
HAL Id: hal-01113499
https://hal.science/hal-01113499

Submitted on 5 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Vision-guided motion primitives for humanoid reactive
walking: decoupled vs. coupled approaches

Mauricio Garcia, Olivier Stasse, Jean-Bernard Hayet, Claire Dune, Claudia
Esteves, Jean-Paul Laumond

To cite this version:
Mauricio Garcia, Olivier Stasse, Jean-Bernard Hayet, Claire Dune, Claudia Esteves, et al.. Vision-
guided motion primitives for humanoid reactive walking: decoupled vs. coupled approaches. The
International Journal of Robotics Research, 2014, 34 (4-5), pp.402-419. �10.1177/0278364914550891�.
�hal-01113499�

https://hal.science/hal-01113499
https://hal.archives-ouvertes.fr

Vision-guided motion primitives for humanoid reactive walking:
decoupled vs. coupled approaches

Mauricio Garcia1,2 and Olivier Stasse2 and Jean-Bernard Hayet1

Claire Dune3 and Claudia Esteves4 and Jean-Paul Laumond2

Abstract— This paper proposes a novel visual servoing ap-
proach to control the dynamic walk of a humanoid robot.
Online visual information is given by an on-board camera. It is
used to drive the robot towards a specific goal. Our work is built
upon a recent reactive pattern generator that make use of Model
Predictive Control (MPC) to modify footsteps, center of mass
and center of pressure trajectories to track a reference velocity.
The contribution of the paper is to formulate the MPC problem
considering visual feedback. We compare our approach with a
scheme decoupling visual servoing and walking gait generation.
Such a decoupled scheme consists in first, computing a reference
velocity from visual servoing; then, the reference velocity is the
input of the pattern generator. Our MPC based approach allows
to avoid a number of limitations that appears in decoupled
methods. In particular visual constraints can be introduced
directly inside the locomotion controller, while camera motions
do not have to be accounted for separately. Both approaches are
compared numerically and validated in simulation. Our MPC
method shows a faster convergence.

I. I NTRODUCTION

Humanoid robots are meant to function in unstructured
and dynamic environments, where objects may move
outside the robots control. Therefore, to complete specific
tasks, robots have to be able to perceive and react to
environment changes. Visual sensors endow robots with
this capability, allowing them to build local representations
of their surroundings and to adapt their behavior according
to these representations. Most of the existing humanoid
platforms are equipped with video cameras. They constitute
rich (geometry, texture, color, etc.) sources of information
at rather low costs both in terms of price and additions
to the weight and size of the robot. Furthermore, cameras
embedded in the platform avoid the need of outfitting the
environment with external sensors, greatly increasing the
autonomy of the robot.
However, the image quality from video cameras embedded
in humanoid robots is, in general, quite poor: blurring
effects or vibrations due to the walk make interpretation
of these images for visual tasks such as localization and
tracking really challenging. This situation has prompted
considerable effort in the computer vision comunity, with

1 Mauricio Garcia and Jean-Bernard Hayet are with CIMAT, A.
C., Jalisco S/N Mineral de Valenciana, CP 36240 Guanajuato,Mexico
{mjgarciav,jbhayet }@cimat.mx .

2 Mauricio Garcia, Olivier Stasse and Jean-Paul Laumond are with
LAAS-CNRS, 7 av. du Colonel Roche, F-31400, Toulouse, France,
{mjgarcia,ostasse,jpl }@laas.fr .

3 Claire Dune is with Universit́e du Sud Toulon Var.
4 Claudia Esteves is with Universidad de Guanajuato, Guanajuato,

Mexico, cesteves@cimat.mx .

no as-of-yet generally accepted solution.

In this paper, we build upon recent advances in walking
pattern generation (WPG) and visual servoing to construct
a new monocular visual servoing scheme that is able to
control the walk of a humanoid robotic platform towards
an object of interest. An example setup can be seen in Fig.
1 where the robot has to walk towards the cupboard with
the image of the cupboard as a goal reference. We use the
information from the sensors as feedback in certain tasks,
e.g. positioning. We find that this visual servoing control
scheme is a very good candidate for closing the perception-
decision-action loop, due in particular, to its robustnessto
model errors.

Moreover, as we show below, the use of a visual servoing
control fits well in its traditional role as a “black box” of
the WPG.

z

y

x

z

y

x

z

y

x

z

x

y

(xf
, y

f)

m

Tc

z

y

x

o

Tc

o
c

m

y

z x

Fig. 1. An example setup for our approach: the robot has to walktowards
a desired position with regard to an object viewpoint. Frameso, c andm
refer to theobject, cameraandCoM respectively.oTc is the transformation
to view the camera points in the object reference frame.(xf , yf) is the
current footprint position.

The main feature of our approach is the direct use of
visual errors within the WPG, i.e. a visual predictive control
where visual servoing and WPG, the generation of footsteps
and center of mass trajectories, are completely coupled.
We compare our approach to a recently-proposed decoupled
approach, where visual servoing takes its traditional roleas a
provider for reference velocity for the camera, whose output

is then used as a reference velocity for the WPG. Our main
claim is that, in contrast to other methods available in the
literature, we do not need to model the particular motion
of the camera induced by the robot walk, thereby gaining
in robustness and flexibility. Also, our approach allows to
fully take into account the robot constraints as well as visual
constraints in a unified framework. Finally, our experimental
results show that our approach achieves a better overall
behavior of the whole control.

A. Visual servoing vs. (re-)planning

Two paradigms for vision-based navigation have been co-
existing for a long time in mobile robotics. The first one
tackles navigation more globally using a three-step sequence:
(1) vision-based mapping and localization; (2) trajectory
planning; and (3) control. With this approach, a robot can
navigate towards a visual goal if this three-step sequence
can be cycled on-board of the robot at a high frequency. The
second paradigm deals with the visual navigation problem
in a more reactive manner, using mostly visual servoing
techniques. Here, planning is generally avoided and the vi-
sual perception output feeds directly the control. We believe
that these two paradigms are in fact, more complementary
than opposite: whereas planning may require higher compu-
tational costs than visual servoing, it can solve more complex
problems of global path finding. Visual servoing is fast by
nature but in general it is confined to solving local tasks.
Visual servoing is a useful approach for controlling precisely
the robot position in certain tasks such as in human-robot in-
teraction, e.g. to set the robot in front of a person, or to place
the robot’s end-effector in a given posture before startinga
manipulation task. The advantage of visual servoing is that
the positioning task is defined relatively to a specific target.
Even more, the precise positioning may not be necessary.
In any of the aforementioned applications, the higher-level
navigation can be left to a planner, which would determine
the sequence of landmarks, or human interactions, to reach
consecutively.
However, as many advantages the second paradigm provides
to the visual navigation of humanoid robots, it also generates
some problems, which have to do precisely with the fact
that the output of the vision system, serves as the input
to the control of the robot WPG. Some of these are that:
(1) the output of the vision system may introduce noise
to the WPG of the robot and degrade its behavior; (2) as
a control process driven by visual errors and designed for
an exponential decay of these errors, the classical visual
servoing approach also generates control laws exhibiting this
exponential decay for the velocity controls. While the latter
may be desirable for a wheeled robot, it may not be adequate
to a humanoid dynamic walk. In this work we try to deal with
both of these problems. Our claim on the first point is that
the visual data can be easily filtered to avoid the propagation
of perturbations to the walking controller. On the second
point, even though we start by recalling a classic visual
servoing scheme where the gain is not adapted, adaptive
gains exist in the literature of this problem. Furthermore,

in the approach we propose here, this problem is highly
alleviated because the error terms are now mixed with other
terms (e.g. regularizing the jerks) into the pattern generator.
We will discuss more on this point in Section VI-D.

B. Contributions

Building upon the WPG initially proposed by Herdt et
al [Herdt et al., 2010a], [Herdt et al., 2010b], we propose
an integration of a visual servoing scheme within the WPG
through linear MPC. We adapt the non-linear global model
for visual servoing using MPC described by Allibert et al
in [Allibert et al., 2010], by means of a linearization of the
projection function. Here, we use the position-based version
of [Allibert et al., 2010], that requires 3-D information of
the object of interest, therefore, localization is needed.We
claim that a simple, local linearization of the projection
model predicts well the behavior of the system and that the
performance of this linearization depends on the distance
traveled in the time horizon, which depends itself on the
velocity of the robot and the size of the time horizon. By
coupling this linearization to a simplified dynamical modelof
the locomotion, we can introduce predictive visual controlto
the WPG in a straightforward way. To our knowledge of the
existing literature, this is the first time that such a strategy is
used right at the pattern generation level. We finally compare
our approach both, qualitatively and quantitatively to theone
proposed recently in [Dune et al., 2010].

