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Vision-guided motion primitives for humanoid reactive walking:
decoupled vs. coupled approaches

Mauricio Garcid? and Olivier Stasseand Jean-Bernard Hayet
Claire Duné and Claudia Estevésand Jean-Paul Laumohd

Abstract— This paper proposes a novel visual servoing ap- no as-of-yet generally accepted solution.
proach to control the dynamic walk of a humanoid robot.

Online visual information is given by an on-board camera. It is ; ; ; ;
used to drive the robot towards a specific goal. Our work is built In this paper, we build upon recent advances in walking

upon a recent reactive pattern generator that make use of Mode pattern generation (WPG) and visual servoing to construct

Predictive Control (MPC) to modify footsteps, center of mass @ New monocular visual servoing scheme that is able to
and center of pressure trajectories to track a reference veldt.  control the walk of a humanoid robotic platform towards
The contribution of the paper is to formulate the MPC problem  an object of interest. An example setup can be seen in Fig.
considering visual feedback. We compare our approach with a 1 where the robot has to walk towards the cupboard with
scheme decoupling visual servoing and walking gait generation. .

Such a decoupled scheme consists in first, computing a reference the image of the cupboard as a goal reference. We use the
velocity from visual servoing; then, the reference velocity is the information from the sensors as feedback in certain tasks,
input of the pattern generator. Our MPC based approach allows e.g. positioning. We find that this visual servoing control
to avoid a number of limitations that appears in decoupled scheme is a very good candidate for closing the perception-

methods. In particular visual constraints can be introduced  ygiion-action loop, due in particular, to its robustn@ss
directly inside the locomotion controller, while camera motions model errors

do not have to be accounted for separately. Both approachesear

compared numerically and validated in simulation. Our MPC Moreover, as we show below, the use of a visual servoing
method shows a faster convergence. control fits well in its traditional role as a “black box” of
the WPG.

I. INTRODUCTION

Humanoid robots are meant to function in unstructured
and dynamic environments, where objects may mov
outside the robots control. Therefore, to complete specif
tasks, robots have to be able to perceive and react
environment changes. Visual sensors endow robots wi
this capability, allowing them to build local representat
of their surroundings and to adapt their behavior accordin
to these representations. Most of the existing humano
platforms are equipped with video cameras. They constitu
rich (geometry, texture, color, etc.) sources of informmati
at rather low costs both in terms of price and addition
to the weight and size of the robot. Furthermore, camer:
embedded in the platform avoid the need of outfitting th
environment with external sensors, greatly increasing tt
autonomy of the robot.

However, the image quality from video cameras embedde

in humanoid robots is, in general, quite poor: blurringsig. 1. An example setup for our approach: the robot has to eaiards

effects or vibrations due to the walk make interpretatiom desired position with regard to an object viewpoint. Frames and m
of these images for visual tasks such as localization a 6fer to theobject cameraand CoM respectively®T, is the transformation

. . . . . 0 view the camera points in the object reference fratae., y/) is the
tracking really challenging. This situation has prompte

urrent footprint position.
considerable effort in the computer vision comunity, with
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is then used as a reference velocity for the WPG. Our main the approach we propose here, this problem is highly
claim is that, in contrast to other methods available in thalleviated because the error terms are now mixed with other
literature, we do not need to model the particular motioterms (e.g. regularizing the jerks) into the pattern geoera

of the camera induced by the robot walk, thereby gainingVe will discuss more on this point in Section VI-D.

in robustness and flexibility. Also, our approach allows to

fully take into account the robot constraints as well asafisu

constraints in a unified framework. Fin{illy, our experinant B. Contributions

results show that our approach achieves a better overall

behavior of the whole control. Building upon the WPG initially proposed by Herdt et

A. Visual servoing vs. (re-)planning al [Herdt et al., 2010a], [Herdt et al., 2010b], we propose
T di for vision-based iaation h b an integration of a visual servoing scheme within the WPG
wo paradigms for vision-based navigation have been C‘?ﬁrough linear MPC. We adapt the non-linear global model

existing for. a I_ong time in mobile_ robotics. The first ON€or visual servoing using MPC described by Allibert et al
tackles navigation more globally using a three-step secpien in [Allibert et al., 2010], by means of a linearization of the

(1) vision-based mapping and localization; (2) trajector rojection function. Here, we use the position-based warsi

plar_ming; and (3) con_trol. With t.his ?‘ppfoa‘:hv a robot ca f [Allibert et al., 2010], that requires 3-D information of
navigate towards a visual goal if this three-step sequengg

b led board of th b hiah f e object of interest, therefore, localization is need&d.
can %cyced.on- (;)arl 0 _the rho ot atalt 'gn requency.bIT aim that a simple, local linearization of the projection
second paradigm deals with the visual navigation problemg,, e predicts well the behavior of the system and that the

n a more reactive manner, using mostly ,V'SU"’“ servo'r:ﬁerformance of this linearization depends on the distance
techniques. Here, planning is generally avoided and the fraveled in the time horizon, which depends itself on the

sual perception output feeds directly the control. We belie velocity of the robot and the size of the time horizon. By

that these two paradigms are in fact, more colmplementaasup“ng this linearization to a simplified dynamical modél
than opposite: whereas planning may require higher COMBYa |ocomotion, we can introduce predictive visual contool

tatlc*;r;al cos;s tlhatl)n I\/|suar1]I ?.erc;/lomg{/l.t car|1 Solve.mor.e (f?emFt’)' the WPG in a straightforward way. To our knowledge of the
pro err;)s of gioba Fi"’?t ' fin |r]lg. dlsua Tgrv0||ng IIS asl,(t yexisting literature, this is the first time that such a sggtes
hature but in general it Is confined to solving local tasks. ;¢ right at the pattern generation level. We finally compar

Visual servoing is a useful approach for controlling prelis ) - approach both, qualitatively and quantitatively to ¢he
the robot position in certain tasks such as in human-robot irbroposed recently in [Dune et al., 2010]

teraction, e.g. to set the robot in front of a person, or te@la

the robot’s end-effector in a given posture before starting

manipulation task. The advantage of visual servoing is that

the positioning task is defined relatively to a specific targeC. Paper Overview

Even more, the precise positioning may not be necessary.

