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Localization from semantic observations
via the matrix permanent

Nikolay Atanasov, Menglong Zhu, Kostas Daniilidis and George J. Pappas

Abstract

Most approaches to robot localization rely on low-level geometric features such as points, lines, and planes. In this paper,

we use object recognition to obtain semantic information from the robot’s sensors and consider the task of localizing the

robot within a prior map of landmarks, which are annotated with semantic labels. As object recognition algorithms miss

detections and produce false alarms, correct data association between the detections and the landmarks on the map is

central to the semantic localization problem. Instead of the traditional vector-based representation, we propose a sensor

model, which encodes the semantic observations via random finite sets and enables a unified treatment of missed detec-

tions, false alarms, and data association. Our second contribution is to reduce the problem of computing the likelihood of

a set-valued observation to the problem of computing a matrix permanent. It is this crucial transformation that allows us

to solve the semantic localization problem with a polynomial-time approximation to the set-based Bayes filter. Finally, we

address the active semantic localization problem, in which the observer’s trajectory is planned in order to improve the

accuracy and efficiency of the localization process. The performance of our approach is demonstrated in simulation and

in real environments using deformable-part-model-based object detectors. Robust global localization from semantic

observations is demonstrated for a mobile robot, for the Project Tango phone, and on the KITTI visual odometry dataset.

Comparisons are made with the traditional lidar-based geometric Monte Carlo localization.

Keywords

Active semantic localization, Monte Carlo localization, mobile robot localization, matrix permanent, random
finite set, particle filter, conditional entropy, object recognition, deformable part model, Project Tango

1. Introduction

Localization, the problem of estimating the pose of a

mobile robot from sensor data given a prior map, is funda-

mental in the field of robotics. Reliable navigation, object

manipulation, mapping, and many other tasks require accu-

rate knowledge of the robot’s pose. Most existing

approaches to localization and the related simultaneous

localization and mapping (SLAM) rely on low-level geo-

metric features such as points, lines, and planes. In con-

trast, we propose to use the recent advances in object

recognition to obtain semantic information from the robot’s

sensors and localize the robot within a prior map of land-

marks, which are annotated with semantic labels. Our

approach is not meant to replace, but rather enhance, the

existing localization and SLAM solutions. It offers several

benefits. Localizing against semantically-meaningful land-

marks is less ambiguous and can be used for global locali-

zation
1

and loop-closure. Also, high-precision sensors such

as laser rangefinders and 3-D lidars are not crucial for

accurate localization and can be replaced by regular

cameras. Finally, semantically annotated maps can be con-

structed for GPS-denied environments via the mapping

approaches that received significant attention in recent

years (Civera et al., 2011; Galindo et al., 2005; Kostavelis

and Gasteratos, 2013; Nüchter and Hertzberg, 2008;

Pronobis, 2011).

A preliminary version of this paper appeared at the 2014

Robotics: Science and Systems Conference (Atanasov

et al., 2014). This version extends and clarifies the theoreti-

cal results regarding semantic localization, addresses the

active semantic localization problem, and provides addi-

tional real-world experiments, which demonstrate global

localization for the Project Tango phone (Google ATAP
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group, 2014) and on the KITTI visual odometry dataset

(Geiger et al., 2013).

1.1. Related work

Monte Carlo localization based on geometric features was

proposed by Dellaert et al. (1999). The knowledge about

the robot pose is represented by a weighted set of samples

(particles) and is updated over time as the robot moves and

senses the environment. This and other traditional localiza-

tion methods use vectors to represent the map and the sen-

sor measurements. Bayesian filtering in the resulting vector

space relies on the assumption that the data association, i.e.

the correspondence between the sensor observations and

the features on the map, is known. While this might not be

an issue for scan matching in occupancy-grid maps, the

assumption is violated for landmark-based maps. Existing

landmark-based localization and SLAM techniques require

external solutions to the problems of data association and

clutter rejection (Bailey, 2002; Montemerlo and Thrun,

2003). Moreover, state-of-the-art approaches nowadays are

based on factor graphs (Kaess et al., 2008; Kummerle et al.,

2011) and rely heavily on continuous Gaussian random

variables. The introduction of semantic labels for the land-

marks is not addressed in existing work and requires han-

dling discrete (non-Gaussian) variables in the estimation.

There is a line of work addressing visual localization,

which matches observed image features to an image data-

base, whose images correspond to the nodes of a topologi-

cal map (Angeli et al., 2009; Košecká and Li, 2004;

Mariottini and Roumeliotis, 2011; Se et al., 2005; Wang

et al., 2006; Wolf et al., 2005). Wang et al. (2006) represent

each location in the topological map by a set of interest

points that can be reliably detected in images and use near-

est neighbor search to match observed scale-invariant fea-

ture transform (SIFT) features to the database. Košecká

and Li (2004) also characterize scale-invariant key points

by the SIFT descriptor and find nodes in the topological

map, whose features match the observed ones the best. The

drawback of this most likely data association approach is

that when it is wrong it quickly causes the estimation pro-

cedure to diverge. Hesch et al. (2013) study the effects of

unobservable directions on the estimator consistency in

vision-aided inertial navigation systems. In the SLAM con-

text, bad data association can be mitigated by a two-stage

approach, in which the back-end (e.g. factor graph) optimi-

zer is allowed to reject or alter associations proposed by the

front-end (e.g. appearance-based place recognition)

(Sünderhauf and Protzel, 2011). As object recognition

algorithms miss detections and produce false alarms, cor-

rect data association is crucial for semantic localization and

semantic world modeling too (Wong et al., 2013).

Instead of the traditional vector-based representation, we

use random finite sets to model the semantic information

obtained from object recognition. This allows us to expli-

citly incorporate missed detections, false alarms, and data

association in the sensor model. In recent years, random-

finite-set-based solutions to SLAM have gained popularity

due to their unified treatment of filtering and data associa-

tion. Mahler (2007) derived the Bayesian recursion with

random-finite-set-valued observations and proposed a first-

moment approximation, called the probability hypothesis

density (PHD) filter. The PHD filter has been successfully

applied to SLAM by Kalyan et al. (2010), Lee et al. (2013),

and Mullane et al. (2011). In these works, the vehicle trajec-

tory is tracked by a particle filter and the first moment of a

trajectory-conditioned map for each particle is propagated

via a Gaussian-mixture PHD filter. Bishop and Jensfelt

(2010) address global geometric localization by formulating

hypotheses about the robot state and tracking them with the

PHD filter. Zhang et al. (2012) propose an approach for

visual odometry using a PHD filter to track SIFT features

extracted from observed images. Most of the random-set

approaches rely on a first-moment approximation via the

PHD filter. Only few deal with the full observation model

(Dames et al., 2013; Ma et al., 2006; Sidenbladh and

Wirkander, 2003) and none have applied the model in a

semantic setting or studied its computational complexity.

There are several semantic localization approaches that

do not rely on a random-finite-set model. Anati et al.

(2012) match histogram-of-gradient-energies and

quantized-colors features to the expected features from a

prior semantic map. Yi et al. (2009) and Ko et al. (2013)

use semantic descriptions of distance and bearing in a con-

textual map for active semantic localization. Bao and

Savarese (2011) propose a maximum-likelihood-estimation

formulation for semantic structure from motion. In addition

to recovering camera parameters (motion) and 3-D loca-

tions of image features (structure), the authors recover the

3-D locations, orientations, and categories of objects in the

scene. A Markov chain Monte Carlo algorithm is used to

solve a batch estimation problem by sampling from the

data likelihood of the observed measurements.

1.2. Summary of contributions

We make the following contributions.

� We represent the semantic information obtained from

object recognition with random finite sets. This allows

a unified treatment of missed detections, false alarms,

and data association in the sensor model.
� We prove that obtaining the likelihood of a set-valued

observation is equivalent to a matrix permanent compu-

tation. It is this crucial transformation that enables an

efficient polynomial-time approximation to Bayesian

filtering with set-valued observations.
� We address the active semantic localization problem, in

which the observer’s trajectory is planned in order to

minimize the entropy of the pose distribution, condi-

tioned on the future measurements.

Connections between the matrix permanent and data

association have been identified in the target tracking

74 The International Journal of Robotics Research 35(1–3)



community (Collins and Uhlmann, 1992; Liggins et al.,

2008, ch. 11; Morelande, 2009; Oh et al., 2009; Pasula

et al., 1999) but this is the first connection with the

random-finite-set observation model.

1.3. Paper organization

In Section 2 we formulate the semantic localization prob-

lem precisely. In Section 3 we provide a probabilistic

model, which quantifies the likelihood of a random finite

set of semantic observations and captures false positives,

missed detections, and unknown data association. The key

relationship between filtering with the random-finite-set

observation model and the matrix permanent is derived in

Section 4. In Section 5, we introduce the active semantic

localization problem and discuss the efficient minimization

of the observer’s pose entropy conditioned on the future

semantic measurements. Finally, in Section 6, we present

results from simulations and real-world experiments and

discuss the performance of our approach.

2. Problem formulation

Consider a mobile robot, whose dynamics are governed by

the motion model xt + 1 = f(xt, ut, vt), where xt :¼ (x
p
t , x

r
t , x

a
t )

is the robot state, containing its position x
p
t , orientation xr

t ,

and other variables xa
t , such as velocity and acceleration, ut

is the control input, and vt is the motion noise.

Alternatively, the model can be specified by the probability

density function (pdf) of xt + 1 conditioned on xt and ut:

pf ( � jxt, ut) ð1Þ

The robot has access to a semantic map of the environ-

ment, containing n objects with known poses and classes.

Let the set Y = {y1,.,yL} represent the map, where

yi :¼ (yp
i , y

r
i , y

c
i ) consists of the position y

p
i , orientation yr

i ,

and class yc
i of the ith object. Depending on the application,

the object state yi may capture other observable properties

of interest, such as shape priors (Dame et al., 2013).

At each time t, the robot receives data from its sensors

and runs an object recognition algorithm, capable of detect-

ing instances from the set of object classes C, present in Y.

If some object y 2 Y is visible and detected from the cur-

rent robot pose xt, then a semantic measurement zt is

obtained. In the remainder, we assume that a semantic mea-

surement, zt := (ct, st, bt), consists of a detected class ct 2 C,
a detection score st 2 S, and an estimate bt 2 B of the bear-

ing from the sensor to the detected object, where S is the

range of possible scores and B is the range of bearings, usu-

ally specified by the sensor’s field of view (e.g. a camera with

B= ½�478, 478� was used in our experiments). Depending on

the sensors and the visual processing, zt could also contain

bounding box, range, color, or other information about the

detected object. Detections might also be generated by clut-

ter, which includes the background and any objects not cap-

tured on the map Y. Figure 1 illustrates the object recognition

process and the challenges associated with it. Due to false

alarms and missed detections, a randomly sized collection of

measurements is received at time t. Instead of the traditional

vector representation, it is more appropriate to model the col-

lection of semantic observations via a random finite set
2

Zt.

For any t, denote the pdf of robot state xt conditioned on the

map Y, the past semantic observations Z0:t, and the control

history u0:t21 by ptjt and that of xt + 1jY, Z0:t, u0:t by pt+ 1jt.

Problem 1 (Semantic localization). Suppose that control ut

is applied at time t � 0 and, after moving, the robot

obtains a random finite set Zt + 1 of semantic observations.

Given a prior pdf ptjtand the semantic map Y, compute the

posterior pdf pt + 1jt + 1 which takes Zt + 1and ut into

account.