C. Paper Overview

First, in Section II, some work related to our approach will
be discussed. In Section III, we will recall the principles of
the reactive WPG with automatic footstep placement, and
in Section IV, we make a brief reminder about existing
visual servoing schemes. Then, in Section V, we describe
the approach proposed in [Dune et al., 2010], that uses the
visual servoing output velocities as an input to the pattern
generation. In Section VI, we present a new scheme that
integrates visual servoing within the pattern generator. In
Section VII, we present simulation results and comparisons
between the decoupled and the coupled approaches.

First, a few guidelines about the notations used throughout
this paper should be mentioned: Bold, capital letters are used
to refer to matrices; normal, lower-case letters refer to scalars
or vectors, whereas normal, capital letters are used for the
stacks of quantities in a time window, which is typically used
in MPC. As for the indices, we mainly use indicesk or j to
refer to time indices, whereas other letters are used as indices
and exponents to indicate 3D frames in transformations or
twist matrices. For example,cTm is a 3D rigid transform
mapping points expressed in the “m” frame (the center of
mass frame) to their coordinates in the “c” frame (the camera
frame).

D. Notations
MPC Notations
k, j Time indices.
qk Full robot state at timek.
uk Control variable at timek.
qk =
f(qk−1, uk−1)

Dynamic model of the robot.

Qk Quadratic term of the cost function consid-
ered in this paper.

pk Linear term of the cost function considered
in this paper.

Uk Vector of control variables. Free variables
of the MPC-based optimization problem
solved in this paper.

WPG Notations
xk, ẋk, ẍk Respectively the CoM position, velocity and

acceleration in thex-axis at timek.
yk, ẏk, ÿk Respectively the CoM position, velocity and

acceleration in they-axis at timek.
x
f
k

Position of the support foot at timek.
θf Orientation of the support foot.
ξx
k

Center-of-Pressure (CoP) along thex-axis
at timek.

x̂k Vector stacking the CoM position, velocity
and acceleration along thex-axis.

Xk Sequence of CoMx-positions for a preview
window of sizeN starting atk....

Xk Sequence of CoMx-jerks for a preview
window of sizeN starting atk.

X
f
k

Sequence of support footx-positions for a
preview window of sizeN starting atk.

Zx
k+1

Sequence of CoPx-positions for a preview
window of sizeN starting atk.

Z
ref
k+1

Sequence of reference CoM positions along
thex-axis for a preview window of sizeN .

αT , βT , γT Weighting parameters for the translational
component optimization.

αR, βR, γR Weighting parameters for the rotational
component optimization.

A,B,C Matrices relating respectivelyx̂k with
x̂k+1,

...
xk with x̂k+1, x̂k with ξk

k
, when

considering the Linear Inverted Pendulum
Model.

(ax1 (θ
f), ay

1
(θf))T Vectors normal to the support foot edges.

b1(θf) Position of the support foot edges along the
normal defined byax1 (θ

f), ay
1
(θf).

Visual Servoing Notations
λ Visual features indices.
l Landmarks indices (one landmark gives two

visual features, itsu andv coordinates).
u(x, y, z) Projection of point(x, y, z) on thex-axis

image plane.
v(x, y, z) Projection of point(x, y, z) on they-axis

image plane.
vc Real camera velocity.
vc Ideal camera velocity.
cTm Transform matrix relating the camera frame

(index “c”) to the CoM frame (index “m”).
cVm Twist matrix related tocTm.
sλ,k Observation of featureλ at timek.
s∗
k

Reference feature vector at timek.
sd
k

Desired feature vector at timek.
sm
k

Predicted feature vector at timek.
sm
k

= h(qk) h is the observation model.
Sm
λ,k

Collection of the predicted positions for
featureλ in the horizon starting at timek.

po
l

Position of thel′-th landmark in the object
of interest reference frame (indexo).

e Visual servoing task.
Le Interaction matrix of taske.
L̂e Approximation of the interaction matrix of

taske.
L̂
+
e Moore-Penrose pseudo-inverse of an ap-

proximationL̂e.
Wj Weighting matrixj in the horizon.∏

Projection matrix.

II. STATE OF THE ART

Early works on humanoid locomotion have assumed that
the robot path on the ground is completely defined before
computing the actual joint control to realize it. This clearly
puts limits on the capacities of reaction when changes
occur in the environment. These works generally follow a
perception-decision-action scheme, in the sense that a sensor
first acquires data on the world and/or the robot state, then,
suitable footsteps over a time horizon are decided, and finally
the trajectories of the Center of Mass (CoM) and the Center
of Pressure (CoP) are computed while respecting the stability
constraints and avoiding collision with the environment.
Finally, the control of the legs and other joints is computed
by inverse kinematics. This perception-decision-action loop
has proven to be fast enough to realize impressive demon-
strations for stair-climbing and obstacle avoidance [Lorch
et al., 2002], [Chestnutt et al., 2007], [Michel et al., 2007],
[Gutmann et al., 2008]. Our focus in this paper will be set
only on one of the sub-problems necessary to implement this
approach: the generation of footsteps and trajectories of the
CoM and CoP. We stress that we will not address here the
whole body control.

In the generation of the footsteps and the trajectory of
the CoM or CoP, for a long time most of the works did
not consider their online modification from an initial plan.
The work presented in [Morisawa et al., 2007] considered
online adaptation after showing that the modification of the
next landing position of the flying foot might impose a
new CoP trajectory going out of the support polygon and
jeopardize the equilibrium of the robot. To solve the problem,
the stepping period may be modified to reduce this instabil-
ity [Morisawa et al., 2007], at the cost of slowing down
the robot. A recent method proposes to modify the footsteps
according to a perturbation applied to the CoP [Nishiwaki
and Kagami, 2009].

Later on, very efficient and much more flexible control
systems for humanoid robots walking generation have been
proposed. They are dynamically stable and may be very reac-
tive since footstep placement can be computed online [Herdt
et al., 2010a]. Moreover, they differ from the aforementioned
works by the fact that the CoP is authorized to move freely
inside the support polygon, leaving much more flexibility
to the motion. Most of these techniques such as in [Herdt
et al., 2010a] are based on linear MPC. MPC previews
the behavior of the system within a time window in the
future by applying a given virtual sequence of controls. In
most approaches, the controls are encoded as the supposedly
constant third derivatives (jerks) of the CoM position during
single time intervals. MPC allows to estimate the optimal
control sequence at some horizon, even if, in the next
iteration, one simply applies the first control of the computed
optimal control sequence, and starts again in a similar way
for the next one. At the end, MPC can be expressed as a
Quadratic Program (QP), i.e., the minimization of quadratic
errors subject to a set of linear constraints (equalities and

inequalities). Handling explicitly the constraints in theQP is
one of the main advantages of the MPC. Furthermore there
are very efficient techniques proposed to solve such a QP.
The most important point is that, in [Herdt et al., 2010a], the
only required input, besides the characteristics of the robot,
is a reference velocity for the CoM. Hence, the MPC can be
seen as a “black box” taking as an input a reference velocity
to follow, and generating the corresponding CoM trajectory.

For reactive positioning tasks, visual servoing techniques
have proven to be useful [Chaumette and Hutchinson, 2006],
[Chaumette and Hutchinson, 2007]. In the humanoids com-
munity, visual servoing has been successful for grasping
tasks while standing [Coelho et al., 2001], [Taylor and
Kleeman, 2001] or for walking humanoids [Courty et al.,
2001], [Mansard et al., 2007]. In [Courty et al., 2001], visual
servoing has been used to control a humanoid avatar navigat-
ing along landmarks. The upper body is approximated by the
kinematic chain that links an on-board camera to the CoM.
The lower body is controlled by adding two translational
degrees of freedom to the CoM. The translational velocity
of the CoM is sent to a kinematic locomotion module which
controls the legs motion. In [Mansard et al., 2007], a whole
body visual servoing scheme based on a hierarchical stack
of task is introduced. However, the footsteps are defined
beforehand. The leg motion is set to be the task of higher
priority, and visual servoing in this context is projected in
the null-space of the pre-defined walking path.

More recently, in [Dune et al., 2010], which is the method
we will compare ours to, the reference velocity of the CoM
is computed based on a visual servoing based controller,
associated to the “black box” pattern generator of [Herdt
et al., 2010a]. The reference velocity computed from the
visual servoing is used by the MPC to adapt the footsteps
and the CoM trajectories, while ensuring at the same time
walking stability constraints at time intervals of constant
length. The main disadvantage of this approach is that the
visual servoing scheme and the pattern generator are com-
pletely decoupled. This means that the visual information is
not directly feeding the pattern generator. Instead, it simply
gives a “trend” velocity to follow, and no visual constraints
can be introduced inside the MPC problem. Moreover, it
needs to handle the sway motion by virtually removing the
motion of the camera due to the sway, based on the control
inputs and outputs, which we do not. Another downside of
this method is that the reference velocity introduced in the
pattern generator is only taken as a reference, i.e. it is not
exactlytracked.

Here, we adopt a similar approach as the ones mentioned
above, in the sense that the footsteps are changed dynami-
cally as in [Herdt et al., 2010a]. However, the main difference
with the aforementioned work is that we do not introduce
explicitly the reference velocity computed elsewhere by the
visual servoing. Instead, we let the pattern generator decide
for it by itself, within the optimization scheme.