In any of the aforementioned applications, the highertleve First, in Section Il, some work related to our approach will
navigation can be left to a planner, which would determin€€ discussed. In Section IlI, we will recall the principlefs o
the sequence of landmarks, or human interactions, to real¢ reactive WPG with automatic footstep placement, and
consecutively. in Section IV, we make a brief reminder about existing
However, as many advantages the second paradigm provigégual servoing schemes. Then, in Section V, we describe
to the visual navigation of humanoid robots, it also geresrat the approach proposed in [Dune et al., 2010], that uses the
some problems, which have to do precisely with the fagfisual servoing output velocities as an input to the pattern
that the output of the vision system, serves as the inp@€neration. In Section VI, we present a new scheme that
to the control of the robot WPG. Some of these are thatitegrates visual servoing within the pattern generator. |
(1) the output of the vision system may introduce nois&€ction VII, we present simulation results and comparisons
to the WPG of the robot and degrade its behavior; (2) daetween the decoupled and the coupled approaches.

a control process driven by visual errors and designed for First, a few guidelines about the notations used throughout
an exponential decay of these errors, the classical visudlis paper should be mentioned: Bold, capital letters aeel us
servoing approach also generates control laws exhibikiigg t to refer to matrices; normal, lower-case letters refer tdess
exponential decay for the velocity controls. While the latteor vectors, whereas normal, capital letters are used for the
may be desirable for a wheeled robot, it may not be adequattacks of quantities in a time window, which is typically dse

to a humanoid dynamic walk. In this work we try to deal within MPC. As for the indices, we mainly use indicksr j to

both of these problems. Our claim on the first point is thatefer to time indices, whereas other letters are used asasdi
the visual data can be easily filtered to avoid the propagati@and exponents to indicate 3D frames in transformations or
of perturbations to the walking controller. On the secondwist matrices. For examplé/T,, is a 3D rigid transform
point, even though we start by recalling a classic visuahapping points expressed in the “m” frame (the center of
servoing scheme where the gain is not adapted, adaptireass frame) to their coordinates in the “c” frame (the camera
gains exist in the literature of this problem. Furthermoreframe).



D. Notations
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Time indices.

Full robot state at timek.
Control variable at time.
Dynamic model of the robot.

Quadratic term of the cost function consid-
ered in this paper.

Linear term of the cost function considered
in this paper.

Vector of control variables. Free variables
of the MPC-based optimization problem
solved in this paper.

Respectively the CoM position, velocity and
acceleration in thec-axis at timek.
Respectively the CoM position, velocity and
acceleration in thej-axis at timek.

Position of the support foot at timke.
Orientation of the support foot.
Center-of-Pressure (CoP) along theaxis
at time k.

Vector stacking the CoM position, velocity
and acceleration along theaxis.

Sequence of CoM:-positions for a preview
window of size N starting atk.

Sequence of CoMz-jerks for a preview
window of size N starting atk.

Sequence of support foat-positions for a
preview window of sizeN starting atk.
Sequence of CoR-positions for a preview
window of size N starting atk.

Sequence of reference CoM positions along
the z-axis for a preview window of sizéV.
Weighting parameters for the translational
component optimization.

Weighting parameters for the rotational
component optimization.

Matrices relating respectivelyz; with
Ept1, T With £,11, 5 with £F, when
considering the Linear Inverted Pendulum
Model.

Vectors normal to the support foot edges.
Position of the support foot edges along the
normal defined by (07), a¥ (67).

Visual Servoing Notations

A
l

u(z,y, z)
v(z,y, 2)
VC

VC
CTm

Visual features indices.

Landmarks indices (one landmark gives two
visual features, its, andv coordinates).
Projection of point(z,y, z) on the z-axis
image plane.

Projection of point(z,y, z) on the y-axis
image plane.

Real camera velocity.

Ideal camera velocity.

Transform matrix relating the camera frame
(index “c”) to the CoM frame (index “m”).
Twist matrix related to°' T, .

Observation of feature at time k.
Reference feature vector at tinke

Desired feature vector at time

Predicted feature vector at timie

h is the observation model.

Collection of the predicted positions for
feature\ in the horizon starting at timé.
Position of thel’-th landmark in the object
of interest reference frame (indey.

Visual servoing task.

Interaction matrix of taske.

Approximation of the interaction matrix of
taske.

Moore-Penrose pseudo-inverse of an ap-
proximationLe.

Weighting matrix;j in the horizon.
Projection matrix.

Il. STATE OF THEART

Early works on humanoid locomotion have assumed that
the robot path on the ground is completely defined before
computing the actual joint control to realize it. This clgar
puts limits on the capacities of reaction when changes
occur in the environment. These works generally follow a
perception-decision-action scheme, in the sense thatsmisen
first acquires data on the world and/or the robot state, then,
suitable footsteps over a time horizon are decided, andyfinal
the trajectories of the Center of Mass (CoM) and the Center
of Pressure (CoP) are computed while respecting the gtabili
constraints and avoiding collision with the environment.
Finally, the control of the legs and other joints is computed
by inverse kinematics. This perception-decision-actioopl
has proven to be fast enough to realize impressive demon-
strations for stair-climbing and obstacle avoidance [horc
et al., 2002], [Chestnutt et al., 2007], [Michel et al., 2007
[Gutmann et al., 2008]. Our focus in this paper will be set
only on one of the sub-problems necessary to implement this
approach: the generation of footsteps and trajectoriebeof t
CoM and CoP. We stress that we will not address here the
whole body control.

In the generation of the footsteps and the trajectory of
the CoM or CoP, for a long time most of the works did
not consider their online modification from an initial plan.
The work presented in [Morisawa et al., 2007] considered
online adaptation after showing that the modification of the
next landing position of the flying foot might impose a
new CoP trajectory going out of the support polygon and
jeopardize the equilibrium of the robot. To solve the prahle
the stepping period may be modified to reduce this instabil-
ity [Morisawa et al., 2007], at the cost of slowing down
the robot. A recent method proposes to modify the footsteps
according to a perturbation applied to the CoP [Nishiwaki
and Kagami, 2009].

Later on, very efficient and much more flexible control
systems for humanoid robots walking generation have been
proposed. They are dynamically stable and may be very reac-
tive since footstep placement can be computed online [Herdt
et al., 2010a]. Moreover, they differ from the aforemengidn
works by the fact that the CoP is authorized to move freely
inside the support polygon, leaving much more flexibility
to the motion. Most of these techniques such as in [Herdt
et al., 2010a] are based on linear MPC. MPC previews
the behavior of the system within a time window in the
future by applying a given virtual sequence of controls. In
most approaches, the controls are encoded as the supposedly
constant third derivatives (jerks) of the CoM position dgri
single time intervals. MPC allows to estimate the optimal
control sequence at some horizon, even if, in the next
iteration, one simply applies the first control of the congulut
optimal control sequence, and starts again in a similar way
for the next one. At the end, MPC can be expressed as a
Quadratic Program (QP), i.e., the minimization of quadrati
errors subject to a set of linear constraints (equalitied an



