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Abstract
In this work, we present a sampling-based approach to tra-
jectory classification which enables automated high-level
reasoning about topological classes of trajectories. Our
approach is applicable to general configuration spaces and
relies only on the availability of collision free samples.
Unlike previous sampling-based approaches in robotics
which use graphs to capture information about the path-
connectedness of a configuration space, we construct a mul-
tiscale approximation of neighborhoods of the collision free
configurations based on filtrations of simplicial complexes.
Our approach thereby extracts additional homological infor-
mation which is essential for a topological trajectory classifi-
cation. We propose a multiscale classification algorithm for
trajectories in configuration spaces of arbitrary dimension
and for sets of trajectories starting and ending in two fixed
points. Using a cone construction, we then generalize this
approach to classify sets of trajectories even when trajectory
start and end points are allowed to vary in path-connected
subsets. We furthermore show how an augmented filtration
of simplicial complexes based on an arbitrary function on
the configuration space, such as a costmap, can be defined to
incorporate additional constraints. We present an evaluation
of our approach in 2, 3, 4 and 6 dimensional configuration
spaces in simulation and in real-world experiments using a
Baxter robot and motion capture data1.

∗Centre for Autonomous Systems, CAS/CVAP,
KTH Royal Institute of Technology, Sweden,
fpokorny@kth.se
† IPAB, School of Informatics, University of Edinburgh, UK
1 Parts of this work were presented in (Pokorny et al., 2014) at Robotics:

Science and Systems 2014. This work contains an extended discussion,
theory section and experimental evaluation.

1. Introduction

For robots to autonomously operate in a wide variety of
environments, we require algorithms and data structures that
enable such systems to reason rigorously about the collision-
free subset Cf of their configuration space. Furthermore, it is
desirable for such systems to be able to classify continuous
trajectories in their configuration space in order to reason
about the space of possible motions.

In the case whereCf is explicitly describable in a noise-free
manner in terms of semi-algebraic functions, analytic meth-
ods (Canny, 1988; Latombe, 1991; Schwartz and Sharir,
1983) provide an elegant classical avenue to studying Cf .
With the increase in computational resources and the avail-
ability of large data sets, the data-driven paradigm has
more recently provided an alternative to analytical meth-
ods; providing a more powerful and usable solution in many
scenarios where analytic models are either infeasible or com-
putationally too expensive to obtain. An example of this
approach is the use of Gaussian Mixture Models in the
Programming by Demonstration framework (Billard et al.,
2008), where trajectories are modelled as integral curves
of vector fields obtained from a trained Gaussian Mixture
Model. Similarly, in motion planning, an explicit description
of Cf ⊂ Rd is often not available and popular algorithms
such as Rapidly-exploring Random Trees (RRT) and Prob-
abilistic Roadmaps (PRM), (Kavraki et al., 1996; LaValle,
2006; LaValle and Kuffner, 2001), are based on the idea of
utilizing a set of random samples X ⊂ Cf to construct a
graph Γ with vertices in Cf and where edges correspond to
local paths which can be determined by a local path plan-
ner. The graph Γ can then be used to efficiently carry out
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motion planning. When Cf is a tame space, Γ, for sufficiently
large X , provides an approximation of Cf which allows us
to answer basic questions about the path-connectivity of Cf .

We observe that both, a large class of current probabilistic
approaches such as Gaussian Mixture Models and Gaussian
Processes (Deisenroth et al., 2013; Rasmussen and Williams,
2006), as well as graph-based approaches in motion planning
are currently not able to make use of homological informa-

tion about Cf . In particular, these methods are not able to
detect whether trajectories are homotopy inequivalent – i.e.

pairs of trajectories that cannot be continuously deformed
into each other. The reason for this is that, besides approx-
imating the path-connectedness of Cf , unaugmented RRT
and PRM graphs do not store information about higher order
topological information contained in higher homology and
homotopy groups and, similarly, probabilistic methods have
so far not incorporated such information.

In this paper, we use filtrations F = {Fr : r > 0} of
simplicial complexes defined in terms of random samples
X ⊂ Cf as a key technique for representing configura-
tion spaces in practical robotics applications. Such filtrations
are common in topological data analysis (Carlsson, 2009),
but have to the best of our knowledge not been utilized to
model multi-joint robot configuration spaces prior to our
work (Pokorny et al., 2014). We in particular propose a novel
approach to trajectory classification based on filtrations of
simplicial complexes defined in terms of random samples
X ⊂ Cf . From such filtrations, we then extract higher-order
topological information for the purpose of understanding
and classifying equivalence classes of trajectories in Cf .
Given a sufficiently good approximation of Cf by Fr, our
approach yields a finite set of equivalence classes of tra-
jectories with the property that no trajectory belonging to

one equivalence class can be continuously deformed to any

trajectory in any of the other equivalence classes. Note
that there is a subtle difference to an exact classification
by homotopy classes in the statement above. Our classi-
fication is coarser in the following precise sense: we use
the first homology group for classification, which yields a
weaker classification than a classification by the first homo-
topy group. In particular, there exist cases where two tra-
jectories which are considered equivalent in homology are
not homotopy equivalent, but two trajectories in different
homology classes will always be homotopy inequivalent.

The main benefit of working with homology is that homol-
ogy groups are purely linear algebraic objects that can be
computed efficiently while homotopy groups are generally
complicated noncommutative groups. Our filtration F is
based on Delaunay-Čech complexes which depend on a
scale parameter r and which have recently been proven
by Bauer and Edelsbrunner (2014) to provide a homotopy-
equivalent reconstruction of the space Xr =

⋃
x∈X Br(x),

where Br(x) = {y ∈ Rd : ‖x− y‖ 6 r}. Our work utilizes
persistent homology as described in Carlsson (2009); Edels-
brunner and Harer (2008, 2010) which generalizes classical
homology groups to a multiscale setting – meaning that we
are able to compute topological information about the ana-
logue Fr of Γ for all scales r > 0 simultaneously without
having to choose a particular scale upfront.

Additionally, the 1-skeleton F1
r ⊆ Fr is a graph which

can be used for path-planning. To summarize, our main
contributions are the following:

• We introduce and evaluate the use of filtrations of simpli-

cial complexes as well as persistent homology for mod-
elling robot configuration spaces and sampled trajectory
data arising in robotics.

• We propose an algorithm based on persistent homology
to classify trajectories with fixed start and end points
topologically. We then show how, using a cone construc-
tion, our approach can classify trajectories whose start
and end-points lie in connected sets S, T respectively.

• We show how to use our approach when a general filtra-
tion function is considered, and we provide an example
of filtrations arising from a cost-function.

• We provide an experimental evaluation of our approach
in configuration spaces of dimension 2, 3, 4 and 6
using Delaunay-Čech complexes both in simulation, with
motion capture data of a human-robot interaction, and
with trajectories recorded using a Baxter robot.

The paper is structured as follows: In Sec. 2 we discuss the
motivation of our approach and the differences and sim-
ilarities with prior works. Sec. 3 reviews the theoretical
background on persistent homology and filtrations. We dis-
cuss our approach to trajectory classification in Sec. 4 and
present an experimental evaluation in Sec. 5. Finally, we
conclude with Sec. 6 and discuss future work.
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Fig. 1. We display a rectangular configuration space C of side-length 500 and with two obstacles (in black). Several trajectories are
depicted in red and blue. The gray area displays an approximation of Cf by a Delaunay-Čech complex DCr(X) from 10000 samples
X ⊂ Cf and with filtration value r = 11.07 (left and middle figure) and r = 73.76 (right figure). All of our figures are best viewed in
color.

2. Motivation and Related Work

For a robot to reason efficiently about trajectories within its
own free configuration space Cf , or about the motions of
other human or robot agents in its environment, a suitable
partitioning of continuously varying families of trajectories
into a discrete set of equivalence classes is desirable.

Clustering trajectories is difficult in general since trajec-
tories can have varying length and are not immediately
representable as vectors in a vector space of fixed dimension
as required by commonly used algorithms such as support
vector machines (Cristianini and Shawe-Taylor, 2000).

Several approaches to the classification of trajectories, as
reviewed in (Zheng and Zhou, 2011), are based on various
approaches to measuring the dissimilarity between trajec-
tories, such as the Hausdorff distance, edit distances and
dynamic time warping. For the purpose of activity analysis,
the work of Morris and Trivedi (2009) reviews trajectory
clustering approaches based on various clustering algo-
rithms and distance measures. These methods for clustering
are related to other approaches for simplifying trajectories
by taking into account topological attributes. For instance,
Katsikouli et al. (2014) present an approach to eliminate spu-
rious features in trajectories, such as GPS traces of human
mobility data, in order to reduce the burden on further
analysis.

In robotics, the knowledge of classes of trajectories is ben-
eficial for example in the programming by demonstration
framework (Billard et al., 2008) where movement primitives
of a robot’s behavior are constructed from initial trajectory
demonstrations provided by a human teacher. Equivalence

classes of robot trajectories can furthermore be useful in
order to reason about alternative trajectories when a subset
of trajectories becomes invalid due to changing environment
conditions. The recent work of Knepper et al. (2012) has
demonstrated the usefulness of trajectory classes of local
paths to improve the efficiency of a motion planning algo-
rithm in particular. Another reason to adopt an approach
such as ours is the need to reason about task level attributes
of robot motion, abstracting over, e.g., the variability implicit
in the many ways a robot could traverse between two regions
in the configuration space. In Sisbot and Alami (2012), com-
plex human-robot manipulation tasks are made tractable by
reasoning at the level of object hand-over points and task
segments, for example. Our experiments, in section 5, illus-
trate how our classification procedure can be used to extract
such qualitative movement primitives.

Purely topological approaches to the analysis of trajec-
tories in Cf focus on notions of equivalence which do not
depend on a metric. There, two pathsα, β : [0, 1]→ Cf with
α(0) = β(0), α(1) = β(1) are called homotopy equivalent
if α can continuously be deformed to β in Cf while keeping
the end-points fixed. We use Fig. 1 as a running example for
illustration. Note that all figures in this paper are best viewed
in color. For now, consider Cf as being approximated by the
gray region, while the black regions correspond to obsta-
cles. Several trajectories with identical start and end-points
are depicted in red and blue. The blue trajectory in the left-
most figure is homotopy equivalent to the red trajectory,
while the trajectories in the middle figure are not homotopy
equivalent. Note that, while trajectories can have identical
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distance inR2 under e.g. the Hausdorff distance, they may or
may not be homotopy equivalent. When the lower obstacle
is removed in the right figure, the red and blue paths from
the middle figure become homotopy equivalent, for example.
While homotopies between selected trajectories can in some
cases be constructed explicitly, for example using a curve
shortening algorithm (Chou and Zhu, 2001), this approach
can fail in several cases. Firstly, an explicit homotopy con-
struction, can only establish the existence of a homotopy in
some cases, but may fail, for example when there exist just a
single but multiple geodesics between two points. Further-
more, numerical stability and resolution pose challenging
problems for such methods, and the failure to construct a
homotopy between two curves does not imply homotopy
inequivalence. Our approach instead does allow us to prove

the homotopy inequivalence of trajectories when the under-
lying configuration space is sufficiently well approximated
by a simplicial complex.