One of the main motivations in this work is to tighten
the link between the WPG and the visual servoing control.
Basically, we aim at integrating more directly the visual

servoing errors within the MPC. Outside the humanoid robots
literature, Allibert et al. have successfully applied visual
servoing within a MPC scheme [Allibert et al., 2010]. The
main problem in doing so is that the dynamics of the
camera and the involved perspective projection are nonlinear
functions so that non-linear programming would be required
to be combined with the aforementioned QP problem. Hence,
a direct application of a MPC visual servoing scheme for the
WPG would be time consuming and not adapted to an online
walking pattern generator.

III. MPC-BASED WALKING PATTERN GENERATION

Most of the current walking motion generation schemes
for humanoid robots are based on the model initially pro-
posed in [Kajita et al., 2003], which focuses on determining
the trajectory of the CoM to generate balanced and stable
motions. The underlying dynamic model operating for each
direction is the one of a cart-table system, that corresponds
well to the distribution of mass in the humanoid robot. We
will not be exhaustive here in describing the whole dynamic
system, but let us revise its main components.

A. Dynamical system

First, we suppose that the CoM has periodic piece-wise
constant jerks (third derivatives) on each time interval of
duration T . This is because the accelerations of the CoM
have to be continuous enough to be done without damage
to the robot actuators. Let us discretize the time into these
intervals of lengthT , and let us use the indexk to refer to
one such interval. Then, by writing (1) that the position at
k + 1 results from the position atk and the integration of
the constant jerks, and (2) that (by definition of the CoP)
the sum of moments at the CoP cancels, we can express the
CoM dynamics on thex-axis as alinear system

{
x̂k+1 = Ax̂k +B

...
xk

ξxk = Cx̂k,
(1)

wherex̂k
def
= (xk, ẋk, ẍk)

⊤ stacks thex−position,x−velocity
andx−acceleration of the robot CoM at timek into a 3× 1
vector, and where the three matricesA, B, C are given by

A
def
=



1 T 1

2T
2

0 1 T
0 0 1


 , B

def
=



T 3/6
T 2/2
T


 ,

and

C
def
=

(
1 0 cz

g

)
.

In these equations,ξxk is the CoPx-position at time
k and cz is the CoM height, which is considered as a
constantduring all the following. Similar expressions can
be determined for they andz components.

Then, starting from the time indexk, we can apply
recursively the dynamics of Eq. 1N times, and express a
full trajectory of the CoM in a horizon ofN time intervals,
in function of the initial position, the initial velocity and
the initial acceleration (atk), stacked into the vector̂xk,

and in terms of the sequence of jerks applied during these
intervals. We recall that this sequence will be considered
as ourcontrols to drive the robot steps. Let us denote the
sequence of the CoMx−positions starting fromk and ending
at k +N − 1 as

Xk
def
= (xk, xk+1, ..., xk+N−1)

⊤,

and, similarly, the sequence of jerks applied fromk as

...
Xk

def
= (

...
xk,

...
xk+1, ...,

...
xk+N−1)

⊤.

Then, by applying the dynamicsN times from k (the
current time index), we get another linear system of the form

Xk+1 = Pxx̂k +Pu

...
Xk, (2)

where Px and Pu are respectivelyN × 3 and N × N
matrices that are easily deduced from the previous dynamics
equations. Similar expressions can be obtained for the vectors
stacking the velocities (̇Xk+1) and accelerations (̈Xk+1) of
the CoM during the considered horizon time window.

In the original approach [Kajita et al., 2003], the positions
of the center of pressure (CoP) had to be predefined, so that
preliminary footstep planning was necessary. Later on, an
interesting re-formulation was proposed to handle automatic
footstep placement [Herdt et al., 2010a]. This approach is
two-step: (1) it first determines the sequence of robot trunk
orientations to be followed and (2) given the computed
orientations, it determines thex, y trajectory of the CoM.
Let us describe these two steps.

B. Determination of thex, y CoM trajectory

Given the CoM orientations, this step makes only use of a
reference velocity(Ẋref

k+1, Ẏ
ref
k+1), given as an input, in such

a way that the determination of the optimal controls can be
written as the following constrained optimization problem:

min
Uk

αT

2

∥∥ ...
Xk

∥∥2 + αT

2

∥∥ ...
Y k

∥∥2 (3)

+
βT

2

∥∥∥Ẋk+1 − Ẋref
k+1

∥∥∥
2

+
βT

2

∥∥∥Ẏk+1 − Ẏ ref
k+1

∥∥∥
2

+
γT
2

∥∥Zx
k+1 − Z

xref

k+1

∥∥2 + γT
2

∥∥Zy
k+1 − Z

yref

k+1

∥∥2

where Uk
def
=

(...
X

⊤

k , (X
f
k)

⊤,
...
Y

⊤

k , (Y
f
k)⊤

)⊤

contains the

variables to be optimized, and(αT , βT , γT) are weight-
ing parameters. The sequence of CoP reference positions
Z

xref

k+1 , Z
yref

k+1 are the centers of the support polygons in single
support at each iteration and they dependlinearly on the
variablesXf

k , Y
f
k , which are the sequence of positions of

the next footsteps in the horizon. The linear relationship has
the form

Z
xref

k+1 = Vc
k+1x

f
k +Vk+1X

f
k

wherexf
k is the (known)x−position of thecurrent support

foot, Xf
k the sequence of (relative) steps to be done (i.e.

our variable to optimize), andVc
k+1,Vk+1 two constant

selection matrices.
The variableZx

k+1 = [ξxk+1 · · · ξxk+N] contains the
sequence of CoP positions along the time window. Again,
they can be derived as a linear function ofUk from the
second equation of the system 1.

All reunited, the optimization problem of Eq. 3 can be
finally written as a canonical Quadratic Program (QP)

min
Uk

1

2
U⊤

k QkUk + p⊤k Uk.

Now, of course, this optimization problem comes with a
set of constraints described hereafter.

C. Constraints on the CoP and on the foot placement

Because the robot feet can only push on the ground,
the CoP has to lie inside the support polygon, i.e. the
convex hull of the contact points between the feet and
the ground [Wieber, 2002]. We assume that the foot on
the ground has a known polygonal shape, so that the CoP
constraint at timej can be expressed as a set of inequalities
on the position of the CoP(ξxj , ξ

y
j)

[
ax1

(
θfj

)
ay1

(
θfj

)][ξxj − xf
j

ξyj − yfj

]
≤ b1

(
θfj

)
.

where the vectorax1 (resp. ay1) contains thex (resp. y)
coordinates of the vectors normal to the feet edges and
b1 the positioning of these edges along this normal. These
equations are linear with respect to the position of the foot
(xf

j , y
f
j) on the ground, each of which is an element of the

aforementionedZxref

k+1 andZ
yref

k+1 for k + 1 ≤ j ≤ k + N .
However, it is nonlinear with respect to the foot orientation
θfj . This is the explanation of the two-phase approach:
since the orientations are computed beforehand, then the
inequalities do not depend on them and are all linear in the
problem variables.

As for the next foot placement, several constraints arise
from the joints limits, the prevention of self-collision, maxi-
mum leg lengths, etc. and most of them are highly non-linear
in the variables of the problem. Here, we use the approach
of [Perrin et al., 2010] to approximate these constraints bya
series oflinear constraints on the variables of interest, here
the feet positions at consecutive time indexes,

[
ax2 ay2

]
[
xf
j − xf

j−1

yfj − yfj−1

]
≤ b2.

D. Determination of theθ trajectory.

As explained above, the robot trunk orientation is deter-
mined beforehandto avoid non-linearities in Eq. III-C and
keep the optimization problem as a QP. Several schemes
have been proposed to determine these orientations. The one
in [Herdt et al., 2010a] sets up another QP problem where
the cost function includes the minimization of the difference
between the feet orientation and theθ angle, and the tracking
of a reference angular velocity. For more details, the reader
is kindly invited to refer to [Herdt et al., 2010a].

We will propose a variant of this method in Section VI-B.

x

x

x

x

x

x

x

CoP

CoM

t

(xf
k , y

f
k)

v
m

v
m

reference vs. real CoM velocities

Pattern Generator

sway motion

_ +

v
m

v
m

Fig. 2. The pattern generator ensures that the input velocity is tracked on
average on the preview horizon. The output of the Model Predictive Control
is the first control computed on the preview horizon. The difference between
the reference velocity and the real velocity is mostly a sway motion due to
the stepping.

E. Sway motion

As for any pattern generator, the stepping motion induces
a sway motion, which can be read as the difference existing
between the reference velocity used in the Eq. 3 of the
Model Predictive Control and the real velocity effectively
attained from the first control, as illustrated in Fig. 2. This
sway motion is necessary for a proper walk, but it obviously
generates non-desired effects on the robot visual perception.
As stated in [Dune et al., 2010], the result of this sway
motion on the real camera velocity vc can be modeled as:

vc = vc + cVmvb (4)

where vc is the “ideal” camera velocity that would exist
without sway, and vb is the part of the CoM velocity that
is induced by the sway. The matrixcVm is a twist matrix
relating the camera frame (index “c”) to the CoM frame
(index “m”) through the transformcTm.