inequalities). Handling explicitly the constraints in t@& is  servoing errors within the MPC. Outside the humanoid robots
one of the main advantages of the MPC. Furthermore thelieerature, Allibert et al. have successfully applied &ku
are very efficient techniques proposed to solve such a Qéervoing within a MPC scheme [Allibert et al., 2010]. The
The most important point is that, in [Herdt et al., 2010a¢ thmain problem in doing so is that the dynamics of the
only required input, besides the characteristics of thet,ob camera and the involved perspective projection are naaline
is a reference velocity for the CoM. Hence, the MPC can binctions so that non-linear programming would be required
seen as a “black box” taking as an input a reference velocitp be combined with the aforementioned QP problem. Hence,
to follow, and generating the corresponding CoM trajectona direct application of a MPC visual servoing scheme for the
For reactive positioning tasks, visual servoing techrsque/NPG would be time consuming and not adapted to an online
have proven to be useful [Chaumette and Hutchinson, 2006yalking pattern generator.
[Chaumette and Hutchinson, 2007]. In the humanoids com-
munity, visual servoing has been successful for grasping
tasks while standing [Coelho et al., 2001], [Taylor and Most of the current walking motion generation schemes
Kleeman, 2001] or for walking humanoids [Courty et al.for humanoid robots are based on the model initially pro-
2001], [Mansard et al., 2007]. In [Courty et al., 2001], wisu posed in [Kajita et al., 2003], which focuses on determining
servoing has been used to control a humanoid avatar navigte trajectory of the CoM to generate balanced and stable
ing along landmarks. The upper body is approximated by thaotions. The underlying dynamic model operating for each
kinematic chain that links an on-board camera to the CoMlirection is the one of a cart-table system, that correspond
The lower body is controlled by adding two translationawell to the distribution of mass in the humanoid robot. We
degrees of freedom to the CoM. The translational velocityill not be exhaustive here in describing the whole dynamic
of the CoM is sent to a kinematic locomotion module whictsystem, but let us revise its main components.
controls the legs motion. In [Mansard et al., 2007], a whol
body visual servoing scheme based on a hierarchical stac
of task is introduced. However, the footsteps are defined First, we suppose that the CoM has periodic piece-wise

beforehand. The leg motion is set to be the task of high&onstant jerks (third derivatives) on each time interval of

the null-space of the pre-defined walking path. have to be continuous enough to be done without damage

More recently, in [Dune et al., 2010], which is the method© the robot actuators. Let us discretize the time into these
we will compare ours to, the reference velocity of the ComMntervals of lengthl’, and let us use the index to refer to
is computed based on a visual servoing based controlléfe such interval. Then, by writing (1) that the position at
associated to the “black box” pattern generator of [Herdf + 1 results from the position at and the integration of
et al., 2010a]. The reference velocity computed from thée constant jerks, and (2) that (by definition of the CoP)
visual servoing is used by the MPC to adapt the footste§€ Sum of moments at the CoP cancels, we can express the
and the CoM trajectories, while ensuring at the same timfeOM dynamics on the:-axis as dinear system
walking stability constraints at time intervals of congtan {

IIl. MPC-BASED WALKING PATTERN GENERATION

. Dynamical system

ire1 = Adp+ B,

length. The main disadvantage of this approach is that the g = Ciy Q)
k - )

visual servoing scheme and the pattern generator are com-
pletely decoupled. This means that the visual informat®n iyheres; & (xk’j:k7j}k)—r stacks the:—position,z—velocity

not directly feeding the pattern generator. Instead, it(p§m znd . —acceleration of the robot CoM at timieinto a3 x 1

gives a “trend” velocity to follow, and no visual constraint yector, and where the three matricas B, C are given by
can be introduced inside the MPC problem. Moreover, it

needs to handle the sway motion by virtually removing the , 1 T 177 , T3/6
motion of the camera due to the sway, based on the control AZ(o 1 T |,BE|[1%/2],
inputs and outputs, which we do not. Another downside of 0 0 1 T

this method is that the reference velocity introduced in thﬁnd
pattern generator is only taken as a reference, i.e. it is not
exactlytracked. c® (1 0 )
Here, we adopt a similar approach as the ones mentioned 97"
above, in the sense that the footsteps are changed dynamitn these equations; is the CoP z-position at time
cally as in [Herdt et al., 2010a]. However, the main differen k& and ¢, is the CoM height, which is considered as a
with the aforementioned work is that we do not introduceonstantduring all the following. Similar expressions can
explicitly the reference velocity computed elsewhere by thbe determined for thg and = components.
visual servoing. Instead, we let the pattern generatorddeci Then, starting from the time indeX, we can apply
for it by itself, within the optimization scheme. recursively the dynamics of Eq. N times, and express a
One of the main motivations in this work is to tightenfull trajectory of the CoM in a horizon ofN time intervals,
the link between the WPG and the visual servoing controin function of the initial position, the initial velocity ah
Basically, we aim at integrating more directly the visuathe initial acceleration (akt), stacked into the vectofy,



and in terms of the sequence of jerks applied during thesair variable to optimize), an&vj_ ,, Vi1 two constant
intervals. We recall that this sequence will be considereselection matrices.
as ourcontrols to drive the robot steps. Let us denote the The variableZjy, , = [§f,., --- &i ] contains the
sequence of the CoM—positions starting front and ending sequence of CoP positions along the time window. Again,
atk+ N —1 as they can be derived as a linear function ©Gf from the
second equation of the system 1.
Xi Z (Th, Th 1y ooy ThaN—1) | All reunited, the optimization problem of Eq. 3 can be
finally written as a canonical Quadratic Program (QP)
and, similarly, the sequence of jerks applied frénas .
: T T
X & (@ Ertty oo Frrn1) | o g Uk Qi+ 2 U

Th b Vi he d . . ¢ h Now, of course, this optimization problem comes with a
en, by applying the dynamicd’ times fromk (the set of constraints described hereafter.

current time index), we get another linear system of the form
C. Constraints on the CoP and on the foot placement

Xpt1 = Puiy + Py Xy, 2 Because the robot feet can only push on the ground,
. the CoP has to lie inside the support polygon, i.e. the
Wherle P, and P, are respectivelyN’ x 3 anq N x N .cconvex hull of the contact points between the feet and
matrices that are easily deduced from the previous dynamlﬁ.?e ground [Wieber, 2002]. We assume that the foot on

equat.ions. Similar 'elxpressions can be obtaiped for thekect the ground has a known polygonal shape, so that the CoP
stacking the _velocmes)(H 1) and aqcelergt|ons&k+1) of constraint at timej can be expressed as a set of inequalities
the CoM during the considered horizon time window. " & Y

L . ... on the position of the CoR¢?,£Y)

In the original approach [Kajita et al., 2003], the posison 77
of the center of pressure (CoP) had to be predefined, so that € 2! ,
preliminary footstep planning was necessary. Later on, an {agf (9{) af (ﬁ)} Ljy B 4 <bh (95) :
interesting re-formulation was proposed to handle autmmat 7Y
footstep placement [Herdt et al., 2010a]. This approach ishere the vectorai (resp.a}) contains thez (resp.y)
two-step: (1) it first determines the sequence of robot trunkoordinates of the vectors normal to the feet edges and
orientations to be followed and (2) given the computed; the positioning of these edges along this normal. These
orientations, it determines the, y trajectory of the CoM. equations are linear with respect to the position of the foot
Let us describe these two steps. (z/,y]) on the ground, each of which is an element of the
aforementionedz,/ and Z;/ for k+1 < j < k+ N.
However, it is nonlinear with respect to the foot orientatio

Given the CoM orientations, this step makes only use of @. This is the explanation of the two-phase approach:
reference velocity X; <, ¥;'¢]), given as an input, in such since the orientations are computed beforehand, then the
a way that the determination of the optimal controls can bigequalities do not depend on them and are all linear in the
written as the following constrained optimization problem problem variables.