Fig. 1. A mobile robot (left) localizes itself within a semantic map of the environment by detecting chairs and doors in images (top

middle), obtained from its surroundings. A semantic observation received by the robot (top right) consists of a detected class, a

detection (confidence) score, and a bearing angle to the detected bounding box. Due to the fact that object recognition misses

detections (only one of the two visible chairs is detected) and produces false positives (there is an incorrect door detection), it is

appropriate to model the collection of semantic observations via a set with randomly-varying cardinality. Finally, correct data

association between the object detections (top right) and the landmarks on the prior map (bottom right) plays a key role in the robot’s

ability to estimate its location.
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3. Semantic observation model

It is natural to approach the semantic localization problem

via recursive Bayesian estimation. This, however, requires

a probabilistic model, which quantifies the likelihood of a

random set Zt + 1 of semantic observations, conditioned on

the set of objects Y and the robot state xt + 1. Really, the first

challenge of the semantic localization problem is a model-

ing one. In Section 3.1, we model the likelihood of an

observation received from a single object in the environ-

ment. Then, in Section 3.2, we combine the single-object

observation models into an observation model for multiple

objects, which captures data association, missed detections,

and false alarms.

3.1. Observation model for a single object

The probabilistic model of a semantic observation obtained

from a single object consists of three ingredients: a detec-

tion model, an observation likelihood, and a clutter model.

The detection model quantifies the probability of detect-

ing an object y 2 Y from a given robot state x. Let b(x, y)

be the true bearing angle from the robot’s sensor to the

object y in the sensor frame.
3

Let the field of view of the

sensor
4

be described by the set FoV(x). Objects outside the

field of view cannot be detected. For the ones within, we

use a distance-decaying probability of detection:

pd(y, x) :¼ p0 exp �
m0� yp�xpk k2j j

v0

� �
if yp 2 FoV (x)

0 otherwise

8<
:

ð2Þ

where p0, m0, v0 are constants specifying the dependence

of the detection probability on distance and are typically

learned from training data. The constants might depend on

the object’s class yc but this is not explicit to simplify nota-

tion. A more complex model which depends on the relative

orientation between x and y or uses a different function of

the distance is also possible. Figure 2 illustrates the detec-

tion model. If visibility information is available from the

prior map, it should also be considered when calculating

the probability of detection.

When an object y 2 Y is detected, the probability of the

resulting measurement z = (c, s, b) is quantified by the

observation likelihood. Assuming that conditioned on the

true object state y, the bearing measurement b is indepen-

dent of the class c and score s measurements, it is appropri-

ate to model its conditional pdf pb(�jy, x) as that of a

truncated Gaussian distribution over the bearing range B
with mean b(x, y) and covariance Sb. The covariance can

be learned from training data and can be class dependent.

Since object recognition algorithms aim to be scale- and

orientation-invariant, we can also assume that the class and

score measurements are independent of the robot state x.

Then, the observation likelihood of a semantic measure-

ment z can be decomposed as

pz(zjy, x) :¼ pc(cjyc)ps(sjc, yc)pb(bjy, x) ð3Þ

where pc(cjyc) is the confusion matrix of the object detector

and ps(sjc, yc) is a score likelihood. The latter can be

learned, for example, by recording the scores from the

detected positive examples in a training set and using ker-

nel density estimation (see Figure 16). A more complicated

generative model can be used to approximate the observa-

tion likelihood pz. For example, FAB-Map (Cummins and

Newman, 2008) uses a Chow Liu tree to approximate a

probability distribution over visual words learned from

speeded-up robust features (SURF) descriptors.

Finally, a model of the pdf, pk(z), of a false-positive

measurement generated by clutter is needed. For exam-

ple, FAB-Map (Cummins and Newman, 2008) models

the probability that an observation is generated from

a place not in the prior map. In our case, pk(z) is a

product of three terms as in (3) but it is realistic to

assume that the bearing measurement is independent of

the robot state and uniformly distributed, i.e. with pdf

1=jBj. The class and score likelihoods should be learned

from data.

3.2. Observation model for multiple objects

In this section, we combine the single-object observation

models into a model of the likelihood of a set

Z = {z1,.,zm} of semantic observations. Given a robot

pose x, let Yd(x) := {y 2 Y j pd(y, x) . 0} be the set

of objects, detectable from x. In the reminder, we denote

the cardinality of Z by m and that of Yd(x) by n. As

mentioned earlier, the data association p between the

semantic observations in Z and the visible objects

in Yd(x) is important for constructing the multi-object

observation model. The following assumptions are

necessary:

Fig. 2. Probability of detecting an object within the sensor field

of view (without accounting for visibility).

76 The International Journal of Robotics Research 35(1–3)



(A1) no measurement is generated by more than one

object;

(A2) an object y 2 Y generates either a single detection

with probability pd(y, x) in (2) or a missed detection

with probability 1 2 pd(y, x);

(A3) the process of receiving false-positive measurements

is Poisson-distributed in time with expected value l

and distributed in space according to the pdf pk(z);

(A4) the false-positive process and the object-detection pro-

cess are independent and all detections are condition-

ally independent given the robot and object states;

(A5) any two measurements in Z are independent condi-

tioned on the robot state x, the detectable objects

Yd(x), and the data association p.

We specify the pdf of Z, conditioned on x and Yd(x), in

five steps of increasing complexity.

All measurements are false positive The simplest case is

when there are no objects in proximity to the sensor, i.e.

Yd(x) = ;. Then, any generated measurements would be

from clutter. The correct observation model in this case is

due to assumption (A3) of a Poisson false-positive process:

p(Zj;, x)= e�lljZj

jZj!
Y
z2Z

pk(z) ð4Þ

This integrates to 1 if we use the set integral definition

in Mahler (2007: Ch.11.3.3):

Z
p(Z) dZ :¼

X‘

m = 0

Z
p(fz1, . . . , zmg) dz1 . . . dzm

No missed detections and no false positives Next, sup-

pose that there are detectable objects in proximity to the

sensor but let the detection be perfect. In other words,

assume that every detectable object generates a measure-

ment, i.e. pd(y, x) = 1 for any y 2 FoV(x), and no measure-

ments arise in any other way, i.e. l = 0. If the number of

measurements m is not equal to the cardinality n of the set

of detectable objects Yd(x), then p(ZjYd(x), x) = 0.

Otherwise, the main challenge in this ‘‘perfect detection’’

case is identifying the correct data association p. In other

words, it is not clear which of the detectable objects Yd(x)

on the map produced which of the measurements in Z.

More formally, let Pn,m be the set of one-to-one func-

tions g : {1,.,n} ! {1,.,m} with n � m. Due to the

‘‘perfect detection’’ assumption m = n and a particular data

association can be represented by a mapping p 2 Pn,n

from the set of detectable objects to the set of measure-

ments. In this case, the data association p is just a permuta-

tion of {1,.,n} but it is not clear which of the possible

jPn,nj = n! associations is the correct one.

If a particular data association p is chosen, it is straight-

forward to combine the single-object observation likeli-

hoods in (3) via the independence assumptions (A4), (A5)

to obtain the pdf of Z:

p(ZjYd(x), x,p)=
Yn

i = 1

pz(zp(i)jyi, x)

where {y1,.,yn} is an enumeration of Yd(x). Assuming a

uniform prior
5

on the possible data associations:

p(pYd(x), x)=
1

n!
, p 2 Pn, n

existing work (e.g. FastSLAM by Montemerlo and Thrun

(2003)) resorts to maximum-likelihood estimation and

computes the likelihood of Z as follows:

p(ZjYd(x), x) =
? 1

n!
max

p2Pn, n

Yn

i = 1

pz(zp(i)jyi, x)

 !

The above equality, however, disagrees with the law of

total probability, which states that the data association

should be marginalized. The observation model in the ‘‘per-

fect detection’’ case is

p(ZjYd(x), x)=
X

p2Pn, n

p(ZjYd(x), x,p)p(pjYd(x), x)

=
1

n!

X
p2Pn, n

Yn

i = 1

pz(zp(i)jyi, x)
ð5Þ

Intuitively, all associations are plausible and (5) is quan-

tifying the likelihood of Z by averaging the likelihoods of

the individual measurements over all possible data associa-

tions. The reason, why existing work avoids this marginali-

zation, is that the summation over all n! data associations is

computationally demanding. However, in Section 4, we will

present an efficient method for computing (5). Before that,

we relax the perfect-detection assumption.

No false positives but missed detections are possible

Now, suppose that some of the objects in proximity to the

sensor might not be detected. Assuming no false positives

still, the number of measurements m should be at most the

number of detectable objects n, i.e. if m . n, then

p(ZjYd(x), x) = 0. In the case that m � n, we have p 2
Pm,n and there are Pm, nj j= nPm :¼ n!

(n�m)! possible data

associations. Let D(p) :¼ [m
j = 1fp(j)g be the set of true-

positive detections according to p and M(p) :¼
f1, . . . , ng n D(p) be the set of missed detections. Finally,

let A(p) be the event that the true-positive detections D(p)
are assigned to the measurements in Z in the way specified

by p. Then, we can quantify the likelihood of p 2 Pm,n,

using the detection model (2), as follows:

p(pjYd(x), x)=P(A(p))
×P(ffyiji 2 D(p)g are detectedg)
×P(ffyiji 2 M(p)g are missedg)

=
1

m!

Ym
j = 1

pd(yp(j), x)
Y

i2M(p)

(1� pd(yi, x))
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See Appendix B.2 for a verification that p(pjYd(x), x) is

a valid pdf. As before, we can derive the likelihood of Z by

marginalizing the data association:

p(ZjYd(x), x)=
X

p2Pm, n

p(ZjYd(x), x,p)p(pjYd(x), x)

=
X

p2Pm, n

Ym
j = 1

pz(zjjyp(j), x)

" #

1

m!

Ym
j = 1

pd(yp(j), x)
Y

i2M(p)

(1� pd(yi, x))

" #

=
1

m!

Yn

i = 1

(1� pd(yi, x))

X
p2Pm, n

Ym
j = 1

pd(yp(j), x)pz(zjjyp(j), x)

1� pd(yp(j), x)
ð6Þ

The observation model is similar to the ‘‘perfect detec-

tion’’ case in (5) but the single-object-measurement likeli-

hoods need to be scaled by the probabilities of detection. If

no measurements are received but Yd(x) 6¼;, the above sim-

plifies to:

p(;jYd(x), x)=
Yn

i = 1

(1� pd(yi, x)) ð7Þ

No missed detections but false positives are possible In

this case, n � m (otherwise p(ZjYd(x), x) = 0) and p 2
Pn,m. Again, let A(p) be the event that the true-positive

detections, Yd(x) in this case, are assigned to the measure-

ments in Z in the particular way specified by p. The likeli-

hood of p is

p(pjYd(x), x)=P(A(p))×P(fn true positivesg)
×P(fm� n false positivesg)

=
1

mPn

× 1× e�llm�n

(m� n)!

which is a valid pdf (see Appendix B.3). The likelihood of

Z is obtained by marginalizing the data association:

p(ZjYd(x), x)=
X

p2Pn,m

p(ZjYd(x), x,p)p(pjYd(x), x)

=
X

p2Pn,m

Yn

i = 1

pz(zp(i)jyi, x)

Y
j2f1, ...,mgn[n

i = 1
fp(i)g

pk(zj)
e�llm�n

m!

=
e�llm

m!