We will now describe two approaches for introducing
visual control in the described pattern generation: the first
one (in Section V) is a decoupled one, where the visual
servoing is used to determine the reference velocity in Eq. 3;
the second one (Section VI) modifies Eq. 3 to replace the
reference velocity term by a new term directly related to the
decrease of the visual errors.

IV. V ISUAL SERVOING SCHEMES

Visual servoing aims at controlling the motion of a
robot equipped with a camera, by minimizing the errors
between observed features (denoted in the following ass)
and their corresponding reference, desired features (denoted

as s∗) [Chaumette and Hutchinson, 2006]. The nature of
the features differentiates schemes of visual servoing: Image
based visual servoing (IBVS) uses only image features, i.e.s
may be a vector of image points coordinates; Position based
visual servoing (PBVS) uses the 3-D pose(s) of object(s) of
interest. In any of these schemes, one may use a velocity
controller based on these errors [Chaumette and Hutchinson,
2006],

vc = −λL̂e

+
e, (5)

wheree = s − s∗ is the vector of errors, vc is the velocity
of the camera and̂L+

e is the Moore-Penrose pseudo-inverse
of an approximation̂Le of the interaction matrixLe related
to e. That is, the matrix relating the velocity of the features
and the velocity of the camera.

In subsection IV-A, we briefly describe the visual tracking
system that allows us to track the visual features and estimate
the pose of the camera with respect to the features; then in
subsection IV-A, we describe the classical approach for IBVS
used in [Dune et al., 2010]. Finally, in IV-C, we recall how
IBVS has been previously expressed as a Model Predictive
Control scheme coined asVisual Predictive Control.

A. Robust Model Based Tracking

In the case of the humanoid robots, one difficulty is that
when the robot walks, the stepping causes the head to shake
and oscillate. At each foot step, the impact propagates to the
camera. Moreover, the inherent sway motion of the CoM
translates into camera motion. Both causes generate blur
and shift in the image. Hence, the extraction of the visual
features, by image processing, is not that easy, e.g. compared
to the case of wheeled robots. This explains in part why 3D
information is more robust to be used in that case than only
2D, i.e., PBVS instead of IBVS.

To face the image processing problem, we use the robust
approach presented in [Comport et al., 2006] for the tracking
of geometrical shapes (lines, cylinders, ellipsoids, etc.). This
algorithm estimates the 3D position of a known object frame
(index “o”) in the camera framêcTo, based on two steps: (1)
tracking of the contour points along the tracked shape and (2)
optimization for the pose estimation. Basically, startingfrom
a predicted pose, the lines of the geometric object model are
projected on the image and sampled regularly. Then, at each
of these sample points, the maximum gradient magnitude
point pi is searched along the normal to the projected line.
These locally registered points are used in the second step
to optimize the camera-object transform

ĉTo = argmin
cTo

∑

i

C(d⊥(pi, li(
cTo))) (6)

whereC is a robust function that allows to handle outliers
in an M-Estimator way. The distanced⊥ is the orthogonal
distance from a point to a line.pi are the extracted points
in the current image andli are the projections of the model
lines. As the pointspi should belong to the linesli in the

image plane,̂cTo is searched as the one minimizing these
point-line distances.

Hence, to implement satisfactorily the visual processing
part of our approach, we rely on the algorithm presented
in [Comport et al., 2006] which assumes that the target, i.e.
the entire set of visual features, is a polygon, with edges
prominent enough for the aforementioned tracking approach
to be successful. We also suppose that the possibly rough
initialization is done manually before the first iteration of
this visual tracking.

B. Elements for a Classical Visual Servoing Approach

To use an Image-Based Visual Servoing (IBVS) setup
for the humanoid robot, we first define the current and the
desired featuress and s∗ in terms of the(u, v) coordinates
of visual features in the image.

With that design choice, the approximated interaction
matrix L̂e associated to the error for just one feature in
this system, i.e., regarding two lines in the visual features
error vectore, can then be determined as [Chaumette and
Hutchinson, 2006]

L̂e =

(
−1/zc 0 u/zc uv −(1 + u2) v

0 −1/zc v/zc (1 + v2) −uv −u

)
,

(7)

wherezc is the z coordinate (depth) of the single visual
feature. It can be estimated from the transform̂cTo, for
example, which estimation is described above.

Then, the velocity control for the camera ensuring thate
decreases exponentially is defined as in Eq. 5. This translates
into a separate control for the translational and rotational
velocities [Chaumette and Hutchinson, 2006].

From this objective velocity computed for the camera, we
can then deduce the CoM reference speedvm by making use
of the twist matrixmVc :

vm = −λmVcL̂e

+
e. (8)

The only problem in this approach is the one mentioned
just before: The handling of sway motion. We will see in
Section V how this has been handled in [Dune et al., 2010].

C. Elements for an MPC-based Visual Servoing Approach

Now, in WPG (see Section III), we saw that MPC is
used to estimate a sequence of optimal controls at some
horizon, because of the step-based nature of walking. Hence,
we may want to orient the optimization of the foot placement
by taking into account the expected evolution of the visual
servoing (VS) errors so that, instead of minimizing the
VS errors at current timek, one would like to foresee its
evolution at some horizon[k+1, k+N]. In [Allibert et al.,
2010], outside of the humanoid context, such a time horizon-
aware scheme has been proposed for Image-Based Visual
Servoing, and we will show that it can be applied to our
own scheme. The visual predictive control (VPC) has been
introduced in general terms as:

min
Uk

k+N∑

j=k+1

[sdj − smj]⊤Wj [s
d
j − smj], (9)

subject to sdj = s∗j − ǫj , (10)

qj = f(qj−1, uj−1), (11)

smj = h(qj). (12)

In Eq. 9,Uk = uk:k+N−1 are the series of controls to be
applied to the camera,j refers to time indices in the future,qj
is the state. The feature vectorss∗j , sdj andsmj are respectively
the reference, desired and predicted positions of the visual
features. The termsǫj are the errorssj − smj between real
and predicted feature positions.

Allibert et al. assumeǫj constant over the prediction
horizon, equal toǫk = sk − smk , i. e. the error at the
current timek, because by definition thesj are not known for
j > k. Since our landmarks are static,s∗j

def
= s∗, and since

the prediction errors are constant on the horizon window,
sdj = sdk = s∗ − ǫk are constant in the prediction horizon.

Eq. 11 is the dynamic model, that estimates the new state
given the last state/control pair. In general, this function f is
non-linear. We will see how to deal with this non-linearity.

Eq. 12 is also a non-linear functionh that estimates
the output of the modelsmj , given the current stateqj .
In practice, this equation implements the pinhole camera
projection model.

The matrix Wj in Eq. 9 is a positive definite matrix
used to weight errors in the prediction horizon. As suggested
in [Allibert et al., 2010], we consider equal weights for all
features errors,Wj = diag(wj).

Here,smj is the collection of all the predicted features at
time j, that is, forM featuressmj = (sm1,j , s

m
2,j , . . . , s

m
M,j)

⊤.
Eq. 9 can be rewritten as

min
Uk

M∑

λ=0

[Sd
λ − Sm

λ,k]
⊤W[Sd

λ − Sm
λ,k], (13)

whereλ ∈ [1,M] is the visual feature index,Sm
λ,k stacks the

positions of featureλ in the horizon:

Sm
λ,k =

(
smλ,k+1, s

m
λ,k+2, . . . , s

m
λ,k+N

)⊤
,

Sd
λ stacks the corresponding desired positions, and, finally,

W = diag(wk+1, wk+2, ..., wk+N).
This approach is completely different from the one seen

just before in IV-B, and we will see in Section VI how to
use it in a MPC scheme for WPG.

V. USING THE VISUAL SERVOING OUTPUT AS THEWPG
REFERENCE VELOCITY

In this section, we recall how in [Dune et al., 2010], a
classical visual servoing scheme such as the one described
in IV-B is adapted to be used for a humanoid robot. The
idea, basically, is to use the output velocity derived from the
visual errors through Eq. 8 as a reference velocity for Eq. 3.
However, as we have pointed it out, the humanoid motion has

an intrinsic sway component, that makes the visual features
have an evolution in the image that do not correspond to the
desired trajectory.

As mentioned above, the features motion in the image can
be decomposed into a component due to the sway motion,
and a component due to the “average” sway-less motion of
the robot,

ṡ = L̂ev
c + L̂e

cVmvb. (14)

Then, the idea developed in [Dune et al., 2010] is (1) to
use a virtual camera that corresponds to the position of the
camera if we suppose that there is no sway motion applying
to the robot, (2) to control this virtual camera based on
the regulation of visual errors, and (3) to use its controlled
velocity (vc) as a reference velocity in the reactive WPG.