As for the next foot placement, several constraints arise
from the joints limits, the prevention of self-collision,axi-
mum leg lengths, etc. and most of them are highly non-linear
2 in the variables of the problem. Here, we use the approach
l of [Perrin et al., 2010] to approximate these constraints by
|2 series oflinear constraints on the variables of interest, here

the feet positions at consecutive time indexes,

B. Determination of the:, y CoM trajectory

. (6% e 12 (6% e 12
min |5 + 5 19 ©

Br il 2 B _
t5 HX’““ - X ‘ 5 HYk+1 - ¥

k+1 k+1 k+1

SNz -z + 2 - 2
where U, & (X.. (X790, (/)T " contains the o

variables to be optimized, antxr, Sr,vr) are weight- a3 a3]
ing parameters. The sequence of CoP reference positions L .
Zy), ZV are the centers of the support polygons in singll- Determination of the) trajectory.

support at each iteration and they depdimdarly on the As explained above, the robot trunk orientation is deter-

variables X/, Y/, which are the sequence of positions ofmined beforehandto avoid non-linearities in Eq. Ill-C and

the next footsteps in the horizon. The linear relationskip h keep the optimization problem as a QP. Several schemes

! !
xif _x}fl < by,
Y — Y

the form have been proposed to determine these orientations. The one
in [Herdt et al., 2010a] sets up another QP problem where
Z;:rlf = i+13’£ + Vk-+1X,f the cost function includes the minimization of the diffezen

between the feet orientation and thangle, and the tracking
where;cg is the (known)x—position of thecurrent support of a reference angular velocity. For more details, the neade
foot, X, the sequence of (relative) steps to be done (i.és kindly invited to refer to [Herdt et al., 2010a].



We will propose a variant of this method in Section VI-B.as s*) [Chaumette and Hutchinson, 2006]. The nature of
the features differentiates schemes of visual servoinggbm
based visual servoing (IBVS) uses only image featuress i.e.
may be a vector of image points coordinates; Position based
visual servoing (PBVS) uses the 3-D pose(s) of object(s) of
interest. In any of these schemes, one may use a velocity
controller based on these errors [Chaumette and Hutchinson
2006],

— v = AL e, 5)

A

wheree = s — s* is the vector of errors, vis the velocity

of the camera andbet is the Moore-Penrose pseudo-inverse

of an approximatiorL,. of the interaction matrid.. related

to e. That is, the matrix relating the velocity of the features

and the velocity of the camera.

Pattern Generator In subsection IV-A, we briefly describe the visual tracking

- + system that allows us to track the visual features and etima
j* the pose of the camera with respect to the features; then in

subsection IV-A, we describe the classical approach for3BV

sway motion used in [Dune et al., 2010]. Finally, in IV-C, we recall how
Fig. 2. The pattern generator ensures that the input vglixiracked on  IBVS has been previously expressed as a Model Predictive

average on the preview horizon. The output of the Model tedi Control  Control scheme coined adsual Predictive Control
is the first control computed on the preview horizon. The diffee between

the reference velocity and the real velocity is mostly a swayionadue to .
the stepping. Y Y Y / A. Robust Model Based Tracking

) In the case of the humanoid robots, one difficulty is that

E. Sway motion when the robot walks, the stepping causes the head to shake

As for any pattern generator, the stepping motion inducesnd oscillate. At each foot step, the impact propagateseo th
a sway motion, which can be read as the difference existimgamera. Moreover, the inherent sway motion of the CoM
between the reference velocity used in the Eq. 3 of thwanslates into camera motion. Both causes generate blur
Model Predictive Control and the real velocity effectivelyand shift in the image. Hence, the extraction of the visual
attained from the first control, as illustrated in Fig. 2. §hi features, by image processing, is not that easy, e.g. ceupar
sway motion is necessary for a proper walk, but it obviouslyo the case of wheeled robots. This explains in part why 3D
generates non-desired effects on the robot visual pearepti information is more robust to be used in that case than only
As stated in [Dune et al., 2010], the result of this swayD, i.e., PBVS instead of IBVS.

motion on the real camera velocity ¢an be modeled as: To face the image processing problem, we use the robust
approach presented in [Comport et al., 2006] for the tragkin
Ve =V + VP (4) of geometrical shapes (lines, cylinders, ellipsoids,)efithis

algorithm estimates the 3D position of a known object frame
(index “0”) in the camera fram€T,,, based on two steps: (1)
tracking of the contour points along the tracked shape and (2
optimization for the pose estimation. Basically, startirgm

where v¢ is the “ideal” camera velocity that would exist
without sway, and ¥ is the part of the CoM velocity that
is induced by the sway. The matriyv,,, is a twist matrix

relating the camera frame (index “c”) to the CoM frame, predicted pose, the lines of the geometric object model are
(index m ) through the transform'T,. . . projected on the image and sampled regularly. Then, at each
~We will now describe two approaches for introducingyt these sample points, the maximum gradient magnitude

visual control in the described pattern generation: the f'r%oint p; is searched along the normal to the projected line.

one (in Section V) is a decoupled one, where the Visughase |ocally registered points are used in the second step
servoing is used to determine the reference velocity in Eq. &, optimize the camera-object transform

the second one (Section VI) modifies Eqg. 3 to replace the

reference velocity term by a new term directly related to the

decrease of the visual errors. “To = ar%ﬁlinzc(dl (pi> 1i(“T5))) ©6)

IV. VISUAL SERVOING SCHEMES where(C is a robust function that allows to handle outliers

Visual servoing aims at controlling the motion of ain an M-Estimator way. The distaneg is the orthogonal
robot equipped with a camera, by minimizing the errorslistance from a point to a lines; are the extracted points
between observed features (denoted in the following)as in the current image and] are the projections of the model
and their corresponding reference, desired features {eéénolines. As the pointg; should belong to the lineg in the



image planefT, is searched as the one minimizing these

point-line distances. k4N

Hence, to implement satisfactorily the visual processing min Z [3‘; - s;.”]TWj [s? )
part of our approach, we rely on the algorithm presented Uk j=k+1
in [Comport et al., 2006] which assumes that the target, i.e.  gypjectto 5% = s* —¢; (10)
the entire set of visual features, is a polygon, with edges ’ g
prominent enough for the aforementioned tracking approach 4 = [(gj-1,uj-1); (11)
to be successful. We also suppose that the possibly rough sj" = h(q;). (12)

initialization is done manually before the first iteratioh o

In Eq. 9,U; = u.,-n—1 are the series of controls to be
this visual tracking. aq k = Uk:k+N—1

