP.

6 The k-Color Case

We describe the changes required to transform UPUMP into KPUMP—an
algorithm for the k-color problem. We stress that the extension to the k-color
case is straightforward and we provide it here only for the completeness of pre-
sentation. KPUMP simultaneously samples several pumped configurations—
each corresponds to a different color and hence to a different unlabeled prob-
lem. The resulting pebble graphs are constructed in a manner that prevents
collision between robots of different colors. This calls for the redefinition of
the edge planner mechanism (Section 4) as well as other components.



16 Kiril Solovey and Dan Halperin

6.1 Composite Pebble Graphs

We begin with several definitions that extend the primitives presented in
the description of UPUMP. Recall that the k-color problem L is defined by
U1, . . . ,Uk where each Ui = (Ri, Si, Ti) is an unlabeled problem and |Ri|= mi.

Definition 4. Let C = {C1, . . . , Ck} be a collection of k configurations,
where Ci is a configuration of Ui. C is a composite configuration if for every
c ∈ Ci, c′ ∈ Cj , where i 6= j, it holds that Ri(c) ∩Rj(c′) = ∅.

Definition 5. Let V = {V1, . . . , Vk} be a collection of pumped configura-
tions, where Vi is a pumped configuration for Ui. V is a composite pumped
configuration if every C = {C1, . . . , Ck}, such that |Ci|= mi and Ci ⊂ Vi, is
a composite configuration.

Let V be a composite pumped configuration, as defined above. We con-
struct a pebble graph for every pumped configuration Vi of V. The edges
of every graph are generated in a similar manner to the unlabeled case, al-
though here we impose more restrictions to avoid the collision between robots
of different colors.

Next, we generate the composite pebble graph G = {G1, . . . , Gk}, where
Gi is the pebble graph that resulted from the pumped configuration Vi. See
an illustration in Figure 4. We now define an equivalence relation between
composite configurations of the same composite pebble graph. Recall that two
configurations are equivalent, if their signatures are identical (Definition 2).
We generalize this notion for the case of composite configurations.

Definition 6. Let G = {G1, . . . , Gk} be a composite pebble graph, where
Gi = (Vi, Ei). Let C = {C1, . . . , Ck},C′ = {C ′1, . . . , C ′k} be two composite
configurations, where Ci, C

′
i ⊂ Vi. We say that C and C′ are equivalent,

Fig. 4: An illustration of a composite pebble graph for a 3-color problem, where each group

consists of robots of a different shape (square, disc and cross). Note that the positions of
the robots are non-overlapping and that robots moving along edges do not collide with

stationary robots from the same group or from a different color.
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and denote this relation by C ≡ C′, if for every 1 ≤ i ≤ k it holds that
Ci ≡ C ′i, where the latter “≡” symbol represents the equivalence relation
between configurations.

The following proposition is a generalization of Proposition 1 and its proof
is omitted as it is similar to the proof for the unlabeled case.

Proposition 2. Let C = {C1, . . . , Ck},C′ = {C ′1, . . . , C ′k} be two composite
configurations of the same composite pebble graph. If C ≡ C′ then there exists
a solution to the k-color problem {U ′1, . . . ,U ′k}, where U ′i = (Ri, Ci, C

′
i).

6.2 Description of KPUMP

We describe the sampling-based algorithm for the k-color case. KPUMP con-
structs a roadmap H whose vertices are composite configurations (recall that
in UPUMP, the vertices of this roadmap were configurations). The edges ofH
represent valid paths between composite configurations. These paths either
connect equivalent composite configurations, as described in Proposition 2,
or composite configurations from different composite graphs, where the latter
paths are generated using the following mechanism, which is a generalization
of the connection generator (Section 4.3). Given two composite pumped con-
figurations, and an integer q, the composite connection generator returns a
collection of q paths, for the k-color problem, between the two composite
pumped configurations.

We now return to the description of KPUMP. KPUMP samples composite
pumped configurations V1,V2, . . . ,Vg and generates the respective compos-
ite pebble graphs G1, . . . ,Gg. Given a path between two composite config-
urations C,C′ returned by the composite connection generator we add the
vertices C,C′ to H and the respective edge. Finally we connect the start
and target composite configurations S,T, respectively, to previously sampled
composite pebble graphs.