Dune et al. have shown that the relationship between the
observed featuress(t) and the “sway-less” featuress(t) can
be written as

s(t) = s(t) +

∫ t

0

L̂e
cVmvbdτ − E, (15)

whereE
def
= s(0)−s(0). From this, the corrected visual error

to be used for the computation of the reference velocity is
deduced as

e(t) = s(t)− s∗ = e(t)− (

∫ t

0

L̂e
cVmvbdτ − E). (16)

Under this model, the virtual errore(t) is regulated to
zero, and the real errore(t) is oscillating around zero, with
a periodT . The shiftE is re-estimated regularly over one
period of time (e.g., the last period) by

E =
1

T

∫ t

t−T

∫ t

0

L̂e
cVmvbdτdτ ′,

and finally, it is used in the control law for the CoM (e.g.,
the reference velocitieṡXref

k+1, Ẏ
ref
k+1 for Eq. 3)

vm = −λcVmL̂e

+
(e− (

∫ t

0

L̂e
cVmvbdτ − E)). (17)

Note that the discrete form of the involved integrals are
used in practice. More details can be found in [Dune et al.,
2010]. Please note that, as in any classical visual servoing
approach, to apply this control, we need the actual measured
errors e, an estimate of the sway motion period notedT ,
which is deduced from the stepping period, and a point-wise
estimate for the sway motion at the level of the CoM, i.e.
vb.

VI. I NTEGRATING THE VISUAL SERVOING TO THE

WALKING MOTION GENERATOR

In this section, we describe our MPC-based approach
for plugging the visual servoing error regulation within the
dynamic walk control.

As already mentioned, the basic idea is to use the visual
errors between the observed features and the desired ones in-
side the pattern generator, with an MPC approach. However,
it should be clear that if we introduce directly Eq. 13 as a new
term for Eq. 3, we will not have a QP formulation anymore,
due to the non-linear constraints, namely Eqs. 11 and 12.
We can avoid the first non-linearity (Eq. 11) by using the
dynamic model in Eq. 2. In this case, there is no rotation, but
we will see that we can introduce it in a separate optimization
process without losing the QP formulation.

A. Linearization of the observation model

As already mentioned, Eq. 12 implements the classical
pinhole camera model. Letpol = (xo

l , y
o
l , z

o
l)

⊤ be the position
of the l-th landmark in the object of interest reference frame
(index “o”). At time j, one can compute the projection
of this landmark onto the image plane by first transform-
ing the landmark position to the camera frame with the
homogeneous transformcTm

mTo,j and then by applying
the perspective projection to the coordinates in the camera
frame (xc

l′ , y
c
l′ , z

c
l′)

⊤. Assuming a camera with canonical
parameters, this takes the form

(
ul,j

vl,j

)
=

(
u(xc

l,j , y
c
l,j , z

c
l,j)

v(xc
l,j , y

c
l,j , z

c
l,j)

)
=

(
xc
l,j/z

c
l,j

ycl,j/z
c
l,j

)
. (18)

At this point, we recall for clarity that the exponent “c”
stands for the camera frame, the index “l′” for the landmark
id, and “j” for the time index. Also note thatmTo,j is the
transformation at timej from the object of interest frame
(index “o”) to the CoM frame (index “m”) andcTm is the
transformation from the CoM frame to the camera frame,
which is considered as constant in our approach. Hence, there
is no indexj associated to it. Observe that

m
To,j = (oTm,j)

−1 =

(
(oRm,j)

−1 −(oRm,j)
−1 otm,j

01×3 1

)

where otm,j is the position of the CoM in the object of
interest frame at timej, which depends directly in our
control variables through Eq. 2. The rotation matrixoRm,j

is the direction of the robot waist according to the object of
interest frame at timej. In our current formulation, there is
no free variable modifying this quantity, because it would
make the problem non-linear. This argument is a similar
one as in [Herdt et al., 2010a], mentioned in Section III,
which justifies the use of separate optimization processes
for translation and rotation. More details about this problem
are given in Section VI-B. For the moment, consideroRm,j

and its inverse as constants.
If we use directly the non-linear equation Eq. 18 inotm,j ,

we will lose the QP formulation. We know that Eq. 18 is a
projectionh : R3 → R

2,

h(x, y, z) =

(
u(x, y, z)
v(x, y, z)

)
=

(
x/z
y/z

)
.

We also know that in the MPC formulation, the prediction
is done over afinite horizon, corresponding to relatively
small distances. Typically, a few dozen centimeters are
considered. So it might be enough to use a first order approx-
imation ofh for small variations(dx, dy, dz) of the features
position in the camera frame, so that we can maintain the
QP form.

By using a Taylor series foru(x, y, z) around some lin-
earization point(x0, y0, z0) and substituting the derivatives,

{
u(x0 + dx, y0 + dy, z0 + dz) ≈ x0

z0
+ dx

z0
− x0dz

z2
0

,

v(x0 + dx, y0 + dy, z0 + dz) ≈ y0

z0
+ dy

z0
− y0dz

z2
0

.
,

with dx = x− x0, dy = y − y0 anddz = z − z0.
We propose to apply such a linearization of Eq. 18 for the

whole horizon, around the first position(j = k) of the l-th
landmark, i.e. at the linearization point(xc

l,k, y
c
l,k, z

c
l,k).

This way, we can express the predicted position of thel-th
landmark, at timej > k in the horizon, in a linear way:

(
ul,j

vl,j

)
=

(
π11
l,kx

c
l,j + π13

l,kz
c
l,j + ul,k

π22
l,ky

c
l,j + π23

l,kz
c
l,j + vl,k

)
,

whereul,k = xc
l,k/z

c
l,k and vl,k = ycl,k/z

c
l,k are the initial

positions of the landmarks in the horizon and the coefficients
πij
l,k are the elements of the following matrix

Πl,k =

(
1/zcl,k 0 −ul,k/z

c
l,k

0 1/zcl,k −vl,k/z
c
l,k

)
,

which is the classical interaction matrix in Image-Based
Visual Servoing. Finally, we can express the projection of
the l-th landmark (constraint 12) as:

(
ul,j

vl,j

)
=

[
Πl,k

ul,k

vl,k

]
cTm

mTo,j

(
pol
1

)
, (19)

so that we can now introduce the visual errors regulation in
the pattern generator. By expanding the first row in Eq. 19
and by referring to the first row of matrixΠl,k asΠu

l,k,

ul,j = Πu
l,k(

cRo p
o
l +

cRo
otm,j +

ctm) + ul,k. (20)

Since cRo
otm,j = cRo(1)xj + cRo(2)yj + cRo(3)zj ,

wherecRo(i) is the i-th column ofcRo
1 andxj , yj , zj the

position of the CoM in the object of interest frame at timej
(see Section III), we can rewrite Eq. 20 in the simpler form

ul,j = aul,kxj + bul,kyj + cul,k, (21)

with




aul,k = Πu
l,k

cRo(1)

bul,k = Πu
l,k

cRo(2)

cul,k = Πu
l,k (

cRop
o
l +

ctm + cRo(3)zj) + ul,k.

Note that zj = cz is assumed constant here (see Sec-
tion III). Similarly to the previous equation, we also get

1To simplify the notations we dropped the time indexj.

vl,j = avl,kxj + bvl,kyj + cvl,k. (22)

By stacking the featuresul,j and the CoM positions for
the whole horizon, and by using Eq. 2, we get a vector
Su,m
l,k similar to the one introduced in Eq. 13. We recall

that Su,m
l,k =

(
su,ml,k+1, s

u,m
l,k+2, . . . , s

u,m
l,k+N

)⊤

stacks thel-th
landmark u-values over the time window. It can now be
expressed as,

Su,m
l,k = Au

l,kXk+1 +Bu
l,kYk+1 +Cu

l,k,

with
Au

l,k = aul,kIN×N ,

Bu
l,k = bul,kIN×N ,

Cu
l,k = cul,k(1, 1, ..., 1)

⊤.

This corresponds to the sequence of predicted coordinates
u of the l-th landmark in the horizon. The equivalent
equations for thev coordinates of the same landmark are
straightforward.

Every projected landmark provides two coordinates(u, v)
and we treat each one as an individual feature. This means
that ourλ-th feature is theu (resp.v) image coordinate of
the landmarkl = ⌊λ/2⌋ for λ even (resp. odd). In other
terms, for any time indexj,

{
smλ,j

def
= u⌊λ

2 ⌋,j
for λ even

smλ,j
def
= v⌊λ

2 ⌋,j
for λ odd.

Generalizing to all features, we have:

Sm
λ,k = Aλ,kXk+1 +Bλ,kYk+1 +Cλ,k, (23)

with Aλ,k = Au
l,k for λ even andAλ,k = Av

l,k for λ odd,
wherel =

⌊
λ
2

⌋
. The same holds forBλ,k andCλ,k.

