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Abstract

The main contribution of this paper is a novel feature parametrization
based on parallax angles for bundle adjustment (BA) in structure and
motion estimation from monocular images. It is demonstrated that under
certain conditions, describing feature locations using their Euclidean XYZ
coordinates or using inverse depth in BA leads to ill-conditioned normal
equations as well as objective functions that have very small gradients with
respect to some of the parameters describing feature locations. The pro-
posed parallax angle feature parametrization in BA (ParallaxBA), avoids
both of the above problems leading to better convergence properties and
more accurate motion and structure estimates. Simulation and experi-
mental datasets are used to demonstrate the impact of different feature
parametrizations on BA, and the improved convergence, efficiency and ac-
curacy of the proposed ParallaxBA algorithm when compared with some
existing BA packages such as SBA, sSBA and g2o. The C/C++ source
code of ParallaxBA is available on OpenSLAM (https://openslam.org/).

Key words: Bundle adjustment, feature parametrization, parallax angle, ob-
jective function, singularity.

1 Introduction

Structure from motion or monocular simultaneous localization and mapping
(SLAM) is the problem in estimating the camera poses and feature positions
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Figure 1: Mean Square Error (MSE) of the reprojections for BA using Malaga
dataset. ParallaxBA converges to 0.109209 in 61 iterations; g2o converges to
0.216089 in 111 iterations; BA with inverse depth parametrization, SBA, and
sSBA stop because the maximum number of iterations (200) is reached (the MSE
value will change very little if the number of iterations is increased further).

using a sequence of images. Bundle adjustment (BA) is regarded as the gold
standard for estimating the feature positions and camera poses once the feature
correspondences among the images is established.

BA has been a subject of research over a long period of time (Triggs et
al. 1999) and has been extensively used in many applications. Currently a
number of BA packages are publicly available. For example, the SBA package
(Lourakis and Argyros 2009) is very popular among both robotics and com-
puter vision communities. Recently, more efficient implementations BA, sSBA
(Konolige 2010) and g2o (Kummerle et al. 2011) have also become available.

All these three algorithms use Euclidean XYZ coordinates for representing
the locations of three-dimensional point features. The authors’ experiments using
BA with XYZ feature parametrization indicated that, when far away features
exist or all the camera poses observing a feature are aligned with the feature, the
normal equations matrix becomes ill-conditioned, and thus the Gauss-Newton
(GN) method will report a singularity and diverge, making it necessary to use
the Levenberg-Marquardt (LM) method for optimization. However, LM often
requires an extremely large number of iterations. Furthermore, the reduction in
the objective function becomes very small after some iterations, while at the same
time the changes to state vector remain significant. This makes it very difficult
to decide whether the optimal solution has been reached and to determine the
appropriate time to terminate the algorithm.

Figure 1 shows an example of how different BA algorithms perform when used
with an experimental dataset (Malaga Parking-6L dataset (Blanco et al. 2009)).
For this dataset, the final mean square error (MSE) of the reprojections using
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the ParallaxBA algorithm proposed in this paper is 0.109209. For the popular
BA packages SBA, sSBA, and g2o, the MSE of the reprojections quickly reach
around 0.22, but the rate of change becomes very small thereafter (Figure 1).
For g2o, the MSE does not change significantly after about 30 iterations and the
algorithm terminates at iteration 111 with a MSE of 0.216089. For SBA and
sSBA, the changes in MSEs are not significant after around 160 iterations and
the algorithms were terminated when the maximum number of iterations (200)
is reached with the final MSE 0.216219 (SBA) and 0.226131 (sSBA).

In the inverse depth feature parametrization proposed in (Civera et al. 2008),
feature locations are described using the reciprocal of the distance between the
camera center and the feature, the azimuth and elevation angles of the fea-
ture with respect to the camera center, and the position of the camera center
in a global coordinate frame typically known as the “anchor”. Inverse depth
feature parametrization has been shown to perform better than XYZ feature
parametrization with a better chance to provide consistent estimates when used
in the extended Kalman filter (EKF) framework. The study by the authors indi-
cated that when inverse depth parametrization is used in BA, although far away
features will not cause any problem, features that are aligned with the direction
of camera motion can cause the normal equations to be ill-conditioned. Under
this condition, the GN algorithm diverges and the objective function reduces very
slowly in the LM algorithm, even though the changes to the state vector remain
large. As seen in Figure 1, the MSE of BA with inverse depth parametrization
reaches 0.13 after about 40 iterations but only reduces to 0.125020 when the
maximum number of iterations 200 is reached.

There is no easy mechanism to detect and discard these problematic features
before performing BA. Furthermore, as the state vector keeps changing during
the iterations in BA, even a single feature that satisfies the singularity condition
in one particular iteration can have significant impact on the convergence of the
algorithm.

This paper proposes ParallaxBA, where a new parallax angle feature parametriza-
tion strategy is used in BA. The new feature parameters include three angles –
the azimuth and elevation angles of the feature with respect to one camera cen-
ter, and the parallax angle of the feature from two camera centers. Both the two
camera centers are used as anchors in this representation. It is demonstrated
that the new feature parametrization results in better convergence when com-
pared with BA using the Euclidean XYZ and inverse depth parametrizations. It
can be seen from Figure 1 that ParallaxBA can converge to MSE 0.109209 with
only 61 iterations which is significantly smaller than those obtained using ex-
isting BA packages (the iteration naturally stopped because the change in state
vector is smaller than the threshold).

This paper builds on the previous preliminary work (Zhao et al. 2011), with
the following major improvements: (1) an analysis of the ill-conditioning and
singularity of the normal equations matrix; (2) an analysis of the structure of
the objective functions; (3) an optimized C/C++ implementation of ParallaxBA
which is faster than SBA and comparable in speed to that of sSBA and g2o;
(4) evaluations using more large-scale datasets; and (5) the availability of the
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C/C++ source code on OpenSLAM.
This paper is organized as follows. Section 2 discusses the related work.

Section 3 describes the parallax angle parametrization for features. Section 4
provides the details of the ParallaxBA algorithm. Section 5 analyzes the impact
of the different parametrizations on the singularity of the normal equations, the
structure of the objective function, and the accuracy of the initial feature loca-
tion estimates. In Section 6, simulations and experimental results are provided
to demonstrate the impact of feature parametrizations on BA, as well as the
improved convergence and accuracy of ParallaxBA. Finally Section 7 concludes
the paper and Appendix A presents the derivation of the observation function
used in Section 4.

2 Related Work

In monocular SLAM (Davison 2003), observations from a camera that provides
relative bearing and elevation to features in the environment are used to build
up the representation of the environment as well as provide an estimate of the
camera poses. The most obvious way to represent the location of features in a
3D environment is to use their Euclidean coordinates X, Y and Z. As a direct
measurement of feature depth is not available, a good initial estimate of X, Y
and Z cannot be obtained without observing a feature from two locations with
sufficient large parallax. Representing feature locations using their Euclidean
XYZ coordinates has been demonstrated to be a poor choice, particularly when
the parallax angle used to initialize the feature location is small (Civera et al.
2008). Parallax angle becomes small in two specific scenarios: when a feature
is at a long distance from the camera or when the camera is moving towards or
away from a feature along the line from the camera to the feature, regardless
of the distance. The many strategies that have been proposed to deal with the
issue of initializing feature locations, either add significant complexity or result
in a delay in incorporating the information from observed features. For example,
Kwok and Dissanayake (Kwok and Dissanayake 2004) and Sola et al. (Sola et
al. 2005) proposed to use a mixture of Gaussians to represent multiple hypotheses
for the depth of the feature so that the feature location can be initialized as soon
as a feature is observed, while Davison et al. (Davison et al. 2007) used a ray
to represent the feature when it is observed first, and the feature is initialized
as a point after multiple observations when the probability distribution for the
feature location can be safely approximated as Gaussian.

For a simpler 2D bearing-only SLAM problem, a framework for dealing with
both nearby and distant landmarks is provided in (Trawny and Roumeliotis
2006), where a global bearing angle from an artificial position is used as one of
the feature parameters. This strategy leads to a redundant representation when
extended to 3D. The inverse depth feature parametrization proposed in (Civera
et al. 2008) provides a more robust and accurate representation for far away fea-
tures, using the reciprocal of the distance between the anchored camera center
and the feature. A state vector containing the feature locations and relevant
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camera centers is then estimated in an estimator such as an extended Kalman
filter (EKF) (Civera et al. 2008). A similar representation using homogeneous
coordinates is also shown to perform well in optimization frameworks such as BA
(Triggs et al. 1999) when far away features are present. Inverse depth method
overcomes many of the issues associated with feature initialization and has now
become the most accepted way to describe feature locations in monocular SLAM.
Sola (Sola 2010) compared different feature parametrization approaches. In an
estimator framework based on the EKF, feature parametrizations that incorpo-
rate a camera center or “anchor” are shown to be superior to those that do not
use anchors. The ParallaxBA proposed in this paper uses the parallax angle
feature parametrization which has two “anchors” for one 3D point feature.