applied to the camerd,refers to time indices in the future;
is the state. The feature vectors s? ands}" are respectively
the reference, desired and predicted positions of the Visua
To use an Image-Based Visual Servoing (IBVS) setufeatures. The terms; are the errorss; — 7" between real
for the humanoid robot, we first define the current and thand predicted feature positions.
desired features and s* in terms of the(u,v) coordinates  Allibert et al. assumee; constant over the prediction
of visual features in the image. horizon, equal toe, = s, — sp*, i. e. the error at the
With that design choice, the approximated interactiogurrent timek, because by definition thg are not known for
matrix L. associated to the error for just one feature iy > k. Since our landmarks are statlc;, & ¢*, and since
this system, i.e., regarding two lines in the visual featurethe prediction errors are constant on the horizon window,
error vectore, can then be determined as [Chaumette ansg = s¢ = s* — ¢, are constant in the prediction horizon.
Hutchinson, 2006] Eqg. 11 is the dynamic model, that estimates the new state
given the last state/control pair. In general, this functfois
. . 5 non-linear. We will see how to deal with this non-linearity.
L. = (_l/z 0 u/? “ —(+u) v Eqg. 12 is also a non-linear functioh that estimates
¢ 0 —1/2° wv/z° (1+0?) —uv —u)’ d. .
(7) the output of the modek’, given the current state;.
where z¢ is the z coordinate (depth) of the single visualIn practice, this equation implements the pinhole camera
feature. It can be estimated from the transforff,, for ~Projection model.
example, which estimation is described above. The matrix W; in Eq. 9 is a positive definite matrix
Then, the velocity control for the camera ensuring that Used to weight errors in the prediction horizon. As suggeste
decreases exponentially is defined as in Eq. 5. This trasslain [Allibert et al., 2010], we consider equal weights for all
into a separate control for the translational and rotationdatures errorsw; = diag(w;). _
velocities [Chaumette and Hutchinson, 2006]. ~ Here, 57" is the collection of all the predicted features at
From this objective velocity computed for the camera, wdMe j, that is, forM featuress(" = (7, s, s ;) "
can then deduce the CoM reference spe&y making use Ed- 9 can be rewritten as
of the twist matrix™V,. :

B. Elements for a Classical Visual Servoing Approach

M
: d__ gm T d__ gm
min Z[SA Sl WIS — S3 ] (13)

v m /\Jr
V"= -\"V, L, e. ®) ~

The only problem in this approach is the one mentionewhere € [1, M] is the visual feature indexsY"; stacks the
just before: The handling of sway motion. We will see inpositions of feature\ in the horizon:
Section V how this has been handled in [Dune et al., 2010]. -
Shk = (k1> SNkr2r - SAkgn)

C. Elements for an MPC-based Visual Servoing Approachsg stacks the corresponding desired positions, and, finally,

Now, in WPG (see Section Ill), we saw that MPC iISW = diag(wk1, Wk12, s Wi iN)-
used to estimate a sequence of optimal controls at someThis approach is completely different from the one seen
horizon, because of the step-based nature of walking. Hengeast before in I1V-B, and we will see in Section VI how to
we may want to orient the optimization of the foot placemengse it in a MPC scheme for WPG.
by taking into account the expected evolution of the visual
servoing (VS) errors so that, instead of minimizing theV: USING THE VISUAL SERVOING OUTPUT AS THENPG
VS errors at current timé;, one would like to foresee its REFERENCE VELOCITY
evolution at some horizofk + 1, k£ + NJ. In [Allibert et al., In this section, we recall how in [Dune et al., 2010], a
2010], outside of the humanoid context, such a time horizorlassical visual servoing scheme such as the one described
aware scheme has been proposed for Image-Based VisirallV-B is adapted to be used for a humanoid robot. The
Servoing, and we will show that it can be applied to ouidea, basically, is to use the output velocity derived frdma t
own scheme. The visual predictive control (VPC) has beevisual errors through Eq. 8 as a reference velocity for Eq. 3.
introduced in general terms as: However, as we have pointed it out, the humanoid motion has



an intrinsic sway component, that makes the visual featuresAs already mentioned, the basic idea is to use the visual
have an evolution in the image that do not correspond to therors between the observed features and the desired enes in
desired trajectory. side the pattern generator, with an MPC approach. However,
As mentioned above, the features motion in the image caishould be clear that if we introduce directly Eqg. 13 as a new
be decomposed into a component due to the sway moticerm for Eqg. 3, we will not have a QP formulation anymore,
and a component due to the “average” sway-less motion dfie to the non-linear constraints, namely Egs. 11 and 12.
the robot, We can avoid the first non-linearity (Eq. 11) by using the
dynamic model in Eq. 2. In this case, there is no rotation, but
s = f,\evc + f; V,,V°. (14) we will see that we can introduce it in a separate optimizatio
process without losing the QP formulation.
Then, the idea developed in [Dune et al., 2010] is (1) to

use a virtual camera that corresponds to the position of the Linearization of the observation model

camera if we suppose that there is no sway motion applying . . .
to the robot, (2) to control this virtual camera based on As already mentioned, Eq. 12 implements the classical

i _ o ,0 L0\T it
the regulation of visual errors, and (3) to use its contobllepInhOIe camera model. Lef = (27,3, ) * be the position

velocity (v°) as a reference velocity in the reactive WPG. oil;g;(I—fgn;an:tm?rz:(eln_thgnc;bjsgaoztl)r:;erjtset rt(ra]f:rersgzgar:
Dune et al. have shown that the relationship between tt‘ ' I P proj

observed features(t) and the “sway-less” featuregt) can .0? this landmark onto _t_he image plane by first tran_sform-
be written as ing the landmark position to the camera frame with the

homogeneous transforil,,, T, ; and then by applying
t the perspective projection to the coordinates in the camera
s(t) =3(t) +/ L. “V,V'dr — E, (15) frame (zf,,y5, 25)". Assuming a camera with canonical
0 parameters, this takes the form
where E = 5(0) —35(0). From this, the corrected visual error

to be used for the computation of the reference velocity is c e c c /e
P y <ul,j) _ <u(xl,jayl,jvzl,j)> _ <xl,j/zl,j) . (18)

deduced as ; .
UL, (2 5 i 4o 21 5) Y7

t At this point, we recall for clarity that the exponent”*
e(t) =3(t) —s" =e(t) - (/ L. “V,,V’dr — E). (16) stands for the camera frame, the indéX for the landmark
0 id, and 4" for the time index. Also note that'T, ; is the
Under this model, the virtual errc#(t) is regulated to transformation at timej from the object of interest frame
zero, and the real erraf(t) is oscillating around zero, with (index “0”) to the CoM frame (index “m”) andT,,, is the
a periodT. The shift £ is re-estimated regularly over one transformation from the CoM frame to the camera frame,

period of time (e.g., the last period) by which is considered as constant in our approach. Hence ther

. . is no index; associated to it. Observe that
1 —~
E= f/ / L.V, Vdrdr’,
t—T J0

and finally, it is used in the control law for the CoM (e.g.,

the reference velocitieX;,, Y,'*/ for Eq. 3)

m o _ ORm N—1 _ ORm N1 Otm .
To;=("Tm;) ' = <( 01;3) ( ’]1) J)

where °¢,, ; is the position of the CoM in the object of
o t interest frame at timej, which depends directly in our
V" =-AV,,L. (e— (/ L. “V,V’dr — E)). (17) control variables through Eq. 2. The rotation mattiR.,,, j
0 is the direction of the robot waist according to the object of
Note that the discrete form of the involved integrals arenterest frame at timg. In our current formulation, there is
used in practice. More details can be found in [Dune et alpo free variable modifying this quantity, because it would
2010]. Please note that, as in any classical visual servoigake the problem non-linear. This argument is a similar
approach, to apply this control, we need the actual measurgfle as in [Herdt et al., 2010a], mentioned in Section IIl,
errorse, an estimate of the sway motion period not€d \which justifies the use of separate optimization processes
which is deduced from the stepping period, and a point-wisgr translation and rotation. More details about this peab!
estimate for the sway motion at the level of the CoM, i.eare given in Section VI-B. For the moment, Considam’j
VP, and its inverse as constants.
If we use directly the non-linear equation Eq. 181y, ;,
we will lose the QP formulation. We know that Eq. 18 is a
projectionh : R? — R2?,
In this section, we describe our MPC-based approach
for plugging the visual servoing error regulation withireth u(z,y, z) x/z
dynamic walk control. Iy, z) = (v(m,y,z)) - (y/z> ’