Topological concepts such as retractions and cell decom-
positions have played a key role in classical approaches to
motion planning (Latombe, 1991). There, Cf is typically
assumed to have a known algebraic or semi-algebraic struc-
ture. The visibility graph in 2D and retraction-based methods
rely on constructing a graph using which motion planning is
performed. The general roadmap method of Canny (1988)
uses ideas closely related to Morse theory and projections
to lower-dimensional spaces to obtain a complete motion
planner for semi-algebraic sets. Similarly, the seminal work
of Schwartz and Sharir (1983) proceeds by constructing an
exact cell decomposition by means of a cylindrical alge-
braic decomposition of Cf . This is related to our approach
since our simplicial complexes form a particular type of
approximate cell decomposition. In Schwartz and Sharir
(1983), homology groups of Cf are computed by an exact
cell decomposition Z and the general path planning prob-
lem is solved using Z . These classical works have to the
best of our knowledge however not considered the use of
the first homology group of Cf for trajectory classification,
and the focus has been on motion planning and not classifi-
cation. An important difference to our work is the fact that
we only assume the knowledge of potentially noisy point-

samples from Cf using which we build a simplicial complex

filtration rather than assuming a known description of Cf
as a (semi-)algebraic set. Furthermore, our approach allows

us to study the homotopy equivalence of paths within the
neighborhood Xr of a set of samples X ⊂ Cf more gen-
erally, e.g. when Xr does not yield a reconstruction of the
full space Cf . In a more recent related work, Zhang et al.
(2007) construct an approximate cell decomposition using a
recursively refined decomposition of Cf into hypercubes to
ensure a sufficiently fine reconstruction ofCf . However, only
the path-connectivity of this decomposition is then used for
motion planning and homological properties are not further
investigated.

Our work is also related to sampling-based algorithms con-
structing a graph Γ from X to answer questions about the
path-connectivity of Cf . RRTs and PRMs (Kavraki et al.,
1996; LaValle, 2006; LaValle and Kuffner, 2001), in partic-
ular, are examples of these which have attracted unabated
interest since their invention (Karaman and Frazzoli, 2011;
Lindemann and LaValle, 2005; Masehian and Sedighizadeh,
2007). The graph Γ can be thought of as an approxima-
tion of Cf from X . The filtrations of simplicial complexes
used in our work extend the concept of a graph to a multi-
scale approach which can recover more detailed information
about Cf . Such filtrations depending on a scale parame-
ter r have been used in topological data analysis (TDA)
(Carlsson, 2009; Edelsbrunner and Harer, 2008, 2010) to
study the persistent homology groups which we use here
and which capture information about the topology of data
at all scales simultaneously. The origins of practical multi-
scale simplicial complex filtrations trace back to early work
by Edelsbrunner (1992); Edelsbrunner and Mücke (1994) on
alpha-shapes and the introduction of persistence in (Edels-
brunner et al., 2002). In the field of sensor networks, persis-
tence has also been utilized to solve multi-sensor coverage
problems (de Silva and Ghrist, 2006, 2007). In machine
learning, persistent homology has been investigated as a tool
for topology aware kernel density estimation, topological
feature extraction and inference (Chazal et al., 2013; Fasy
et al., 2013; Pokorny et al., 2012).

One of the advantages of the knowledge of homotopy
classes is that a motion planning algorithm can utilize effi-
cient replanning within each such class (Brock and Khatib,
2000). Since local variational or gradient based methods can
continuously deform trajectories towards local optimality
only within the homotopy class of an initial trajectory, it is
advantageous to maintain a set of homotopy inequivalent
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trajectories each of which can then be optimized using these
methods. Topological information about path classes hence
allows us to incorporate non-trivial global information with
these local methods.

Recent approaches which attempt to obtain equivalence
classes of paths include the works of Jaillet and Siméon
(2008a,b) on path deformation roadmaps where a graph-
based representation to plan in the space of paths up to
a class of continuous deformations is proposed. Recently,
researchers have in particular investigated homotopy classes
of trajectories in explicitly described spaces. Using the
residue theorem of complex analysis (Bhattacharya et al.,
2010) studied an application of homology classes to motion
planning in 2D in the case where the obstacles in C can be
contracted into representative and explicitly defined points.
In Bhattacharya et al. (2011), this was extended using elec-
tromagnetism theory and Ampère’s law to the case of 3D.
There, obstacles were assumed to be contracted into skele-
tons and then modeled as current-carrying wires. Similarly
to our work, the authors argue that homological infor-
mation is useful and computationally favorable to more
general homotopy invariants in robotics. In Bhattacharya
et al. (2012), a generalization to arbitrary dimension is pro-
posed and an integration of differential 1-forms over cycles
is shown to be sufficient to determine topological classes
using the language of de Rham cohomology theory. In Kim
et al. (2012), motion planning in 2D with homology con-
straints is formulated as a mixed-integer quadratic program
by endowing path segments with binary labels that identify
their relation to the domain obstacles. A problem the above
recent approaches suffer from is that they require an explicit

description of the obstacles in the configuration space, e.g.
in 2D as a union of shapes each of which is contractible
to a geometrically specified point p ∈ C − Cf . In many
cases, such information is however not easily available for
real robotic systems or too expensive to compute. We instead
propose a data-driven, sampling-based approach to building
a representation of Cf from which topological information
about trajectories can be extracted.

Prior work such as Jaillet et al. (2010) addresses path plan-
ning under the consideration of a cost function defined over
the configuration space. In such work, a user-given cost func-
tion is defined over the configuration space as an additional
input to the standard path-planning problem. Cost functions

can take into account many different aspects such as safety
distances and visibility (Mainprice et al., 2011) in particu-
lar. We show how our trajectory classification method can
be applied within this general costmap-based problem for-
mulation, so as to obtain solution classes dependent both on
the topology of the configuration space and the cost function
defined over it. A related line of work involves characterising
environmental uncertainty probabilistically and then pos-
ing sampling-based motion planning in terms of paths that
exceed a specified probability threshold in terms of robust-
ness, e.g. Aoude et al. (2013) and Luders et al. (2010). Our
formulation of trajectory classification is also related to this
approach since the sub or super-levelsets of a probability
density function can be used with our approach.

3. Theoretical Background

Our work builds on techniques from the field of algebraic
topology (Hatcher, 2002; Munkres, 1984) which studies the
properties of topological spaces by constructing algebraic
objects, such as the homology groups which we will discuss
shortly. Special cases of topological spaces are, for example,
smooth manifolds, arbitrary subsets of a vector space as well
as arbitrary metric spaces. Crucially, topological properties
are independent of metric information. In mathematics, alge-
braic topology has played a key role in the classification
smooth manifolds. Homology groups in particular are homo-
topy invariants, meaning that homology groups do not vary
under continuous deformations, called homotopies, of the
topological space under consideration. A popular example
of two spaces that are homotopy equivalent are a torus and
a tea-cup which, when imagined as consisting of a rubber-
like material can be stretched and bent (without tearing) to
deform into one another. The homology groups of these two
spaces are identical and measure in particular the fact that
there exists a single ’hole/tunnel’ in both spaces and that
each space is connected.

In this work, we will not provide a full introduction to
algebraic topology, since this is not within the scope of the
current paper, but we will try to define and discuss some of
the key concepts – focussing mainly on providing those read-
ers with a robotics background that might be unfamiliar with
the subject with an intuition for these techniques, as well as
providing sufficient detail for the readers to implement the
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methods proposed here. For general persistent homology,
the works of Carlsson (2009) and Edelsbrunner and Harer
(2008, 2010) provide an excellent introduction, while a com-
prehensive discussion of algebraic topology is provided in
(Hatcher, 2002; Munkres, 1984).

3.1. Simplicial Complexes

A key notion in computational algebraic topology is that
of a simplicial complex which is used to model a large
class of topological spaces of interest. We recall several
basic definitions (see Edelsbrunner and Harer (2010)): k+1

points v0, . . . , vk ⊂ Rd are called affinely independent if
the vectors v1− v0, . . . , vk− v0 are linearly independent. A
k-simplex σ ⊂ Rd is a convex hull of k + 1 affinely inde-
pendent points v0, . . . , vk ∈ Rd, σ = Conv(v0, . . . , vk)

and we also denote σ by [v0, . . . , vk]. A face τ of a simplex
σ = [v0, . . . , vk] is a convex hull of a non-empty subset of
{v0, . . . , vk} and we denote this relationship by τ 6 σ. Note
that 2-simplices hence correspond to triangles, 1-simplices
to finite line segments, and 0-simplices to points in Rd.
Using unions of such simplices, we can construct interest-
ing topological spaces by means of a simplicial complex: A
simplicial complex is a finite collection of simplicesK such
that σ ∈ K and τ 6 σ implies τ ∈ K, and σ, σ′ ∈ K implies
σ ∩σ′ is either empty of a face of both σ and σ′. A subcom-

plex L ⊂ K of a simplicial complex K is a subset L of the
simplices of K such that L is itself a simplicial complex.

One of the aims of this work, besides our trajectory classi-
fication algorithm, is the development and use of simplicial

complexes as a key data-structure in robotics, in particu-
lar as a powerful mechanism to accurately represent robot

configuration spaces.

In the top left part of Fig. 2, we illustrate an example of
a very simple simplicial complex in R2 consisting of six 2-
simplices (shaded triangles), fifteen 1-simplices (edges) and
nine 0-simplices (the vertices). Note that simplicial com-
plexes are natural generalizations of graphs (which only
contain 0 and 1-simplices) as well as triangulations, both
of which are popular geometric data structures in robotics.
The union |K| of all simplices in a simplicial complexK is a
subset of Rd which yields a topological space whose prop-
erties can be studied using the concept of homology which
we discuss now.