Recently, nonlinear optimization based SLAM has become more popular than
those based on EKF due to the availability of increased computer power and the
recognition that the Jacobians and information matrices involved in the opti-
mization algorithms are sparse, making optimization process computationally ef-
ficient. Bundle adjustment, used extensively in computer vision literature (Triggs
et al. 1999), is the gold standard for monocular SLAM as it solves the global op-
timization problem involving all the observations. As such it avoids many of
the issues associated with EKF based algorithms (Huang and Dissanayake 2007)
(Strasdat et al. 2010) and is able to produce more accurate and consistent es-
timates. A systematic and comprehensive comparison between BA and EKF is
given in (Strasdat et al. 2010) where it was shown that BA outperforms EKF
SLAM in terms of consistency and accuracy. SLAM based on BA can now be
performed in real-time for example by using relative bundle adjustment (Blanco
et al. 2013) or an incremental light bundle adjustment (Indelman et al. 2013).

A number of software packages of BA are now available, for example SBA
(Lourakis and Argyros 2009), and a more efficient implementation sSBA (Konolige
2010). A general graph optimization package, g2o (Kummerle et al. 2011), also
has a BA component. Closer examination of the behavior of existing BA pack-
ages illustrates some interesting issues. The normal equations associated with the
optimization problem can easily become ill-conditioned, requiring an algorithm
with a damping factor such as Levenberg-Marquardt (LM). Moreover, the objec-
tive function may consist of “long flat valleys” due to the lack of adequate depth
information for some features. This can result in gradient based algorithms such
as LM converging very slowly or failing to find the global optimum. Although
several modern methods are proposed to improve the convergence and efficiency
of BA (Jeong et al. 2012), the fundamental issues in the normal equations and
objective functions have not yet been addressed. The authors have observed that
when XYZ parametrization is used, the relevant Jacobians become rank deficient
when features that are always far away from the camera are present, indicating
that there is insufficient information to compute the distance to these features.
A similar situation occurs in the case of inverse depth representation if the cam-
era velocity vector passed through a feature. While this seems to be an extreme
scenario, given datasets that contain hundreds of frames and tens of thousands
of features are now common, at least one feature that satisfies this condition is
always likely to be present, as will be seen in Section 6.
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Figure 2: Parallax angle parametrization for feature.

This paper proposes a new feature parametrization strategy where the par-
allax angle from two camera poses is used as a parameter to describe the feature
location. It is demonstrated that the used parallax angle feature parametrization
in BA results in an objective function that has a better structure thereby avoid-
ing the issues mentioned in the previous paragraph and resulting in improved
convergence.

3 Parallax Angle Feature Parametrization

In this section, the parallax angle feature parametrization for monocular SLAM
is presented. The key idea is to use the azimuth angle, elevation angle, and
parallax angle, together with the two anchored camera centers to represent the
location of a 3D point feature.

3.1 Camera Pose Parametrization

A camera pose is represented by rotation angles and a translation vector relative
to the first camera pose, p0. The i

th camera pose is denoted as

pi = [αi βi γi xi yi zi]
T (1)

where ri = [αi βi γi]
T contains the Yaw, Pitch, Roll angles of pi and ti =

[xi yi zi]
T is the translation vector from p0 to pi, p0 = [0 0 0 0 0 0]T .

3.2 Parallax Angle Parametrization for Features

If a feature Fj is only observed once, then the camera center from which it is
observed is defined as the main anchor of Fj and is denoted as tm. The feature
is described by

Fj = [ψj θj ]
T (2)
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Figure 3: Flowchart of choosing the anchors.

where ψj and θj are the azimuth and elevation angles, so the parameters [ψj θj ]
T

represent the direction from the main anchor tm to Fj in the coordinate frame
defined by p0 (Figure 2).

If the feature Fj is observed twice or more, then two camera centers will be
chosen as its anchors. One is called the main anchor which is denoted as tm and
the other is called the associate anchor and is denoted as ta. The feature Fj is
described using

Fj = [ψj θj ωj]
T , (3)

where the parallax angle ωj is the angle from xm
j to xa

j with xm
j and xa

j being
the vectors from the main anchor tm to Fj and the associate anchor ta to Fj,
respectively (Figure 2).

3.3 A Strategy for Choosing the Anchors

When the Fj is observed twice, the main anchor is defined as the camera center
where Fj is first observed, and the associate anchor is defined as the camera
center where Fj is observed the second time. If the feature has been observed
more than twice, the strategy for selecting the anchors is given in the flowchart
in Figure 3. That is, the anchors selected will be the two camera centers with
either the maximum parallax angle or a parallax angle larger than a threshold.
The value of the threshold is found not to be very critical. In the experiments
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performed in this paper and the code published on OpenSLAM, the threshold is
set as 0.5 rad.

In monocular vision, the feature depth information is implied in the parallax
between observations from different viewpoints. By directly using parallax an-
gle instead of parameters with depth information, the proposed parallax angle
parametrization is closer to the measurement space of monocular sensors, and
thus it can be expected to be more accurate than other feature parametrizations.
Moreover, the three angles in (3) only define the relative structure of the feature
with respect to the two anchors. As such, the scale of the feature is implicitly
defined by the relative translation of the two anchors. This is completely differ-
ent from the XYZ parametrization (in which the scale of the feature is involved
in all the three parameters) and the inverse depth parametrization (in which
one parameter, the inverse of the depth, contains the scale information of the
feature).

4 Bundle Adjustment using Parallax Angle Fea-

ture Parametrization

While the presence of many “anchors” can increase the size of the state vector in
a typical EKF based estimator, the new parametrization does not increase the
size of the optimization problem in a BA based solution as all the camera poses
and all the features are present in the state vector.

In this section, the observation function for BA using the new feature parametriza-
tion is first presented. Then the least squares optimization formulation for BA,
and the procedures for the initialization of poses and features are briefly outlined.
For clarity, some detailed derivations are presented in Appendix A.

4.1 Observation Function for BA

The information available for BA is the image coordinates of each feature in each
image. This information needs to be described as a function of the camera poses
and the feature parameters.

Suppose the main and associate anchors of a feature Fj are tm and ta respec-
tively. The image coordinates of Fj at pi can be written as

[

uij
vij

]

=

[

xij / t
i
j

yij / t
i
j

]

(4)

where





xij
yij
tij



 =

{

K Rm xm
j , if i = m

K Ri x̃i
j , if i 6= m.

(5)

Here K is the calibration matrix, Ri is the rotation matrix of pi, which is a
function of [αi βi γi]

T ,
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Ri = r (αi, βi, γi). (6)

xm
j is the unit vector from the main anchor tm to feature Fj given by

xm
j = v (ψj , θj) =





sinψj cos θj
sin θj

cosψj cos θj



 . (7)

x̃i
j (i 6= m) represents the scaled vector from ti to Fj which can be computed as

x̃i
j = sin(ωj + ϕj) ‖ta − tm‖x

m
j − sinωj (ti − tm) (8)

where ϕj is the angle from the vector ta − tm to the vector xm
j . The angle ϕj

can be computed from the dot product of the two vectors ta − tm and xm
j as

ϕj = arccos

(

xm
j ·

ta − tm

‖ta − tm‖

)

. (9)

The detailed derivation of (8) is given in Appendix A.

4.2 Least Squares Optimization

Let Z be the measurement vector containing image coordinates of all the features
in each image, let X be the state vector containing all the poses and features
using the proposed parametrization, and let f(X) be the observation function
defined by combining (4) to (9) in Section 4.1. The least squares optimization
problem in BA is to seek the vector X̂ such that

‖ε‖2
Σ−1

Z

= (f(X̂)− Z)TΣ−1
Z (f(X̂)− Z) (10)

is minimized.
The uncertainty of the image coordinates of all the features are assumed to

be identical, which is standard in BA. Then Σ−1
Z is an identity matrix in the

following.

4.3 Gauss-Newton Iteration and Levenberg-Marquardt Method

A solution X̂ of (10) can be obtained by starting with an initial estimate X0 and
iterating with Xk+1 = Xk +∆k, where the vector ∆k is the solution to

JTJ∆k = −JT (f(Xk)− Z) (11)

where J is the linear mapping represented by the Jacobian matrix ∂f/∂X eval-
uated at Xk.

Equation (11) is called normal equations and is used in the Gauss-Newton
(GN) iteration (Hartley and Zisserman 2003).

The Levenberg-Marquardt (LM) method is a damped GN method. The step
∆k is computed by the following modification to (11),
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(JTJ + λE)∆k = −JT (f(Xk)− Z). (12)

where E is the identity matrix. The damping parameter λ > 0 has several effects:
a) For all λ > 0 the coefficient matrix is positive definite, and thus nonsingular.
b) For large values of λ > 0, (12) results in a short step in the steepest descent
direction. This is useful if the current iteration is far from the solution. c) If
λ > 0 is very small, then it is close to GN.