Finally, we introduce visual servoing in the walking gen-
eration with the QP:

min
Uk

αT

2

∥∥ ...
Xk

∥∥2 + αT

2

∥∥ ...
Y k

∥∥2

+
βT

2

M∑

λ=0

[Sd
λ − Sm

λ,k]
⊤W[Sd

λ − Sm
λ,k]

+
γT
2

∥∥Zx
k+1 − Z

xref

k+1

∥∥2 + γT
2

∥∥Zy
k+1 − Z

yref

k+1

∥∥2 ,

with the set of weights(αT , βT , γT). We can rewrite it as
a canonical QP:

min
Uk

1

2
U⊤

k QkUk + p⊤k Uk

with

Qk =

(
Q′

k 0
0 Q′

k

)
+ Q̂k,

Q
′

k =

(

αT I + γTP⊤

zuPzu −γTP⊤

zuVk+1

−γTV⊤

k+1Pzu γTV⊤

k+1Vk+1

)

,

Q̂k =













βT

∑

λ

P⊤

puA
⊤

λ,kWAλ,kPpu 0 βT

∑

λ

P⊤

puA
⊤

λ,kWBλ,kPpu 0

0 0 0 0

βT

∑

λ

P⊤

puB
⊤

λ,kWAλ,kPpu 0 βT

∑

λ

P⊤

puB
⊤

λ,kWBλ,kPpu 0

0 0 0 0













andpk = p′k + p̂k,

p
′

k =











γP⊤

zu(Pzsx̂k − Vc
k+1x

f

k
)

−γV⊤

k+1(Pzsx̂k − Vc
k+1x

f

k
)

γP⊤

zu(Pzsŷk − Vc
k+1y

f

k
)

−γV⊤

k+1(Pzsŷk − Vc
k+1y

f

k
)











,

where (xf
k , y

f
k) is the foot position at the beginning of the

time window, x̂k
def
= (xk, ẋk, ẍk)

⊤, ŷk
def
= (yk, ẏk, ÿk)

⊤ (see
Section III), and finally

p̂k =













βT

∑

λ

P⊤

puA
⊤

λ,kW[Aλ,kPpsx̂k + Bλ,kPpsŷk + Cλ,k − Sd
λ]

0

βT

∑

λ

P⊤

puB
⊤

λ,kW[Aλ,kPpsx̂k + Bλ,kPpsŷk + Cλ,k − Sd
λ]

0













.

For details on matricesPps, Pzs, Ppu, Pzu, Vk+1 and
Vc

k+1 see [Herdt et al., 2010a].
To summarize, our approach, together with the elements

described hereafter (control of the rotation angle in VI.C and
handling of the visual constraints in VI.D), follows a Position
Based scheme, as depicted in Fig. 3.

B. Control of the rotation angle

So far, we have proposed a scheme to control the trajectory
of the center of mass in thexy plane. However, introducing
the rotation angle in the minimization problem is not straight-
forward without losing linearity. Furthermore, the rotation
angle plays a very important role here since sometimes most
of the error between the desiredsd and the predictedsm

may be due to the angle between the robot and the features.
An extension of the original linear MPC scheme with

automatic footstep placement that deals with a reference an-
gular velocity has been proposed in [Herdt et al., 2010b], as
mentioned in III-D. The approach is a two-fold optimization
process that first estimates the optimal rotation angles and
then introduces these values as known in the main QP (here,
as the matrixoRm,j). This scheme should not affect the
stability of the walking since inertial effects are not taken
into account.

The same methodology is used in this approach. Hence, in
a first stage, we optimize the orientations in the MPC time
window by

min...
Θk,

...
Θ

f
k

αR

2

∥∥...
Θk

∥∥2
+

αR

2

∥∥∥
...
Θ

f

k

∥∥∥
2

(24)

+
βR

2

∥∥Θk+1 −Θ0
∥∥2

+
γR
2

∥∥∥Θf

k+1
−Θ0

∥∥∥
2

,

where, with the same notations as for
...
Xk and

...
Y k,

...
Θk is the

sequence ofN jerk values to be applied, andΘk+1 is the
sequence ofN predictedθ values, i.e. the orientations of the
trunk in the horizon,

Θk+1
def
= (θk+1, ..., θk+N)⊤,

and similarly forΘf
k+1, the feet orientations. A reference

orientationΘ0 is defined once for all at the starting config-
uration as a target feet orientation. Several conventions exist
but in this paper, the trunk orientationΘk is trying to follow
the flying foot orientationΘf

k . The flying foot is the only
one which can move during the single support phase. Indeed
obviously the support foot is fixed, and both feet are fixed
during the double support phase. Finally, zero speed, and
zero acceleration are required at the beginning and the end
of the trajectories.

Then in a second stage, we introduce these computed
angles as constant in the main QP (Eq. 3). This approach
gives us the advantage of introducing constraints like the
maximum rotation between both feet, between the feet and
the trunk, and also a rotation limit to keep the visibility of
the landmarks.

C. Visual constraints

The visual constraints can be introduced by using Eq. 21
and Eq. 22. Any linear constraint in the image plane(u, v),
can be expressed as a linear constraint in the variablesUk.

Furthermore, a convex polytope can be expressed under a
linear form. It means that we can have time- and landmark-
varying constraints. Commonly, we want all landmarks to
follow trajectories inside some convex polytope. Hence, the
constraints become constant in time and for all landmarks.
This can be written as:

A′

(
Au

l′,kXk+1 +Bu
l′,kYk+1 +Cu

l′,k

Av
l′,kXk+1 +Bv

l′,kYk+1 +Cv
l′,k

)
≤ b′ (25)

and then,A′′Uk ≤ b′′,

where the matrixA′ and the vectorb′ are related to
the image constraints. For example, bound constraints in
the (u, v) coordinates like visibility constraints are easily
expressed in terms of Eq. 25 and are introduced directly in
the QP.

D. Qualitative comparison with the classical approach

A first advantage of plugging the visual errors term in
the Pattern Generator MPC and of avoiding the decoupled
approach is that, with a pure visual servoing approach,
the expected behavior of the controls to be applied would
correspond to an exponentially decreasing velocity. Indeed,
in classical visual servoing, when the goal is close, errors
tend to zero, and the velocity controls requested to the
robot get smaller and smaller. This is not a problem, e.g.
with robotic arms, since in that case we just send rotational
velocities to the motors, and these velocities can be as small
as requested without consequence on the safety of the robot.
In humanoid robots, having very small reference velocities
is much more a problem, since it would involve more steps.
As stepping involves balance, and as every step could break
it, we must avoid unnecessary motion and reach the goal as

Fig. 3. In this scheme, the pose of the object in the camera framemTo is sent to our control scheme. First, the orientation is foundas described in
section VI-B. Then, by the coordinates of the landmarks specified in the object reference frame (po

l
) the visual servo based WPG provides a CoP reference

trajectoryZref , a set of footprints(Xf , Y f)ref and a Center-Of-Mass reference trajectory(X,Y)ref . The reference trajectories are then followed by
a Generalized Inverse Kinematics scheme which computes at eachtime step a velocityq̇ for the robot actuators. The vision part (gray box) is usually
running at 30 to 60 Hz. The control part (blue boxes) is typically running at 200 Hz in the HRP-2 robot. The landmarks are constant (green box) and the
control part usingq̇ of the HRP-2 robot is typically running at 200 Hz.

soon and efficiently as possible. Here, with our approach,
because the visual errors term is only one term in the QP
problem, this exponential decay is strongly attenuated by the
regularizing effect of other terms such as the jerks. This will
be illustrated clearly in the experimental results section.

Another advantage of our approach is that the constraint on
velocities such as maximal velocities are naturally handled,
as inequality constraints in a QP problem.

Finally, since the velocity reference we set as an input
to the pattern generator is not truly performed, due to the
physical constraints of the robot, we have to re-inject this
difference in the next iteration. In the coupled approach,
those problems are handled intrinsically within the MPC.
The sway motion is naturally filtered since we minimize the
errors within a full cycle (the horizon in the MPC). Finally,
in the MPC-based coupled approach, we minimize errors as
long as the stability criteria permits it, so we always request
and apply feasible controls and the error is instantaneously
taken into account.

VII. E XPERIMENTAL RESULTS

A. Simulation results on the MPC-based approach only

We first tested our own approach (Section VI) in a sim-
ulated environment and we comment these results hereafter.
We assume that no noise or modeling errors have been intro-
duced. For all the tests, the initial position is(0, 0) and the
desired features are set in the position(2, 1). The parameters
αT , βT andγT used for the translational component control
are by default respectively set to the values0.001 , 0.001,
and1. The parametersαR, βR andγR used for the rotational
component control are by default respectively set to the
values0.1 , 1, and1. These default values were determined
manually.

First, we perform an experiment with a desired final
position that does not imply rotation, so that the robot has just
to control thex andy velocities through the corresponding
jerks, which are the variables in the QP. With the default
parameters values mentioned above, we obtain the walk
depicted in Fig. 4. As it can be seen, the visual errors

(evaluated at each of the quadrilateron corners) converge to
zero. We can note an offset in the oscillatory velocity inx
(in blue) andy (in red) due to the features errors.