Fig. 2. We depict an example simplicial complex K in the top left
figure. In the top right and bottom left figure, a 1-cycle c and c′ is
shown in blue respectively. The two 1-cycles are equivalent in the
first homology group H1(K) since their difference is given by the
shaded 2-boundary displayed in the bottom right figure.

3.2. Simplicial Homology

We consider simplicial homology over a field F for a sim-
plicial complex K. In general, non-field coefficients, such
as Z can be considered, but for the discussion of persistent
homology later, we shall require field coefficients. With field
coefficients, the homology groups which we shall define
shortly are simply F-vector spaces that carry topological
information. In our application, we will consider the binary
field F = Z2 = {0, 1}, in particular since Z2 coefficients
can be most efficiently implemented on a computer.

A p-chain c is a formal sum c =
∑k
i=1 λiσi of p-simplices

{σ1, . . . , σk} in K with λi ∈ F and Cp(K) denotes the
F-vector space of all p-chains. In the case of F = Z2, 1-
chains can simply be considered as finite sets of 1-simplices
(edges) and 2-chains are finite sets of 2-simplices (triangles),
in particular. For every p-simplex σ = [v0, . . . , vp] let ∂pσ
be the p − 1-chain formed by the formal sum of all p − 1

dimensional faces of σ as follows:

∂pσ =

p∑
i=0

(−1)i[v0, . . . , vi−1, v̂i, vi+1, . . . , vp],

where v̂i indicates that vi is omitted. In the case of F = Z2,
−1 = 1 and the sign in the above sum can be ignored and
the boundary of a 1-simplex consists of the two end-points,
while the boundary of a 2-simplex consists of the three
boundary edges. ∂p extends to a linear map ∂p : Cp(K) →
Cp−1(K). A chain c ∈ Cp(K) such that c = ∂p+1ω for
some ω ∈ Cp+1(K) is called a p-boundary, and we call
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c a p-cycle if ∂pc = 0. The set of p-boundaries and p-
cycles is denoted by Bp(K) and Zp(K) respectively and
Bp(K) ⊆ Zp(K) since ∂p∂p+1 = 0. The quotient vector
space Hp(K) = Zp(K)/Bp(K) is called the pth homology
group of K. We denote the equivalence class of a p-cycle c
in the quotient vector space Hp(K) by [c].

To illustrate these concepts, consider Fig. 2: The top right
figure displays a 1-cycle c over the field Z2 in blue. Closed
loops correspond to 1-cycles because the each vertex is
included an even number of times in a set of edges in the
cycle. The bottom left figure corresponds to another 1-cycle
c′. Observe that, when we add c+ c′ in the Z2-vector space
of 1-chains, we obtain the blue closed curve γ surrounding
the shaded area in the bottom right figure. This curve γ is in
fact a 1-boundary, since it arises as the boundary γ = ∂2ω of
the shaded collection of triangles ω which form a 2-chain.
Note that it is easy to see why the interior edges of these
triangles are not part of the boundary: they occur precisely
twice each and are hence zero modulo Z2. The boundary
operator hence exactly assigns the geometric boundary to
our 2-chain ω. The same also holds more generally for 2-
chains over a general field F, when the correct orientation is
taken into account (Hatcher, 2002).

With this intuition at hand, we finally observe that c −
c′ = γ = ∂ω, so that c and c′ differ only by a 1-boundary.
Hence, in homology [c] = [c′], while [γ] = 0 in homology
since it arises as the boundary of the shaded triangles. We
furthermore have [c] 6= 0 because there does not exist any
2-cycle ν such that c = ∂2ν. To summarize: two p-cycles
represent the same homology class if they differ by a p-
boundary, and a homology class [c] ∈ Hp(K) is non-trivial
precisely if c does not arise as the boundary of some p +

1-chain.
We denote bp(K) = dim(Hp(K)), which is called the

pth Betti number of K. In the example just considered, the
fact that there exists only a single enclosed tunnel/void in
|K| is measured by b1(K) = 1. Similarly, b0(K) is equal
to the number of connected components of K, so in our
example b0(K) = 1 and higher Betti numbers are zero.
These Betti numbers capture crucial topological information
about the space |K| which do not depend on the particular
simplicial representation of |K| that was chosen. Further-
more it is a remarkable fact and one of the key theorems
of algebraic topology that these homology groups capture

topological information which remains invariant under con-
tinuous deformations of |K| called homotopies (Hatcher,
2002).

3.3. Delaunay-Čech Complexes

In the preceding discussion, we assumed that a simplicial
complex K was provided to us. In this section we discuss
a particular family of simplicial complexes which can be
constructed from point-cloud data in Rd.

Consider a set of uniformly sampled points X =

{x1, . . . , xn} ⊂ Y from a subset Y ⊆ Rd. The r-
neighborhood Xr =

⋃n
i=1 Br(xi), where Br(xi) = {x ∈

Rd : ‖x − xi‖ 6 r} for r > 0, forms an interesting topo-
logical space. Unfortunately, Xr is not itself a simplicial
complex, but we can compute the homology ofXr by repre-
sentingXr by any simplicial complexKr which is homotopy
equivalent to Xr. A well-known simplicial complex which
has this property is the Alpha complex Ar(X) of Edels-
brunner (1992) which can be defined in arbitrary dimension
and is a sub-complex of the Delaunay triangulation ofX . In
this work, we shall instead use another recently studied sim-
plicial complex, called the Delaunay-Čech complex (Bauer
and Edelsbrunner, 2014) which is also a sub-complex of the
Delaunay triangulation.

To proceed, let us first generalize the notion of a simplex
and simplicial complex to that of an abstract simplex and
abstract simplicial complex: an abstract k-simplex σ is just
a set of k + 1 elements, and we call k the dimension of σ.
An abstract simplicial complex K is a finite non-empty set
of abstract simplices such that if σ ∈ K and ∅ 6= τ ⊆ σ ∈
K, then τ ∈ K. If τ ⊆ σ ∈ K, τ is called a face of σ
(Edelsbrunner and Harer, 2008).

The Čech complex Cr with parameter r > 0 is an exam-
ple of an abstract simplicial complex, defined by Cr(X) =

{σ ⊆ X : ∩x∈σBr(x) 6= ∅}. Note that Cr(X) has no
direct representation as a subset of Rd and hence does not
directly form a geometric simplicial complex as previously
considered.

Given X , we can instead consider the complex D(X) =

{σ ⊆ X : ∩x∈σVx 6= ∅} (the Delaunay triangulation of

X) where Vx denotes the Voronoi cell containing x. We
consider D(X) for points in X which are in general posi-
tion, which occurs with probability one and which can also
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Fig. 3. We illustrate a point-cloudX ⊂ [0, 1]2 ⊂ R2 (left figure) as well as the resulting Delaunay-Čech complexDCr(X) at filtration
parameter r = 0, r = 0.05, r = 0.076, r = 0.2 (from left to right). For each filtration parameter value r > 0,DCr(X) is topologically
equivalent (homotopy equivalent) to the union of balls Xr of radius r around the samples, which is depicted in blue. Using DCr(X)

we can hence compute the homology groups of Xr at all scales.

be enforced by a small perturbation of X . Note here that
D(X), as defined above, is a simplicial complex containing
0-simplices up to d-simplices in Rd.

The Delaunay-Čech complex DCr(X), for r > 0, is
the subcomplex of D(X) defined by DCr(X) = {σ ∈
D(X) : ∩x∈σBr(x) 6= ∅}. The recent work Bauer and
Edelsbrunner (2014) establishes that DCr(X) is homo-
topy equivalent toXr, so that topological information about
Xr can be extracted from DCr(X) directly. We define
f : D(X) → R by f(σ) = min{r : ∩x∈σBr(x) 6= ∅},
so that DCr(X) = f−1((−∞, r]) and DCr(X) changes
only at finitely many r1 < . . . < rm which can be com-
puted at all scales by determining f(σ) for each simplex
σ ∈ D(X). Every k-simplex σ = {v0, . . . , vk} ∈ DCr(X)

corresponds to the geometric simplex given by the convex
hull Conv(σ), so that 0-simplices are points, 1-simplices are
edges, and 2-simplices are triangles.

In Fig. 3, we illustrate a point-cloud X ⊂ R2 as well
as the associated DCr(X) for several parameters r > 0.
The previously discussed Fig. 1 also displayed a Delaunay-
Čech complex constructed from sampled points. Note that,
instead of DCr(X), we could also have considered the
Alpha complexes Ar(X) of Edelsbrunner (1995) since
Ar(X) is also homotopy equivalent to Xr and furthermore
Ar(X) ⊆ DCr(X), and for sufficiently large parameter
R the complex AR(X) and DCR(X) reach their maximal
size, and AR(X) = DCR(X) = D(X). Since DCr(X)

does not change for r > R, we shall use the notation
DCR(X) = DC∞(X). An advantage of DCr(X) over
Ar(X) in our application is that we can compute the fil-
tration values for the 2-skeleton of DCr(X), denoted by

DC2
r (X) and consisting only of simplices of DCr(X) up

to dimension 2, directly without having to first compute the
filtration values for the higher skeleta.

3.4. Filtrations

Consider a simplicial complexK and a function f : K → R
defined on the simplices of K. If f satisfies f(τ) 6 f(σ)

whenever τ 6 σ, then we observe thatKr = f−1((−∞, r])
is a simplicial complex and Kr ⊆ Kr′ whenever r 6 r′,
yielding a filtration of simplicial complexes with filtration

parameter r. In the previous section, DCr(X), for r > 0,
provides an example of such a filtration. Considering Fig. 3,
we observe that as r is increased, the topology of the union of
balls space Xr changes. Initially there exists one connected
component per data-point. These components then merge
as r increases and we can recover the fact that the point-
cloud ‘looks like there exists a hole in the middle’ in the
third and fourth figure, where the first homology group of
DCr(X) is one-dimensional. Persistent homology, which
we shall discuss now allows us to rigorously make statements
about which homological features exist at various filtration
parameters.