4.4 State Vector Initialization

The ith camera pose, pi = [αi βi γi xi yi zi]
T , can be initialized as























r (αi, βi, γi) =

i
∏

n=1

∆Rn
n−1

[xi yi zi]
T =

i
∑

n=1

RT
n∆tnn−1

(13)

where ∆Rn
n−1 is the relative rotation matrix and ∆tnn−1 = [∆xnn−1 ∆ynn−1 ∆znn−1]

T

is the relative translation between camera poses pn−1 and pn computed using
two-view geometry (Hartley and Zisserman 2003). For initialization, the relative
scales between relative translations are assumed to be 1.

If feature Fj is observed only once at pm, then tm is its main anchor and Fj

can be initialized as







ψj = atan2
(

x̂mj , ẑ
m
j

)

θj = atan2
(

ŷmj ,
√

(x̂mj )
2 + (ẑmj )2

) (14)

where





x̂mj
ŷmj
ẑmj



 = (KRm)
−1





umj
vmj
1



 (15)

and Rm is the rotation matrix of pm, [u
m
j vmj ]

T is the image coordinates of
feature Fj at pm and x̂m

j = [x̂mj ŷmj ẑmj ]T is the vector from tm to feature Fj.
If Fj is observed at least twice with main anchor tm and associate anchor ta,

then the parallax angle ωj can be initialized as

ωj = arccos

(

x̂m
j · x̂a

j

‖x̂m
j ‖‖x̂

a
j‖

)

(16)

where x̂
a
j is the vector from ta to feature Fj computed similarly to x̂

m
j by using

(15).
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Figure 4: A scenario of 2D bearing only case.

5 Analysis of the Impact of Feature Parametriza-

tions on BA

In this section, the impact of feature parametrizations on the BA problem will be
analyzed. In particular, the singularity of the information matrix, the structure
of the objective function, and the sensitivity of the feature location represen-
tations to the observation noises for different feature parametrizations will be
studied. For simplicity, the analysis is performed for the 2D case with a simple
scenario shown in Figure 4 and the camera poses are assumed fixed. Consider
a 2D bearing only problem where a feature is observed from two camera poses.
The orientations of the first and second camera poses are denoted as φ1 and φ2

respectively, and the bearing angles are denoted as θ1 and θ2. The orientation
and length of the relative translation between the two camera poses are denoted
as φt and ‖t‖, respectively (Figure 4).

5.1 The Singularity of Information Matrix JTJ

The normal equations (11) plays a key role in both GN and LM algorithms.
Its coefficient matrix JTJ is an approximation to the Hessian matrix. Once
the algorithm converges, JTJ can also be used as the information matrix (the
inverse of the covariance matrix) of the final estimate. Now it is called the
“information matrix” and the situations under which this matrix can be singular
or ill-conditioned will be analyzed for different feature parametrizations.

5.1.1 XYZ Parametrization

Since depth plays an important role in XYZ parametrization, in the following
analysis, it is assumed that the depth d and the global bearing angle θ are used
to represent the feature. Assume all the other parameters are fixed except for θ
and d. The problem is to find θ and d that minimize the sum of the observation
error squared
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G(θ, d) = ‖f(θ, d)− z‖2 = (f1(θ, d)− θ1)
2 + (f2(θ, d)− θ2)

2 (17)

where

f1(θ, d) = θ−φ1, f2(θ, d) = atan2 (d sin θ − ‖t‖ sinφt, d cos θ − ‖t‖ cosφt)−φ2.
(18)

The errors in the observations θ1 and θ2 are assumed to be independent, the
variances of the observation errors are assumed to be 1.

The Jacobian of f(θ, d) is

J =

[

∂f1
∂θ

∂f1
∂d

∂f2
∂θ

∂f2
∂d

]

=

[

1 0
∂f2
∂θ

∂f2
∂d

]

. (19)

The information matrix is

I = JTJ =

[

1 + (∂f2
∂θ

)2 ∂f2
∂θ

∂f2
∂d

∂f2
∂θ

∂f2
∂d

(∂f2
∂d

)2

]

. (20)

The determinant of the information matrix I is det(I) = (∂f2
∂d

)2. It is clear that

I is positive definite unless ∂f2
∂d

= 0.
Note that

∂f2
∂d

=
−‖t‖ sinϕ

d2 + ‖t‖2 − 2d‖t‖ cosϕ
(21)

where ϕ = θ − φt is the angle from the relative translation to the first feature
observation (see Figure 4).

Thus, the information matrix is singular if (i) ϕ = 0, and it will have a very
large condition number if ϕ is close to 0. Also, the information matrix will have
a very large condition number if (ii) d → ∞. When the camera motion is in
the direction of the feature, condition (i) is satisfied, while condition (ii) occurs
when a feature is at a long distance from the camera.

5.1.2 Inverse Depth Parametrization

When inverse depth parametrization is used, the 2D feature is represented by
the global bearing θ and the inverse of the depth ρ = 1/d. Assume all the other
parameters are fixed except θ and ρ. In this case, the problem is to find the θ
and ρ that minimize

G(θ, ρ) = ‖f(θ, ρ)− z‖2 = (f1(θ, ρ)− θ1)
2 + (f2(θ, ρ)− θ2)

2 (22)

where

f1(θ, ρ) = θ − φ1, f2(θ, ρ) = atan2 (sin θ − ρ‖t‖ sinφt, cos θ − ρ‖t‖ cosφt)− φ2.
(23)

In this case, the information matrix I is positive definite unless ∂f2
∂ρ

= 0.
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Note that

∂f2
∂ρ

=
‖t‖ sinϕ

1 + ρ2‖t‖2 − 2ρ‖t‖ cosϕ
. (24)

Thus, the information matrix is singular if (i) ϕ = 0, and it will have a very
large condition number if ϕ is close to 0. Also the information matrix will have
a large condition number if (ii) ρ → ∞. As before when the camera motion is
aligned with the direction of the feature, condition (i) is satisfied. Condition (ii)
occurs only when the feature is very close to the camera, which is impossible in
practice. Notice that if the feature is far away, ρ → 0 and this will not cause
∂f2
∂ρ

→ 0 unless ϕ→ 0.

5.1.3 Parallax Angle Parametrization

For parallax angle parametrization, the feature is represented by the global bear-
ing θ and the parallax angle ω. By considering the feature parameters as only
variables as before, the problem now is to find the θ and ω that minimize

G(θ, ω) = ‖f(θ, ω)− z‖2 = (f1(θ, ω)− θ1)
2 + (f2(θ, ω)− θ2)

2 (25)

where

f1(θ, ω) = θ − φ1, f2(θ, ω) = θ + ω − φ2. (26)

Note that

∂f2
∂θ

= 1,
∂f2
∂ω

= 1. (27)

Thus, the information matrix is

I = JTJ =

[

1 ∂f2
∂θ

0 ∂f2
∂ω

] [

1 0
∂f2
∂θ

∂f2
∂ω

]

=

[

2 1
1 1

]

(28)

which is always positive definite.
The reason why the singularity of the information matrix can be avoided

using parallax angle feature parametrization is that when the camera motion
is aligned with the direction to the feature, although no information about the
depth of the feature is available, the parallax angle parameter that needs to be
estimated, is known to be zero.

In Section 6, it will be shown using 3D simulation and real experiments that
for both XYZ parametrization and inverse depth parametrization the information
matrices can become singular in practice, confirming the two conditions: (i) the
camera motion is aligned with the direction to the feature, and (ii) the feature
is at a long distance. The large condition number of the information matrix can
cause some convergence issues for both GN and LM. It will also be shown that
using parallax angle parametrization helps avoid the singularity issue caused by
features in actual 3D BA. It should be noted that in 3D BA with parallax angle
feature parametrization, the information matrix is no longer a constant since
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the observation functions are more complicated than 2D and the poses are also
considered as variables.

5.2 Analysis on the Objective Function in BA

In this section, the structure of the objective function in BA when different
feature parametrizations are used will be analyzed. As before, the analysis is
conducted using the simple scenario as described in Figure 4.

Consider the objective function when all the variables are fixed at the ground
truth except for one variable, the depth, the inverse depth or the parallax angle
for each feature parametrization. Examples of the 1D objective functions are
shown in Figures 5(a) to 5(c). For the objective functions drawn in the figures,
the scenario described in Figure 4 is considered and the first camera pose is
assumed to be the origin. It is also assumed that the camera moves straight
forward 1m with no rotation (φ1 = 0, φ2 = 0, φt = 0 and ‖t‖ = 1m in Figure 4).
Also, the bearing angles of the feature from the two camera poses are assumed
to be perfectly observed (θ1 = 0.2450rad, θ2 = 0.3218rad). The ground truth of
the poses and feature are P1 = (0, 0, 0), P2 = (1, 0, 0), and F = (4, 1) in the
global coordinates. Furthermore, ϕ = 0.2450rad, ω = 0.0768rad, d = 4.1231m,
ρ = 0.2425/m. Since the bearing observations have no error, the global minimum
is the ground truth and the minimal objective function is zero.