Now, in a second experiment, we evaluate the trajectory
with rotation. We recall that the rotation velocity control
is done in a separate process from thex and y velocities
control. It works as follows: The rotation velocity controller
sets the angular position while the main controller (QP)
adapts thex, y velocities in terms of these computed angular
positions the visual errors, the footsteps centering and the
jerks minimization. The results of a first simulation involving
rotation is shown in Fig. 5. One can observe that the dynam-
ical balance is kept, and that most of the correction relatedto
the rotation is done at the beginning of the trajectory. Also, in
Fig. 6, we can see that it is robust to perturbations: The same
trajectory is followed as in Fig. 5 but a strong perturbation
in the CoM position has been introduced. It is simulating
an external force applying to the CoM or a strong error
in the position estimation, inducing peaks in the velocities.
However, the perturbation is recovered quasi-instantly.

We have already explained how a local linearization is
made to maintain the QP formulation. The performance of
this linearization depends of the distance traveled insidethe
horizon, which depends on the velocity of the robot and the
size of the horizon. In Fig. 7, we can see the linearized
and real features trajectories for a given CoM trajectory.
As expected, close to the beginning (the linearization point)
the trajectories are quite similar, while the final positions
differ more. This is an extreme situation, since usual metric
displacements in the horizon are much smaller than this
one. In any case, horizon displacements are bigger when the
visual errors are bigger. i.e. the robot is far from the desired
position, in which case the robot just needs a tendency. But
when the errors are getting smaller, the robot needs more
precision. In this case, the displacements in the horizon
becomes smaller so that the difference between the real
model and the linearized one becomes negligible.

Due to the walking nature, we have oscillations in the
features trajectories. One of the main advantages of using

0 0.5 1 1.5 2
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

X (m)

Y (m)
−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

u

v

0 5 10

Velocity

Time (s)

(m/s)

15 20 25 30
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Fig. 4. On the left, we show the trajectory of the robot in thex, y plane, driven by our MPC-based coupled approach. The initial and
final double stance phases appear in green. The single stance support feet appear in red (resp. blue) for the right (resp. left) foot. In pink,
we depicted the CoP trajectory, which can be observed to remain safely in the support polygon, and in black the CoM trajectory. On
the right, top, we depict (in black) the trajectory of the features in the image,with the initial positions in red and the desired positions
in blue, for the first simulation. Finally, the evolution of the velocities is shown inthe bottom. It is interesting to note the offset of the
oscillatory velocity inx (in blue) andy (in red) due to the features errors.

0 0.5 1 1.5 2
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Y (m)

X (m)

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

v

u

0 5 10
Time (s)

15 20 25 30
−0.5

−0.4

−0.3

−0.2

Velocity
(m/s)

−0.1

0

0.1

0.2

0.3

0.4

0.5

Fig. 5. The behavior of our system in the second simulation, involving rotation, with the same graphical conventions as in Fig. 4. In the
velocities graph (rigth, bottom) we added the rotation velocity in black. The robot is walking in the sagittal direction most of the time, after
an initial rotation. The amplitude of the oscillation of the CoM and subsequently of the features are smaller than in the first simulation.
However, we can see a non-negligible component of velocity in the positive y direction, since the angle is not fully compensated. When
the angle is almost fully compensated, this component disappears.

MPC is that it naturally filters out these oscillations because
we minize the errors in a full cycle. It is remarkable that, in
comparison with the decoupled approach [Dune et al., 2010]
we do not need to model explicitly the sway motion of the
robot and the resulting motion of the visual features. The
system could oscillate inside the horizon, and it does, but
at the end, the optimal control is taken without oscillations

(Fig. 8). In Fig. 8, we only show three features errors evo-
lution, theu component of each left (black) and right (red)
lower side corners, since the upper ones are, by symmetry,
the same. And we complete with a singlev component (blue)
for all the corners, with the same symmetry argument.

0 0.5 1 1.5 2

0

0.8

0.6

0.4

0.2

−0.2

−0.4

1

1.2

1.4

Y (m)

X (m)

0.5

0.4

0.3

0.2

0.1

0

−0.1

−0.2

−0.3

−0.5

−0.4

v

u

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1.2 1.4 1.61

0 5 10 15 20 25 30

0.5

0.4

0.3

(ms)
Velocity

0.2

0.1

0

−0.1

−0.2

−0.3

−0.4

−0.5

Time (ms)

Fig. 6. The behavior of our system in the third simulation, with the same graphical conventions as in Fig. 5. The robot is following a
trajectory similar to the one of Fig. 5. After a few footsteps, a strong perturbation is applied to the CoM, inducing a peak in the velocities
graph (rigth, bottom). This perturbation is small in distance metric, so it is not visible in the features trajectories. The perturbation is
quasi-instantly recovered.

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.1

−0. 05

0

0.05
v

u

0.1

0.15

0.2

Fig. 7. In this figure, we show the trajectory of the visual features
in one iteration of the QP, and compare the evolution of the features
obtained by the linearization model (green lines) and features
obtained by the exact non-linear model (red lines).

B. Influence of the weighting parameters

Depending of the weights of the QP (αT , βT , γT), we
obtain different trajectories corresponding to the different
priorities conveyed by each choice of parameters. For ex-
ample, refer to 9. It depicts a simulation with the same
objective as in Fig. 4. The difference between these two
simulations is that we increased theβT parameter, with the
other parameters fixed. In Fig. 4,βT = 0.001, the default
value, and in 9,βT = 0.005. The result is that the robot
minimizes first the visual features errors, disregarding the
jerks regularization term, which produces higher velocities
and a globally less smooth trajectory.

Similarly, we illustrate the effect of parameterγT on the
obtained trajectories in Fig. 10. This parameter is the weight
given to the CoP centering term, making the CoP as close as
possible to the footstep center. It is critical in the sense that
if it takes a too low value, then the optimization may take
configurations where in single support phase, the CoP is very

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Errors in u,v

Time (s)

u1 mpc
u2 mpc
v1 mpc
u1 instantaneous
u2 instantaneous
v1 instantaneous

Fig. 8. Evolution of the errors for theu, v components of each
feature, in the second simulation. In dashed line, we depict the
instantaneous errors along time, and in solid line, we depict the
errors estimated in the horizon (i.e. individual terms of Eq. 13,
normalized by the size of the horizon). Observe that the sway
motion of the robot induces oscillations of theu components in
the instantaneous errors, and that these oscillations are not present
in the errors estimated in the horizon window.

close to the boundary of its admissible space (the support
footprint), and may not converge at all. Experimentally, we
have seen that for values ofγT < 0.3, the convergence is
compromised. In Fig. 10, we depict four experiments with
the same goal as in Fig. 4, with increasing values ofγT .
What can be observed along these figures is the evolution of
the CoP trajectories (in pink): with larger values ofγT , the
CoP trajectory tends to have shorter periods of time away
from the center of the footprint. As a consequence, the steps
are shorter, but the resulting trajectories are safer to be done.

0 0.5 1 1.5 2
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Y (m)

X (m)

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

u

v

0
Velocity

(m/s)

0.1

0.2

0.3

0.4

0.5

0
Time (s)

15 20 25 30105

−0.4

−0.5

−0.3

−0.2

−0.1

Fig. 9. The behavior of our system in a variant of the first simulation, withβT is 5 times higher, and with the same graphical conventions
as in Fig. 4. The robot is following a quite distinct trajectory, with a backwards part close to the end. As the priority is to minimize
features errors, disregarding the jerks, high velocities are taken.

C. Comparisons: coupled vs. decoupled approaches

We conducted a simple experiment to illustrate better the
differences between the two approaches of Section V and
Section VI, and to have quantitative comparisons between
them. In this experiment, the robot has simply to go three
meters forward. In Fig. 11, we depict the robot trajectories
and footsteps (left column) and the features trajectories (right
column) for each approach. The coupled one is depicted in
the upper line, the decoupled one is depicted in the lower
line. We can clearly appreciate that the coupled approach
converges faster. Indeed, with the coupled approach, it took
15 steps, including double supports, to reach the goal.
However, with the decoupled approach, after 30 steps, the
goal has still not been reached and keeps converging slowly.
Here, the convergence criterion is the norm of the errors
between the current features positions and the desired ones.
Moreover, one can observe that, close to the goal, the features
positions follow a smoother trajectory in the case of the
visual predictive control than with the decoupled approach,
where as a result of the immediate stepping, oscillations are
visible.

In Fig. 12 left, we present the profiles of velocities
performed by the robot, in both cases. It is interesting to
note that in the coupled approach the amplitude of the
oscillations is smaller, which is desirable. Also, when the
error gets small, the classical approach slows down to have
a slow convergence rate. This is a normal feature of classical
visual servoing, i.e. the error evolves with an exponential
decay. In the decoupled approach, this behavior is clearly
present. However, in the coupled approach combining the
MPC WPG with visual predictive control, this is not true
anymore, see Fig. 12 right, in particular, because we take
into account future information, so we converge faster. In

the errors evolution we use the same symmetry argument
as in Fig. 8. We should note that theu components in
the image plane are theoretically the oscillatory ones from
the stepping motion. In Fig. 12, we can see that thev
component converges faster in the coupled approach. With
the u components, there remains a small residual of the
oscillation in both the coupled and decoupled approaches,
which explains that theu components converge slower in
the coupled approach.