3.5. Persistent Homology

For a filtration of simplicial complexes, where f : K → R,
K is a finite simplicial complex, and Kr = f−1((−∞, r]),
we denote the finitely many filtration values at which Kr
changes by r1 < . . . < rm. The inclusion αji : Kri →
Krj , for i 6 j, induces a linear map hji : Hp(Kri) →
Hp(Krj ). We say that a homology class α ∈ Hp(Kri) is
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Fig. 4. The left figure displays the inessential intervals of the zeroth
persistence diagram for the point-cloud displayed in the left part of
Fig. 3. Each point is of the form (0, ri) and corresponds to a con-
nected component that merges with another component at filtration
value ri. Besides the displayed points, there exists an additional
essential point (0,∞) corresponding to the final connected com-
ponent persisting for all filtration values. Note in particular that, for
r > 0.07, only this essential component survives when the red per-
sistence interval (0, 0.07), marked in red, has died and DCr(X),
for r > 0.07 has only a single connected component corresponding
to (0,∞). The right figure displays the first persistence diagram.
Note how the fact that a single hole exists in the data corresponds to
a single persistence interval (0.076, 0.403), with large persistence
marked in red. Observe also how, in Fig. 3, at r = 0.076, the hole
is first enclosed by Xr and by simplices. Similarly, at 0.403 this
hole is filled for the first time.

born at ri if α /∈ im(hii−1). A class α ∈ Hp(Kri) born at
ri is said to die at rj if hj−1i (α) /∈ im(hj−1i−1 ), but hji (α) ∈
im(hji−1). The difference rj − ri is called the persistence

of α: it measures how long a homological feature survives
in the filtration. Classes born at ri which do not die are
associated to (ri,∞) and are called essential. The remaining
classes are called inessential. Similarly, if a cycle represents
an essential (inessential) class, we call the cycle essential
(inessential). For i 6 j, the p-th persistent homology group

is defined as Hi,j
p = Zp(Kri)/(Bp(Krj ) ∩Zp(Kri)). Non-

trivial elements of Hi,j
p correspond to equivalence classes

of p-cycles born at or before ri and which persist, i.e. do
not die in the filtration for r ∈ [ri, rj). For i = j, this
recovers the usual notion of homology Hi,i

p = Hp(Kri) =

Zp(Kri)/Bp(Kri). A graphical representation is obtained
by the p-th persistence diagram which associates (ri, rj) to
classes born at ri and dying at rj and (ri,∞) to essential
classes born at ri (with multiplicity). The number of points
in (−∞, ri] × (rj ,∞] equals dim(Hi,j

p ) and the vertical
distance of a point to the diagonal indicates how long the
feature persists (see Edelsbrunner and Harer (2008)).

0 50 100 150 200
0

50

100

150

200

Fig. 5. A reconstruction of Cf with two obstacles in black and from
1000 collision free samples (red points) on a square of side-length
500.DC25(X) is displayed in the top-left yielding a good approx-
imation to Cf . The first persistence diagram forDCr(X) is shown
in the top-right. The two marked red points p1 = (10.58, 74.0),
p2 = (12.97, 90.38) with large persistence correspond to the birth
and death filtration of the two holes in Cf . The bottom row displays
DC10.58(X), DC12.97(X) and DC74.0(X) which correspond to
the birth of the smaller and larger hole (the first time they are
enclosed by edges), and finally to the death filtration value of the
smaller hole (the hole is covered at r = 74.0).

In Fig. 4, we display the zeroth and first persistence dia-
gram corresponding to the point-cloud shown in Fig. 3,
allowing us to understand how the number of connected
components and holes in the point-cloud evolve over all fil-
tration values. The fact that a large hole exists in the middle
of this point-cloud is recovered by the existence of the single
large persistence interval in the first persistence diagram. In
Fig. 5, we display the first persistence diagram andDCr(X)

for DCr(X) arising from collision free samples in a sim-
ple configuration space with two obstacles shown in black.
Observe that the two obstacles correspond to the two red
points in the diagram which are far from the diagonal. The
remaining points correspond to holes which are due to noise
and which do not persist for a large filtration interval.

3.6. Computation via Matrix Reduction

To compute the persistence diagrams of a filtration Kr1 ⊂
Kr2 ⊂ . . . ⊂ Krm , it is convenient to refine the filtration
as follows: we pick an ordering σ1, . . . , σn of the simplices
of Krm such that, for all i ∈ {1, . . . , n}, Ki = ∪il=1σl is a
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simplicial complex and there exist indices 1 6 i1 < i2 <

. . . < im = n such that Kij = Krj . Such a simplexwise

filtration can be obtained by inserting simplices inKri before
simplices in Krj if i < j and by inserting the faces τ ⊂ σ

of any simplex σ before inserting σ itself (Edelsbrunner and
Harer, 2008).

Let K =
⋃n
i=1 σi be such a simplexwise filtration. The

boundary operator ∂ : ⊕dp=0Cp(K)→ ⊕dp=0Cp(K) is a lin-
ear map which we express in the ordered basis σ1, . . . , σn
yielding an n×nmatrixD with Z2 entries. For a matrixM ,
we denote byMj the jth column and byMij the (i, j)-entry.
Note that D is upper triangular and Dij = 1 if σi is a codi-
mension 1 face ofσj . We let low(Mj) = max{i : Mij 6= 0}
if Mj 6= 0 and low(Mj) is undefined otherwise. A left-to-
right column addition Mj ← Mj + Mi, i < j is called
reducing if it decreases low(Mj) andM is called reduced if
no reducing left-to-right column addition can be performed
on any of its columns. The standard persistence algorithm
Edelsbrunner and Harer (2010) applies left-to-right column
additions toD untilD is reduced, yielding a reduced matrix
R. Note that this reduction approach is very similar to
the standard Gaussian elimination algorithm, although per-
formed over Z2 and not including all reduction steps. The
algorithm can further be generalized to F coefficients for an
arbitrary field F.

We can keep track of the column additions by initializing
the algorithm with R = D, V = In, so that R = DV .
For each left-to-right column addition Rj ← Rj + Ri for
i < j, we perform the column addition Vj ← Vj + Vi.
This algorithm terminates when R is reduced and we have
R = DV , where V is the matrix relating R to its unre-
duced version D. One defines (Chen and Kerber, 2011)
P = {(i, j) : Rj 6= 0 and i = low(Rj)}, E = {i : Ri =

0 and low(Rj) 6= i for all j ∈ {1, . . . , n}}. Returning to
Kr = f−1((−∞, r]), each (i, j) ∈ P with dim(σi) = p

corresponds to (f(σi), f(σj)) in the p-th persistence dia-
gram and is generated by the p-cycle Rj which dies with
the introduction of the simplex σj . Similarly, each i ∈ E

with dim(σi) = p corresponds to (f(σi),∞) and the p-
cycle Vi which is still alive in the final filtrationKn = Krm .
Note that the cycles Vi, Rj do not correspond to canonical
choices, but the persistence diagrams determine the ranks of
all persistent homology groups.

3.7. H1(Y ) and Homotopy Classes of Trajectories

The final piece of background work we require is the connec-
tion between the first homology group and homotopy classes
of paths in a topological space Y . The obvious case to keep
in mind is Y = Cf ⊂ Rd. Recall that the first fundamental
group π1(Y, x0) (Edelsbrunner and Harer, 2010) is a well-
known group whose elements consist of equivalence classes
of closed continuous curves through x0 ∈ Y and lying
entirely in Y . Two closed paths α, β : [0, 1] → Y through
x0 lie in the same equivalence class if there exists a homo-
topy (i.e. a continuous deformation) between them which is
constant at the base-point x0. When Y is path-connected,
π1(Y, x0) is independent of the chosen base-point x0 and
hence often denoted simply by π1(Y ). Furthermore, if the
spaces Y, Y ′ are homotopy equivalent spaces, π1(Y ) and
π1(Y ′) are isomorphic as groups. Two paths γ1, γ2 inY with
the same start point x and end point y can be deformed into
each other via a homotopy if the closed curve γ following γ1
fromx to y and then γ2 from y tox is trivial inπ1(Y ). Hence,
π1(Y ) is a natural group to consider for the purpose of trajec-
tory classification. Unfortunately, to the best of our knowl-
edge, currently no sufficiently efficient method for general
configuration spaces exists to compute the group structure
of π1(Y ) (e.g. for large scale simplicial complexes), since
π1(Y ) can be complicated and non-commutative. To extract
topological information about homotopy classes, we can
turn to the first singular homology groupH1(Y ) with binary
Z2 = {0, 1} coefficients, yielding a vector space which can
be explicitly computed via simplicial homology when Y is
homotopy equivalent to a simplicial complexK. The closed
curve γ can be represented explicitly as a 1-cycle in a suffi-
ciently fine subdivision of K when a deformation retraction
from Y to K is computable, and γ then corresponds to a
vector [γ] in H1(Y ) ∼= H1(K). Finally, [γ] 6= 0 implies
that γ1 and γ2 are not homotopy equivalent, allowing us to
discern homotopy classes of continuous paths. Note how-
ever that homology is a weaker concept than homotopy,
so [γ] = 0 ∈ H1(Y ) does not imply that γ1 and γ2 are
homotopy equivalent. To gain somewhat more granularity,
one can further replace Z2 coefficients for example with Zp
coefficients for a large prime p. In this work we choose Z2

coefficients due to their computational advantages for large
simplicial complexes.
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4. Methodology

We consider a configuration space C ⊂ Rd and the set Cf ⊆
C of collision-free configurations. We do not assume that
we have an explicit description of Cf or C available, and we
would like to study homotopy classes of a set of trajectories
T = {γ1, . . . , γk} ⊂ Cf with a fixed starting point x ∈ Cf
and end point y ∈ Cf . In order to classify the trajectories,
we shall exploit the connection between homotopy classes
and the first homology group which we just discussed. We
now consider two multiscale settings:

1) X is a sufficiently dense sample We assume that X =

{x1, . . . , xn} ⊂ Cf yields a sufficiently dense sample, for
example sampled via rejection sampling from the uniform
distribution on C, or via a randomized exploration of the
configuration space. We can then ask about a likely approx-
imation of Cf from X . Our working hypothesis is that the
family of spaces {Xr =

⋃
x∈X Br(x) : r > 0} contain

good such estimates. If X was sampled uniformly and Cf
is a smooth compact submanifold M ⊂ Rd, this intuition
is in fact well-founded due to the reconstruction theorem of
Niyogi et al. (2008) which guarantees that, for a sufficiently
dense sample set,Xr deformation retracts to the manifoldM
for appropriately chosen r. Using the previously introduced
Delaunay-Čech complex and the fact thatDCr(X) is homo-
topy equivalent to Xr (Bauer and Edelsbrunner, 2014), we
will then compute homological information about Xr from
DCr(X). This approach is currently applicable mostly in
lower dimensions, since the ‘curse of dimensionality’ phe-
nomenon implies that an increasingly large sample set would
be required in higher dimensions to faithfully reconstruct Cf .