Ym
j = 1

pk(zj)
X

p2Pn,m

Yn

i = 1

pz(zp(i)jyi, x)

lpk(zp(i))

ð8Þ

Both missed detections and false positives are possible

Finally, consider the most general case that captures all arti-

facts of object recognition: missed detections, false posi-

tives, and unknown data association. If there are no

detectable objects close by, i.e. n = 0, then the pdf of Z is

given by (4). If no measurements are received, i.e. m = 0,

then the pdf of Z is given by (7). Otherwise, p 2 �Pn,m,

where �Pn,m is the set of functions g: {1,.,n} !
{0,1,.,m} with the property: g(i) = g(i0) . 0 )i = i0,
which ensures that (A1) is satisfied. The index ‘‘0’’ in the

range of g represents the case of missing a detectable

object. For example, it allows for the possibility that all

detectable objects are missed (associated with ‘‘0’’), in

which case we obtain the term in (7). The number of possi-

ble data associations in this case is

j �Pn,mj=
Xminfn,mg

k = 0

n

k

� �
mPk

where the index k indicates the number of true-positive

assignments made by a particular data association pi. The

likelihood of p 2 �Pn,m with k true-positive assignments is

p(pjYd(x), x)=P(A(p))×P(ffyijp(i).0g are detectedg)
×P(ffyijp(i)= 0g are missedg)
×P m� k false positivesf gð Þ

=
1

mPk

Y
i:p(i).0

pd(yi, x)

Y
i:p(i)= 0

(1� pd(yi, x))
e�llm�k

(m� k)!

where, as before, A(p) is the event that the k true-positive

detections are assigned to the measurements in Z in the par-

ticular way specified by p. See Appendix B.4 for a verifi-

cation that p(pjYd(x), x) is a valid pdf. As before, we can

derive the likelihood of Z by marginalizing the data

association:

p(ZjYd(x), x)

=
X

p2 �Pn,m

p(ZjYd(x), x,p)p(pjYd(x), x)

=
X

p2 �Pn,m

Y
i:p(i).0

pz(zp(i)jyi, x)
Y

j2f1, ...,mgn[n
i = 1
fp(i)g

pk(zj)

2
4

3
5p(pjYd(x), x)

= p(Zj;, x)p(;jYd(x), x)
X

p2 �Pn,m

Y
i:p(i).0

pd(yi, x)pz(zp(i)jyi, x)

(1� pd(yi, x))lpk(zp(i))

ð9Þ

To gain intuition about the semantic observation model

in this most general case, refer to Figure 3. With this model

in hand, we can state the Bayesian filtering equations

needed for semantic localization.
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Proposition 1. The Bayesian recursion which solves the

Semantic Localization problem is

Predict : pt + 1jt(x)=
R

pf (xjx0, ut)ptjt(x
0)dx0

Update : pt + 1jt + 1(x)= ht + 1p(Zt + 1jYd(x), x)pt + 1jt(x)

ð10Þ

where p(Zt + 1jYd(x), x) is the random finite set observa-

tion model in (9) and ht + 1is a normalization constant.

4. Approximating the set-based Bayes filter

While the Bayesian recursion with set-valued observations

in Proposition 1 is theoretically appealing, like its vector-

based counterpart, it is intractable. An accurate and effi-

cient approximation to the set-based Bayes filter is, there-

fore, the subject of this section. The particle filter (Thrun

et al.,2005: Ch.4) is an approximation to the Bayes filter

with vector-valued observations, which has been very suc-

cessful in practice for geometric localization. Since the

robot state is still vector-valued, we represent its pdf ptjt at

time t with a set of particles fwk
tjt, x

k
tjtg

N
k = 1:

ptjt(x)’
XN

k = 1

wk
tjtd(x� xk

tjt)

where d(�) is a Dirac delta function. The particle-filter

implementation of (10), with the motion model (1) as a

proposal distribution, is summarized in Algorithm 1.

It appears standard with the exception that, instead of

the conventional vector-based measurement update, line 6

requires computing the likelihood of the random set Zt + 1

according to (9). As mentioned earlier, it is not apparent

how to efficiently compute the sum over all data associa-

tions p. To gain intuition we begin with the simpler case of

‘‘perfect detection’’ in (5).

Fix a robot state x and consider the non-trivial case

when the received measurements Z and the detectable land-

marks Yd(x) have the same cardinality m. We can think

about the data association between Z and Yd(x) from a

graph-theoretic perspective. Represent the sets Yd(x) and Z

by the vertices of a complete balanced bipartite graph. In

detail, let V1 := Yd(x) and V2 := Z be the vertices and E be

the complete set of edges. Associate the weight we :=

pz(zjy, x) with every edge e := (z, y) 2 E and consider the

weighted bipartite graph G := (V1, V2, E, w). The data asso-

ciations p, between the objects V1 and the measurements

V2, in the ‘‘perfect detection’’ case (5), in fact, correspond

to perfect matchings
6

in G. Given a perfect matching p, the

associated product term inside the sum in (5) corresponds

to its weight. Then, the sum over all p corresponds to the

sum of the weights of all perfect matchings in G, which
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Fig. 3. Consider a localization scenario with 16 possible poses, indicated by the arrows on the left-most plot. There are three objects

in the environment: a yellow square (class 1), a cyan circle (class 2), and a blue triangle (class 3). Initially, the 16 poses are equally

likely (each has weight 1). Suppose that only a single set of semantic observations is received. The four plots to the right show how

the likelihoods of the 16 locations change, depending on the received set. At each location, the likelihood of the semantic observation

set is computed via (9) and normalized, so that the sum of the likelihoods is 16. The parameters, used in the semantic observation

model, are listed at the top of the plots. For simplicity, the semantic observations here contain only bearing and class information.

Algorithm 1. Set-based particle filter.

1: Input: Particle set fwk
tjt, xk

tjtg
N
k = 1, motion model pdf pf, observation model pdf p, semantic map Y, control input ut, set of semantic

observations Zt + 1

2: Output: Particle set fwk
t + 1jt + 1

, xk
t + 1jt + 1

gN
k = 1

3: for k = 1,.,N do

4: Predict: Draw xk
t + 1jt from pdf pf ( � jxk

tjt, ut)

5: wk
t + 1jt  wk

tjt
6: Update: wk

t + 1jt + 1
 p Zt + 1jYd(x

k
t + 1jt), xk

t + 1jt

� �
wk

t + 1jt
7: xk

t + 1jt + 1
 xk

t + 1jt
8: Normalize the weights fwk

t + 1jt + 1
gN

k = 1 and re-sample if necessary
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notably is equal to the permanent of the adjacency matrix

of G.

Definition 1 (Permanent). The permanent of an n×m

matrix A = [A(i, j)] with n � m is defined as

per(A) :¼
X

p

Yn

i = 1

A(i,p(i))

where the sum is over all one-to-one functions

p : {1,.,n} ! {1,.,m}. If n . m, then per(A) :=

per(AT).

It is now clear that the likelihood of a set of semantic

observations in the ‘‘perfect detection’’ case can be obtained

by computing the permanent of a matrix.

Proposition 2. The likelihood in (5) of a random finite set

of semantic observations, Z = {z1,.,zm}, in the case of no

false positives and no missed detections, with n :=

jYd(x)j = m detectable objects, satisfies

p(ZjYd(x), x)=
1

n!
per(Q)

where Q is a n× n matrix with Q(i, j) := pz(zjjyi, x) and

{y1, ., yn} is an enumeration of the set Yd(x) of detectable

objects.

The general case in (9), where both false positives and

missed detections are possible can be analyzed using the

same graph-matching intuition. The following is our main

result and its proof appears in Appendix C.

Theorem 1. Given a robot state x and set of detectable

objects Yd(x) with n := jYd(x)j . 0, the likelihood of a ran-

dom finite set Z = {z1, ., zm} of semantic observations,

with m . 0, when both false-positive and missed detec-

tions are possible satisfies:

p(ZjYd(x), x) =
e�llm

m!

Y
z2Z

pk(z)
Y

y2Yd (x)

(1� pd(y, x))

×

1

m!
per

Q In

1m,m 1m, n

� 	� �
, n�m

1

n!
per

QT Im

1n, n 1n,m

� 	� �
, m� n

8>><
>>:

ð11Þ

where pd(y, x) is the probability of detecting object

y 2 Yd(x), l is the expected number of false-positive detec-

tions with spatial pdf pk(�), 1n,m is a n×m matrix of all

ones, and Q is a matrix with elements:

Q(i, j) :¼ pd(yi, x)pz(zjjyi, x)

(1� pd(yi, x))lpk(zj)
,

i = 1, . . . , n
j = 1, . . . ,m

Theorem 1 maps the problem of determining the pdf of

Z in the general case in (9) to the problem of finding the

permanent of a (m + n)× (m + n) square matrix. The prob-

lem is still computationally challenging because computing

the permanent of a matrix is #P-complete
7

(Valiant, 1979).

However, Theorem 1 allows us to leverage the extensive lit-

erature on approximation algorithms for computing the

matrix permanent. The proof of Theorem 1 reduces the

problem of summing the weights of all matchings in an

unbalanced bipartite graph to the problem of summing the

weights of all perfect matchings in an unbalanced bipartite

graph and then to the problem of summing the weights of

all perfect matchings in a balanced bipartite graph. We

could stop at the first reduction, which would require cal-

culating the permanent of a rectangular matrix. The reason

for the second reduction is that existing permanent-

approximation algorithms are much better for square than

for rectangular matrices.

An exact method for computing the permanent of a

d× d matrix, proposed by Ryser (1963) and later improved

by Nijenhuis and Wilf (1978: Ch.23), is summarized in

Algorithm 2. Its time complexity is Y(d2d21). The dimen-

sion of the matrix in (11) is equal to the number of detec-

tions returned by the vision algorithm plus the number of

detectable objects within the sensor field of view, which in

some cases is often small enough to enable a real-time

implementation of Algorithm 2. Otherwise, there are a

number of polynomial-time arbitrarily-close approxima-

tions to the permanent computation. For example, Jerrum

et al. (2004) showed that for any e 2 (0, 1] and d . 0,

there exists a randomized algorithm whose output comes

within a factor (1 6e) of per(A) with probability at least

1 2 d with a random running time T such that

E(T )= O(d10( log d)3). The running time was later

improved by Bezáková et al. (2006) to O(d7(log d)4). Also,

when A 2 [0, 1]d× d is a matrix such that all row and col-

umn sums are at least gd for g 2 (0.6, 1], Law (2009:

Ch.2.2) provides an algorithm with expected running time

O(d4(log d + e22 log d21)).

Proposition 3. Given m object detections and a semantic

map with L objects, the time complexity of Algorithm 1 for

semantic localization with N particles is

O(N(m + L)2(m + L)), if the measurement update is com-

puted exactly with Algorithm 2, and O(N(m + L)7

(log(m + L))4) in expectation, if computed approximately

via the randomized method of Bezáková et al. (2006).

While the time complexity in Proposition 3 is in terms

of L, the number of objects in the environment, the running

time of the filter updates actually depends on n := jYd(x)j,
the number of detectable objects within the field of view of

each particle, which is typically much smaller than L. This,

of course, critically depends on the assumption in (2) that

the probability of detection is 0 outside of the sensor field

of view. Thus, the dimension of the matrix, whose perma-

nent needs to be calculated in (11), scales with the density

of the detectable objects within the sensor field of view,

rather than the environment size.

Using the idea of Theorem 1, similar results can be

obtained for the simpler cases with no false positives or no

80 The International Journal of Robotics Research 35(1–3)



missed detections. Appendix D shows the link between the

likelihood of a set of semantic observations and the matrix

permanent for all cases.

5. Active semantic localization

The previous sections described the sensing model and the

computational aspects of implementing a particle filter for

localization using semantic observations. In this section,

we emphasize that the observer can choose motion trajec-

tories actively in order to improve the performance of the

semantic localization. As before, let the pdf ptjt of the pose

at time t be represented by the particle set fwk
tjt, xk

tjtg
N
k = 1.