VI. INTEGRATING THE VISUAL SERVOING TO THE
WALKING MOTION GENERATOR



We also know that in the MPC formulation, the prediction
is done over afinite horizon, corresponding to relatively V= ap T+ b Ry + g (22)
small distances. Typically, a few dozen centimeters are

considered. So it might be enough to use a first order approtxh—By Eta;Ck'r:‘g _the featL(;rebalJ a_nd tge CZOM posmtons fort
imation of h for small variations(dx, dy, dz) of the features fmw ole nhorizon, and by using £@. <, we get a vector
™" similar to the one introduced in Eqg. 13. We recall

position in the camera frame, so that we can maintain the:* T
QP form. _  that )" = gs}f’,ﬁl,s}fﬁw <57y stacks thelth

By using a Taylor series fou(z,y, z) around some lin- |andmark u-values over the time window. It can now be
earization point(zo, yo, 20) and substituting the derivatives, expressed as,

u(xo + dw,yo + dy, 20 + dz) ~ L0 4 4= _ 20dz, Siie = AlpXki1 + B Y1 + Cily,
ol + da,yo + dy, 20+ dz) & B0 A om0,
0 Z0 Z(J
. A;lk = a?kINXNv
with dz = 2 — xg, dy = y — yo anddz = z — 2. BY, — p¢1
. . . L,k 1kt NXN
We propose to apply such a linearization of Eqg. 18 for the Qi — (1,1 7.
whole horizon, around the first positigii = k) of the I-th Lk LEAT T
landmark, i.e. at the linearization poifit¢ ,,y¢ ., z¢ 4 )- This corresponds to the sequence of predicted coordinates
This way, we can express the pred|ctéd pdsmon oflite of the [-th landmark in the horizon. The equivalent
landmark, at timej > k in the horizon, in a linear way: equations for thev coordinates of the same landmark are
) straightforward.
ug\ _ T RET TR Every projected landmark provides two coordinatesv)
v TIRYE F TiRa ok ) and we treat each one as an individual feature. This means

that our A-th feature is theu (resp.v) image coordinate of
the landmarkl = |A\/2] for A even (resp. odd). In other
tterms, for any time inde,

wherew; , = 7, /27, andv,, = y7 /27, are the initial
positions of the landmarks in the horizon and the coeffisien
n’,. are the elements of the following matrix

¢ ¢ st =y, . for X even
o, — 1/Zl,k- 0 _“Uc/zz,k A o |3
PRT0 12, —u/ay) s{; = |y, for A odd.
which is the classical interaction matrix in Image-Based Generalizing to all features, we have:
Visual Servoing. Finally, we can express the projection of .
the i-th landmark (constraint 12) as: SNk = AxkXet1 + BakYepr + Cog, (23)
with Ay, = A}y for A even andA, , = A}, for A odd,

wi\ _ | . Wk | ep mp [ P] wherel = | ]. The same holds foB, ; andC, .
- l,k m 0,] [} (19) . . - . . .
vl ULk 1 Finally, we introduce visual servoing in the walking gen-

so that we can now introduce the visual errors regulation firation with the QP:
the pattern generator. By expanding the first row in Eqg. 19

and by referring to the first row of matrikl, , asIT¥,, min ar HXkHQ L ar Hka2
: ’ Uk 2 2
6 M
u; = I (“Ropf + Ry %t j + “tn) +urg. (20) +*2T > 1S5 — Syl TWISE — Sy
, A=0
Since “R, 7ty ; = “Ro(1)z; + “Ro(2)y; + “Ro(3)z;, Yr 2 T 2
L) T Lre Yre

where“R, (i) is thei-th column of‘R, * andz;,y;, z; the Y 125 = 2|+ B 1Z¢ = 255

posmgn cif th?”C oM in the Obj.etCt Igf |n2tgr§s'f[r1:rame alt “Te with the set of weightsar, 51, vr). We can rewrite it as
(see Section IIl), we can rewrite Eq. in the simpler form, canonical QP:

1
g = ' + 0y + ¢y, (21) min iUlekUk + i Uk
’ k
with
a}fk — Hlu,k CRO(l) with
e = TR0 a (% 4 )-a
ar = Iy (“Rop{ + “tm + “Ro(3)z;) + ;- 0 Q ’

Note thatz; = c. is assumed constant here (see Sec-

tion 1I). Similarly to the previous equation, we also get Q, = ( aT1+vTTPZuqu —wﬁLVHl ) ,
Y1 Vii1Pzu Y1 Vi1 Vit

1To simplify the notations we dropped the time indgx



def T
Br P A] WA, Py 0 Br S PLA],WBy P, 0 Okr1 = (Opg1s -, Ot n)
A A

A 0 0 0 0 L f . .
Q= | 5 S PI Bl WAL 4Py 0 fr XS PLBL WBy Py 0 and similarly for©;  ,, the feet orientations. A reference
A A

orientation®’ is defined once for all at the starting config-

)

0 0 0 0
uration as a target feet orientation. Several conventiaist e
andpy = p}, + P, but in this paper, the trunk orientatidy, is trying to follow
T R . g the flying foot orientation@i. The flying foot is the only
VP (Pos®h — Vi 7y) : . .
C | AV (P — VE, 2] one_whlch can move durlng_ the_ single support phase. Ir!deed
P = P! (Posir — Vii1yl) ’ obviously the support foot is fixed, and both feet are fixed

V1 (Pasin — Vigavl) during the double support phase. Finally, zero speed, and

Fofy " . zero acceleration are required at the beginning and the end
where (z;,y; ) is the foot position atde;[he beginning of the of the trajectories.

time window, & d:f (@ dis i) T Ok = (9 Grs k) (S8 Then in a second stage, we introduce these computed
Section Iif), and finally angles as constant in the main QP (Eq. 3). This approach
gives us the advantage of introducing constraints like the
maximum rotation between both feet, between the feet and
the trunk, and also a rotation limit to keep the visibility of
the landmarks.