We note that for the fully-colored case these structures remain the same,
although the planning on the pebble graphs is simplified a bit since every
pebble graph accommodates in this case only a single pebble.

7 Toward Probabilistic Completeness of UPUMP

We show that by making a simple assumption on the work of the connection
generator, it can be proved that UPUMP is probabilistically complete. In
order to do so we show that a simplified version of the UPUMP algorithm,
called UBASIC, is probabilistically complete. Its samples consist of pumped
configurations of sizem (as opposed to size n > m in Section 4) which result in
degenerate pebble graphs where the number of vertices is equal to the number
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of pebbles. We prove the completeness of UBASIC by showing a reduction
from the PRM algorithm for the fully-colored multi-robot motion planning
problem. The completeness of UPUMP follows as a rather straightforward
corollary.

We stress that it still might be possible that UPUMP (and KPUMP), in
its original formulation, is probabilistically complete, and we hope that the
efforts made in this section will ultimately assist in proving this.

7.1 The PRM Algorithm for the Fully-Colored Case

The PRM algorithm was initially designed to solve single-robot motion plan-
ning problems. However, it can be used for solving the fully-colored multi-
robot motion planning problem by considering the fleet of robots as one
composite robot. We briefly describe the PRM algorithm for the fully-colored
case. Recall that in the fully-colored problem, every robot ri is assigned with
specific start and target positions si, ti. For the purpose of the probabilistic
completeness proof of UPUMP, we may assume that the robots are geomet-
rically identical.

Recall that the PRM algorithm for the single-robot case consists of two
main phases. In the preprocessing phase the algorithm samples a collection of
valid single-robot configurations. Then, for every sampled single-robot config-
uration it finds its nearest neighbors and tries to connect it to the neighbors
using the local planner. In the query phase, the start and target single-robot
configurations are connected to the constructed roadmap by considering con-
nections to the nearest neighbors of the start and target, respectively. We
intentionally avoid from referring to a specific neighbor finding technique
since there are several methods that are suitable for this task. Our only re-
quirement from the neighbor-finding technique is that it will lead to a proba-
bilistically complete PRM algorithm. Such methods are described in the work
of Karaman and Frazolli [13], where the issue of completeness is discussed as
well.

In the case of the fully-colored multi-robot motion planning problem, every
sample of the PRM consists of m single-robot configurations, one single-robot
configuration for every robot. In contrast with the unlabeled case, where every
robot can be assigned with any single-robot configuration, here every single-
robot configuration is associated with a specific robot. This is formalized in
the following definition.

Definition 7. Let C = {c1, . . . , cm} be a configuration and let σ be some
permutation of {1, . . . ,m}. The ordered configuration of C for the permuta-
tion σ is defined to be σ(C) = (cσ(1), . . . , cσ(m)).

We denote by σI the identity permutation. In an ordered configuration
σ(C) a position of the robot ri is represented by cσ(i). Hence, the samples
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of the PRM algorithm for the fully-colored case are ordered configurations.
For simplicity, we may assume that a configuration is sampled and a specific
permutation σPRM is assigned to it. A connection between two ordered config-
uration is achieved by applying the multi-robot local planner. This component
returns a set of m paths between two ordered configuration (if they exist),
one for each robot, such that they are all collision free, both with respect to
the obstacles and with respect to the other robots.

Definition 8. Let σ(C) = (c1, . . . , cm), σ′(C ′) = (c′1, . . . , c
′
m) be two ordered

configurations. Denote by πi the path returned by the local planner (Sec-
tion 4.1) on the input ci, c

′
i. Suppose that for every i, it holds that πi 6= ⊥,

namely, the local planner successfully generated a path for the input ci, c
′
i.

In addition, suppose that every pair of paths πi, πj is collision free, i.e., for
every θ ∈ [0, 1], r(πi(θ)) ∩ r(πj(θ)) = ∅ ,where r(c), for c ∈ C, represents the
portion of the configuration space that is covered by the robot that is placed
in c (Section 2). Then the multi-robot local planner returns the set of paths
{π1, . . . , πm}. Otherwise, it returns ⊥.