The main idea is to choose a sequence s := ut,.,ut + T21

of control inputs for the next T time steps in order to mini-

mize some measure of uncertainty in the pose. To simplify

the notation going forward, assume, without loss of gener-

ality, that the current time is t = 0. We choose to use the

entropy H(x0:T jZ1:T ) of the current and future poses x0:T

conditioned on the future semantic observations Z1:T as the

uncertainty criterion. The conditional entropy is an appro-

priate objective because it quantifies the amount of infor-

mation needed to describe the outcome of a random

quantity (the future poses) given the value of another ran-

dom quantity (the semantic observations) (Cover and

Thomas, 2006). Conditional entropy and mutual informa-

tion, a closely related measure of information, have been

successfully applied to several active perception problems

(Charrow et al., 2013; Karasev et al., 2012). Here, we con-

sider the following problem.

Problem 2 (active semantic localization). Given a prior

pdf of the pose x0, the semantic map Y, and a space S :¼
fsijsi :¼ ui

0, . . . , ui
T�1g

M
i = 1 of possible control sequences

of length T, choose the sequence s*, which minimizes the

entropy of the current and future poses x0:T, conditioned on

the future semantic observations Z1:T:

s� 2 argmin
s2S

H(x0:T jZ1:T )

subject to xs + 1;pf ( � jxs,ss), s = 0, . . . , T � 1

Zs;p( � jYd(xs), xs), s = 1, . . . , T

ð12Þ

where pf is the motion model (1) and p(�jYd(x), x) is the

semantic observation model (11).

Note that the active semantic localization problem as

stated in (12) is much simpler than a problem which asks

for a closed-loop control policy, minimizing the conditional

entropy. Reinforcement learning or dynamic programming

approaches can be used to learn such a control policy but the

complexity would be much worse than that of the solution

we offer here. In (12), the number of states, at which the cost

function needs to be evaluated, scales linearly with the num-

ber of motion primitives in S and the number of particles in

the prior pose distribution since only the reachable set of

pose pdfs need to be considered. In contrast, an approach for

computing a control policy would need to consider the space

of all possible pdfs and evaluate the cost function over it. As

we show below, evaluating the cost function in (12) even a

single time is computationally very challenging.

An important research question, which we do not

address here, is: ‘‘How should the set S of control sequence

in (12) be chosen?’’. Instead, we focus on evaluating the

entropy criterion in (12) for a given sequence s 2 S effi-

ciently. We assume that S has been designed offline and

consists of motion primitives, each with T sampling poses,

that can provide reasonable coverage of the robot’s sur-

roundings. Sixty locations with outward facing orientations

were chosen on the perimeter of a circle of radius 10 m. A

differential-drive controller was used to generate a control

sequence of length T = 5, which would lead a robot at the

origin to each of the selected locations. Figure 4 shows the

resulting set of motion primitives. They are wavy because

the controller tries to follow a straight using a discrete set

Algorithm 2. Permanent. Reproduced with kind permission from Elsevier (Nijenhuis and Wilf, 1978: Ch.23).

1: Input: d× d matrix A Output: per(A)

2: for i = 1,.,d do

3: x(i) A(i, d)� 1
2

Pd
j = 1 A(i, j)

4: s �1, g  false(d, 1), p s
Qd

i = 1 x(i)

5: for k = 2,.,2d21do

6: if k is even then j 1 Obtain next gray code subset

7: else {j 2

8: while gj21 is false do

9: j j + 1}

10: s 2s, z 1 2 2gj, gj not gj

11: for i = 1,.,d do

12: x(i) x(i) + zA(i, j)

13: p p + s
Qd

i = 1 x(i)

14: return 2(21)dp
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of velocity and angular-velocity input. The waviness pro-

vides measurement points with different orientations which

is advantageous for localization because the measurements,

collected along the way, would be diverse.

5.1. Minimizing conditional entropy

While accuracy is of utmost importance for the inference

(filtering) process, speed is crucial for the planning process

in (12). At each time step, the inference process needs to be

carried out for a single set of observations (the actual one),

but the planning process needs to envision various measure-

ment realizations and various robot responses. Since it is

desirable to plan with many control sequences and for long

time horizons, in essence, the inference process needs to be

carried out many times at each planning step. If there is to

be any hope for real-time planning, computing the objective

function in (12) needs to be extremely efficient.

Given a control sequence u0:T21, the conditional entropy

is defined as follows:

H(x0:T jZ1:T ) :¼Z Z
�g(x0:T ,Z1:T , u0:T�1) log g(x0:T , Z1:T , u0:T�1)dx0:T

� 	
p(Z1:T ) dZ1:T

ð13Þ

where p(Z1:T) is the (not conditional) pdf of the semantic

observations and we have defined

g(x0:T , Z1:T , u0:T�1) :¼
p0j0(x0)

QT
s = 1 pf (xsjxs�1, us�1)

QT
s = 1 p(ZsjYd(xs), xs)

p(Z1:T )

ð14Þ

using the assumption that the sets Z1:T are conditionally

independent, given the set of detectable objectsST
s = 1 Yd(xs) and the trajectory x1:T. This definition makes

efficient computation seem hopeless. Even if the

measurement sets Z1:T were given, the inside integral in

(13) would need to be evaluated for each of the M control

sequences with NT + 1 future particle evolutions, each

requiring T evaluations (permanent computations) of

the semantic observation likelihood. Assuming exact per-

manent computations, this makes the complexity of

obtaining just the inside integral: O(MNT + 1PT
s = 1 (jY j+ jZsj)2jY j+ jZsj)! In order to address the com-

plexity of this planning problem we will use several

approximations.

Maximum likelihood data association First, during the

planning process, there is no hope for data association via

the permanent. We resort to maximum likelihood data asso-

ciation. Given a set Z of semantic observations with m :=

jZj, for each particle x, we construct an association function

p : {1,.,m} ! {0, 1, ., jYd(x)j} by processing the mea-

surements zj, j = 1, ., m sequentially. For zj, we compute

max max
i2f1, ..., jYd (x)jg

pd(yi, x)pz(zjjyi, x),
l

jZj � q
pk(zj)

� �

where q is the number of measurements already assigned to

clutter, and let p(j) = i, if the max is achieved at a detect-

able object yi 2 Yd(x), and p(j) = 0, otherwise. Then, the

likelihood of Z is

p(ZjYd(x), x,p)=
e�l

jZj!
Y

jjp(j)= 0

lpk(zj)
Y
y2D

(1� pd(y, x))

Y
jjp(j).0

pd(yp(j), x)pz(zjjyp(j), x)

where D is the set of unassigned detectable objects. The use

of maximum likelihood data association in (14) replaces

the O
PT

s = 1 (jY j+ jZsj)2jY j+ jZsj
� �

cost of permanent com-

putations by O
PT

s = 1 jZsjjY j
� �

.

Noiseless motion Another problematic term in the

computational-complexity characterization of the inner

integral in (13) is NT + 1. It is due to the evolution of the set

of N particles over the planning horizon T. The integral can

be simplified significantly by neglecting the noise in the

motion model (1). In other words, the robot can be optimis-

tic and plan its future trajectories with a ‘‘perfect motion’’

assumption (albeit not satisfied in reality):

pf (xs + 1jxs, us)= d(xs + 1 � f (xs, us, 0)) ð15Þ

For the given control sequence u0:T21, let the (now)

deterministic evolution of the particles in the initial particle

set fwk
0j0, x

k
0j0g over the time horizon s = 0,.,T 2 1 be

xk
s + 1js + 1

:¼ f (xk
sjs, us, 0). Then, the ‘‘perfect motion’’

assumption implies that

g(x0:T , Z1:T , u0:T�1)

=
XN

k = 1

wk
0j0
QT

s = 1 p(ZsjYd(x
k
sjs), xk

sjs)

p(Z1:T )

YT
s = 0

d(xk
sjs � xs)

which in turn reduces the integral in (13) to
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Fig. 4. The set of motion primitives used for active localization.

Each segment contains five measurement poses indicated by the

red triangles.
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H(x0:T jZ1:T )=

Z
�
XN

k = 1

~wk(Z1:T ) log ~wk(Z1:T )

" #

p(Z1:T ) dZ1:T

ð16Þ

where

~wk(Z1:T ) :¼
wk

0j0
QT

s = 1 p(ZsjYd(x
k
sjs), xk

sjs)

p(Z1:T )
ð17Þ

are the normalized weights of the (updated) particle set

at time T. Note that, above, p(Z1:T) is a normalization

factor and does not need to be computed

explicitly. Combining the result in (16) with maximum

likelihood data association, reduces the

computational complexity of the inner integral (now a sum)

in (13) from O MNT + 1
PT

s = 1 (jY j+ jZsj)2jY j+ jZsj
� �

to

O MN jY j
PT

s = 1 Zsj j
� �

. Most importantly, the new com-

plexity does not have an exponential dependence on the

problem parameters.

Particle set summarization A final reduction in com-

plexity can be obtained by decreasing the number of parti-

cles that represent the prior pose distribution. Intuitively,

for planning purposes, it is not crucial to represent the dis-

tribution accurately but rather to ensure that it contains the

competing hypotheses. Charrow et al. (2013) proposed

replacing subsets of similar particles with their average in

the context of target tracking with range-only sensing. The

authors prove that for Gaussian measurement noise, the

approximation introduces a bounded error in the mutual

information between the observations and the target state.

We adopt the same idea here, despite that the measurement

noise (except the bearing noise) is not Gaussian.

Specifically, we partition the robot state space with a regu-

lar square grid and replace the particles, contained in the

same cell, with their weighted average. Depending on the

size of grid cells, this approximation can reduce the num-

ber of particles significantly (see Figure 5). We emphasize

that all of these approximations (particle summarization,

noiseless motion, maximum likelihood data association)

are used only in the planning process. The inference pro-

cess still uses the full particle set, the full semantic observa-

tion model in (11), and considers motion noise.

Now, that the evaluation of the inner integral in (13) has

been simplified significantly, we consider the outside inte-

gration over the set-valued variables Z1:T. Since not even

the cardinality of the measurement sets is known, an exact

computation would be hopeless. However, given a robot

trajectory, the semantic map Y and the semantic observation

model (11) can be used to simulate measurements from the

detectable objects and, in turn, obtain a Monte Carlo

approximation to (13).

Monte Carlo integration The key, to a fast and accurate

Monte Carlo approximation of (13), is to simulate measure-

ment sets from p(Z1:T) in a way that the samples are con-

centrated in regions that make large contributions to the

integral. Observe that, due to the particle set approximation

of the prior p0j0 and the ‘‘perfect motion’’ assumption,

p(Z1:T) is a finite mixture model:

p(Z1:T )=

Z
p(Z1:T , x0:T ) dx0:T

=

Z YT
s = 1

p(ZsjYd(x
k
sjs), xk

sjs)d(x
k
sjs � xs)p0j0(x0) dx0:T

=
XN

k = 1

wk
0j0
YT
s = 1

p(ZsjYd(x
k
sjs), xk

sjs)

An efficient way to sample from the mixture model

p(Z1:T) is to first sample the mixture component according
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Fig. 5. The left plot shows a simulation of a 2-D localization scenario with two object classes (circle, square). The prior density of the

observer’s pose is represented by the dark red particle set, which is concentrated in three locations (green). The observer has a field of

view of 360� and a sensing range of 4 m. The other parameters of the observation model were p0 = 0.73, m0 = 2.7, v0 = 35, Sb = 4�
and l = 0.5. The right plot shows the entropy of the observer’s location (in the local frame of reference) conditioned on one set of

semantic observations. As the summarized particle set contains only three particles, the entropy varies from 0 to 1.099 nats.
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to the weight wk and then sample each Zs from the condi-

tional densities. This has the additional benefit of sampling

observation sets that are likely to be encountered by the

robot and should provide a large contribution to the inte-

gral. Thus, for a given control sequence u0:T21, we follow

the following steps to estimate H(x0:T jZ1:T ):

1. sample a particle xl
0j0 from the prior particle set accord-

ing to the weights wk
0j0, k = 1, . . . ,N ;

2. compute the particle trajectory xl
s + 1js + 1

:¼ f (xl
sjs, us, 0)

for s = 0,.,T 2 1;

3. sample Zl
s from the semantic observation model

p(Zl
sjYd(x

l
sjs), xl

sjs) for s = 1,.,T;

4. compute the normalized updated particle weights

~wk(Zl
1:T ) via (17) for k = 1,.,N;

5. evaluate the inner sum: Hl :¼ �
PN

k = 1

~wk(Zl
1:T ) log ~wk(Zl

1:T );
6. repeat the above steps Nz times to obtain the Monte

Carlo approximation, H(x0:T jZ1:T )’
1

Nz

PNz

l = 1 Hl.