2) X ⊂ T Here, we assume only the availability of the
trajectories T . We then discretize each trajectory γi as a
piecewise linear curve and use the vertex positions of all the
piecewise linear segments in T as our sample set X . We
study the homotopy classes of these trajectories within the

topological spaces Xr which constitute an approximation
of the r-neighborhoods around T . This then allows us to
classify trajectories withinXr. In this framework, holes can
arise either due to obstacles in the configuration space (as in
the dense case), or due to the distribution of the trajectories in
Cf . We consider applications of this case in our experiments
with a Baxter robot. Observe that this approach suffers to a

lesser degree from the ‘curse of dimensionality’, especially
when approximations of Xr, such as Vietoris-Rips or Wit-
ness complexes, which we shall discuss in the following, are
considered.

For a sample set X , let R be the minimal r > 0 such that
γi ⊂ Xr for all i ∈ {1, . . . , k}. Our approach in both cases
above will now be to study the homotopy classes of these
paths in the topological spaces Xr ' DCr(X), for r > R.

4.1. Trajectory Discretization

Fig. 6. We display two continuous trajectories in red and blue (solid
lines) and their homotopy equivalent discretizations as sequences
of 1-simplices (as dashed lines).

In order to compute properties of a trajectory γ : [0, 1]→
Cf , we first need to represent γ by a homotopy equivalent
path of edges (i.e. 1-simplices) in the simplicial complex
used to model Xr. Figure 6 illustrates this in an exam-
ple. Starting with a collection of samples X formed by the
centers of the indicated shaded gray balls, we consider the
space XR, where R is the radius of the shaded balls. For
an arbitrary continuous trajectory inXR such as the smooth
trajectories in red and blue in the figure, we require a homo-
topy equivalent trajectory of 1-simplices in the simplicial
complex DCR(X) homotopy equivalent to XR. In the fig-
ure these are indicated by red and blue dashed trajectories
respectively.

A fast heuristic to obtain a discretization of a trajectory γ
is to consider vi = γ(i/N), for some large N ∈ N, to map
vi to a closest 0-simplex v′i ∈ DCR(X) and to then replace
the path segment between vi, vi+1 by a shortest edge-path
between v′i and v′i+1 in the 1-skeleton of the simplicial com-
plex. Alternatively, one can attempt to construct an explicit
deformation retraction from XR to DCR(X) mapping γ

first to a path contained in DCR(X) and then approximat-
ing γ by a homotopy equivalent sequence of 1-simplices on
a sufficiently fine subdivision ofDCR(X). The Alpha com-
plexes Ar(X) of Edelsbrunner (1995) are subcomplexes of
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DCr(X) for all r > 0 which are also homotopy equivalent
to Xr and onto which an explicit such deformation retrac-
tion from Xr has been described in Edelsbrunner (1995),
for example. While the study of efficient and theoretically
sound homotopy equivalent trajectory discretizations could
be explored further, we will instead focus on the classifica-
tion problem here, assuming that each trajectory has been
discretized as a path of edges in DCR(X).

4.2. Computation of DCr(X) and alternative
complexes

As previously outlined, our key motivation for using
Delaunay-Čech complexes in this work is the fact that
DCr(X) is homotopy equivalent to the natural union of r-
balls spaceXr. A drawback of this approach is however the
fact that we rely on the computation of a Delaunay triangu-
lation of X ⊂ Rd, which is computationally challenging as
the dimension d increases. The worst case arises for n points
distributed along the curve γ(t) = (t, t2, . . . , td), called the
moment curve, in which case the complexity of the Delau-
nay triangulation as measured by the number of simplices is
O(ndd/2e) (Amenta et al., 2007; McMullen, 1970), while, on
the other hand the complexity isO(n) with a constant factor
exponential in dimension for points that are uniformly dis-
tributed in a unit ball (Dwyer, 1991). Given these results and
the state of the art implementations provided in (Barber et al.,
1996; CGAL, 2013), Delaunay-based simplicial complexes
currently face a serious ‘curse of dimensionality’ challenge
as d is increased. In this work, we will demonstrate the fea-
sibility of Delaunay-Čech complexes in dimensions up to 6,
but for very high dimensional data, other approximations for
Xr are required.

The Vietoris-Rips complex, in particular, is suitable for
such data. The Vietoris-Rips complex Vr(X) for a set of
samples X ⊂ Rd and with parameter r > 0 is an abstract
simplicial complex defined as follows:

Vr(X) = {σ ⊆ X : diam(σ) 6 2r},

where diam(σ) denotes the supremum over the pairwise
Euclidean distances between points in σ. The Vietoris-Rips
complex can be efficiently constructed in high dimensions
if the maximal r parameter is chosen sufficiently small

(Zomorodian, 2010). Note however that, for sufficiently

large r any subset ofX will be included in Vr(X), resulting
in a complex that is infeasible to compute even for moder-
ately sizedX . Furthermore, the Vietoris-Rips complex is not
always homotopy equivalent to Xr, but provides instead an
approximation (Carlsson, 2009). If computational efficiency
is required at a cost of the accuracy of reconstruction, sparse
approximations to Vr(X) can be considered, such as the
Witness complexes discussed by Carlsson (2009).

To compute 2-skeleta of DCr(X), we first compute a
Delaunay triangulation using (Barber et al., 1996; CGAL,
2013). This results in d-simplices [v0, . . . , vd] from which
we extract all 0-simplices vi, 1-simplices [vi, vj ], 0 6 i <

j 6 d and 2-simplices [vi, vj , vk], for 0 6 i < j < k 6 d

without repetitions. The 0-simplices are given by vertices,
and for the large simplicial complexes in our experiments,
we found that extracting these k-simplices (k = 1, 2) was
sufficiently efficiently achieved as follows: first, we extract
the k-faces (k = 1, 2) for each d-simplex, which results
in multiple occurances of simplices that are faces of more
than one simplex. Next, we lexicographically sorted these
resulting simplices by vertex indices via quicksort and finally
removed multiple occurances of simplices. Alternatively, if
sufficient memory is available, a set data-structure could be
used for this purpose. In the final step, the Delaunay-Čech fil-
tration parameter for each simplex has to be computed. Here,
0-simplices are assigned filtration value 0, 1-simplices [v, v′]

are assigned d(v,v′)
2 and for generalk-simplices we can apply

the MiniBall algorithm (see Edelsbrunner and Harer (2010))
to determine f(σ), which is particularly simple in the case
of 2-simplices.

4.3. Homological Trajectory Classification

Consider a set of edge-paths {α0, . . . , αm} in DCR(X)

starting and ending at 0-simplices s, t ∈ DCR(X) respec-
tively. We consider the 1-cycle cα0(αu)

def
= α0 + αu ∈

Z1(DCR(X)), where the addition is performed over Z2

and we have reduced all edge-paths modulo Z2, so that
edges occurring an even number of time are removed. Now
[cα0(αu)] 6= [cα0(αw)] ∈ Hi,j

1 = Hi,j
1 (DC(X)) implies

[αu+αw] 6= 0, so thatαu,αw are not homotopy equivalent in
DCr(X), R 6 ri 6 r < rj , where r1 < . . . < rm denote
the critical filtration values at which DCr(X) changes. We
hence have trajectory classes {[cα0(α0)], . . . , [cα0(αm)]} ∈
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Hi,j
1 and the class membership can be computed once we

have determined a basis for Hi,j
1 . Note that α0 corresponds

to the zero vector 0 = [cα0
(α0)] and, for Z2 coefficients,

there can be up to 2k trajectory classes for fixed s, t and
i, j when dim(Hi,j

1 ) = k. We can now compute a basis for
Hi,j

1 :

Lemma 4.1. LetK1 ⊂ . . . ⊂ Kn be a simplexwise filtration

of simplicial complexes, let R = DV denote the reduced

boundary matrix after applying the left-to-right reduction

algorithm, and let Ep ⊆ E, Pp ⊆ P denote those elements

corresponding to p-cycles only. For 1 6 i 6 n, a basis of

Zp(Ki) is given by Si = {Rt : (s, t) ∈ Pp, s 6 i} ∪ {Vs :

s ∈ Ep, s 6 i}, and, for 1 6 i 6 j 6 n, the image of the

set

T i,j ={Rt : (s, t) ∈ Pp, s 6 i, t > j}

∪ {Vs : s ∈ Ep, s 6 i}

under the quotient map

q : Zp(Ki)� Hi,j
p = Zp(Ki)/(Bp(Kj) ∩ Zp(Ki))

forms a basis of Hi,j
p . Finally #Ep = dim(Hp(Kn)).

Proof. This follows from the reduction algorithm (Edels-
brunner and Harer, 2010). Please see the appendix for further
details.

In order to classify {α0, . . . , αm}, we first select a
simplex-wise refinement {Ki}ni=1 of the filtration given by
DCr(X), r > 0. Next, we compute the Z2 coordinates of
cα0(αu) for 0 6 u 6 m in the basisSn once. To classify tra-
jectories at a scale given by the filtration value ri = f(σ), we
simply look up the binary coordinates of cα0(αu) restricted
to the basis elements T i,i ⊆ Sn. Similarly, we can check
if two trajectories αu, αw are homotopy inequivalent for all
ri 6 r < rj by looking up whether the coordinates of
cα0(αu) and cα0(αw) differ in the basis T i,j ⊆ Sn.

Note now that DCr(X) = D(X) for sufficiently large r,
where D(X) denotes the full Delaunay triangulation, and
H1(D(X)) = {0} since D(X) is contractible. Hence E1

is empty implying that we do not need to keep track of the

matrix V to determine a basis of Hi,j
1 . This is important

since, in our experiments, these matrices have up to millions
of columns and R is typically very sparse and of low rank,

while V has full rank. Since low is injective on the set Sn,
we order elements of Sn (for p = 1) by their low value and
we store low−1 = l as a map such that l(k) is the element
s ∈ Sn with low(s) = k. For any cycle c ∈ Z1(Ki), we
can then trivially solve for the coefficients in the basis Sn by
iterating c ← c + l(low(c)). Each iteration reduces low(c)

until we arrive at the zero vector. In the ordered basis Sn, c
then has non-zero coefficientsF (c) ∈ Z#Sn

2 exactly at those
basis elements s ∈ Sn for which low(s) = low(c) during
the execution of the above loop. Again, n can be very large
(millions), but the vector F (c) is in our experiments very
sparse so that the algorithm does not exhibit its worst cast
O(n2) computation time. We call F (cα0(αu)) ∈ Z#Sn

2 the
persistent cycle coordinates of αu with respect to α0.