If the multi-robot local planner successfully connects two ordered config-
urations, then an edge between them is added to the PRM roadmap. We
summarize the steps of the PRM algorithm for the fully-colored problem. In
the preprocessing phase, PRM samples a collection of ordered configurations
{σPRM(C1), . . . , σPRM(Cg)}. Then, for every sampled ordered configuration
it finds a set of neighbors and attempts to connect them with the current sam-
ple. We refer to the roadmap that results from this process as the induced
roadmap of the samples σPRM(C1), . . . , σPRM(Cg). In the query phase, the
PRM algorithm is given two ordered configurations (s1, . . . , sm), (t1, . . . , tm),
and attempts to connect them to the roadmap. The following theorem is a
generalization of the completeness theorem for the single-robot case [13].

Theorem 1. Let {U1, . . . ,Um} be a fully-colored problem where Ui = (ri, si, ti)
for which there is a solution. Then there exist constants a > 0, g0 ∈ N, such
that a PRM algorithm with g > g0 samples will find a solution with probability
at least 1− e−ag.

7.2 The UBASIC Algorithm

We present the UBASIC algorithm, which is a simplified version of the UP-
UMP algorithm. The pseudo-code of UBASIC is identical to the one de-
scribed for UPUMP in Section 4. However, we set the number of vertices
of the sampled pebble graphs to be m, i.e., we assign n := m. This forces
Algorithm 2 to generate configurations, instead of pumped configurations. In
order to show that UBASIC is complete, we enforce an additional constraint
on the connection generator. It is described next.
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Recall that the connection generator transforms the task of pathfinding
between two pumped configurations to the problem of finding an independent
set of size m, that represents a set of non-colliding paths, in the interference
graph I (Section 5). Currently, the independent sets in I are found using
a greedy technique, which is not guaranteed to find a solution, even if one
exists. We will introduce below an additional step to the connection generator
that is guaranteed to find at least one solution, if exists. For now, we assume
that the following assumption holds. We will discuss its impact on UPUMP
later on.

Assumption 1 Let C,C ′ be two configurations. Suppose that there exist two
permutations, σ, σ′, for which the multi-robot local planner finds a path for the
input σ(C), σ′(C ′). Then, upon the application of the connection generator
on the input C,C ′, it returns at least one path πC,C′ , that is a solution to the
unlabeled problem U ′ = (C,C ′).

Notice that we do not insist that the connection generator will return
exactly the same path that was generated by the multi-robot local planner.
The following observation shows that an unlabeled problem has a solution if
and only if there exists a solution to some fully-colored problem from a family
of problems. It is a crucial component in the probabilistic completeness proof
of the UBASIC algorithm.

Observation 1 Let U = (R,S, T ) be an unlabeled problem, where R =
{r1, . . . , rm}, S = {s1, . . . , sm}, T = {t1, . . . , tm}. There is a solution to U
if and only if there exists a permutation σT , such that there is a solution
to the fully-colored problem L = {U1, . . . ,Um}, where Ui = (ri, si, t

′
i) and

σT (T ) = (t′1, . . . , t
′
m).

Lemma 3. Let C1, . . . , Cg be a collection of configurations sampled by UBA-
SIC in the preprocessing stage. Denote by GPRM the PRM roadmap that is
induced by the collection of PRM samples σPRM(C1), . . . , σPRM(Cg). Sup-
pose that there exists a permutation σT for which the PRM algorithm, with
the roadmap GPRM, finds a solution for the query σI(S), σT (T ) (where σI is
the identity permutation). Then, UBASIC will successfully find a solution for
the query (S, T ).