Figure 5 shows a Monte Carlo approximation of the

entropy of the robot pose, conditioned on a single future

observation set, in a simulated 2-D environment. The
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(A) Particle set after the first set of seman-
tic observations, particle mean (green tri-
angle), particle covariance (red ellipse),
and the actual unknown robot pose (red
triangle)
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5

−10 0 10

(B) The particle distribution converges
to 5 ambiguous poses (green arrows)
after several semantic observations.
Pose 4, unlike the rest, has two cyan
circles in its vicinity.

−10 0 10

(C) All motion primitives (yellow, in
frame of reference of pose 2), minimum-
collision-probability motion primitives
(green), and minimum-entropy-and-
collision-probability motion primitive
(magenta)

Fig. 6. A simulation of a differential-drive robot employing our active semantic localization approach to reach a goal. The

environment contains objects from three classes (square, circle, and triangle) in six areas, divided by the black obstacles. The task of

the robot is to localize itself (position and orientation) and reach pose 5, indicated by the green arrow on subplot (b). It has a field of

view of 94� and a sensing range of 12.5 m. The other parameters of the observation model were p0 = 0.73, m0 = 2.7, v0 = 35,

Sb = 5�, and l = 0.5. The robot had no prior information about its initial pose (A). The particle distribution converges to 5

ambiguous locations after several semantic observations because a yellow square and a cyan circle are detected repeatedly (B). The

robot plans its motion (using the motion primitives in Figure 4) to minimize the probability of collision and the entropy of its pose,

conditioned on five future sets of semantic observations (C). The description continues in Figure 7.
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results hint at several important considerations regarding

active localization. In particular, there is a correlation,

among the landmark distribution in the environment, the

sensing range and field of view of the robot, and the length

of the planning horizon T, which affects the performance.

On the one hand, if the sensing range and the field of view

are unrestricted, there would be no need to for active locali-

zation. The filtering process alone will be able to uniquely

identify the robot pose. On the other hand, since the plan-

ning process is inherently local, if the horizon T is not long

enough to reach perceptually distinct areas in the environ-

ment, the robot can get stuck in a local maximum (the flat

red region in Figure 5) of the entropy surface. Then, all

considered motions will have the same cost and no prog-

ress will be made. Active localization becomes particularly

attractive when the sensing range and the field of view are

limited but the environment contains distinct landmarks

within the reachable (in T steps) sensing perimeter. In such

scenarios, the planning process can improve both the effi-

ciency and accuracy of the localization filter.

5.2. Localization as a secondary objective

Often times, localization is a requisite but secondary objec-

tive for a mobile robot. In addition, a robot typically needs

to avoid collisions and reach a primary objective, such as a

goal pose in the environment. In this section, we discuss

how to combine the active semantic localization with colli-

sion avoidance and path-planning to a goal pose. First, as

discussed by Fox et al. (1998), an additional term can be
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(A) Actual robot trajectory (dotted red),
estimated trajectory (green), particle distri-
bution (dark red), particle covariance (red
ellipse), and observation set (dotted blue
lines) after the second cyan circle in area 4
(bottom right) is observed

−10 0 10

(B) Actual (dotted red) and estimated
(green) robot trajectories, intended trajec-
tory towards the goal (dotted magenta),
and minimum-entropy-and-collision-
probability motion primitive (solid
magenta) chosen to decrease the pose
uncertainty

−10 0 10

(C) The robot managed to re-localize
itself and reach the goal successfully

Fig. 7. Continuation of the active semantic localization simulation from Figure 6. The robot recognizes correctly that the best way to

disambiguate its pose is to visit the bottom-right area (A). At this point, there are only two remaining hypotheses and more weight is

starting to concentrate around the true pose. Once the robot considers itself localized (the covariance of the particle set is small), it

plans a path to the goal in the top-right area. As there are no landmarks along the hallway, the motion noise causes the uncertainty in

the robot pose to increase. Using the entropy-minimization criterion, the robot recognizes that it needs to deviate from its intended

path and visit an area with landmarks in order to re-localize (B). The robot reaches the goal successfully (C).
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added to the cost function in order to minimize the prob-

ability that a control sequence leads to a collision. Dealing

with obstacles in the environment correctly also requires

that object visibility is accounted for both in the probability

of detection pd(y, x) and in the sampling of measurement

sets for the Monte Carlo evaluation of the conditional

entropy. Second, once the robot is localized well, it can

plan a global path P= frg, consisting of a sequence of

poses r, which leads the robot to its ultimate goal. Along

the way, if re-localization is necessary the robot should not

deviate significantly from the intended path P. Thus, we

consider the following three-fold objective:

s� 2 argmin
s2S

a1H(x0:T jZ1:T )+ a2E min
r2P

d(xT , r)

� 	

+ a3 max
T

s = 1
P(xs 2 Collision)

subject to xs + 1;pf ( � jxs,ss), s = 0, . . . , T � 1

Zs;p( � jYd(xs), xs), s = 1, . . . , T

where E minr2P d(xT , r)

 �

is the expected minimum devia-

tion of the final motion sequence pose XT from the global

path P and max T
s = 1P(xs 2 Collision) is the maximum prob-

ability of collision along the chosen trajectory. The constants

a1, a2, a3 specify the relative importance of the three objec-

tives. Due to the ‘‘perfect motion’’ assumption, the last two

terms in the cost function can be computed as follows:

max
T

s = 1
P(xs 2 Collision)= max

T

s = 1

XN

k = 1

1fxk
sjs 2 Collisiongwk

0j0

 !

E min
r2P

d(xT , r)

� 	
=
XN

k = 1

min
r2P

d(xk
T jT , r)

� �
wk

0j0

ð18Þ

where 1fxk
sjs 2 Collisiong is the indicator of the set

fxk
sjs 2 Collisiong.
The performance of the active semantic localization

approach is demonstrated in simulation with a differential-

drive robot in Figure 6 and Figure 7. The task of the robot

is to localize itself globally and autonomously and subse-

quently reach a goal pose specified on the prior map. The

initial particle set is uniformly distributed over the whole

environment. In the early iterations, minimizing the entropy

will be expensive and of little value. In our experiments, the

robot either acquires several observation sets without mov-

ing (as in Figure 6(A)) or chooses motion primitives which

minimize the collision probability only (by setting a1 = 0,

a2 = 0, a3 = 1). Once the summarized particle set contains

less hypotheses, both the entropy and the probability-of-

collision criteria can be enabled to select informative trajec-

tories (see Figure 6(B) for details). We used a1 = 0.55,

a2 = 0, a3 = 0.45 before the first time the robot is localized

well (the covariance of the particle set is small). Once well-

localized, the robot can plan a path from the mode of the

distribution to the goal pose. In our experiments, we used

A* with a cost map that rewards landmark visibility. If along

the way to the goal the uncertainty in the robot pose starts

to increase due to the motion noise, the robot can carry out

the minimization in (18) with all three terms enabled. We

used a1 = 0.5, a2 = 0.05, a3 = 0.45 in this case (see

Figure 7(B) for details). The experiments demonstrate that

the robot achieves global localization autonomously, avoids

collisions in the environment, re-localizes itself if neces-

sary, and reaches the goal pose successfully. Additional

simulations, which compare our approach to other active

localization techniques, are presented in Section 6.4.

6. Performance evaluation

This section evaluates the performance of our approach in

simulation and in two real-world scenarios. Global localiza-

tion from semantic observations is demonstrated for a

differential-drive robot in Section 6.1 and for a Tango

phone (Google ATAP group, 2014) in Section 6.2.

Semantic information was obtained using deformable

part models (DPM; Felzenszwalb et al., 2010), which

achieve state-of-the-art performance in single-image object

recognition. Given an input image, an image pyramid is

obtained via repeated smoothing and subsampling.

Histograms of oriented gradients are computed on a dense

grid at each level of the pyramid. For each object class (in

the set C), a detector is applied in a sliding-window fashion

to the image pyramid, in order to obtain detection scores at

each pixel and scale (see Figure 8). The detection scores

above a certain threshold are returned, along with bounding

box, class, and bearing information. The collection of all

such measurements at time t forms the random finite set Zt.

A significant increase in detection speed is obtained via the

active approach of Zhu et al. (2014), which optimizes the

order of filter evaluations and the time at which to stop and

make a decision.

Fig. 8. A component of the deformable part model of a chair

(top) and scores (bottom) from its evaluation on an image

(middle) containing four chairs.
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In our experiments, it was sufficient to represent the

state of an object y with its position and class because

orientation and appearance variations are captured well by a

DPM-based detector. If necessary, our model can incorpo-

rate rich appearance and shape signatures by extending the

object state y and training an appropriate observation

model. This is likely to make the data association more

unimodal (i.e. make the terms in the sum in (9) dominated

by the weight of a single data association), in which case

the maximum likelihood data association approach (Section

5.1.1) would perform well. We emphasize that the perma-

nent approach can handle this scenario efficiently too. As

permanent approximation methods rely on Monte-Carlo

sampling from the data associations, fewer samples can be

used to speed up the computations. The connection between

the observation model and the permanent incorporates this

naturally and leverages state-of-the-art algorithms.

6.1. Mobile robot semantic localization

Robot platform. We carried out simulations and real-world

experiments in an indoor environment using a differential-

drive robot equipped with an inertial measurement unit

(IMU), magnetic wheel encoders, a Kinect RGB-D camera

with Nyko Zoom wide-angle lens, and a Hokuyo UTM-

30LX 2D laser range finder. The IMU and the encoders

were integrated using a differential-drive model and

Gaussian noise was added to obtain the motion model in

(1). Only the RGB images were used for semantic observa-

tions. The depth was not used, while the lidar was used to

provide a ground-truth trajectory in the real-world experi-

ments, via geometric Monte Carlo localization.

Algorithm 1 was used for semantic localization. The mea-

surement updates were performed using the exact perma-

nent algorithm (Algorithm 2). The performance is

demonstrated for global localization, which means that the

robot had no prior information about its initial pose.

The detection model pd(y, x), the measurement likeli-

hood pz(zjy, x), and the clutter model pk(z) were obtained

from training data as discussed in Section 3.1. The angle of

view of the wide-angle lens was 94�, the detection range

10 m, and the following parameters were learned:

p0 = 0.92, m0 = 3.5, v0 = 20.52, and Sb = 4�. The seman-

tic map in the real-world experiment contained doors (class

1) and chairs (class 2). The confusion matrix was

pc(cjyc)=
0:94 0:08

0:06 0:92

� 	

while the detection score likelihood is shown in Figure 16.