Br P AL WA kPpodr + Bx kPpsiis + Cax — S3]
X

0
Br P}, B WA Ppeir + Br kPpefi + Cax — SYJ
x

0

Pr =

For details on matrice®,,, P.s, Py, P.., Viy1 and C. Visual constraints

V¢, , see [Herdt et al., 2010al]. The visual constraints can be introduced by using Eq. 21
To summarize, our approach, together with the elemen@§d Eq. 22. Any linear constraint in the image pldnev),
described hereafter (control of the rotation angle in Vir@ a ¢an be expressed as a linear constraint in the varidbles

handling of the visual constraints in VI.D), follows a Pasit Furthermore, a convex polytope can be expressed under a

Based scheme, as depicted in Fig. 3. linear form. It means that we can have time- and landmark-
varying constraints. Commonly, we want all landmarks to

B. Control of the rotation angle follow trajectories inside some convex polytope. Hence, th

So far, we have proposed a scheme to control the trajectotpnstraints become constant in time and for all landmarks.
of the center of mass in they plane. However, introducing This can be written as:
the rotation angle in the minimization problem is not sth&ig
forward without Ios',ing linearity. Furthermore, the'rotmi , (AY X1 +BY, Y + Cl
angle plays a very important r(_)le here since sometimes most A <A;’,7ka+1 + B’l‘?kakH + C})’Tk>
of the error between the desired and the predicted™ o "~ e ,,
may be due to the angle between the robot and the features. and then AU, < b,

An extension of the original linear MPC scheme withyhere the matrixA’ and the vectorb’ are related to
automatic footstep placement that deals with a referenee afle image constraints. For example, bound constraints in
gular velocity has been proposed in [Herdt et al., 2010b], 8ge (4,v) coordinates like visibility constraints are easily

mentioned in 1II-D. The approach is a two-fold optimizationexpressed in terms of Eq. 25 and are introduced directly in
process that first estimates the optimal rotation angles agge QP,

then introduces these values as known in the main QP (here,

as the matrix°R,, ;). This scheme should not affect theD. Qualitative comparison with the classical approach

stability of the walking since inertial effects are not take A first advantage of plugging the visual errors term in

into account. the Pattern Generator MPC and of avoiding the decoupled
The same methodology is used in this approach. Hence, dpproach is that, with a pure visual servoing approach,

a first stage, we optimize the orientations in the MPC timghe expected behavior of the controls to be applied would

IN

b (25)

window by correspond to an exponentially decreasing velocity. Iddee
in classical visual servoing, when the goal is close, errors
_min OC?R H9k||2+% H@£H2 (24) tend to zero, and the velocity controls requested to the
CPNCTA robot get smaller and smaller. This is not a problem, e.g.

with robotic arms, since in that case we just send rotational
velocities to the motors, and these velocities can be ad smal
as requested without consequence on the safety of the robot.
where, with the same notations as foy, andY’,, ©;, is the In humanoid robots, having very small reference velocities
sequence ofV jerk values to be applied, anél;; is the is much more a problem, since it would involve more steps.
sequence ofV predictedd values, i.e. the orientations of the As stepping involves balance, and as every step could break
trunk in the horizon, it, we must avoid unnecessary motion and reach the goal as

2
o — 0"+ T et - e[,
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Fig. 3. In this scheme, the pose of the object in the camera ffag is sent to our control scheme. First, the orientation is foaadlescribed in
section VI-B. Then, by the coordinates of the landmarks digecin the object reference framgp( the visual servo based WPG provides a CoP reference
trajectory Z"¢/, a set of footprintg X/, Y /)7¢/ and a Center-Of-Mass reference trajecto, Y)"¢/. The reference trajectories are then followed by
a Generalized Inverse Kinematics scheme which computes atteaerstep a velocityy for the robot actuators. The vision part (gray box) is usuall
running at 30 to 60 Hz. The control part (blue boxes) is tylbicainning at 200 Hz in the HRP-2 robot. The landmarks are tantggreen box) and the
control part usingy of the HRP-2 robot is typically running at 200 Hz.

soon and efficiently as possible. Here, with our approaclievaluated at each of the quadrilateron corners) converge t
because the visual errors term is only one term in the QRro. We can note an offset in the oscillatory velocityzin
problem, this exponential decay is strongly attenuatechby t (in blue) andy (in red) due to the features errors.
regularizing effect of other terms such as the jerks. This wi  Now, in a second experiment, we evaluate the trajectory
be illustrated clearly in the experimental results section  with rotation. We recall that the rotation velocity control
Another advantage of our approach is that the constraint ¢§ done in a separate process from thend y velocities
velocities such as maximal velocities are naturally hashdle control. It works as follows: The rotation velocity contie
as inequality constraints in a QP problem. sets the angular position while the main controller (QP)
Finally, since the velocity reference we set as an inpwdapts ther, y velocities in terms of these computed angular
to the pattern generator is not truly performed, due to thgositions the visual errors, the footsteps centering aed th
physical constraints of the robot, we have to re-inject thigerks minimization. The results of a first simulation invioly
difference in the next iteration. In the coupled approachptation is shown in Fig. 5. One can observe that the dynam-
those problems are handled intrinsically within the MPCical balance is kept, and that most of the correction reltied
The sway motion is naturally filtered since we minimize thehe rotation is done at the beginning of the trajectory. Aiso
errors within a full cycle (the horizon in the MPC). Finally, Fig. 6, we can see that it is robust to perturbations: The same
in the MPC-based coupled approach, we minimize errors &jectory is followed as in Fig. 5 but a strong perturbation
long as the stability criteria permits it, so we always resjue in the CoM position has been introduced. It is simulating
and apply feasible controls and the error is instantangoushn external force applying to the CoM or a strong error
taken into account. in the position estimation, inducing peaks in the velositie
However, the perturbation is recovered quasi-instantly.

We have already explained how a local linearization is
A. Simulation results on the MPC-based approach only made to maintain the QP formulation. The performance of
We first tested our own approach (Section VI) in a simthis linearization depends of the distance traveled infide
ulated environment and we comment these results hereaft@@rizon, which depends on the velocity of the robot and the
We assume that no noise or modeling errors have been int&ize of the horizon. In Fig. 7, we can see the linearized
duced. For all the tests, the initial position(is 0) and the and real features trajectories for a given CoM trajectory.

desired features are set in the posit{@nl). The parameters As expected, close to the beginning (the linearization foin
ar, Br and~yp used for the translational component controthe trajectories are quite similar, while the final position
are by default respectively set to the valuee0ol , 0.001, differ more. This is an extreme situation, since usual roetri
andl. The parameterarg, Sr andryR used for the rotational displacements in the horizon are much smaller than this
component control are by default respectively set to thene. In any case, horizon displacements are bigger when the
values0.1 , 1, and1. These default values were determinedvisual errors are bigger. i.e. the robot is far from the debir
manually. position, in which case the robot just needs a tendency. But
First, we perform an experiment with a desired finaivhen the errors are getting smaller, the robot needs more
position that does not imply rotation, so that the robot has j Precision. In this case, the displacements in the horizon
to control thez andy velocities through the correspondingPecomes smaller so that the difference between the real
jerks, which are the variables in the QP. With the defaulnodel and the linearized one becomes negligible.
parameters values mentioned above, we obtain the walkDue to the walking nature, we have oscillations in the
depicted in Fig. 4. As it can be seen, the visual errorfeatures trajectories. One of the main advantages of using

VIl. EXPERIMENTAL RESULTS
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Fig. 4. On the left, we show the trajectory of the robot in they plane, driven by our MPC-based coupled approach. The initial and
final double stance phases appear in green. The single stancetdegpappear in red (resp. blue) for the right (resp. left) foot. Irkpin
we depicted the CoP trajectory, which can be observed to remain safelg isughport polygon, and in black the CoM trajectory. On
the right, top, we depict (in black) the trajectory of the features in the imagh,the initial positions in red and the desired positions
in blue, for the first simulation. Finally, the evolution of the velocities is showithi& bottom. It is interesting to note the offset of the
oscillatory velocity inz (in blue) andy (in red) due to the features errors.
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Fig. 5. The behavior of our system in the second simulation, involving rotation, wétsétme graphical conventions as in Fig. 4. In the
velocities graph (rigth, bottom) we added the rotation velocity in black. Thetrig walking in the sagittal direction most of the time, after
an initial rotation. The amplitude of the oscillation of the CoM and subsequehtiliyeofeatures are smaller than in the first simulation.
However, we can see a non-negligible component of velocity in the pasitdirection, since the angle is not fully compensated. When
the angle is almost fully compensated, this component disappears.