Proof. Denote by σI(S) = σI(C0), σPRM(C1), . . . , σPRM(C`−1), σT (C`) =
σT (T ), the path that was found by the PRM roadmap GPRM after connecting
the query σI(S), σT (T ). Thus, the multi-robot local planner successfully con-
nected every pair of consecutive ordered configurations σPRM(Ci), σPRM(Ci+1)
along the path (the same applies to the ends of the path). By Assumption 1,
we deduce that the connection generator successfully connects Ci, Ci+1. Thus,
Ci, Ci+1 are connected in the roadmap H in the UBASIC algorithm. ut

Using this connection between PRM and UBASIC we show that the latter
is probabilistically complete.
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Theorem 2. Let U = (R,S, T ) be an unlabeled problem for which there is a
solution. Then there exist constants a > 0, g0 ∈ N, such that the UBASIC
algorithm with g > g0 samples will find a solution with probability at least
1− e−ag.

Proof. By Observation 1, there exists a permutation σT for which there is a
solution to the fully colored problem L = {U1, . . . ,Um}, where Ui = (ri, si, t

′
i)

and σT (T ) = (t′1, . . . , t
′
m). Let C1, . . . , Cg be the collection of the g configu-

rations sampled by UBASIC. By Theorem 1, the PRM algorithm, with the
roadmap induced by the samples σPRM(C1), . . . , σPRM(Cg), will find a solu-
tion for the query σI(S), σT (T ), with probability at least 1−e−ag. If the latter
occurs, then by Lemma 4, UBASIC finds a solution as well. Thus, UPUMP
finds a solution with probability at least 1− e−ag. ut

Remark. We mention that for the purpose of experiments (Section 8) we use
a more efficient version of UPUMP (and KPUMP) that similarly to the PRM
connects only nearby samples, where distance between configuration-samples
is measured using Hausdorff distance.

7.3 Extending Completeness to UPUMP

We force UPUMP to generate a roadmap that simulates a run of the UBA-
SIC, by modifying Assumption 1. Recall, that in the UPUMP algorithm, the
connection generator is applied on pumped configurations (and not configu-
rations, as in UBASIC).

Let V = {v1, . . . , vn} be a pumped configuration. Denote by V (m) the
configuration that consists the first m elements of V .

Assumption 2 Let V, V ′ be two pumped configurations. Suppose that there
exist two permutations, σ, σ′, for which the multi-robot local planner finds
a path for the input σ(V (m)), σ′((V ′(m)). Then, upon the application of the
connection generator on the input pumped configurations V, V ′, it must return
at least one path πV,V ′ , that is a solution to the unlabeled problem U ′ =
(V, V ′).

Under this Assumption 2, we extend Lemma 4 for the UPUMP algorithm.

Lemma 4. Let G1, . . . , Gg be a collection of pebble graphs sampled by UP-
UMP in the preprocessing stage, where Gi = (Vi, Ei), and Vi is a pumped
configuration. Denote by GPRM the PRM roadmap that is induced by the col-
lection of PRM samples σPRM(V1(m)), . . . , σPRM(Vg(m)). Suppose that there
exists a permutation σT for which the PRM algorithm, with the roadmap
GPRM, finds a solution for the query σI(S), σT (T ). Then, UPUMP will suc-
cessfully find a solution for the query (S, T ).
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The proof is trivial, and hence omitted. The following corollary immedi-
ately follows.

Corollary 1. Let U = (R,S, T ) be an unlabeled problem for which there is
a solution. Then there exist constants a > 0, g0 ∈ N, such that the UPUMP
algorithm with g > g0 samples of pebble graphs will find a solution with
probability at least 1− e−ag.

7.4 Reinforcing the Connection Generator

As mentioned earlier, in its current state (as described in Section 5) the
connection generator does not fulfil the requirement of Assumption 1. Thus, a
modification of the component is required if we wish guarantee the correctness
of Theorem 2.

We describe a simple alternative implementation of the connection gener-
ator component that is based on integer programming (IP) and guarantees
to find a connection if one exists, thus fulfilling Assumption 1.

Recall that in UBASIC the connection generator is given two config-
urations V = {v1, . . . , vm}, V ′ = {v′1, . . . , v′m}. In addition, recall that
D = {(v, v′)|v ∈ V, v′ ∈ V ′, πv,v′ 6= ⊥} is the set of all pairs of elements
from V, V ′ for which the local planner successfully generated a path. To ev-
ery pair (v, v′) ∈ D we assign the boolean variable xv,v′ ∈ {0, 1} that indicates
whether the respective path is selected for the connection. Our goal is to find
m non-interfering pairs. This results in the following two constraints.