5.2.1 XYZ Parametrization

Suppose the feature is parametrized as F = [θ, d]T , where θ is the global bearing
angle of F from the first camera and d is the depth. When θ is fixed, the objective
function can be written as

G(d) = (θ−φ1−θ1)
2+(atan2 (d sin θ − ‖t‖ sinφt, d cos θ − ‖t‖ cosφt)−φ2−θ2)

2.
(29)

Then the derivative of G(d) is

G′(d) =2(atan2 (d sin θ − ‖t‖ sinφt, d cos θ − ‖t‖ cosφt)− φ2 − θ2)

−‖t‖ sinϕ

d2 + ‖t‖2 − 2d‖t‖ cosϕ
.

(30)

Therefore, G′(d) = 0 not only when

atan2 (d sin θ − ‖t‖ sinφt, d cos θ − ‖t‖ cosφt)− φ2 = θ2 (31)

which means the observation computed from the depth d is consistent with the
actual observation, but also when ϕ = 0 which means the camera motion is
aligned with the direction to the feature. Furthermore, G′(d) → 0 if d → ∞ or
ϕ→ 0.

As shown in Figure 5(a), when the depth of the feature is large, the objective
function is almost flat, making it difficult for a numerical optimization algorithm
to converge to the true solution.
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Figure 5: One-dimensional objective function of BA using different feature
parametrizations.

5.2.2 Inverse Depth Parametrization

Suppose the feature is parametrized as F = [θ, ρ]T . When θ is fixed the objective
function can be written as

G(ρ) = (θ−φ1−θ1)
2+(atan2 (sin θ − ρ‖t‖ sinφt, cos θ − ρ‖t‖ cosφt)−φ2−θ2)

2.
(32)

The derivative of G(ρ) is

G′(ρ) =2(atan2 (sin θ − ρ‖t‖ sinφt, cos θ − ρ‖t‖ cosφt)− φ2 − θ2)

‖t‖ sinϕ

1 + ρ2‖t‖2 − 2ρ‖t‖ cosϕ
.

(33)

Therefore, G′(ρ) = 0 not only when

atan2 (sin θ − ρ‖t‖ sinφt, cos θ − ρ‖t‖ cosφt)− φ2 = θ2 (34)

which means the observation computed from the inverse depth ρ is consistent
with the actual observation, but also when ϕ = 0 which means the camera motion
is aligned with the direction to the feature. Furthermore, G′(ρ) → 0 if ρ → ∞
or ϕ→ 0.

An example of 1D objective function using inverse depth parametrization is
shown in Figure 5(b). It can be seen that the true solution is also not easy to
find because of the large flat region.

5.2.3 Parallax Angle Parametrization

Suppose the feature is parametrized as F = [θ, ω]T . When θ is fixed, the
objective function can be written as

G(ω) = (θ − φ1 − θ1)
2 + (θ + ω − φ2 − θ2)

2. (35)

The derivative of G(ω) is

G′(ω) = 2(θ + ω − φ2 − θ2). (36)
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Note that the only condition when G′(ω) = 0 is θ + ω − φ2 = θ2 which gives
the true solution of ω.

Furthermore, as seen in Figure 5(c), there is no region when the objective
function is flat.

5.3 The Error in the Initial Feature Location Estimate

This section discusses the impact of the different feature parametrizations on the
errors in the initial feature location estimate. This is described by the sensitivity
of errors in different feature parameters w.r.t the observation noise. It will be
shown that the initialization of the proposed parallax angle feature parametriza-
tion is less sensitive to the observation noise, as compared to the XYZ or inverse
depth models.

Consider the 2D bearing only scenario shown in Figure 4. Let the true bear-
ings be θ̄1 and θ̄2. The errors of the observation angles are assumed to be zero
mean Gaussian with variance δ2θ and are denoted by θ∆1 and θ∆2

θ1 = θ̄1 + θ∆1 , θ∆1 ∼ N(0, δ2θ)

θ2 = θ̄2 + θ∆2 , θ∆2 ∼ N(0, δ2θ).
(37)

It is also assumed that the orientations φ1 and φ2, as well as the relative trans-
lations φt and ‖t‖ of the two camera poses, are known.

5.3.1 XYZ Parametrization

Suppose ϕ and ϕ̄ are the computed and true angles from the relative translation
to the first feature observation, then

ϕ̄ = θ̄1 + φ1 − φt (38)

ϕ = θ1 + φ1 − φt = ϕ̄+ θ∆1 . (39)

From the sine law, the true depth of the feature can be computed as

d̄ =
‖t‖ sin(ω̄ + ϕ̄)

sin ω̄
. (40)

And the computed depth

d =
‖t‖ sin(ω + ϕ)

sinω
=

‖t‖ sin(ω̄ + ϕ̄+ θ∆2 )

sin(ω̄ + θ∆2 − θ∆1 )
. (41)

Therefore,

∂d

∂θ∆1
=

sin(ω̄ + ϕ̄+ θ∆2 ) cos(ω̄ + θ∆2 − θ∆1 )

sin2(ω̄ + θ∆2 − θ∆1 )
‖t‖

∂d

∂θ∆2
=

− sin(ϕ̄+ θ∆1 )

sin2(ω̄ + θ∆2 − θ∆1 )
‖t‖.

(42)

When the parallax angle ω̄ is close to zero, the error of the initial value of
feature depth will be very large. The large error in depth d can result in a large
error in XYZ.
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5.3.2 Inverse Depth Parametrization

Inverse depth parametrization overcomes the issues associated with distant fea-
tures

ρ =
1

d
=

sin(ω̄ + θ∆2 − θ∆1 )

‖t‖ sin(ω̄ + ϕ̄+ θ∆2 )
. (43)

Therefore,

∂ρ

∂θ∆1
=

− cos(ω̄ + θ∆2 − θ∆1 )

‖t‖ sin(ω̄ + ϕ̄+ θ∆2 )

∂ρ

∂θ∆2
=

sin(ϕ̄+ θ∆1 )

‖t‖ sin2(ω̄ + ϕ̄+ θ∆2 )
.

(44)

While only small parallax angles may not cause any problems, when the angle
ω̄ + ϕ̄ is close to zero, the error in the initial value of ρ will be large. Note that
ω̄+ϕ̄ ≈ 0 is equivalent to ϕ̄ ≈ 0. This occurs when the camera is moving towards
or away from the feature at the instant of initialization.

5.3.3 Parallax Angle Parametrization

The global bearing angles of feature from the two camera poses are θ1 + φ1 and
θ2+φ2, respectively. Suppose ω̄ is the true parallax angle and ω is the computed
parallax angle, then

ω̄ = (θ̄2 + φ2)− (θ̄1 + φ1) (45)

ω = (θ2 + φ2)− (θ1 + φ1) = ω̄ + θ∆2 − θ∆1 . (46)

Therefore,

∂ω

∂θ∆1
= −1 and

∂ω

∂θ∆2
= 1. (47)

Thus, the error in the parallax angle has the same scale as the observation
error and is not affected by the geometrical configuration. Furthermore, the
absolute error of the parallax angle will always be small since the errors in the
observation angles θ∆1 and θ∆2 are typically small.

6 Simulation and Experimental Results

Simulation and experimental datasets have been used to compare the proposed
ParallaxBA with BA using the Euclidian XYZ and inverse depth parametriza-
tions, as well as the BA packages SBA, sSBA, g2o in terms of convergency,
accuracy and efficiency.
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Table 1: Sensor Model in Simulation

Parameter Description
Sensor.FOV = [−π/4, π/4] FOV: Bearing [Min, Max]
Sensor.Distance = [0, +∞] Observation distance [Min, Max]
Sensor.Resolution = [800, 800] Image resolution [u, v]
Sensor.PP = [400, 400] Principle point [Pu, Pv] in pixel
Sensor.FL = [400, 400] Focal length [Fu, Fv] in pixel
Sensor.uvNoise = 0.1× randn uv Noise Gaussian σ = 0.1

Table 2: Simulation Details
Simulation 1

Parameter Description
Feature.Dis = [10000, 10000, 10] Feature distribution area XY Z(m)
Feature.Resolution = [10 10 2] Uniform Feature Resolution XY Z
Feature.Dis2 = [50, 50, 10] Second set of features
Feature.Resolution2 = [20 20 4]
Camera.TotalSteps = 23 Total number of Steps
Camera.Trajectory = ‘Circle’ Trajectory
Camera.Dis = 5 Step Distance (m)

Simulation 2

Feature.Dis = [50, 50, 10] Camera.TotalSteps = 21
Feature.Resolution = [20 20 4] Camera.Trajectory = ‘Line’
Camera.Dis = 2

Simulation 3

Parameter Description
Feature.Dis = [10000, 10000, 10] Feature.Dis2 = [50, 50, 10]
Feature.Resolution = [10 10 2] Feature.Resolution2 = [20 20 4]
Camera.TotalSteps = 66 Camera.Trajectory = ‘Square’
Camera.Dis = 2.5

6.1 Simulation Results

Computer simulations presented in this section are designed to highlight the
difference between ParallaxBA and BA using Euclidean XYZ and inverse depth
parametrization in some particular scenarios. In the computer simulations, the
camera is modeled with a FOV of [−π/4, π/4], [0, +∞] observation distance,
800×800 image resolution with the principal point at [400, 400] and a focal length
of [400, 400]. Random Gaussian noise with σ = 0.1 is added to the theoretical
image coordinates as the observations of features in all the simulations. These
are summarized in Table 1. Parameters used in different simulations are detailed
in Table 2.