Simulation results. A simulated environment of size

25× 25 m2 was populated by objects with randomly-

chosen positions and classes (see Figure 12). The robot

motion was simulated along a pre-specified trajectory.

Semantic observations were simulated using the learned

detection, clutter, and measurement likelihood models. The

error in the estimates, averaged over 50 repetitions with

different randomly-generated scenes, is presented in Figure

15. Since the robot starts with a uniform prior over the

whole environment, the error is large in the initial itera-

tions. Multiple hypotheses are present until enough seman-

tic measurements are obtained to localize the robot

uniquely. The performance is also demonstrated in a chal-

lenging scenario with a lot of ambiguity in Figure 13. The

reason for using only two classes in the experiments was to

increase the ambiguity in the data association. Our

approach can certainly handle more classes and a higher

object density. Figure 14 shows a simulation with clutter

rate l = 4 and 150 objects from 5 classes in a 25× 25 m2

area. Scenarios with such high object density necessitate

the use of an approximate permanent algorithm for real-

time operation.

Real experiments. The robot was driven through a long

hallway containing doors and chairs. Four data sets were

collected from the IMU (at 100 Hz), the encoders

(at 40 Hz), the lidar (at 40 Hz), and the RGB camera

(at 1 Hz). Lidar-based geometric localization was per-

formed via the ROS amcl package (Howard and Gerkey,

2002) and the results were used as the ground truth.

Extension 1 contains a video of the experiment. The lidar

and semantic estimates of the robot trajectory are shown in

Figure 9. The error between the two, averaged over the four

runs, is presented in Figure 17. The error is large initially

because, unlike the lidar-based localization, our method

was started with an uninformative prior. Nevertheless, after

the initial global localization stage, our approach achieves

average errors in the position and orientation estimates of

less than 35 cm and 10+, respectively. The particle filter

evolution is illustrated in Figure 11 along with some object

detections.

Comparison with maximum likelihood data association.

We compared our permanent-based data association (PER)

approach to the more traditional maximum likelihood data

association (MLD) approach, used for example in

FastSLAM (Montemerlo and Thrun, 2003). PER is based

on Algorithm 1 with an exact permanent computation

(Algorithm 2) on line 6. MLD is based on Algorithm 1 also

but the set of detections on line 6 is processed sequentially

as described in Section 5.1.1. The two approaches were

compared on the four real datasets (Figure 9) and on the

simulations in Figures 12 and 13. Because we assume

semantically-meaningful measurements, the observation

sets in our comparison had relatively low cardinalities. Of

course, if there are many observations per time step (e.g.

SIFT features), MLD would be significantly more efficient

than the exact permanent algorithm. In future work, we

plan to compare MLD with our approach with an approxi-

mate permanent computation.

The performance is presented in Table 1 for two types

of initializations: local (L), for which the initial particle set

had errors of up to 1 m and 30+, and global (G), for which

the set was distributed uniformly over the environment.

MLD(L) performs as well as PER(L) in the real experi-

ments and in Figure 13. In Figure 12, the data association
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is highly multi-modal and MLD(L) does not converge even

with 15,000 particles. This is reinforced in the global initia-

lization cases. While PER(G) performs well with 3000 par-

ticles, MLD(G) needs 40,000 to converge consistently on

the real datasets and is slower at the same level of robust-

ness. In Figure 12 and Figure 13, MLD(G) does not con-

verge even with 100,000 particles. We conclude that once

the particles have converged correctly MLD performs as

well as PER. However, with global initialization or ambigu-

ous data association, MLD makes mistakes and can never

recover, while PER is robust with a small number of

particles.

6.2. Global localization for Project Tango

The Project Tango phone (Google ATAP group, 2014) is

designed to track its full 3-D motion and create a geometric

map of the environment. However, it does not use an abso-

lute reference to the world and provides localization, only

with respect to its initial frame of reference. We demon-

strate that our semantic localization approach can provide

global positioning of the Tango phone within an existing

map of semantically meaningful landmarks.

The Tango phone is equipped with an IMU, a front-

facing (120� field of view) camera, a rear-facing RGB/IR

narrow (68� field of view) camera, and a rear-facing fish-

eye (180� field of view) camera. It provides a 6-D position-

quaternion estimate of its pose and associated covariance,

over time, within the initial frame of reference. In our

experiments, this local trajectory was used as the motion

model (1) in the prediction step in Algorithm 1. The update

step was performed using semantic observations (class,

score, and bearing) only from the narrow camera RGB

images. The same hallway, as in the robot experiment

(Section 6.1), was traversed several times with the phone.

RGB images from the narrow camera (at 30 Hz) and the

Tango visual odometry (at 30 Hz) were recorded. The prior

semantic map of the environment (see Figure 10) contained

doors (class 1), red chairs (class 2), and brown chairs (class

3). Two of the runs were used to train the object detector

and to learn the observation model parameters: sensing

range 15 m, p0 = 0:71 0:81 0:82ð ÞT, v0 = 35.4,

m0 = 2.7, Sb = 5�, l = 0.76, and confusion matrix:

pc(cjyc)=
0:98 0 0

0 0:94 0:08

0:02 0:06 0:92
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Fig. 9. Robot trajectories estimated by lidar-based geometric

localization (red), image-based semantic localization (blue), and

odometry (green) in the real experiment described in Section 6.1.

The starting position, the door locations, and the chair locations

are denoted by the red cross, the yellow squares, and the cyan

circles, respectively. See Extension 1 for more details.
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Fig. 10. Tango phone trajectory (red) estimated via semantic localization in the real experiment described in Section 6.2. The

semantic map contains doors (yellow squares), red chairs (cyan circles), and brown chairs (blue triangles). Ground-truth information is

not available for this experiment. See Extension 3 for more details.
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Fig. 11. Particle filter evolution (bottom) and object detections (top) during a real semantic localization experiment.
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Our semantic localization approach was used to recover

the global Tango trajectories in the rest of the runs. Since

the prior semantic map contained 2-D object positions,

only the horizontal bearing angle was used to update the 2-

D position and yaw angle of the phone. A good estimate of

the phone’s pitch and roll angles can be obtained from the

local 6-D trajectory (provided by the Tango phone). Thus,

the global semantic localization was performed in 5-D

(without the z-axis). This can be extended, of course, if ver-

tical bearing measurements are used and the landmarks in

the prior map are annotated with z-coordinates. The active

DPM-based detector of Zhu et al. (2014) was used for

object recognition. The likelihoods of the semantic obser-

vations were computed via the exact permanent algorithm

(Algorithm 2). Videos, from two of the experiments, are

provided in Extensions 2 and 3. The phone trajectory,

recovered from the second run (Extension 3), is shown in

Figure 10. Unfortunately, ground-truth trajectories are not

available for these experiments. The videos show 9 global

localization trials, in which, on average, 11 sets of semantic

observations were needed to obtain an accurate estimate of

the phone pose in the prior map. They demonstrate that our

algorithm can repeatedly re-localize and track the phone

pose within the same environment. Moreover, our semantic

localization approach is very robust to perceptual aliasing

and can improve the visual odometry provided by the

phone in ambiguous environments and when closing loops.

6.3. Evaluation on the KITTI dataset

This section evaluates the performance of our global

semantic localization approach on the KITTI visual
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Fig. 12. A simulated environment with 45 objects from two classes (yellow squares, blue circles). The plots show the evolution of the

particles (red dots), the ground truth trajectory (green), and the estimated trajectory (red). The expected number of clutter detections

was set to l = 2.
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Fig. 13. A simulated example of semantic localization in the

presence of severe perceptual aliasing. The ground truth

trajectory (blue) and the evolution of the particle positions (red

points) and orientations (red lines, top left) are shown.
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Fig. 14. A simulated environment with 150 objects from 5

classes (circles, squares, triangles, crosses, and diamonds) in a

25× 25 m2 area. The plots show the particles (red dots), the

ground truth trajectory (green), and the estimated trajectory (red)

for clutter rate l = 4.

Fig. 15. Root-mean-squared error (RMSE) in the pose estimates obtained from the semantic localization algorithm after 50 simulated

runs of the scenario in Figure 12.

Atanasov et al. 89



odometry dataset (Geiger et al., 2013). The dataset con-

sists of 22 sequences of color stereo images (0.5 mega-

pixels in png format) and 3-D Velodyne point clouds

(100,000 points per frame) recorded from a vehicle, driv-

ing through residential areas. Eleven sequences (00–10)

contain ground-truth vehicle trajectories provided by a

GPS/IMU system with real-time kinematic correction.

Only sequences {00, 05, 06, 07, 08, 09, 10} were used in

our experiments because the rest either had too few static

landmarks or did not contain ground-truth information.

The cars (class 1) and windows (class 2) in the RGB

image sequences were labeled in order to build prior

semantic maps. The Velodyne range information was

mapped to the images and the ground-truth trajectories

were used to project the labeled objects to the 3-D world

coordinate frame. The final semantic maps are provided

Table 1. Comparison of maximum likelihood data association (MLD) and our permanent-based data association approach (PER) with

the exact permanent computation (Algorithm 2) on the four robot datasets (Figure 9) and the simulations in Figures 12 and 13. Two

types of initializations were used: local (L), for which the initial particle set had errors of up to 1 m and 30�; and global (G), for which

the initial particle set was uniformly distributed over the whole environment. Number of particles (NP) in thousands, position error

(PE), orientation error (OE), and filter update time (UT), averaged over time, are presented. The first MLD(G) column uses the same

number of particles as PER(G), while the second uses a large number in an attempt to improve the performance.

Figure 9 MLD(L) MLD(G) MLD(G) PER(L) PER(G)

NP [K] 0.50 3.00 40.0 0.50 3.00
PE [m] 0.26 22.9 0.31 0.26 0.26
OE [degrees] 2.54 107 2.75 2.67 2.69
UT [s] 0.023 0.060 0.600 0.065 0.320

Figure 12 MLD(L) MLD(G) MLD(G) PER(L) PER(G)

NP [K] 0.50 5.00 100 0.50 5.00
PE [m] 15.3 24.9 17.3 0.32 0.72
OE [degrees] 67.0 68.8 72.8 4.58 9.17
UT [s] 0.012 0.062 1.100 0.042 0.400

Figure 13 MLD(L) MLD(G) MLD(G) PER(L) PER(G)

NP [K] 0.50 24.0 100 0.50 24.0
PE [m] 0.27 48.8 26.9 0.11 2.35
OE [degrees] 3.68 112 74.9 2.08 4.05
UT [s] 0.027 0.760 3.340 0.062 2.620

The reported times are from a MATLAB implementation on a computer with i7 CPU@2.3 GHz and 16 GB RAM. The timing results include only the

time needed to perform data association and update the weights for all particles. The time required for object recognition is not included because it is

the same for both methods.

Fig. 16. Detection score likelihoods obtained from training images.

Fig. 17. RMSE between the pose estimates from semantic localization and from lidar-based geometric localization obtained from four

real experiments.
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in Extension 4 and the map for sequence 00 is shown in

Figure 18.

The pre-trained deformable-part car models provided in

the KITTI object dataset were used for car recognition.

Sequence 07 was used to train a deformable-part-model-

based window detector and to obtain parameters for the

single-object detection model pd(y, x), observation likeli-

hood pz(zjy, x), and clutter model pk(z). The car detection

model was nonzero for a distance range of [3, 33] m and

used parameters p0 = 0.7, m0 = 11.8, v0 = 14. The window

detection model was non-zero in the range [7, 24] with

parameters p0 = 0.7, m0 = 12.7, v0 = 7. The rest of the

parameters were: pc(cjyc) = I2, sensing range 32 m, field of

view 80�, Sb = 5�, and l = 0.5.