1. If (v, v′), (u, u′) ∈ D interfere then xv,v′ + xu,u′ ≤ 1.
2.

∑
(v,v′)∈D xv,v′ = m.

We mention that although the problem of integer programming is known
to be NP-hard [22], in practice these problems can be solved efficiently using
various software packages, e.g., [8].

8 Experimental Results

We describe experimental results for the case of disc robots and polygonal
robots translating amidst polygonal obstacles in the plane. We show results
for several challenging scenarios and compare the performance of KPUMP
with two other sampling-based algorithms. Specifically we compare KPUMP
with the PRM implementation of the OOPSMP package [23] on inputs of
the fully-colored problem. For other inputs we use a basic sampling-based
algorithm for the k-color problem called KBASIC, described later on.

KPUMP was implemented in C++ using CGAL Arrangements [9] and the
Boost Graph Library (BGL) [27]. The code was tested on a PC with Intel
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(a) Unlabeled (b) 2-Color (c) Fully-Colored: Decoupled

(d) Fully-Colored: Coupled (e) 4-Color

Fig. 5: Scenarios for the case of disc robots. Start positions of the robots are indicated by
discs while target positions are illustrated as circles in respective colors (unless otherwise

indicated). (a) Unlabeled scene with twenty five robots. (b) 2-Color scene; the two groups
are required to switch positions. (c) Fully-colored scene with eight robots. (d) Fully-colored

scene with five robots. (e) 4-Color scene; every group has to move in a clockwise manner

to the next room.

i7-2600 3.40GHz processor with 8GB of memory, running a Windows 7 64-bit
OS. For the implementation of the local planner a straight-line connection
strategy was used. This strategy attempts to move the robot along a straight
line drawn between two positions.

Parameters of KPUMP. The algorithm has three parameters that af-
fect its performance: g describes the number of the sampled pebble graphs
in the UPUMP algorithm, or the number of composite pebble graphs in
KPUMP; q is the number of connections produced by the connection genera-
tor between two samples; µ is the maximal number of single-robot configura-
tions that one sample comprises, i.e., for every sampled pumped configuration
V = {V1, . . . , Vk} it holds that

∑|Vi|≤ µ. The value of the latter parameter
depends on the input problem. For unlabeled problems, increasing µ results
in increased connectivity of the resulting pebble graphs. Thus, it will be ben-
eficial that the pumped configurations will be as large as possible (limited by
the topology of the scenario). On the other hand, in k-colored problems where
k > 1 the value µ has to be set more carefully as an excessively high value of
µ will reduce the connectivity of the pebble graphs. This stems from the fact
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that a single-robot path produced by the edge planner has to avoid collision
with robots from other groups. Consequently, as the value of µ grows it be-
comes harder to connect single-robot configurations using an edge planner.

Table 1: Results for selected scenarios. Scenarios of polygonal robots are indicated by (*).

Properties Parameters
Time

k m M g q µ

(a) 1 25 25 2 5000 150 23

(b) 2 8 16 50 1000 40 20
(c) 8 1 8 100 150 32 213

(d) 5 1 5 50 100 25 2

(e) 4 3 12 40 250 28 33

(a*) 2 4 8 20 250 16 13

(b*) 2 5 10 30 500 20 54

(c*) 3 1,4 6 30 250 20 11
(d*) 3 4 12 40 250 30 450

Test Scenarios. The scenarios for the case of disc robots are illustrated
in Figure 5 and represent a variety of challenging problems. The unlabeled
problem in (a) involves the motion of a large collection of robots. Scenarios (b)
and (e) describe 2-color and 4-color problems comprising a large number of
robots as well. Although scenarios (c), (d) do not involve as many robots, they
are nevertheless challenging. This range of problems demonstrate the work of
the various components of the KPUMP algorithm. In the first three scenarios
the resulting pebble graphs have a low number of connected components
due to the low value of k (as in scenario (a)) or high clearance from the
obstacles (as in (e)). Therefore, large portions of the resulting paths involve
the motions of the robots on paths induced by pebble problems. While the
generated graphs in scenarios (c) and (d) have low connectivity, KPUMP
still performs well—due to the use of the connection generator component.
Additional scenarios, that demonstrate the performance of the algorithm for
the case of translating polygonal robots are illustrated in Figure 6.