MPC is that it naturally filters out these oscillations besgu (Fig. 8). In Fig. 8, we only show three features errors evo-
we minize the errors in a full cycle. It is remarkable that, inution, theu component of each left (black) and right (red)
comparison with the decoupled approach [Dune et al., 201@wer side corners, since the upper ones are, by symmetry,
we do not need to model explicitly the sway motion of thehe same. And we complete with a singleomponent (blue)
robot and the resulting motion of the visual features. Théor all the corners, with the same symmetry argument.
system could oscillate inside the horizon, and it does, but

at the end, the optimal control is taken without oscillasion
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Fig. 6. The behavior of our system in the third simulation, with the same graphiecaleations as in Fig. 5. The robot is following a
trajectory similar to the one of Fig. 5. After a few footsteps, a strong geation is applied to the CoM, inducing a peak in the velocities
graph (rigth, bottom). This perturbation is small in distance metric, so it fsvisible in the features trajectories. The perturbation is
quasi-instantly recovered.
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in one iteration of the QP, and compare the evolution of the featurt
obtained by the linearization model (green lines) and features
obtained by the exact non-linear model (red lines).

Time (s)

Fig. 8. Evolution of the errors for the:,, v components of each
feature, in the second simulation. In dashed line, we depict the
o instantaneous errors along time, and in solid line, we depict the
B. Influence of the weighting parameters errors estimated in the horizon (i.e. individual terms of Eq. 13,

; ; normalized by the size of the horizon). Observe that the swa
Depen_dmg of thg Welghts of the QBQ" Br, yr), we motion of theyrobot induces oscillations) of thecomponents in /
Ob.ta',n. different trajectories Corr?Spond'ng to the défer the instantaneous errors, and that these oscillations are not present

priorities conveyed by each choice of parameters. For € the errors estimated in the horizon window.

ample, refer to 9. It depicts a simulation with the same

objective as in Fig. 4. The difference between these two

simulations is that we increased tig parameter, with the

other parameters fixed. In Fig. £y = 0.001, the default

value, and in 9,67 = 0.005. The result is that the robot close to the boundary of its admissible space (the support

minimizes first the visual features errors, disregarding thfootprint), and may not converge at all. Experimentally, we

jerks regularization term, which produces higher velesiti have seen that for values efr < 0.3, the convergence is

and a globally less smooth trajectory. compromised. In Fig. 10, we depict four experiments with
Similarly, we illustrate the effect of parametey on the the same goal as in Fig. 4, with increasing valuesypf

obtained trajectories in Fig. 10. This parameter is the tteig What can be observed along these figures is the evolution of

given to the CoP centering term, making the CoP as close #ge CoP trajectories (in pink): with larger values-pf, the

possible to the footstep center. It is critical in the semsd t CoP trajectory tends to have shorter periods of time away

if it takes a too low value, then the optimization may takdrom the center of the footprint. As a consequence, the steps

configurations where in single support phase, the CoP is veaye shorter, but the resulting trajectories are safer toone d
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Fig. 9. The behavior of our system in a variant of the first simulation, withis 5 times higher, and with the same graphical conventions
as in Fig. 4. The robot is following a quite distinct trajectory, with a backwadrt close to the end. As the priority is to minimize
features errors, disregarding the jerks, high velocities are taken.

C. Comparisons: coupled vs. decoupled approaches the errors evolution we use the same symmetry argument

) _ _ as in Fig. 8. We should note that the components in
We conducted a simple experiment to illustrate better th¢e image plane are theoretically the oscillatory ones from

differences between the two approaches of Section V anfle stepping motion. In Fig. 12, we can see that the

Section Vl, and tolhave quantitative Comparisons betwe%mponent converges faster in the Coup|ed approach_ With
them. In this experiment, the robot has simply to go threghe 4, components, there remains a small residual of the
meters forward. In Fig. 11, we depict the robot trajectoriegscillation in both the coupled and decoupled approaches,

and footsteps (left column) and the features trajectoright{ \hich explains that the; components converge slower in
column) for each approach. The coupled one is depicted {Re coupled approach.

the upper line, the decoupled one is depicted in the lower
line. We can clearly appreciate that the coupled approach
converges faster. Indeed, with the coupled approach, k too VIIl. CONCLUSION
15 steps, including double supports, to reach the goal.

However, with the decoupled approach, after 30 steps, theSince the original proposal for walking generation pro-
goal has still not been reached and keeps converging slowpesed in [Kajita et al., 2003], most of the efforts in the
Here, the convergence criterion is the norm of the errofgerature have focused in dynamical balance and stability
between the current features positions and the desired ongsthis paper, we have proposed a novel approach to close
Moreover, one can observe that, close to the goal, the Eatuthe robot navigation control loop within the visual sengin
positions follow a smoother trajectory in the case of tharadigm, by coupling tightly visual information to the
visual predictive control than with the decoupled approactModel Predictive Control formulation for walking pattern
where as a result of the immediate stepping, oscillatioes ageneration. This way, our online pattern generator integra
visible. the regulation of the relative pose of 3D image featuresevhil

In Fig. 12 left, we present the profiles of velocitiessimultaneous ensuring safety and stability for the robodt, a
performed by the robot, in both cases. It is interesting tenforcing useful visual servoing constraints, such as the
note that in the coupled approach the amplitude of theisibility of the features, maximal velocities, etc. In erdo
oscillations is smaller, which is desirable. Also, when th&eep the optimization formulation as a Quadratic Program,
error gets small, the classical approach slows down to hatlee perspective projection equations have been linearized
a slow convergence rate. This is a normal feature of cldssicaround the features positions at the beginning of each pat-
visual servoing, i.e. the error evolves with an exponentidern generator cycle. For the moment, our current approach
decay. In the decoupled approach, this behavior is clearlyses 3-D information (Position-Based Visual Servoing} tha
present. However, in the coupled approach combining trstrongly depends on the localization. As a future work, we
MPC WPG with visual predictive control, this is not truewish to drop the need of 3-D information by predicting the
anymore, see Fig. 12 right, in particular, because we takmage positions of the landmarks in terms on the velocity of
into account future information, so we converge faster. Ithe robot in the horizon (IBVS).
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