Visual odometry via Viso2 (Geiger et al., 2011) was

used for the prediction step in Algorithm 1. Viso2 provides

a 6-D local trajectory. As in the Tango experiments

(Section 6.2), only the 2-D position and the yaw angle of

the trajectory were updated via our method. The likeli-

hoods of the car-window semantic observations were com-

puted via the exact permanent algorithm (Algorithm 2).

Global semantic localization was carried out on sequences

00, 05–10. The vehicle trajectory, recovered from sequence

00, is shown in Figure 18 along with some object detec-

tions. A video of the experiment is included in Extension 5.

An additional experiment, in which the localization was

restarted every 400 iterations, was carried out on sequence

00 and is presented in Extension 6. The experiment demon-

strates that our algorithm can repeatedly and successfully

re-localize and track the vehicle pose within the same envi-

ronment. Finally, the results of the global semantic localiza-

tion on the rest of the sequences (05–10) are presented in

Extensions 7–12. The localization errors with respect to the

ground-truth trajectories from all experiments are presented

in Figure 19. Initially, the errors are large because our

method is started with an uninformative prior (a uniform

distribution in the area around the landmarks).

Nevertheless, after the initial global localization stage, our

approach achieves average errors in the position and orien-

tation estimates of less than 1 m and 5�, respectively. Even

though the data association obtained from permanent com-

putations is very robust to perceptual aliasing, sometimes,

the ambiguity in the environment is large enough to cause

particle depletion problems. For example, if resampling is

done too frequently and there is no way to detect if the sys-

tem is lost (i.e. the particle distribution is never reset), the

localization might fail. Such a fail case is shown in

Extension 13.

To demonstrate that localization from semantic observa-

tions is complementary to existing odometry and SLAM

techniques, we also carried out tracking experiments, in

which the initial vehicle pose was known. In Figure 20, the

position and orientation errors obtained from visual odo-

metry are compared to those obtained from visual odome-

try, combined with our semantic localization approach.

Even though visual odometry provides excellent tracking

results by itself, the addition of semantic observations pro-

vides a reference to the absolute (semantic map) frame and

improves the results.

6.4. Active semantic localization simulations

In this section, we evaluate the performance of the active

semantic localization approach (Section 5.1) by comparing

it with three other active localization methods in simula-

tion. The simulations use a differential-drive robot model

and the motion primitives in Figure 4. Fifty environments

of size 120× 120 m2 containing 300 objects from 3 classes

(square, circle, triangle) were generated by sampling ran-

dom points and placing one of three possible four-object

structures (square–square–circle–triangle, square–circle–

circle–triangle, or square–triangle–circle–triangle) in order

to create perceptual ambiguity (see Figure 21). A start and

a goal pose for the robot were chosen in the top-left and
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Fig. 18. Vehicle trajectory estimated via global semantic localization on sequence 00 from the KITTI visual odometry dataset. The

left and middle plots show two images with car and window detections and the corresponding particle distributions in the semantic

map. The plot on the right shows the semantic map and the trajectory, recovered after unique localization (iteration 70). See

Extensions 5 and 6 for more details.
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bottom-right corners of each environment, respectively.

The semantic localization algorithm (Algorithm 1 with

exact permanent computation via Algorithm 2) was initia-

lized with a uniform particle distribution over the whole

environment. Semantic observations were simulated using

the learned detection, clutter, and measurement likelihood

models for cars and windows (from the KITTI dataset in

Section 6.3) and red chairs (from the Tango experiments in

Section 6.2), corresponding to squares, circles, and trian-

gles, respectively. For each environment, semantic observa-

tions were collected, while moving in a straight line, and

the filter was updated without resampling until there were

100 effective particles (see Figure 21 for an example of the

initial particle set). Starting with this initial particle distri-

bution, the following methods were compared with our

active semantic localization approach.

� RND: chooses a motion primitive (from the ones in

Figure 4) at random.

� MIN: chooses the motion primitive, which drives the

mean of the particle distribution closest to the closest

landmark in the environment.
� BEM: chooses a motion primitive by minimizing the

entropy of the robot pose conditioned on the future

bearing measurements only (see Appendix E for

details).

The methods were used to choose motion primitives if

the entropy in the particle distribution (computed by discre-

tizing the robot state space into cells of size 2.5× 2.5 m2

and 25� and replacing the particles, contained in the same

cell, with their average) increased above 2.5 bits.

Otherwise, if the entropy decreased under 2.5 bits, each

method planned a trajectory from the mean of the particle

distribution to the goal state using A* and followed it using

a deterministic controller. The trajectories, followed by the

four active localization methods, and the associated

particle-distribution entropies are shown for one of the
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Fig. 19. Position (Euclidean distance) and orientation errors of the vehicle trajectories recovered via global semantic localization on

sequences {00, 05, 06, 07, 08, 09, 10} from the KITTI visual odometry dataset. The plot, titled ‘‘Sequence 00 + Restarts’’, shows

results from an experiment in which the localization was restarted every 400 iterations. Extensions 5–13 provide videos of all

experiments.

Table 2. Comparison of the average (over 50 simulated environments) performance of the four active semantic localization

approaches, referenced in Figure 21. The average Euclidean distance between the start and the goal positions was 251 m. If the goal

was not reached in 1000 iterations, the experiment was terminated. The table presents averages of the number of iterations until

termination, the Euclidean distance to the goal at termination, the entropy in the particle distributions, and the position and orientation

errors with respect to the ground-truth robot trajectory.

Method Average number
of Steps

Average distance
to goal [m]

Average
entropy [bits]

Average position
error [m]

Average orientation
error [deg]

RND 595 35.02 3.00 22.17 12.48
MIN 508 35.58 2.83 27.58 11.98
BEM 447 16.22 3.05 18.49 11.13
ASL 345 12.09 2.05 12.59 6.37
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simulated environments in Figure 21. Performance statis-

tics, averaged over the 50 environments, are presented in

Table 2. The results show that, on average, our active-

semantic-localization approach reaches the goal in less

iterations, with lower particle-distribution entropy, and with

lower estimation error, compared to the other three

approaches. Of course the approach is also a lot more com-

putationally demanding. As expected, the random approach

performs the worst because when there no landmarks in

proximity to the robot, it might spend a long time until re-

localization. The BEM approach demonstrates much better

performance but the main problem with it and the MIN

method is that they rely on the mean of the particle distri-

bution for planning. Sometimes, when the mean is far from

the true pose, these methods choose trajectories, which do

not necessarily result in improved localization accuracy.

7. Conclusion

Modeling the semantic information obtained from object

recognition with random finite sets enables a unified treat-

ment of data association, missed detections, and clutter.

The efficient use of this semantic observation model for

Bayesian filtering depends critically on the connection with

the matrix permanent. Simulations of our approach showed

precise and robust localization from semantic information

in various scenarios and over many repetitions. Compared

with maximum likelihood data association, our solution is

more robust to perceptual aliasing and offers superior perfor-

mance in cases of global localization and loop-closure. The

real experiments demonstrated that the accuracy of the seman-

tic localization method is comparable with the laser-based

geometric approaches. More importantly, due to the semanti-

cally meaningful observations, our approach is able to repeat-

edly solve the global localization problem in real

environments. Finally, to enable autonomous localization, we

addressed the active semantic localization problem, in which

the observer’s trajectory is selected to minimize the entropy in

the pose distribution conditioned on the future semantic mea-

surements. The simulations demonstrated that our method,

although computationally demanding, outperforms simpler

active localization heuristics. Future work will attempt to

replace the particle filter with more sophisticated estimation
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Fig. 21. The left plot shows the trajectories, followed by four different active-semantic-localization approaches, which localize and

lead a differential-drive robot to a goal pose in a simulated environment containing 300 objects from 3 classes (yellow square, cyan

circle, blue triangle). The initial particle distribution is shown by the black dots. The four methods are: (1) ASL, active semantic

localization presented in Section 5.1; (2) RND, chooses motion primitives at random; (3) MIN, chooses the motion primitive that

drives the particle mean closest to the closest landmark; (4) BEM, bearing-only entropy minimization (see the text for details). The

right plot shows the particle-distribution entropies along the trajectories associated with each method.
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techniques that handle both discrete (e.g. object classes) and

continuous (e.g. object poses) measurements. Examples

include inference algorithms for graphical models in the spirit

of Kaess et al. (2012) or online optimization techniques such

as Jadbabaie et al. (2015). Extensions to semantic mapping

and semantic SLAM are of great interest as well.
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Notes

1. Visual-odometry and SLAM techniques typically do not use

an absolute reference to the world and do not provide global

localization. The initial robot pose is chosen as the map origin

and is simply tracked over time.

2. See Mahler (2007: Appendix F) for a formal definition of a

random finite set

3. For example, in two dimensions, assuming the robot and the

sensor frames coincide, b(x, y) := jtan21((xp(2) 2 yp(2))/

(xp(1) 2 yp(1))) 2 xrj.
4. The field of view of a camera in two dimensions, assuming

its frame coincides with the robot’s, can be represented by

fw 2 R
2j xp � wk k2� rd ,b(x,w)�adg, where ad is the

angle of view and rd is the maximum range at which an object

can be detected.

5. It is possible to track the data association distribution over

time (see Bar-Shalom et al. (2009)).

6. A matching in graph G is a subgraph of G in which no two

edges share a common vertex. The weight of a matching is

the product of all of its edge weights. A matching is perfect if

it contains all of G’s vertices.

7. A #P-complete problem is equivalent to computing the num-

ber of accepting paths of a polynomial-time nondeterministic

Turing machine and #P contains NP.
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Appendix A: Index to Multimedia Extensions

Archives of IJRR multimedia extensions published prior to

2014 can be found at http://www.ijrr.org, after 2014 all

videos are available on the IJRR YouTube channel at http://

www.youtube.com/user/ijrrmultimedia

Appendix B: Validity of the data association

pdfs

For simplicity, let pd(yi, x) = pd(yj, x) [pd for all i, j in this

section. We verify that p(pjYd(x), x) is a valid pdf in each of

the following cases.

B.1. No missed detections and no false

positives

In this case, p 2 Pn,n with likelihood p(pjYd(x), x) = 1/n!,

which sums to one as follows:

X
p2Pn, n

p(pjYd(x), x)=
1

n!
jPn, nj= 1

B.2. No false positives but missed detections

are possible

In this case, p 2 Pm,n with likelihood:

p(pjYd(x), x)=
1

m!
pm

d (1� pd)
n�m

which sums to one using the binomial theorem:

Xn

m = 0

X
p2Pm, n

p(pjYd(x), x)=
Xn

m = 0

nPm

1

m!
pm

d (1� pd)
n�m

= (pd + (1� pd))
n = 1

B.3. No missed detections but false positives

are possible

In this case, p 2 Pn,m with likelihood:

p(pjYd(x), x)=
1

mPn

e�llm�n

(m� n)!

which sums to one as follows:

X‘

m = n

X
p2Pn,m

p(pjYd(x), x)=
X‘

m = n

mPn

1

mPn

e�llm�n

(m� n)!
= 1

B.4. Both missed detections and false positives

are possible

The likelihood of p 2 �Pn,m with k true positive assign-

ments is

p(pjYd(x), x)=
1

mPk

pk
d(1� pd)

n�k e�llm�k

(m� k)!

which sums to one as follows:

X‘

m = 0

Xminfm, ng

k = 0

n

k

� �
mPkp(pjYd(x), x)

=
X‘

m = 0

Xminfm, ng

k = 0

n

k

� �
pk

d(1� pd)
n�k e�llm�k

(m� k)!