The results of running KPUMP for specific parameters are given in Table 1.
In addition to the parameters mentioned above, the table contains the values
k for the number of colors, m the number of robots in every color and M the
total number of robots. The running times are given in seconds and represent
the overall duration of the preprocessing and query phases, for a single query.
We mention that the majority of running time was spent on connection of
pebble graphs (using the connection generator), and thus we chose to present
only the overall running time. The parameters used by KPUMP and other
algorithms, mentioned later on, were manually optimized over a concrete set.
A failure was declared when an algorithm was unable to solve a scenario for
more than three runs out of five.

Comparison with Other Algorithms. The first part of the comparison
involves solely inputs of the fully-colored problem. We compare KPUMP with
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the implementation of PRM provided by OOPSMP, which, by our experience,
is very efficient. This algorithm is designed for solving fully-colored multi-
robot motion planning problems. While OOPSMP required 100 seconds to
solve scenario (d), KPUMP managed to solve it in 1.9 seconds. Scenario (c)
proved to be even more challenging for OOPSMP, which failed to solve it,
even when was given 5000 seconds of preprocessing time, whereas KPUMP
solved in 213.7 seconds.

In order to provide a more informative comparison, we ran both algorithms
on scenarios (c),(d), only that now we increased the difficulty of these sce-
narios gradually—incrementally introducing the robots, i.e., starting with a
single robot and adding the others one by one, as long as OOPSMP succeeded
solving the new inputs in reasonable time. In this case OOPSMP was able

(a*) 2-Color (b*) 2-Color

(c*) 3-Color (d*) 3-Color

Fig. 6: Scenarios for the case of translating polygonal robots. Target positions are not

indicated in the figures to avoid unnecessary clutter. (a*) 2-Color scene; the two groups

of robots (upward and downward facing arrows) need to exchange positions. (b*) 2-Color
scene with rectangular and star-shaped robots; the start and target positions were ran-

domly placed. (c*) 3-Color scene; the two rhombus-shaped robots, which belong to differ-

ent groups need to exchange positions, while the star-shaped robots need to return to their
start positions. (d*). 3-Color scene with randomly placed start and target positions.
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to solve scenario (c) with five robots, while the case of six robots was out of
its reach (when given 5000 seconds of preprocessing time). The speedup of
KPUMP compared to OOPSMP for this new range of scenarios is depicted
in Figure 7 along with an additional test case (“decoupled-simple”), which
is a simpler variant of scenario (c) with some of the obstacles removed and
the radius of the robots is decreased. The latter was designed to test the
performance of OOPSMP on problems involving a higher number of robots.

As we are not aware of any other algorithms for the k-color problem, we
designed a basic algorithm to compare KPUMP with. This algorithm, which
we call KBASIC, as a special case of KPUMP that samples configurations,
instead of pumped configurations, and can be viewed as an extension of PRM
for the k-color case (for more details, see Section 7. The entire set of scenarios
(a)-(e),(a*)-(d*) proved to be too challenging for KBASIC, which spent at
times more than ten minutes. Similarly to the previous comparison we de-
signed a set of simple test scenarios. Specifically, scenario (e) was converted
into five k-color problems for 1 ≤ k ≤ 5 by partitioning the robots into k
groups such that a robot number i was assigned to the group i mod k. Then,
as in the previous comparison, the robots were introduced incrementally. Fig-
ure 7 depicts the speedup of KPUMP compared with KBASIC for each of the
k-color problems. This shows that KPUMP outperforms KBASIC in every
possible setting, be it a k-color, unlabeled or fully-colored problem.