If we want to determine a trajectory class at scales corre-
sponding to filtration values ri < rj , we select the coordi-
nates F i,j(cα0(αu)) of F (cα0(αu)) corresponding to the
basis T i,j . Two trajectories αu, αw are then not homo-
topy equivalent if F i,j(cα0(αu)) 6= F i,j(cα0(αw). Each
non-zero coordinate of F (cα0(αu)) corresponds to a col-
umn Rt of R which has a death filtration value f(σt).
At filtration value r, only those non-zero coordinates that
have been born and have not died yet contribute to the
classification of cycles. We hence obtain an agglomerative
clustering of trajectories lying in a common DCR(X) as
we increase the filtration value r > R. Finally, at rm,
DCrm(X) = DC∞(X) = Conv(X) and all trajectories
then lie in the same class.

Illustration

Consider Fig. 1. The red trajectory corresponds to α0, the
two blue trajectories in the left and middle figure represent
α1, α2 respectively, and all trajectories lie inDCri(X), ri =

11.07. We have [cα0(α0)] = [cα0(α1)] = 0 ∈ Ha,b
1 for all

i 6 a 6 b, but [cα0(α2)] 6= 0 ∈ Ha,b
1 , for i 6 a 6 b 6 j,

where rj = 73.76 is the critical filtration value at which the
hole surrounded by α0, α2 gets filled in.

4.4. Arbitrary filtration functions

Suppose now that we have sampled Cf sufficiently densely
and that DCR(X), for some fixed R, provides a good
approximation of Cf . Consider a function c : Cf → R.
Our aim now is not only to classify trajectories in the
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space Cf , but to take into account a threshold for the func-
tion c. Naturally, such c : Cf → R can arise as a cost
or risk function associating a certain cost or risk to each
x ∈ X . Similarly, one might have defined a probabilis-
tic model associating a certain likelihood or density value
to each x ∈ X . Given c, we define the value ĉ of a k-
simplex σ = {v0, . . . , vk} ∈ DCR(X) to be ĉ(σ) =

max(c(v0), . . . , c(vk)). Then ĉ satisfies ĉ(τ) 6 ĉ(σ) when-
ever τ ⊆ σ. In order to apply our algorithm without having
to keep track of the potentially non-sparse matrix V , we
furthermore let ĉ(σ) = max(c(v0), . . . , c(vk)) +C for any
k-simplex σ ∈ D(X) − DCR(X) and for C larger than
the cost of any v ∈ X . Then LR,λ = ĉ−1((−∞, λ]) yields
a filtration as λ varies and LR,λ ⊆ DCR(X) for λ < C

and LR,∞ = D(X), ensuring H1(LR,∞) = 0. We think of
LR,λ as an approximation to MR,λ = XR ∩ c−1((−∞, λ])

for λ < C. Note that this approach yields a filtration by
sub-levelsets. In the case of a probability density c, super-
levelsets c−1([λ,∞)) might be more appropriate. In that
case, we simply replace c by −c in the above framework to
yield the desired filtration.

4.5. General start and goal regions

Real-world trajectories are often noisy and varied and might
not naturally start and end in a fixed start point s and
end-point t. In this section, we discuss an extension of
our approach which enables us to work with connected
regions S, T generalizing the points s, t respectively. We
hence assume that there exist connected regions S, T ⊂ Cf ,
S∩T = ∅ such that, each of our trajectories starts in a point
in S and terminates in a point in T .

Note that, in the case where S, T correspond to sub-
complexes with trivial first homology, the following pro-
cedure could be employed: we select a representative 0-
simplex s ∈ S and t ∈ T and extend each trajectory
{α0, . . . , αm} to a trajectory from s to t by first determin-
ing an edge-path from s to αj(0) inside S, then following
αj and finally concatenating the resulting path by another
edge-path from αj(1) to t. The resulting augmented trajec-
tories could then be classified with our previous approach.
In the case whereH1(S) 6= 0 orH1(T ) 6= 0, this procedure
will however depend on how the trajectories are augmented,
requiring motion planning under homology constraints. We

Fig. 7. Examples of trajectory classes obtained using the cone con-
struction for samples in [0, 1]2 ⊂ R2. All the trajectories depicted
here start in the red part of the complex and terminate in the blue
part of the complex. The trajectories in the left part of the figure
belong to a single topological class and the trajectories to the right
similarly belong to a single topological class at the depicted fil-
tration value of R = 0.1. The subcomplexes corresponding to S
and T are shaded in red and blue respectively. The square has a
side-length one and we used 3000 sample points X . The depicted
simplicial complex shows only the simplices of D̂CR(X) which
do not involve the special points s, t.

now propose an alternative approach that can be applied in
all cases and which relies only on a cone construction.

Intuitively, we would like to work with a quotient space
where the regions S, T are identified with points s, t respec-
tively. We hence define a simplicial complex filtration D̂C
with two additional 0-simplices at filtration value zero,
called s, t. We then reassign filtration value zero to any sim-
plex in the filtration whose vertices all lie either in S or in
T . We furthermore define simplices

⋃d+1
p=1(Sp ∪T p), where

Sp = {{v0, . . . , vp−1, s} : σ = [v0, . . . , vp−1] ∈ DC∞(X),

vj ∈ S for all j ∈ {0, . . . , p− 1}}

T p = {{v0, . . . , vp−1, t} : σ = [v0, . . . , vp−1] ∈ DC∞(X),

vj ∈ T for all j ∈ {0, . . . , p− 1}}.

and also assign filtration value zero to these and we cre-
ate a simplex-wise filtration where we also insert faces of
simplices before their containing simplices whenever these
have identical filtration value. This yields a new filtration
where the two subcomplexes ofDC∞(X) corresponding to
S, T and the newly added cones over these subcomplexes
appear at filtration value zero and additional simplices from
DCR(X) are only added in afterwards. Any simplex in
D̂CR(X) which involves s, t does not correspond to a spe-
cific geometric simplex in Cf , but is abstract in nature. Note
that s corresponds to the apex of the cone over S and t to the
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apex of the cone over t. Since cones are contractible topo-
logical spaces, this yields an explicit identification of the
sub-complexes corresponding to S and T with the points s,
t respectively.

Each trajectoryα can now first be discretized as a sequence
of edges inDCR(X) as before. Assume thatα starts in point
a ∈ S ∩X and terminates in b ∈ T ∩X . By appending the
edges (s, a) and (b, t) to each such trajectory, we obtain a
set of lifted trajectories α̂0, . . . α̂m in D̂CR(X) which now
all start and end in the same (non-geometric) points s and t
respectively.

Since we will only be interested in the first homology
group, we can in fact ignore all simplices of dimension
larger than 2 in the above construction since these do not
influence the first homology group. We can then apply our
previous algorithm on these augmented trajectories to obtain
a topological classification. If two trajectories α̂i, α̂j are
inequivalent at filtration R > 0 using this approach, then
the corresponding trajectoriesαi, αj cannot be continuously
deformed into one another, even when the end-points are
allowed to move within the sub-complexes corresponding to
S, T . Fig. 7 illustrates two examples of classes of trajectories
which are considered inequivalent using this approach. The
computational cost incurred by adding the cone construction
is dependent only the number of additional simplices in the
2-skeleton of D̂C. In particular, we add two 0-simplices s, t,
and one edge for each point in S ∪ T as well as one triangle
for each edge lying either entirely in S or entirely in T .

5. Experiments

Our experiments were performed on an Intel Core i7 lap-
top with 8GB of RAM. We present only the computation
times of core algorithms and disregard the time required to
load data into memory. We used the matrix and binary tree
column vector data structure of the PHAT library (Bauer
et al., 2013) to efficiently manipulate large boundary matri-
ces. Instead of working with the full simplicial complex
DCr(X), we extracted the 2-skeleton DC2

r (X) from the
Delaunay triangulation D(X). The 2-skeleton is sufficient
for our purposes since Hi,j

1 (DCr(X)) does not depend on
higher dimensional simplices. We reduced only the sub-
matrix of the boundary matrix corresponding to the first
homology group. D(X) was computed with CGAL (2013)

Fig. 8. We display example worlds and examples of paths which
were determined to lie in a single class (in blue) at filtration value r2.
DCr2(X) was constructed from 100000 samples and the classes
are computed using the indicated red trajectories corresponding to
α0.

for all but our Baxter experiments where we used QHull
Barber et al. (1996) which was faster in higher dimensions.

Trajectory classification in 2D We generated the set
of 2D worlds W1, . . . ,W10 displayed in Fig 8 and of
size 512 × 512 by sampling Gaussian Random Fields
and defining those regions above a threshold to be obsta-
cles. From the resulting free space Cf , we sampled
N ∈ {1000, 10000, 100000, 1000000} uniform samples.
We computed the Delaunay-Čech filtration for all examples
and recorded the computation times of the Delaunay triangu-
lation, for the construction of the filtration, as well as the time
required to reduce the boundary matrixD to its reduced form
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Fig. 9. We display the example worldW1 withDCr2(X) for 1000,
10000 and 100000 sample points per row. In each column, we plot
pathsα1, . . . , αs (in blue) which belong to a fixed trajectory class at
filtration value r2. The fixed reference path α0 is plotted in red. As
expected, we can clearly see that two paths in different classes also
lie in different homotopy classes. In our experiments, paths within
a class are furthermore homotopy equivalent inDCr2(X), but the
quality of the approximation DCr2(X) ' Cf is only sufficient
for 10000 or more sample points as can be seen in the right figure
in the first row. There, some 2-simplices (triangles) cover the thin
obstacle region to the right.

R. The Delaunay triangulation took 1ms, 2ms, 76ms, 810ms,
the construction of the filtration took 11ms, 31ms, 278ms and
3.27s and the reduction of the boundary matrix took 14ms,
13ms, 76ms, 981ms on average as the sample size increased.
We investigated the filtrationDCr(X) at various thresholds.
At a filtration value of r1 = 25

√
1000/N , we found that Cf

was conservatively covered, while at r2 = 35
√

1000/N , the
space was well covered with a minimum number of holes in
collision free areas. In order to investigate interesting path
classes, we generated a set of 1000 paths per world and
sample setting as follows: In 10 trials, we selected two sam-
ple points v1, v2 at random and, for each such setting, we
selected another 100 random waypoints w1, . . . , w100 from
the sampled point-cloud. We determined shortest edge-path

0 0.5
0

0.301

0.382

0.5

Fig. 10. The top figure displays the robot arm in start configuration
(blue) on the right and in goal configuration (red) on the left. The
bottom right figure displays the first persistence diagram for our
reconstruction with one red point far above the diagonal. A projec-
tion of the samples onto θ1, θ2 is shown in the bottom left and an
illustration of the difference between the two trajectory classes for
r ∈ [0.301, 0.382] is shown in the middle figure. In the first tra-
jectory class (in red), the arm is extended to the left when passing
under the narrow passage while in the second class (in blue), the
arm is extended to the right.

from v1 towi and then to v2 utilizing Dijkstra’s algorithm on
the 1-skeleton graph of DCr1(X). The computation times
for the persistent cycle coordinates for these paths were
1.8ms, 10ms, 115ms and 1.75s for a batch of 100 query paths
and for the respective sample sizes on average. These encour-
aging timings suggest that our framework could be used as
a classification ‘black box’ e.g. for continuous trajectory
optimization engines.