All the relative poses are computed from two consecutive images with known
feature matches and the noisy image coordinates using the eight point algorithm
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(Hartley and Zisserman 2003) which is the same method used later in the real
experiments. Relative scale of poses is assumed to be 1 for calculating the initial
values.

To initialize the features using parallax angle parametrization, the method
proposed in Section 4.4 is used. In order to make a fair comparison with other
parametrizations, the two anchors used in parallax angle parametrization and
the two projections corresponding to these two anchors are used to calculate the
position of the feature by using the linear triangulation algorithm (Hartley and
Zisserman 2003). The initial values of XYZ and inverse depth parametrizations
for each feature are both computed from this triangulation result. Thus, the
initial estimates of the feature locations in the three parametrizations are equiv-
alent, and the initial objective functions (the initial errors of the reprojections)
of BA using different parametrizations are identical.

6.1.1 Singularity of Euclidean XYZ Parametrization

Simulation 1 is designed to show the singularity problem and the existence of
the “long flat valley” of the objective function in BA using the Euclidean XYZ
parametrization, when some distant features are observed. In particular, one
set of features are assumed to be uniformly distributed in the {[-5000,5000],[-
5000,5000],[-5,5]} cuboid with resolution [10;10;2] (i.e. 10×10×2 = 200 features
in the cuboid) and another set of features are uniformly distributed in the {[-
25,25],[-25,25],[-5,5]} cuboid with resolution [20;20;4]. Simulation 1 has 23 poses
with a circular trajectory as shown in Figure 6(a) (the start pose (0, 0, 0) is not
on the circle).

Four algorithms are compared using this simulation. These are, ParallaxBA
with Gauss-Newton (GN), PaprallaxBA with Levenberg-Marquardt (LM), BA
with XYZ and GN, BA with XYZ and LM.

When GN is used for solving BA, BA with XYZ parametrization diverges,
with the information matrix becoming singular, while ParallaxBA converges.
When LM is used in the BA algorithms, both BA with XYZ and ParallaxBA
converge to nearly the same mean square error (MSE) of the reprojections∗.
The results are shown in Figure 6(a) and Table 3. Thus, the parallax angle
parametrization can easily deal with the distant features using simple GN in this
scenario, while XYZ parametrization needs the more robust LM algorithm.

The condition numbers of the information matrix JTJ in each iteration for the
four algorithms are shown in Figure 7(a). It is clear that the condition number
of JTJ in BA with XYZ parametrization is much larger than that of ParallaxBA
showing the singularity problem of XYZ parametrization. As shown in Table 3,
although LM can handle the singularity of XYZ parametrization by introducing
a damping factor (12), the number of iterations required in LM is very large and
the final MSE after 88 iterations is still larger than that of ParallaxBA obtained
with only 6 iterations of GN.

∗The MSE of the reprojections is equal to the objective function defined in (10) divided by
the number of observations, as used in SBA (Lourakis and Argyros 2009).
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Figure 6: ParallaxBA results of Simulation 1, 2 and 3, and the converged results
of BA with inverse depth using GN for Simulation 1.

Furthermore, when BA with XYZ and LM is used, the depths of some distant
features converge to very large values while all the other variables are nearly the
same as the converged results from ParallaxBA. When these large depth values
are changed, the objective function does not change significantly. And when
changing other parameters around the obtained result, both the positive and
negative direction of each parameter will make the objective function increase.
Also, in the last few iterations during LM, the objective function and all the
variables do not change except these depth values. When the LM result is used as
the initial guess to GN, GN does not converge with information matrix singular.
Thus, BA with XYZ parametrization and LM for this simulation converges to a
point in a “long flat valley” instead of a real local minimum. The 1D and 2D
surface and contour of the objective function around the converged result are not
shown to save space but they are very similar to those in Figure 11. It is clear
that the existence of such “long flat valleys” make it difficult to obtain the true
optimal solution.

It should be mentioned that for this simulation, BA with inverse depth
parametrization and GN can also converge very easily to the same MSE as Paral-
laxBA, demonstrating that the inverse depth parametrization can also deal with
the distant features effectively. The result of BA with inverse depth is also shown
in Figure 6(a).

6.1.2 Singularity of Inverse Depth Parametrization

To demonstrate the possible singularity of BA using inverse depth parametriza-
tion, a more extreme scenario is designed. In Simulation 2 the camera moves
along a straight line for 21 steps with the features uniformly distributed in the
{[-25,25],[-25,25],[-5,5]} cuboid with resolution [20;20;4]. In this simulation, there
are 5 features in the direction of the camera motion and each of these features
is observed only twice.

Four algorithms are tested using this simulation. These are, ParallaxBA
with GN, ParallaxBA with LM, BA with inverse depth and GN, and BA with
inverse depth and LM. The final result and details of the convergence behavior
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Table 3: Convergence of Simulation 1 and 2

Parallax Angle GN Parallax Angle LM XYZ GN XYZ LM
Final MSE Iteration Final MSE Iteration Final MSE Iteration Singularity Final MSE Iteration

Simu 1 0.01342625 6 0.01342625 19 N Singular 0.01342868 88

Parallax Angle GN Parallax Angle LM Inverse Depth GN Inverse Depth LM
Final MSE Iteration Final MSE Iteration Final MSE Iteration Singularity Final MSE Iteration

Simu 2 0.01594779 5 0.01594779 17 N Singular 0.01594781 88

*The maximum number of iterations is 88.
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Figure 7: Condition numbers of the information matrices in the simulations.

of Simulation 2 are shown in Figure 6(b) and Table 3, respectively. As seen in
Table 3, ParallaxBA converges with both GN and LM. BA using inverse depth
parametrization and GN does not converge. BA using inverse depth parametriza-
tion and LM converges to almost the same MSE as that of ParallaxBA.

The condition numbers of the information matrix JTJ in each iteration for the
four algorithms are shown in Figure 7(b). It is clear that the condition number
of JTJ in BA with inverse depth parametrization is much larger than that of
ParallaxBA showing the singularity problem of inverse depth parametrization
in this scenario. As shown in Table 3, although LM can handle the singularity
of the inverse depth parametrization by introducing a damping factor (12), the
number of iterations required in LM is very large and the final MSE after 88
iterations is still larger than that of ParallaxBA achieved with only 5 iterations
of GN.

As analyzed in Section 5.1, the inverse depth parametrization leads to singu-
larity due to the existence of features in the direction of camera motion. Since
there is no information about the depth (apart from noise) for these features, the
Jacobian is (close to) rank deficient. Thus, the matrix JTJ is ill-conditioned.

For Simulation 2, similar to Simulation 1, when BA with inverse depth and
LM is used, the inverse depth of a feature in the direction of camera motion goes
to a large value while all the other variables are nearly the same as the converged
results from ParallaxBA. The 1D and 2D objective function are not shown to
save space but they are very similar to those shown in Figure 12. It is clear that
the existence of the “long flat valleys” in the objective function make the BA
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(a) Trajectory (b) Image

Figure 8: The trajectory and image of PARKING-6L dataset.

with inverse depth parametrization difficult to converge in this scenario.
BA with XYZ and GN also fails in this simulation. When LM is used, BA with

XYZ parametrization reaches the maximum iteration number with the final MSE
0.01594811, which is slightly larger than that of ParallaxBA and BA with inverse
depth and LM. The singularity problem also exits for XYZ parametrization in
this scenario since the features in the direction of camera motion lack depth
information.

6.1.3 The Impact of the Initialization of Pose Estimation

In the previous analysis and simulations, the impacts of different parametriza-
tions of features are considered. As BA is a high dimensional nonlinear opti-
mization problem, the initial guess of poses also plays an important role. In
this simulation, it will be shown that, although a good feature parametrization
is used in the proposed ParallaxBA algorithm, a poor initialization of camera
poses can cause the divergence of GN and the singularity of the information
matrix. That is, the initial value of poses is critical in all the BA algorithms
including ParallaxBA.