=
Xn

m = 0

Xm

k = 0

n

k

� �
pk

d(1� pd)
n�k e�llm�k

(m� k)!

+
X‘

m = n + 1

Xn

k = 0

n

k

� �
pk

d(1� pd)
n�k e�llm�k

(m� k)!

switch

index order

Xn

k = 0

Xn

m = k

n

k

� �
pk

d(1� pd)
n�k e�llm�k

(m� k)!

+
Xn

k = 0

X‘

m = n + 1

n

k

� �
pk

d(1� pd)
n�k e�llm�k

(m� k)!

=
Xn

k = 0

n

k

� �
pk

d(1� pd)
n�k

X‘

m = k

e�llm�k

(m� k)!

" #
= 1

Table of Multimedia Extensions

Extension Media
type

Description

1 Video Mobile robot localization from
semantic observations

2 Video Global positioning of the Tango phone
3 Video Global positioning of the Tango phone
4 Data Car and window positions used for the

semantic maps in the KITTI dataset
experiments

5 Video Global semantic localization on KITTI
dataset sequence 00

6 Video Global semantic localization on KITTI
dataset sequence 00 with several
restarts

7 Video Global semantic localization on KITTI
dataset sequence 05

8 Video Global semantic localization on KITTI
dataset sequence 06

9 Video Global semantic localization on KITTI
dataset sequence 07

10 Video Global semantic localization on KITTI
dataset sequence 08

11 Video Global semantic localization on KITTI
dataset sequence 09

12 Video Global semantic localization on KITTI
dataset sequence 10

13 Video Global semantic localization on KITTI
dataset sequence 08 (fail case)
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Appendix C: Proof of Theorem 1

Let V1 := Yd(x) and V2 := Z be the vertices of a weighted

complete bipartite graph G := (V1, V2, E, w), where the

weight we associated with e := (i, j) 2 E is Q(i, j). The func-

tions p in (9) specify different data associations between

the objects V1 and the measurements V2. The introduction

of missed detections (‘‘0’’ in the range of p) means that

some detectable objects need not to be assigned to a mea-

surement in Z. As any object could be missed, the data asso-

ciations p correspond to matchings (not necessarily perfect

as before) in the graph G. Given a matching p, the associ-

ated product term inside the sum in (9) corresponds to the

weight of p. The sum over all p corresponds to the sum of

the weights of all matchings in G. The sum of the weights

of all k-matchings (matchings with k edges) can be com-

puted via the kth subpermanent sum of the adjacency

matrix Q of G.

Definition 2 (Subpermanent sum). Let A be an n×m non-

negative matrix with n � m and let Qk,n be the set of all

subsets of cardinality k of 1,.,n. For a 2 Qk,n and

b 2 Qk,m let A½a,b� :¼ ½A(ai,bj)�ki, j = 1 be the correspond-

ing k× k submatrix of A. Define per0(A):= 1 and

perk(A) :¼
X

a2Qk, n,b2Qk,m

per(A½a,b�), k = 1, . . . , n

Then, the sum in (9) is equal to the sum over the weights

of all k-matchings:

X
p

Y
ijp(i).0

pd(yi, x)pz(zp(i)jyi, x)

(1� pd(yi, x))lpk(zp(i))
=
XjYd (x)j

k = 0

perk(Q) ð19Þ

where the assumption that jYd(x)j � m is used. The fol-

lowing two lemmas describe a reduction from the problem

of summing all subpermanent sums of a rectangular matrix

(or matchings in an unbalanced bipartite graph) to the prob-

lem of the permanent of a rectangular matrix (or perfect

matchings in an unbalanced bipartite graph) and then to the

problem of the permanent of a square matrix (or perfect

matchings in a balanced bipartite graph).

Lemma 1. Let An,m be an n×m matrix with n � m.

Then,

Xn

k = 0

perk(An,m)= per An,m In½ �ð Þ

Proof. Associate A with a weighted complete bipartite

graph GA := (V1 := {1, ., n}, V2 := {1,.,m}, E, wA),

where the weights wA corresponding with the entries of A.

To obtain the graph GB associated with B :¼ An,m In½ �
add n dummy nodes V3 to V2 and n edges of weight 1. For

k 2 {0,.,n}, fix subsets a 2 Qk,n and b 2 Qk,m using the

notation from Definition 2. A perfect matching in GB asso-

ciated with a and b corresponds to:

� a k-matching between a 2 V1 and b 2 V2 of weight

per(A[a, b]);
� a (n 2 k)-matching between V1\a and V3 of weight 1.

Then, per(B) is the sum of all perfect matchings in GB:

per(B)=
Xn

k = 0

X
b 2 Qk,m

a 2 Qk, n

per(A½a,b�)=
Xn

k = 0

perk(A)

where the last equality follows directly from Definition 2.

Lemma 2. Let An,m be an n×m matrix with n � m.

Then,

per(An,m)=
1

(m� n)!
per

An,m

1m�n,m

� 	� �

where 1m2n,mis a (m 2 n)×m matrix of all ones.

Proof. Associate A with a weighted complete bipartite

graph GA := (V1 := {1,.,n}, V2 := {1,.,m}, E, wA),

where the weights wA correspond with the entries of A. To

obtain the graph GB associated with

B :¼ AT
n,m 1Tm�n,m


 �T
dummy nodes V3 to V1 and (m 2

n)m edges of weight 1. Fix a subset b 2 Qm2n,m using the

notation from Definition 2. A perfect matching in GB asso-

ciated with b corresponds to:

� a n-matching between V1 and V2\b of weight

per(A[V1, V2\b]);
� a (m 2 n)-matching between V3 and b of weight

(m 2 n)!.

Then, per(B) is the sum of all perfect matchings in GB:

per(B)=
X

b2Qm�n,m

(m� n)!per(A½V1,V2 n b�)

= (m� n)!per(A)

where the last equality follows directly from Definition 2.

The proof is completed by combining the two reductions

above to write the sum in (19) as

XYd (x)j j

k = 0

perk(Q)=
1

m!
per

Q I Yd (x)j j
1m,m 1m, jYd (x)j

� 	� �

Atanasov et al. 97



Appendix D: Summary of the semantic

observation models

Tables 3–6 provide a summary of the semantic observation

models.

Appendix E: Active bearing-only localization

Finally, we present details about the bearing-only entropy

minimization (BEM) method. It solves the active semantic

localization problem in (12) but the pose entropy is condi-

tioned only on the future bearing measurements:

s� 2 argmin
s2S

H(x0:T jB1:T )

subject to xs + 1 = f (xs,ss, vs), s = 0, . . . ,T � 1

Bs = fb(xs, y)+ hsjyp 2 FoV (xs)g, s = 1, . . . , T

ð20Þ

where hs;N (0,Sb) is the bearing-measurement noise and

Bs is the set of bearing measurements obtained at time s.

Since the robot motion model f(x, u, v) and the bearing

measurement model b(x, y) are continuous functions of the

robot state x and landmark states y, perturbed by Gaussian

noise, we can linearize them to simplify the above problem.

In detail, let �xs be the mean of the particle distribution at

time s and define dxs :¼ xs � �xs. We linearize the con-

straints in Problem (20) around the means �xs and b(�xs, y)
to obtain

s� 2 argmin
s2S

H(dx0:T )� I(dx0:T ; dB1:T )

subject to �xs + 1 = f (�xs,ss, 0), s = 0, . . . ,T � 1

dxs’
∂f

∂x
(�xs,ss, 0)

� 	
dxs +

∂f

∂v
(�xs,ss, 0)

� 	
vs

dBs’
∂b

∂x
(�xs, y)dxs + hsjyp 2 FoV (xs)

� �
, s = 1, . . . , T

ð21Þ

Table 3. No missed detections and no clutter: the likelihood p(ZjYd(x), x) of a set of semantic observations Z is shown for different

combinations of m := jZj and n := jYd(x)j. The dependence of the likelihoods on x is omitted for clarity.

n6¼m 0

0 = m = n 1

0 \ m = n 1
m! per

pz(z1jy1) � � � pz(zmjy1)

..

. ..
.

pz(z1jyn) � � � pz(zmjyn)

2
64

3
75

Table 4. No clutter but missed detections are possible: the likelihood p(ZjYd(x), x) of a set of semantic observations Z is shown for

different combinations of m := jZj and n := jYd(x)j. The dependence of the likelihoods on x is omitted for clarity.

n \ m 0

0 = m � n
Qn

i = 1

(1� pd(yi))

0 \ m � n
1

m!(n� m)!
per

pd(y1)pz(z1jy1) � � � pd(y1)pz(zmjy1) 1� pd(y1) � � � 1� pd(y1)

..

. ..
. ..

. ..
.

pd(yn)pz(z1jyn) � � � pd(yn)pz(zmjyn) 1� pd(yn) � � � 1� pd(yn)

2
64

3
75

Table 5. No missed detections but clutter is possible: the likelihood p(ZjYd(x), x) of a set of semantic observations Z is shown for

different combinations of m := jZj and n:= jYd(x)j. The dependence of the likelihoods on x is omitted for clarity.

m \ n 0

0 = n � m e�llm

m!

Qm
j = 1

pk(zj)

0 \ n � m
e�l

m!(m� n)!
per

pz(z1jy1) � � � pz(zmjy1)

..

. ..
.

pz(z1jyn) � � � pz(zmjyn)
lpk(z1) � � � lpk(zm)

..

. ..
.

lpk(z1) � � � lpk(zm)

2
666666664

3
777777775
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Let C0 be the covariance of the prior particle distribution

and assume that dx0;N (0,C0). Since the constraints in

(21) are linear and the measurement noise is Gaussian, the

distribution of dxs remains Gaussian for s = 1,.,T. In par-

ticular, it can be computed via the Kalman filter. In addi-

tion, the entropy and mutual information of Gaussian

random variables depend only on the associated covariance

matrices (and not on the particular measurement realization

dB1:T) and can be computed in closed form. Thus, we com-

pute the cost for each control sequence s 2 S and choose

the sequence with the lowest cost. Refer to Atanasov et al.

(2015) for more details regarding conditional entropy mini-

mization via linearization and model predictive control.

Table 6. Both missed detections and clutter are possible: the likelihood p(ZjYd(x), x) of a set of semantic observations Z is shown for

different combinations of m := jZj and n := jYd(x)j. The dependence of the likelihoods on x is omitted for clarity.

n = 0 e�llm

m!

Qm
j = 1

pk(zj)

m = 0
Qn

i = 1

(1� pd(yi))

0 \ n � m
e�l

m!m!
per

pd(y1)pz(z1jy1)

lpk(z1)
� � � pd(y1)pz(zmjy1)

lpk(zm)
1� pd(y1) 0

..

. ..
. . .

.

pd(yn)pz(z1jyn)

lpk(z1)
� � � pd(yn)pz(zmjyn)

lpk(zm)
0 1� pd(yn)

lpk(z1) � � � � � � � � � � � � lpk(z1)

..

. ..
.

lpk(zm) � � � � � � � � � � � � lpk(zm)

2
666666666664

3
777777777775

0 \ m � n
e�l

m!n!
per

pd(y1)pz(z1jy1)

lpk(z1)
� � � pd(y1)pz(zmjy1)

lpk(zm)
1� pd(y1) � � � 1� pd(y1)

..

. ..
. ..

. ..
.

pd(yn)pz(z1jyn)

lpk(z1)
� � � pd(yn)pz(zmjyn)

lpk(zm)
1� pd(yn) � � � 1� pd(yn)

lpk(z1) 0 lpk(z1) � � � lpk(z1)

. .
. ..

. ..
.

0 lpk(zm) lpk(zm) � � � lpk(zm)

2
666666666664

3
777777777775
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