Trajectory classification in 4D We consider the planar
robot arm displayed in the top part of Fig. 10 which is
attached to the central black disk and with 4 joints θ1, . . . , θ4.
We constrain θ1 ∈ [−π2 ,

π
2 ], θ2, θ3, θ4 ∈ [−0.9π, 0.9π] and

furthermore disallow self-collisions and collisions with the
environment (the black rectangle and the floor), yielding
Cf ⊂ R4. The robot now has the task of moving from the
start configuration displayed in blue to the red goal joint
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configuration as shown in the top left figure. We sampled
100000 poses uniformly in Cf using OpenRave (Diankov
and Kuffner, 2008) and applied our framework. DC2

∞(X)

had about 6.2 million triangles and 1.8 million edges. The
bottom right part of Fig. 10 displays the resulting first persis-
tence diagram which clearly shows that a single homological
feature has large persistence in Cf . The projection of the
joint configurations onto the first two angles, as shown in the
middle figure, confirms the existence of a single hole. We
computed 1000 edge-paths in DC0.25 between the start and
end-configuration using 1000 random waypoints as before.
For filtration values r ∈ [0.301, 0.382] only two trajectory
classes existed. The reduction of the boundary matrix took
0.46s, while the persistent cycle coordinates for all 1000
paths were calculated in 0.55s. The Delaunay triangulation
in R4 took 251s, partially due to the increased dimension.
Note however that these results are not directly comparable
to the 2D case since methods for 2D Delaunay triangulations
in CGAL (2013) are especially optimized. We inspected the
trajectories in each homology class and found that they were
classified according to whether the second link was posi-
tioned to the left or to the right of the base link of the arm
when θ1 = 0 as the arm passed the narrow passage (see
Fig. 10). Our framework hence allows the robot to discover

the fact that two fundamentally different solution trajectory
classes exist. Note that it is also intuitively clear that no
trajectory in the red class can be continuously deformed to
any trajectory in the blue class since the second link would
have to collide with the marked black obstacle above the
arm at some point in the course of any such deformation.
Our method hence allows us to automatically recover this
information.

Filtrations with cost functions We consider the free con-
figuration space Cf ⊂ R2 of size 250 by 500 with two
obstacles (in white) displayed in Fig. 11. We would now like
to distinguish not only between homotopy classes depending
on the obstacles in the configuration space, but also discern
how trajectories behave with respect to the two peaks of the
cost function. The simplicial complexL10,λ(X) is displayed
for 10000 samples X and height values are determined by
the cost function. At cost threshold λ = 90, the top of one
of the hills defined by the cost-function is removed from the
complex in the rightmost figure (indicated in blue), while

at λ = 70 both hills are truncated in the remaining figures.
We sampled 100 random paths in this configuration space
by fixing the initial and terminal vertex at the start and end-
point of the drawn red reference trajectory and by sampling
random waypoints as before. The figure displays example
trajectory classes for differing cost filtration values. Note
how, at a cost threshold of λ = 90 in the right plot, the two
classes depicted in the two leftmost parts of the figure merge.

Baxter robot, 3D and 6D We now investigate a kinesthetic
demonstration scenario where the Baxter robot in Fig. 12 is
taught a set of trajectories which we then classify topolog-
ically. In the 1st experiment (E1, Fig. 12, column 1-2), the
robot is shown two ways to reach from one point above its
head to a point in front of its torso. Only one arm is moved
in each demonstration while the other arm remains still. We
used the end-effector positions of the moving arm to rep-
resent trajectories in R3. In the 2nd (column 3-4) and 3rd

(column 5-6) experiment E2 and E3, we record the posi-
tions of both end-effectors during dual arm manipulations
resulting in a 6D configuration space. In E2, the robot is
taught to pick up a cylindrical object with both hands from a
table and to move it to one of two positions, one higher
and one lower than the table. We also vary the distance
between the hands during grasping between demonstrations.
The trajectories in E2 are periodic. The motions start with
the arms in a rest position on the sides, the object is then
grasped and moved, and the rest position is visited again.
In experiment E3, the robot moves the same object from
a horizontal to a vertical configuration, but a metal bar
is located between the robot and the object. Two intuitive
motion classes are based on whether the left arm crosses
in front of the obstacle, or behind it. Note that, in exper-
iment E1 and E2, no obvious obstacles lie directly in Cf ,
but due to the type of demonstrations and the robot’s joint
limits, the space Xr ' DCr(X) ⊂ Cf exhibits interest-
ing voids which we can exploit for classification. We found
that trajectories were well-approximated using the described
heuristic mapping to nearby edge-paths inDCR(X) (Sec. 4)
for R = 0.08m (experiment E1) and R = 0.15m (experi-
ment E2 and E3) respectively. For smaller r, DCr(X) was
either not path-connected, or the edge path approximation
deteriorated significantly. We hence investigated classifying
paths in Xr for r > R. Fig. 13 displays how the number of
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Fig. 11. We display a cost function and classes of trajectories (in blue) depending on a cost threshold and a path α0 (in red). For the
higher threshold in the rightmost plot, the two classes in the two leftmost figures merge.

Fig. 12. Baxter robot experiments (E1: column 1-2, E2: column 3-4, E3: column 5-6). Trajectory classes are illustrated in the top
row and details are provided in the bottom row. We recorded 97, 18 and 40 trajectories resulting in point clouds with 9594, 3650,
4326 points in dimension 3, 6, and 6, and in filtrations with 0.19, 2.72, 3.05 million edges and triangles for E1, E2, E3 respec-
tively. The computation times for (Delaunay triangulation, 2-skeleton and filtration computation, boundary matrix reduction) were
(0.22, 0.26, 0.12), (41.84, 46.95, 44.17) and (44.92, 51.99, 52.44) seconds for E1, E2, E3 respectively, while the classification of all
trajectories in each experiment took no more than 0.05s. Bottom row: The first two images show the end-effector trajectories in E1.
While we obtain 3 classes for r = 0.08m (first image) the green class merges with the blue one at r ≈ 0.084m (second image, see
Fig 13). The 3rd, 4th and 5th, 6th image show the right and left hand trajectories for E2 and E3 respectively. The trajectory classes at
r = 0.19m are indicated in red and blue.

topological trajectory classes changes with varying r, and the
second row of Fig. 12 displays trajectory classes at various
filtration values. In all experiments, there exists a large filtra-
tion interval with just two trajectory classes corresponding
to the two intuitive classes we just described for each exper-
iment. The first image in the second row of Fig. 12 also
illustrates the three classes one obtains in E1 for a choice of
r = 0.08m. More details on the computation times and the
sizes of the simplicial complexes is provided in Fig. 12.

0.08 0.25
1
2
3

0.15 0.3
1
2
3

0.15 0.19 0.25
1
2
3

Fig. 13. Number of path classes (vertical axis) vs. filtration value
(horizontal axis) for experiments E1, E2, E3 from left to right.
All paths exist starting at filtration value R = 0.08m for E1 and
R = 0.15m for E2 and E3.

Cone construction and human-robot collaboration In
this experiment, we demonstrate the cone construction with
real world data and provide initial experiments explor-
ing how our approach could be incorporated in a human-
robot collaboration scenario. In particular, we illustrate
how, by topologically clustering trajectories, a robot can
automatically extract high-level motion behaviors.

We consider the top part of Fig. 14. A PR2 robot is posi-
tioned at the depicted position in the photo and does not
move, while a human stands at the green disk marked on
the floor. Using a Nest of Birds magnetic motion tracker,
we recorded the position of an object that is initially placed
in the PR2’s right gripper and which is then handed over
to a human worker who then places it on the blue table by
turning his upper body while keeping his feet on the shaded
green disk on the floor. In the first experiment, we recorded
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Fig. 14. The top figure displays a PR2 robot in an environment with
two tables. The marked red and blue regions simulate two target
work surfaces. A human is positioned to stand on the green marked
disk on the floor. We recorded human-robot hand-over trajectories
simulating a human worker collaborating with the robot. The 3D
position of an object placed in the PR2’s right endeffector is tracked
and the human worker takes the object and places it on the blue work
surface, but in some cases first moves the object to the red work
surface for an intermediate simulated ‘assembly step’. The bottom
part of the figure illustrates an example topological classification of
such trajectories at filtrationR ≈ 16cm. The found red trajectories
correspond to sequences where the object is first placed on the
red work surface, while blue trajectories correspond to sequences
without this intermediate step. The bottom left figure is displayed
from a bird’s eye viewpoint, while the bottom right figure displays
a viewpoints from behind the blue work surface.

7 trajectories of the object being handed over and placed
on the blue table, resulting in 2486 points in R3. The bot-
tom part of Fig. 14 indicates the trajectories. Green shaded
points correspond to points which we classified as lying in
the start region S in the vicinity of the robot’s right gripper.
The shaded cyan points correspond to goal positions T in
the vicinity of the blue table-region.

We applied our cone construction and classified the tra-
jectories. For a large filtration interval between R ≈ 16cm

and R ≈ 21cm, we obtained two classes as indicated in
color the figure. Here, the red trajectories imitate a worker
first placing the object on the table marked in red in the top
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Fig. 15. Top and 3D-view of our second set of recorded trajectories
between the robot’s endeffector and the work surface marked in
red in Fig. 14. The depicted classification was obtained at filtration
R ≈ 15cm and uses the cone construction.

part of Fig. 14 (i.e. to perform an additional work step), fol-
lowed by placing the object on the table marked in blue.
Our method is able to identify these outliers as belonging to
a seperate class (red) from the motions that move directly
towards the blue table region (blue trajectories). Note also
how the cone construction allows us to identify the wide
variations of terminal positions of the blue trajectories.