Simulation 3 is designed to have the same environment as Simulation 1, which
contains both nearby and distant features. The camera is simulated as a square
trajectory with 66 steps. The ground truth of the camera trajectory, as well as
the result of converged ParallaxBA, are shown in Figure 6(c).

For normal initialization of the camera poses solved by every two images with
relative scale assumed to be 1, ParallaxBA converges with GN. When relative
scales are randomly selected between 1 to 1.2 for initialization (one example
is given as Initial A in Figure 6(c)), ParallaxBA can converge very easily with
GN. However when the relative scales are selected to be between 1 to 1.5 (e.g.
Initial B in Figure 6(c)), ParallaxBA with GN diverges, with some of the pose
estimates in the state vector becoming very poor, and the information matrix
becomes singular. When LM is used as the optimization algorithm, ParallaxBA
converges. For ParallaxBA with LM, the step size is controlled by the damping
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Figure 9: ParallaxBA, BA using inverse depth parametrization with LM and
SBA results of the Malaga PARKING-6L dataset containing 170 images (only the
170 camera poses are shown). The final MSE: 0.109209 (ParallaxBA), 0.125020
(Inverse Depth), 0.216219 (SBA).

factor and an update causing the increase of objective function is not accepted
preventing the pose estimates from becoming very poor. Thus, the condition
number is not very large and the information matrix is not ill-conditioned.

6.2 Experimental Results

This section presents some results using a series of real experimental datasets.
First, a small-scale (250m single loop) publicly available dataset is used to com-
pare BA with XYZ, inverse depth and parallax angle parametrizations. The
results confirm that the singularity issue and the “long flat vallley” in the objec-
tive function appear in practice when XYZ and inverse depth parametrizations
are used in BA, confirming the analysis in Section 5 and the results from the
simulations in Section 6.1. These issues do not appear in ParallaxBA.

To demonstrate the accuracy and efficiency of the proposed ParallaxBA al-
gorithm, four large-scale real experimental datasets are used to compare Paral-
laxBA with the state-of-art BA packages g2o and sSBA. Each BA package is
treated as a black box. BA with inverse depth parametrization is not compared
in the large-scale experiments as such a BA package is not publicly available.

The source code of ParallaxBA is released on OpenSLAM under project “Par-
allaxBA”. All the experimental datasets used here are within the released code.
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(a) A problematic feature for SBA in
Image 11

(b) The corresponding feature in Im-
age 12

(c) A problematic feature for inverse
depth parametrization in Image 151

(d) The corresponding feature in Im-
age 152

Figure 10: Problematic features in Malaga PARKING-6L dataset.

6.2.1 Small Loop of Malaga PARKING-6L Dataset

Publicly available Malaga 2009 Robotic Dataset Collection (Blanco et al. 2009)
is used for demonstrating that the singularity issues also occur in a real-life
situation. This dataset was collected using an electric car equipped with laser
scanners, cameras, IMU, and GPS receivers. As described in (Blanco et al. 2009),
a centimeter-level ground truth is provided making this dataset an ideal test bed
for SLAM.

Images captured by the right camera are used. The image resolution is 1024×
768 and camera calibration parameters are provided in the dataset. SIFT (Lowe
2004) is used for feature detection with subpixel accuracy and for matching,
including the loop closure detection. A multi-level RANSAC (Fischler and Bolles
1981) with thresholds as 2, 0.5, 0.1 and 0.05 is used to remove the outliers (Zhao
et al. 2010). The eight point algorithm (Hartley and Zisserman 2003) is used for
relative pose computation because it provides a result that is adequate for BA
(Zhao et al. 2010).

A sequence of images collected from a 250m close loop trajectory named the
PARKING-6L dataset is selected (Figure 8). Data is sub sampled at 2.5 Hz
from the original 7.5Hz reducing the number of images to 170 from original 508
images as the keyframes for this loop. BA with this keyframe dataset involves
170 poses, 58,404 features and 167,285 projections in total. The initial guess is
obtained from visual odometry as shown in Figure 9. ParallaxBA diverges when
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Figure 11: The objective function of SBA as a function of the depth (and the
azimuth angle) for the problematic feature in the Malaga PARKING-6L dataset.
The red dot corresponds to the final result of SBA.
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Figure 12: The objective function of BA with inverse depth as a function of the
inverse depth (and the azimuth angle) for the problematic feature in the Malaga
PARKING-6L dataset. The red dot corresponds to the final result of BA with
inverse depth parametrization.
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Figure 13: The objective function of ParallaxBA as a function of the parallax
(and the azimuth angle) for the problematic feature for inverse depth in the
Malaga PARKING-6L dataset. The red dot corresponds to the final result of
ParallaxBA.
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Table 4: The Depth (d)/Inverse Depth (ρ) of Problematic Features and the
Corresponding MSE in Some Iterations of BA for Malaga Dataset

SBA (BA + XYZ)

Iteration 136 142 149 157 167 175 189
d 595.623 649.973 682.323 693.037 682.557 660.176 602.594

MSE 0.222991 0.218274 0.217356 0.216907 0.216624 0.216485 0.216325

BA + Inverse Depth

Iteration 101 133 154 156 157 158 200
ρ 14.2796 16.0329 17.6923 20.1636 23.8773 28.0191 33.7862

MSE 0.125334 0.125143 0.125084 0.125073 0.125060 0.125044 0.125020

GN is used as the optimization algorithm. The reason for this is speculated to
be similar to that described in Section 6.1.3. ParallaxBA with the LM algorithm
takes 61 iterations to converge. The ground truth and the result from ParallaxBA
are shown in Figure 9. BA using both inverse depth parametrization and XYZ
parametrization are also implemented. The SBA package (Lourakis and Argyros
2009) is used for BA with XYZ parametrization. Algorithms converge when LM
is used while GN fails to produce a result due to divergence. Results obtained are
also shown in Figure 9. The final MSE of ParallaxBA, BA using inverse depth
parametrization and SBA are 0.109209, 0.125020, and 0.216219, respectively.
The details of the convergence are shown in Figure 1.

Similar to Simulation 1 and Simulation 2, it was found that there are 55
problematic features when XYZ parameterization is used, and 2 problematic
features when inverse depth parameterization is used for BA. These are either
distant features or features in the direction of the camera motion. This is the
same as that mentioned in Section 6.1.1 and 6.1.2. Some of these features are
shown in Figure 10 (the feature with ID 3251 for SBA and the feature with ID
52280 for BA with inverse depth in the dataset released with the ParallaxBA
code). The depth/inverse depth obtained for such problematic features and the
MSE in some iterations of BA are shown in Table 4. This table demonstrates
that these problematic features cause the optimization algorithm to converge
very slowly, pointing to the presence of a “long flat valley”. The 1D and 2D
objective functions around the estimated parameters for the problematic features
are shown in Figure 11, Figure 12 and Figure 13. It is clear that the objective
function is not well behaved for BA with both XYZ parameterization and inverse
depth parameterization while the parallax angle parameterization produces a
good result.

A formulation of BA that uses angles rather than the image coordinates in
formulating the objective function is described in (Mouragnon et al. 2009). To
examine the impact of this alternative formulation, BA is implemented with
both XYZ parametrization (Angle+XYZ) and parallax angle parametrization
(Angle+Parallax) using the Malaga dataset. The LM algorithm is used for the
optimization. Angle+Parallax converges to the objective function of 0.01701969,
while Angle+XYZ converges to objective function of 0.03383568. The informa-
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tion matrix is singular in the latter case. It is clear that the issues of XYZ
presentation as described before still exist and parallax angle parametrization
remains superior for this alternative formulation of the objective function.

6.2.2 Aerial Photogrammetric Datasets

In this and the next two subsections, the performance of ParallaxBA is com-
pared with those of sSBA and g2o in terms of convergence and efficiency using
four large-scale datasets. As described in (Konolige 2010), sSBA is much more
efficient than SBA, and thus SBA is not used in this evaluation. All the three
BA implementations are run on an Intel i5-3210M@2.5GHz CPU. The parameter
τ to initialize the damping factor in LM is set such that each of the algorithms
produced the best performance in terms of convergence and final MSE, resulting
in τ equal to 10−6, 10−6, and 10−8 for ParallaxBA, sSBA and g2o, respectively.
ParallaxBA uses the identical implementation of the LM algorithm as used in
SBA while different implementations are used in sSBA and g2o. Therefore, it is
not feasible to use the same thresholds for convergence criteria. Thus, the default
thresholds in the releases of sSBA and g2o are used, and the thresholds used in
ParallaxBA are the defaults in SBA. Further detailed discussions of these issues
are given in Section 6.2.5.