VIII. C ONCLUSION

Since the original proposal for walking generation pro-
posed in [Kajita et al., 2003], most of the efforts in the
literature have focused in dynamical balance and stability.
In this paper, we have proposed a novel approach to close
the robot navigation control loop within the visual servoing
paradigm, by coupling tightly visual information to the
Model Predictive Control formulation for walking pattern
generation. This way, our online pattern generator integrates
the regulation of the relative pose of 3D image features while
simultaneous ensuring safety and stability for the robot, and
enforcing useful visual servoing constraints, such as the
visibility of the features, maximal velocities, etc. In order to
keep the optimization formulation as a Quadratic Program,
the perspective projection equations have been linearized
around the features positions at the beginning of each pat-
tern generator cycle. For the moment, our current approach
uses 3-D information (Position-Based Visual Servoing) that
strongly depends on the localization. As a future work, we
wish to drop the need of 3-D information by predicting the
image positions of the landmarks in terms on the velocity of
the robot in the horizon (IBVS).

0 0.5 1 1.5 2−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

X (m)

Y
(m

)

0 0.5 1 1.5 2−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

X(m)

Y
(m

)

0 0.5 1 1.5 2−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

X(m)

Y
(m

)

0 0.5 1 1.5 2−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

X(m)

Y
(m

)

Fig. 10. Variants of the first simulation in Fig. 4, with different values of theγT parameter, controlling the weight given to the CoP centeringterm,
making the CoP as close as possible to the footstep center. From left to right, and top to bottom,γT = 0.55, γT = 0.75, γT = 1, andγT = 2.

ACKNOWLEDGMENTS

The first author is supported by the grant 263150 from
the Mexican National Council of Science and Technology
(CONACYT). For this work the second author was supported
by a grant from the RBLINK Project, Contrat ANR-08-
JCJC-0075-01, from the OSEO ROMEO Project, and from
the FP7-ICT-2013-10/611909 KOROIBOT project. For this
work the fourth author was supported by Grant-in-Aid from
the Japanese Society for the Promotion of Science (JSPS)
Fellows P-09721. The authors want to thank especially
Pierre-Brice Wieber and Alexander Sherikov. Special thanks
to E. Marchand and F. Chaumette for providing us with
Lagadic model-tracker and for their precious advice and
discussion.

REFERENCES

[Allibert et al., 2010] Allibert, G., Courtial, E., and Chaumette, F. (2010).
Visual servoing via nonlinear predictive control. In Chesi, G. and
Hashimoto, K., editors,Visual Servoing via Advanced Numerical Meth-
ods, volume 401 ofLecture Notes in Control and Information Sciences,
pages 375–393. Springer London.

[Chaumette and Hutchinson, 2006] Chaumette, F. and Hutchinson, S.
(2006). Visual servo control, part i: Basic approaches.IEEE Robotics
and Automation Magazine, 13(4):82–90.

[Chaumette and Hutchinson, 2007] Chaumette, F. and Hutchinson, S.
(2007). Visual servo control, part ii: Advanced approaches. IEEE
Robotics and Automation Magazine, 14(1):109–118.

[Chestnutt et al., 2007] Chestnutt, J., Michel, P., Kuffner, J., and Kanade,
T. (2007). Locomotion among dynamic obstacles for the honda asimo.
In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages 2572–
2573.

[Coelho et al., 2001] Coelho, J., Piater, J., and Grupen, R. (2001). Devel-
oping haptic and visual perceptual categories for reachingand grasping
with a humanoid robot.Robotics and Autonomous Systems, 37(2-3):195–
217.

[Comport et al., 2006] Comport, A., Marchand, E., Pressigout,M., and
Chaumette, F. (2006). Real-time markerless tracking for augmented real-
ity: the virtual visual servoing framework.IEEE Trans. on Visualization
and Computer Graphics, 12(4):615–628.

[Courty et al., 2001] Courty, N., Marchand, E., and Arnaldi,B. (2001).
Through-the-eyes control of a virtual humanoı̈d. In Ko, H.-S., editor,
IEEE Computer Animation 2001, pages 74–83, Seoul, Korea.

[Dune et al., 2010] Dune, C., Herdt, A., O., S., P.-B., W., E.,Y., and K.,
Y. (2010). Cancelling the sway motion of dynamic walking in visual
servoing. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS10).

[Gutmann et al., 2008] Gutmann, J.-S., Fukuchi, M., and Fujita, M. (2008).

0 0.5 1 1.5 2 2.5 3
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Y (m)

X(m)

0.25

v

0.15

0.05

0.05

−0.15

−0.25

0.2

0.1

0

−0.1

−0.2

u
−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.80.6

0 0.5 1 1.5 2 2.5 3
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Y (m)

X(m)

v

0.25

0.15

0.05

0.2

0.1

0

−0.05

−0.1

−0.2

−0.25

−0.15

u

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

Fig. 11. Comparison between the coupled (upper part) and decoupled approaches (lower part). On the left side, we depict the robot trajectory with the
footsteps (red and blue), and the CoM (black) and CoP (magenta) trajectories. On the right side, we depict the evolution ofthe instantaneous features
positions during the experiment (from the red rectangle, at the beginning of the simulation, to the blue one, at the end).

0 5 10 15 20 25
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
vel x mpc
vel y mpc
vel x classic
vel y classic

Velocity
(m/s)

Time (s)
0 5 10 15 20 25

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
u1 mpc
u2 mpc
v1 mpc

u1 classic
u2 classic
v1 classic

Errors in u,v

Time (s)

Fig. 12. Left, comparison of velocity profiles in thex (blue) andy (red) axes, for the decoupled (dashed line) and coupled (solid line) approaches. Right,
comparison of the features errors evolution.

3d perception and environment map generation for humanoid robot
navigation. Int. Journal of Robotics Research, 27(10):1117–1134.

[Herdt et al., 2010a] Herdt, A., Holger, D., Wieber, P., Dimitrov, D., Mom-
baur, K., and Moritz, D. (2010a). Online walking motion generation with
automatic foot step placement.Advanced Robotics, 24(5-6):719–737.

[Herdt et al., 2010b] Herdt, A., Perrin, N., and Wieber, P.-B.(2010b).
Walking without thinking about it. InIEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS10).

[Kajita et al., 2003] Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K.,
Harada, K., and Yokoi, K. (2003). Biped walking pattern generation by
using preview control of zero-moment point. InIEEE/RAS International
Conference on Robotics and Automation, pages 1620–1626.

[Lorch et al., 2002] Lorch, O., Albert, A., Denk, J., Gerecke, M., Cupec,
R., Seara, J., Gerth, W., and Schmidt, G. (2002). Experiments in vision-
guided biped walking. InIEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, pages 2484–2490.

[Mansard et al., 2007] Mansard, N., Stasse, O., Chaumette, F., and Yokoi,
K. (2007). Visually-guided grasping while walking on a humanoid robot.
In IEEE Int. Conf. on Robotics and Automation (ICRA07), pages 3041–
3047, Roma, Italy.

[Michel et al., 2007] Michel, P., Chestnutt, J., Kagami, S., Nishiwaki, K.,
Kuffner, J., and Kanade, T. (2007). Gpu-accelerated real-time 3d tracking
for humanoid locomotion and stair climbing. InIEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), pages 463–469.

[Morisawa et al., 2007] Morisawa, M., Harada, K., Kajita, S., Nakaoka,
S., Fujiwara, K., Kanehiro, F., Kaneko, K., and Hirukawa, H.(2007).
Experimentation of humanoid walking allowing immediate modification
of foot place based on analytical solution. InIEEE Int. Conf. on Robotics
and Automation, pages 3989–3994.

[Nishiwaki and Kagami, 2009] Nishiwaki, K. and Kagami, S. (2009). On-
line walking control system for humanoids with short cycle pattern
generation.Int. Journal of Robotics Research (IJRR), 28:729–742.

[Perrin et al., 2010] Perrin, N., Stasse, S., Lamiraux, F., and Yoshida, E.
(2010). Approximation of feasibility tests for reactive walk on hrp-2. In
IEEE Int. Conf. on Robotics and Automation (ICRA), pages 4243–4248.

[Taylor and Kleeman, 2001] Taylor, G. and Kleeman, L. (2001). Flexible
self-calibrated visual servoing for a humanoid robot. InAustralian Conf.
on Robotics and Automation (ACRA2001), pages 79–84.

[Wieber, 2002] Wieber, P.-B. (2002). On the stability of walking systems.
In Int. Workshop on Humanoid and Human Friendly Robotics (2002).