In a second experiment, we recorded 18 trajectories result-
ing in 4228 points in R3 (and 45895 edges and 83334
triangles in D̂C). This time, the object is picked up from the
PR2’s hand and placed on the red table. The human turns
either left or right by 180 degrees during this motion and
does not leave the marked green spot in Fig. 14. The result-
ing trajectories are depicted from two perspectives in Fig. 15.
Again, we apply the cone construction with points marked
in green and cyan corresponding to S and T respectively.
At filtration value R ≈ 15cm, we obtain the 4 trajectory
classes indicated in color. At R ≈ 20cm the red and blue
classes merge and atR ≈ 23cm the green and black classes
merge and only two classes exist. One corresponding to the
black and green trajectories and one corresponding to the
blue and red trajectories. These finally merge into one class
atR ≈ 35cm. The two classes found in the significant filtra-
tion interval (23cm, 35cm) exactly correspond to whether
the worker turned to the left or to the right after obtaining the
object. The green trajectories correspond to a simulated case
where the object was dropped or placed on the ground before
being put on the table marked in red. Again, our method
is able to identify such interesting trajectories as well as
the high-level information about the turning behavior in this
trajectory dataset. We believe that such classification infor-
mation could serve as input to further algorithms to allow the
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robot to reason about the behaviors of the observed human
worker, for example in order to optimally assist the human
worker or to automatically extract clusters of trajectories
based on which dynamic motion primitives can be learned.

6. Conclusion and Future Work

In this work, we have proposed a novel sampling-based

approach to studying topological classes of trajectories
in general configuration spaces which utilizes persistent
homology and filtrations of simplicial complexes as key
ingredients. We have shown the applicability of our approach
in real world scenarios and believe that our approach could
furthermore be incorporated with many existing algorithms.
For example, the integration of local trajectory optimiza-
tion based algorithms with our approach which extracts
global information about trajectories could be of interest.
Another promising future application of our method could be
a class-dependent generation of dynamic motion primitives.

While our method scaled well to large sample sizes in 2 to 4

dimensions and was applicable also for a smaller set of sam-
ples in 6D, Delaunay triangulations and henceDCr(X) have
a worst-case complexity of O(ndd/2e) (McMullen, 1970)
in dimension d and sample size n making triangulations
in higher dimensions computationally very challenging. It
remains to be seen where the boundaries of feasibility of
simplicial complex based methods lie exactly in this respect
in robotics. The generalization of computer graphics based
works on mesh-compression such as Blandford et al. (2005)
to higher dimensions might enable us to scale the pre-
sented techniques to very large complexes by reducing the
required memory footprint, for example. Another direction
of future research will be an investigation of alternative
simplicial complexes, such as Vietoris-Rips and (weak) wit-
ness complexes (Carlsson, 2009) which approximate Xr

and which could be used to mitigate the ‘curse of dimen-
sionality’ in higher dimensions to some extent. Another
potential direction could be the use of projections or non-
linear dimensionality reduction techniques to accommodate
higher dimensional data.

Our work has established that filtrations of simplicial
complexes can provide a rich alternative data-structure for
robotics which is capable to generalize the notion of a graph
to extract novel topological information for the purpose of

robotics applications. In future work, we plan to further
investigate the potential applications of these data-structures
and techniques in robotics.
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Appendix

Here, we provide further details of the proof of Lemma 4.1.
While we could not find the exact statement of this lemma
in the literature, this result is a direct consequence of the
abstract decomposition theorems of persistent homology
(Edelsbrunner and Harer, 2010). We sketch the details of
direct proofs which are obtained simply by reasoning about
reduced matrices and which do not require further theory to
provide a ‘hands on’ practical approach to these results. Let
us recall that we denote by R the reduced boundary matrix,
by D the original boundary matrix, and R = DV for the
transformation matrix V . When M is a matrix Mi denotes
the ith column and low(Mi) is defined to be the index of
the lowest non-zero element of Mi when Mi 6= 0 and low
is undefined otherwise. We begin with two claims:

Claim 1. Let (i, j) ∈ P = {(i, j) : Rj 6= 0 and i =

low(Rj)}. Then Ri = 0.

Proof. Suppose Ri 6= 0 instead. Then Ri 6∈ B(Ki−1) =

span(R1, . . . , Ri−1) since low is injective on the non-zero
columns of R since R is reduced. We have ∂Rj = ∂(σi +

w) = ∂σi + η = ∂∂Vj = 0, for some w ∈ C(Ki−1),
η = ∂w ∈ B(Ki−1) and σi denotes the ith simplex in
the filtration. Hence ∂σi ∈ B(Ki−1), but Ri = ∂Vi =

∂σi+w
′ for somew′ ∈ B(Ki−1). But thenRi ∈ B(Ki−1).

A contradiction.

Claim 2. With the same notation as in the main lemma, so
K = ∪ni=1σi, we have

a) #P = #non-zero columns of R, where (i, j) ∈ P

corresponds to column Rj .
b) #P + #E = #zero columns of R, where (i, j) ∈ P

corresponds to column Ri and s ∈ E to column Rs.
c) 2#P + #E = n

Proof. Part a): If Ri 6= 0, low(Ri) = s for some s, so
(s, i) ∈ P and s is unique sinceR is reduced. Also, for each
(s, i) ∈ P , Ri 6= 0. Part b): If Ri = 0, either there exists
a j such that i = low(Rj) in which case (i, j) ∈ P and
this j is unique since R is reduced, or there is no such j, in
which case i ∈ E by definition of E. Part c) follows from
the above since each column of R is either zero or non-zero
and R has n columns.

Lemma. Let K1 ⊂ . . . ⊂ Kn be a simplexwise filtration
of simplicial complexes, let R = DV denote the reduced
boundary matrix after applying the left-to-right reduction
algorithm, and let Ep ⊆ E, Pp ⊆ P denote those elements
corresponding to p-cycles only. For 1 6 i 6 n, a basis of
Zp(Ki) is given by Sip = {Rt : (s, t) ∈ Pp, s 6 i} ∪ {Vs :

s ∈ Ep, s 6 i}, and, for 1 6 i 6 j 6 n, the image of the
set

T i,jp ={Rt : (s, t) ∈ Pp, s 6 i, t > j}

∪ {Vs : s ∈ Ep, s 6 i}

under the quotient map

q : Zp(Ki)� Hi,j
p = Zp(Ki)/(Bp(Kj) ∩ Zp(Ki))

forms a basis of Hi,j
p . Finally #Ep = dim(Hp(Kn)).

Proof. Let us first show that Sip forms a basis for Zp(Ki).
Note that each column of of R only contains non-zero

coefficients corresponding to simplices of a single fixed
dimension each since column additions are only performed
among columns of the same dimension. It is hence clear
that Sip ⊆ Cp(Ki). Note furthermore that Sip ⊆ Zp(Ki)

since, for each Rt corresponding to (s, t) ∈ Pp, s 6 i, we
have ∂Rt = ∂∂Vt = 0. Similarly, for Vs, for s ∈ Ep and
s 6 i, we have ∂Vs = Rs = 0 by the definition of Ep.
Next, we show that the elements of Sip are linearly inde-
pendent. Define Aip = {Rt : (s, t) ∈ Pp, s 6 i} and
Bip = {Vs : s ∈ Ep, s 6 i}. We observe that low is injective
onAip. To see this, assume that (i, j), (i, j′) ∈ Pp for j 6= j′.
Without loss of generality, assume j < j′, then we obtain a
contradiction sinceRwould not be reduced as we could add
Rj to R′j to further reduce R. Similarly, low(Vi) = i for all
i 6 n, as can be seen by observing that V is the result of
a sequence of left-to-right column additions performed on
the identity matrix, so low is also injective on Bip. Finally
low(Aip)∩low(Bip) = ∅ by the definition ofE andP . Hence
low is injective on Sip = Aip ∪ Bip and the set is hence lin-
early independent. To show that Sip is a basis for Zp(Ki),
we now just need to show dim(Zp(Ki) = #Sip.

Since the upper-left submatrices of the reduced matrix R
which correspond to the subcomplexes Ki for i 6 n are
themselves reduced, and due to the grading by p, it is not
difficult to extend the reasoning in Claim 2 to show that
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dimBp(Ki) = #P6i
p and dimCp(Ki) = 2#P6i

p +#E6i
p ,

for all i 6 n, where we define P6i
p = {(a, j) : Rj 6= 0, a =

low(Rj),dim(σa) = p and j 6 i} and E6i
p = {t : Rt =

0, low(Rj) 6= t for all j ∈ {1, . . . , i} and dim(σt) = p}.
By the rank-nullity theorem, it follows that dim(Zp(Ki)) =

#P6i
p + #E6i

p for all i 6 n. Since it is clear that this is
also the cardinality of the set Sip, the result follows.

Next, we prove the statement about T i,jp . Note that T i,jp
is a linearly independent set since low is injective on T i,jp .
We need to show that Bp(Kj) ∩ Zp(Ki), i 6 j, is spanned
by Sip − T i,jp = {Rt : (s, t) ∈ Pp, s 6 i and t 6 j}. First,
observe that

Bp(Kj) = span{Rt : (s, t) ∈ Pp, t 6 j}.

This follows since span(V1, . . . , Vj) = C(Kj) and if∂Vi 6=
0, then Ri = ∂Vi is in the above spanning set which is also
linearly independent.

Next, we know that Zp(Ki) has basis Sip. From this,
we observe, Sip − T i,jp ⊂ Bp(Kj) ∩ Zp(Ki). Finally,
Bp(Kj) + Zp(Ki) has basis {Rt : (s, t) ∈ Pp, t 6

j} ∪ Sip = {Vs : s ∈ Ep, s 6 i} ∪ {Rt : (s, t) ∈
Pp, t 6 j or s 6 i} which can be written as a disjoint union
of Sip and {Rt : (s, t) ∈ Pp, i < s 6 t 6 j}. Count-
ing dimensions, we find that dim(Bp(Kj) ∩ Zp(Ki)) =

dim(Bp(Kj))+dim(Zp(Ki))−dim(Bp(Kj)+Zp(Ki)) =

#{Rt : (s, t) ∈ Pp, t 6 j} − #{Rt : (s, t) ∈ Pp : i <

s 6 t 6 j} = #{Rt : (s, t) ∈ Pp : s 6 i and t 6 j} =

#(Sip − T i,jp ). To see that #Ep = dim(Hp(Kn)), observe
that Hp(Kn) = Hn,n

p (Kn) and Tn,np = Ep.