The Village and College datasets in aerial photogrammetry are used first. In
the Village dataset, there are 90, 7680 × 13824 pixels resolution images, taken
with a digital mapping camera in a snake track. After SIFT and RANSAC,
305,719 features and 779,268 projections are extracted and used as input to BA.
In the College dataset, 468, 5616 × 3744 images captured by a Canon camera
are available. For this dataset, 1,236,502 features and 3,107,524 projections are
obtained after processing with SIFT and RANSAC.

In order to make a fair comparison, the same feature initialization method
as described in Section 6.1 is used. The initial MSE, final MSE, number of
iterations, number of linear equation solving, time per iteration and total time
are listed in Table 5 and Table 6. Moreover, in Figure 14(a) and Figure 15(a),
the changes of MSE in each iteration are depicted. Figure 14(b) and Figure 15(b)
show the results of ParallaxBA, where the blue points represent the estimated
3D features, and the triangular cones represent the camera centers.

In these results, the small difference seen in the initial MSE between g2o and
ParallaxBA is due to the use of a transformation from Euler angles to quater-
nion. The reason why the initial MSE of sSBA is different from that of g2o and
ParallaxBA in Table 6 is that two additional operations are performed in the
sSBA code. First, the original quaternion is changed in some scenarios. Second,
the reprojection errors of the points located at the back of the camera are set to
zero. If these operations are not performed in sSBA, then the initial MSE will
be the same as that of g2o, but the convergence will in general not be as good.
Section 6.2.5 provides a discussion on this issue. It should be noted here that
publicly available sSBA and g2o packages without any modifications are used in
all comparisons in Section 6.2.2–6.2.4.

For the Village dataset, identical values for final MSE are achieved by all
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Table 5: Aerial Photogrammetric Village Dataset

90 poses, 305,719 3D features, 779,268 projections. Time in Seconds.

g2o GN g2o LM sSBA ParallaxBA GN ParallaxBA LM
Initial MSE 28174.105559 28174.105559 28968.738359 28170.979450 28170.979450
Final MSE N/A 0.083716 0.083716 0.083716 0.083716
Iteration N/A 34 8 6 11
Solve N/A 55 8 6 11
Time/Iter N/A N/A N/A 0.67(Windows) 0.67(Windows)

N/A 0.62(Linux) 0.56(Linux) 0.96(Linux) 0.96(Linux)
Total Time N/A N/A N/A 5.07(Windows) 7.92(Windows)

N/A 27.46(Linux) 4.54(Linux) 6.98(Linux) 12.23(Linux)

(a) MSE curve of each iteration

(b) Estimated 3D features (blue points) and camera centers (triangular cones) by Paral-
laxBA (3D view and top view)

Figure 14: Result of aerial photogrammetric Village dataset.
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Table 6: Aerial Photogrammetric College Dataset

468 poses, 1,236,502 3D features, 3,107,524 projections. Time in Seconds.

g2o GN g2o LM sSBA ParallaxBA GN ParallaxBA LM
Initial MSE 202329.445139 202329.445139 201046.610863 202329.447636 202329.447636
Final MSE N/A 25.723307 9.272481 0.734738 0.734738
Iteration N/A 200 200 12 17
Solve N/A 349 228 12 17
Time/Iter N/A N/A N/A 2.71(Windows) 2.71(Windows)

N/A 2.51(Linux) 2.72(Linux) 3.85(Linux) 3.85(Linux)
Total Time N/A N/A N/A 37.14(Windows) 49.68(Windows)

N/A 674.83(Linux) 453.22(Linux) 51.55(Linux) 69.58(Linux)

(a) MSE curve of each iteration

(b) Estimated 3D features (blue points) and camera centers (triangular cones) by Paral-
laxBA (3D view and top view)

Figure 15: Result of aerial photogrammetric College dataset.
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Table 7: New College Dataset

3,500 poses, 449,096 3D features, 2,124,449 projections. Time in Seconds.

g2o GN g2o LM sSBA ParallaxBA GN ParallaxBA LM
Initial MSE 23.354248 23.354248 7.295188 23.354933 23.354933
Final MSE N/A 0.986684 0.981471 0.979580 0.979580
Iteration N/A 200 200 13 33
Solve N/A 313 219 13 33
Time/Iter N/A N/A N/A 5.35(Windows) 5.35(Windows)

N/A 4.12(Linux) 8.55(Linux) 7.60(Linux) 7.60(Linux)
Total Time N/A N/A N/A 77.52(Windows) 183.25(Windows)

N/A 3262.52(Linux) 1972.35(Linux) 108.39(Linux) 255.17(Linux)

(a) MSE curve of each iteration (last 8 iterations in subfigures)

(b) Estimated 3D features (blue points) and camera centers (yellow line) by Paral-
laxBA

Figure 16: Result of New College dataset (as monocular vision).
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Table 8: Venice Dataset

871 poses, 530,304 3D features, 2,838,740 projections. Time in Seconds.

g2o GN g2o LM sSBA ParallaxBA GN ParallaxBA LM
Initial MSE 560.605910 560.605910 559.752359 560.817183 560.817183
Final MSE N/A 7.309453 7.307526 N/A 7.307519
Iteration N/A 200 200 N/A 43
Solve N/A 300 219 N/A 74
Time/Iter N/A N/A N/A N/A 9.69(Windows)

N/A 7.72(Linux) 18.75(Linux) N/A 12.45(Linux)
Total Time N/A N/A N/A N/A 666.83(Windows)

N/A 2191.27(Linux) 4367.73(Linux) N/A 783.23(Linux)

(a) MSE curve of each iteration (last 8 iterations in subfigures)

(b) Estimated 3D features (blue points) and camera centers (triangular cones) by Paral-
laxBA

Figure 17: Result of Venice dataset.
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four algorithms. However, sSBA and ParallaxBA with GN or LM require fewer
iterations than g2o. For the College dataset, ParallaxBA with GN and LM can
converge to MSE of 0.734738 within 12 and 17 iterations respectively, while g2o
reaches MSE 25.723307, and sSBA reaches MSE 9.272481 after the maximum
200 iterations.

6.2.3 New College Dataset

The New College dataset provided with g2o on OpenSLAM is used for another
comparison. As the original New College dataset is in stereo, all the observations
from the right camera as well as all the features that are observed only once are
deleted to obtain a monocular dataset. There are 3,500 camera poses, 449,096
features and 2,124,449 projections in this monocular dataset. The initial values
provided in the dataset are directly used in sSBA and g2o. Initial values of
camera poses and feature XYZ locations are used to compute the initial values
of the parallax angle feature parameters to make sure that different algorithms
start from the same initial guess. Detailed convergence information is shown in
Table 7. The MSE curves are shown in Figure 16(a). Figure 16(b) shows the
result of ParallaxBA.

The initial MSE of three algorithms are different due to the same reasons
explained in Section 6.2.2. It is seen that, ParallaxBA requires fewer iterations
as compared with g2o and sSBA with the final MSE being slightly smaller. The
reason why sSBA converges faster at the beginning is discussed in Section 6.2.5.

6.2.4 Venice Dataset

The Venice dataset provided with g2o on OpenSLAM is also used for a fur-
ther comparison. In this dataset, there are 871 camera poses, 530,304 features
and 2,838,740 projections. The same strategy used in the previous section was
used for initialization. Detailed convergence information is shown in Table 8.
The MSE curves are shown in Figure 17(a). Figure 17(b) shows the result of
ParallaxBA.

It was found that the GN algorithm fails to converge in ParallaxBA, probably
because of the poor initial value of camera poses and/or the outliers in the data.

6.2.5 A Discussion on the Use of Different BA Packages

Despite the authors’ best endeavours, different LM implementations and different
parameters used in the publicly available BA packages make it difficult to have
completely fair comparisons.

There are two sets of important parameters in the LM algorithm. One is
the initial damping parameter (λ in (12)), which affects the convergence speed
in LM; and the other is the set of thresholds, which decide when to stop the
iteration.

The performance of the algorithms may heavily depend on the initial damping
parameter (Kummerle et al. 2011), and thus the parameter τ to initialize the
damping parameter in g2o (10−8) and sSBA (10−6) are chosen such that they
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(a) g2o (τ = 10−8 is the best)

(b) sSBA (τ = 10−6 is the best)

Figure 18: The impact of the parameter τ , which initializes the damping factor,
on the convergence and final MSE with the Venice dataset.

provide the best performance. Impact of τ in these two algorithms is shown in
Figure 18.