9 Discussion and Further Work

In this section we discuss the various properties of the KPUMP algorithm
and novelties it encompasses, as well as directions for future research.
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9.1 Shortcomings of the Composite Robot Approach

The traditional composite robot approach to the multi-robot problem treats
the group of robots as one composite robot whose configuration space is the
Cartesian product of the configuration spaces of the individual robots. With
this approach, single-robot tools, such as sampling-based algorithms, can be
used to solve multi-robot problems. For instance, this technique is used in the
software packages OOPSMP and OMPL [15, 23] where PRM is applied to the
fully-colored problem, and in the KBASIC algorithm discussed above. Paths
generated by this approach usually force the robots to move simultaneously
from one placement to the other, where none of the robots remains in the
same position while the others are moving. Although simultaneous movement
of the robots is necessary in some cases, algorithms that consider only this
type of movement may not fully exploit the properties of the multi-robot
motion planning problem, and thus suffer from poor running time.

Given collision-free placements for all the robots it is usually possible to
move some of the robots to different placements without altering the place-
ments of the rest of the robots, i.e., those robots remain still. For instance,
consider a configuration C = {c1, . . . , cm} for some unlabeled problem U .
Unless the workspace is extremely tight, another configuration C ′ can be de-
rived from C where only c1 is moved to c′1. Moreover, connecting two such
configurations by a path requires only a single-robot collision-free path for
which the moving robot does not collide with the other robots placed in
c2, . . . , cm. In contrast, the connection of two “unrelated” configurations by
a path imposes much harder constraints—m single-robot collision-free paths
have to be created and in addition, robots moving along those paths must
not collide with each other.

KPUMP utilizes this observation by restricting the movements of the
robots along certain path sections—induced by pebble problems—to motions
of individual robots. We emphasize that KPUMP does not preclude simul-
taneous movements of robots when necessary, specifically on path sections
where the robots move from one pebble graph to the other along paths gen-
erated by the connection generator. We mention that sequential movements
may result in longer paths, but this is a price that we are willing to pay, as
we are able to cope with large groups of robots.

9.2 Amplification of Samples

Pumped configurations that are sampled by KPUMP, and the resulting peb-
ble graphs, are fairly simple structures which require only little effort to
generate. Yet, using the transformation to pebble problem, these samples are
amplified to describe not only placements and paths for single robots, but also
to represent an incredible amount of paths and positions for all the robots
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in a given problem. However, this information is not represented explicitly
and only little storage space is required to represent a pebble graph. In ad-
dition, a small number of configurations must be stored. Specifically, these
are configurations through which the pebble graphs connects to other graphs.
Such configurations are selected by the connection generator. Similarly, this
component does not require an explicit representation of all the configura-
tions represented by the pebble graph. Furthermore, continuing the theme
presented here that one action leads to a large number of outcomes, namely,
a sample of a pumped configuration results in many configurations, a path
generated by a connection generator not only connects two configurations
from the two pebble graphs, but also a large number of configurations from
them, which are not necessarily directly connected. Thus, these properties
enable KPUMP to generate a variety of configurations and motions of the
robots, using only few samples. To reproduce this variety by KBASIC one
must generate far more samples.

An additional advantage of the use of pebble graphs lies in the fact that
they can be connected more easily than two configurations, when a powerful
component as the connection generator is at hand. Using this component,
KPUMP succeeds in solving difficult scenarios even when the generated peb-
ble graphs suffer from low connectivity, as in scenarios (c) and (d).

9.3 Further Work

Our immediate future goal is to investigate the completeness of the origi-
nal formulation of the algorithm, i.e., using the connection generator algo-
rithm that appears in Section 4. In addition, it would be interesting to apply
KPUMP to problems that involve more complex robots (e.g., rotating and
translating polygons in the plane, multi-link robots). Additionally, it would
be advantageous to reduce the number of parameters on which the algorithm
relies.

The experiments carried in this work suggest that the k-color problem, for
various values of k, is less challenging than a fully-colored problem (with the
same number of robots). Hence, it is an interesting problem to investigate
the computational complexity of the unlabeled and k-color problems.

There are many interesting variants of multi-robot motion planning, where
we believe our approach can be applied. Some interesting applications will ne-
cessitate adaptation of KPUMP as described here since these problems have
additional ingredients, such as distributed behaviour. We mention the prob-
lem of flocking [24, 2] and crowd simulation [5, 29] that have some relation
to the problem of multi-robot motion planning.
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