The LM implementations in sSBA, g2o and ParallaxBA are all different, so
it is not feasible to use the same thresholds for convergence. Thus, in this paper,
the thresholds used in all the three BA packages are their defaults. ParallaxBA
uses the same LM algorithm as SBA, and the thresholds are also the defaults in
SBA. In LM algorithms for BA, there are, in general, four conditions to stop the
iteration: 1. the update of the state vector (∆k in (12)) is very small; 2. the
value of the objective function (10) does not change much; 3. the gradient of the
objective function is close to zero; and 4. the maximum number of iterations is
reached. ParallaxBA and SBA use identical implementations of LM where all
four conditions are used as the stopping criteria, while conditions 1 and 4 are
used in sSBA and conditions 2 and 4 are used in g2o. Condition 4 is to avoid
the algorithm iterating forever, while the results obtained by this criterion may
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not be a minimum. In addition, the maximum number of iterations is difficult to
specify without the prior knowledge of the convergence information. It was set
to 200 for all the results reported in this paper. Thus, the most reasonable stop
conditions are 1-3. It should be mentioned that a large damping factor λ in LM
will make both ∆k and the change of the objective function close to zero. Thus,
if the thresholds for conditions 1 and 2 are not small enough, LM can easily
stop before convergence with poor quality results (for example, g2o will stop at
MSE around 20 for Venice dataset if the thresholds are not small enough, see
Figure 17(a)). This happens very often in BA and that is why the defaults of
these thresholds are all set to be very small in SBA, g2o and sSBA (e.g. in SBA,
10−12 for condition 1 and 0 for condition 2). For a well-conditioned nonlinear
least squares problem, when the algorithm converges, either condition 1, 2 or 3
will be satisfied because if a minimum of the objective function is reached, the
gradient should be zero, and both the state vector and the objective function
will not change anymore. However in an ill-conditioned problem, conditions 1-3
will be very hard to reach since both the state vector and the objective function
will keep changing, and LM is often stopped by reaching the maximum iteration
number, as shown in the experiments for BA with XYZ and inverse depth in this
paper. To avoid the ill-conditioned systems in BA is one of the motivations of
this paper (Section 1).

In the four evaluations with large-scale datasets, ParallaxBA outperforms
g2o in most of the scenarios in terms of efficiency and accuracy. sSBA converges
more rapidly in certain situations because in its implementation, the reprojection
error of features located at the back of the camera is set as zero in each iteration
in sSBA, while this is not the case in g2o and ParallaxBA. This special imple-
mentation is somewhat similar to the iterative re-weighted least squares used
in the robust kernel methods (Zhang 1997). When the special implementation
is removed, the convergence of sSBA is not as good as that of ParallaxBA for
both New College and Venice datasets, as shown in Figure 19. Even with this
special implementation, sSBA performance is inferior to that of ParallaxBA in
some datasets (Figure 1 and Figure 15(a)). Also, as the objective function has
been changed in sSBA, it is not reasonable to directly compare the timing and
MSE of ParallaxBA/g2o with that of sSBA. In four out of the five experimental
datasets, a number of image points are ignored in the calculation of the final
MSE in sSBA (280 image points (Malaga), 0 (Village), 86 (College), 438 (New
College), and 223 (Venice), respectively).

Based on the experimental results of using the four large-scale datasets, it is
observed that: (1) The time per iteration in ParallaxBA is comparable to that
of sSBA (out of four datasets, two are shorter, one is almost the same, one is
longer). The time per iteration in ParallaxBA is slightly longer than that of g2o;
(2) ParallaxBA always achieves the smallest MSE; and (3) Fewer iterations are
needed in ParallaxBA. The last two points are due to the fact that ParallaxBA
avoids the singularity of the information matrix and the “long flat valley” of the
objective function caused by features, which occurs in the other BA packages.
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(a) Results of New College dataset

(b) Results of Venice dataset

Figure 19: The convergence of sSBA, ParallaxBA, and sSBA without ignoring
the reprojection error of features located at the back of the camera (sSBA 2).
The subfigure shows the last 8 iterations.

6.3 Summary of the Simulation and Experimental Re-

sults

In summary, the simulation and experimental results confirm that:
(i) The far away features can result in a singular information matrix in BA

when used with XYZ parametrization. The features in the direction of camera
motion can cause singularity of the information matrix for both BA using XYZ
and BA using inverse depth. These make it impossible to apply GN if such
problematic features are present. When LM is applied, the singularity can be
controlled to some extent due to the introduce of a damping factor (12). However,
such features can cause the LM algorithm to converge very slowly due to the
“long flat valley” of the objective function and might be trapped into such a
“local minimum” (a point in the “long flat valley”).
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(ii) Parallax angle feature parametrization does not have issues for such fea-
tures, and thus can avoid this kind of singularity. This makes it possible for
GN to converge sometimes (still no guarantee, depending on the initial value,
data quality, etc.). In general, ParallaxBA can converge more quickly (and with
smaller MSE) as compared with BA using XYZ or inverse depth parametrization.

In theory, it may be possible to first identify the problematic features (for
XYZ and inverse depth parametrizations) and then remove them before per-
forming BA. However, in practice, the ground truth of the camera poses and
the feature positions are not available, and thus it is not clear which feature
may cause a problem. Since BA requires iterations and the state vector keeps
changing and there are many features, whenever the values of one feature and
its corresponding camera poses in one particular iteration satisfy the singularity
condition, the convergence of the algorithm may become an issue. Thus, it is
the best to avoid the singularity through feature parametrization such as using
parallax angle.

7 Conclusion

This paper proposed ParallaxBA – a new bundle adjustment algorithm based
on a novel feature parametrization that uses parallax angle as the key parame-
ter for representing the three-dimensional location of the environment structure.
The new representation is close to the measurement space and does not explic-
itly contain scale information. Rigorous analysis is presented as to why this
parametrization is superior to existing feature parametrizations in BA.

Simulation and large-scale experimental results demonstrated that, in most
cases, the proposed ParallaxBA has better accuracy, efficiency and convergence
properties in comparison to the state-of-art BA packages, namely SBA, sSBA
and g2o. The main reason is that the singularity caused by the existence of
near zero parallax features in the existing BA algorithms can be avoided in
ParallaxBA, resulting in fewer iterations for convergence and smaller final values
for the objective function. Thus, the proposed ParallaxBA algorithm can be
expected to be more likely to produce an acceptable result when used in practice.
The source code of ParallaxBA is made available to the research community on
OpenSLAM.

The current implementation of ParallaxBA is efficient for reasonably large
datasets. For larger datasets, map joining ideas (e.g. (Ni et al. 2007)(Pinies and
Tardos 2008)(Zhao et al. 2011)) can be used to further reduce the computational
cost. As shown in this paper, the proposed ParallaxBA can converge with only
Gauss-Newton iterations for some datasets. But for some other datasets, the
Levenberg-Marquardt algorithm is required. Since BA is a very high dimen-
sional nonlinear optimization problem, all methods available for BA, including
the method proposed in this paper, cannot guarantee convergence to the true
minimum under all conditions. The initial guess plays an important role in BA
and requires further investigation. This paper has focused on the parametrization
of features. It will be interesting to investigate the impact of the parametriza-
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Figure 20: Computation of vector from different pose to feature.

tion of poses. Also, the robustness of ParallaxBA with respect to outliers (e.g.
M-estimators (Zhang 1997)) requires further analysis and evaluations.

Interesting problems also include the analysis of the number of local minima
(Huang et al. 2012) present in ParallaxBA and the estimate of the basin of
attraction of the global minimum in ParallaxBA. Furthermore, the extension of
ParallaxBA for stereo images, handling images taken by uncalibrated cameras
(Agarwal et al. 2010), and robust parametrization for line features (Eade and
Drummond 2009)(Zhao et al. 2014) are also very interesting avenues for future
research.

A Observation Function for Bundle Adjustment

This appendix describes the derivation of x̃i
j ((8) in Section 4), when the current

projective camera center ti is not the main anchor tm of feature Fj.
First, the sine law is used to compute the depth of feature Fj from the main

anchor tm and then the vector from ti to feature Fj is computed (Figure 20).

A.1 Computation of ϕj

The vector from the main anchor tm to the associate anchor ta can be computed
as the relative translation ta − tm. Thus, the angle from the vector ta − tm to
the vector xm

j can be computed from the dot product between the two vectors
ta − tm and xm

j by using (9) in Section 4.

A.2 Computation of dj

The depth dj of feature Fj from the main anchor tm can be computed by using
the sine law in the triangle bounded by tm, ta and Fj

dj =
sin(ωj + ϕj)

sinωj

‖ta − tm‖. (48)
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A.3 Computation of the Vector from ti to Feature Fj

The vector from ti to feature Fj can be computed using

xi
j = djx

m
j − (ti − tm). (49)

The vector xi
j computed by (49) can be directly used in the projective func-

tion. To avoid numerical errors caused by sinωj in the denominator in dj (48),
and because different lengths of vector from pose to feature will not change the
projective values of the feature in the images, the vector xi

j is multiplied by
sinωj. From (48) and (49),

x̃i
j = sinωj x

i
j = sin(ωj + ϕj) ‖ta − tm‖x

m
j − sinωj (ti − tm). (50)

This is (8) in Section 4.
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