
Asymptotically Optimal Sampling-based
Kinodynamic Planning

IJRR

000(00):1–40

©The Author(s) 2010

Reprints and permission:

sagepub.co.uk/journalsPermissions.nav

DOI:doi number

http://mms.sagepub.com

Yanbo Li, Zakary Littlefield, Kostas E. Bekris

Abstract
Sampling-based algorithms are viewed as practical solutions for high-dimensional motion planning. Recent progress has
taken advantage of random geometric graph theory to show how asymptotic optimality can also be achieved with these
methods. Achieving this desirable property for systems with dynamics requires solving a two-point boundary value prob-

lem (BVP) in the state space of the underlying dynamical system. It is difficult, however, if not impractical, to generate
a BVP solver for a variety of important dynamical models of robots or physically simulated ones. Thus, an open chal-
lenge was whether it was even possible to achieve optimality guarantees when planning for systems without access to
a BVP solver. This work resolves the above question and describes how to achieve asymptotic optimality for kinody-
namic planning using incremental sampling-based planners by introducing a new rigorous framework. Two new methods,
STABLE_SPARSE_RRT (SST) and SST∗, result from this analysis, which are asymptotically near-optimal and optimal,
respectively. The techniques are shown to converge fast to high-quality paths, while they maintain only a sparse set of
samples, which makes them computationally efficient. The good performance of the planners is confirmed by experimental
results using dynamical systems benchmarks, as well as physically simulated robots.

1. Introduction

Kinodynamic Planning: For many interesting robots it is difficult to adapt a collision-free path into a feasible one given
the underlying dynamics. This class of robots includes ground vehicles at high-velocities (Likhachev & Ferguson (2009)),
unmanned aerial vehicles, such as fixed-wing airplanes (Richter et al. (2013)), or articulated robots with dynamics, including
balancing and locomotion systems (Kuindersma et al. (2014)). In principle, most robots controlled by the second-order
derivative of their configuration (e.g., acceleration, torque) and which exhibit drift cannot be treated by a decoupled approach
for trajectory planning given their controllability properties (Laumond et al. (1998), Choset et al. (2005)). To solve such
challenges, the idea of kinodynamic planning has been proposed (Donald et al. (1993)), which involves directly searching
for a collision-free and feasible trajectory in the underlying system’s state space. This is a harder problem than kinematic
path planning, as it involves searching a higher-dimensional space and respecting the underlying flow that arises from the
dynamics. Given its importance, however, it has attracted a lot of attention in the robotics community. The focus in this
work is on the properties of the popular sampling-based motion planners for kinodynamic challenges (Kavraki et al. (1996),
LaValle & Kuffner (2001a), Hsu et al. (2002), Karaman & Frazzoli (2011)).
Sampling-based Motion Planning: The sampling-based approach has been shown to be a practical solution for quickly
finding feasible paths for relatively high-dimensional motion planning challenges (Kavraki et al. (1996), LaValle & Kuffner
(2001a), Hsu et al. (2002)). The first popular methodology, the Probabilistic Roadmap Method (PRM) (Kavraki et al. (1996))

ar
X

iv
:1

40
7.

28
96

v5
 [

cs
.R

O
]

 5
 F

eb
 2

01
6

2 Journal name 000(00)

focused on preprocessing the configuration space of a kinematic system so as to generate a roadmap that can be used to
quickly answer multiple queries. Tree-based variants, such as RRT-Extend (LaValle & Kuffner (2001a)) and EST (Hsu
et al. (2002)), focused on addressing kinodynamic problems. For all these methods, the guarantee provided is relaxed to
probabilistic completeness, i.e., the probability of finding a solution if one exists, converges to one (Kavraki et al. (1998), Hsu
et al. (1998), Ladd & Kavraki (2004)). This was seen as a sufficient objective in the community given the hardness of motion
planning and the curse of dimensionality. More recently, however, the focus has shifted from providing feasible solutions
to achieving high-quality solutions. A milestone has been the identification of the conditions under which sampling-based
algorithms are asymptotically optimal. These conditions relate to the connectivity of the underlying roadmap based on
results on random geometric graphs (Karaman & Frazzoli (2011)). This line of work provided asymptotically optimal
algorithms for motion planning, such as PRM∗ and RRT∗ (Karaman & Frazzoli (2010)).
Lack of a BVP Solution: A requirement for the generation of a motion planning roadmap is the existence of a steering
function. This function returns the optimum path between two states in the absence of obstacles. In the case of a dynamical
system, the steering function corresponds to the solution of a two-point boundary value problem (BVP). Addressing this
problem corresponds to solving a differential equation, while also satisfying certain boundary conditions. It is not easy,
however, to produce a BVP solution for many interesting dynamical systems and this is the reason that roadmap planners,
including the asymptotically optimal PRM∗, cannot by used for kinodynamic planning.

Unfortunately, RRT∗ also requires a steering function, as it reasons over an underlying roadmap even though it generates
a tree data structure. While in certain cases it is sufficient to plan for a linearized version of the dynamics (Webb & van Den
Berg (2013)) or using a numerical approximation to the BVP problem, this approach is not a general solution. Furthermore,
it does not easily address an important class of planning challenges, where the system is simulated using a physics engine.
In this situation, the primitive available to the planning process is forward propagation of the dynamics using the physics
engine. Thus, an open problem for the motion planning community was whether it was even possible to achieve optimality
given access only to a forward propagation model of the dynamics.

Fig. 1. Trees constructed by RRT∗ (left) and SST (right) for a 2D

kinematic point system after 1 minute of computation. Solution paths

are shown in red. SST does not require a steering function as RRT∗

does, making SST more useful in kinodynamic problems.

Summary of Contribution: This paper introduces a new
way to analyze the properties of incremental sampling-
based algorithms that construct a tree data structure for
a wide class of kinodynamic planning challenges. This
analysis provides the conditions under which asymptotic
optimality can be achieved when a planner has access only
to a forward propagation model of the system’s dynam-
ics. The reasoning is based on a kinodynamic system’s
accessibility properties and probability theory to argue
probabilistic completeness and asymptotic optimality for
non-holonomic systems where Chow’s condition holds
(Chow 1940/1941), eliminating the requirement for a BVP
solution. Based on these results, a series of sampling-based
planners for kinodynamic planning are considered:

a) A simplification of EST, which extends a tree data structure in a random way, referred to as NAIVE_RANDOM_TREE:
It is shown to be asymptotically optimal but impractical as it does not have good convergence to high quality paths.

b)An approach inspired by an existing variation of RRT, referred to as RRT-BestNear (Urmson & Simmons (2003)),
which promotes the propagation of reachable states with good path cost: It is shown to be asymptotically near-optimal
and has a practical convergence rate to high quality paths but has a per iteration cost that is higher than that of RRT.

c) The proposed algorithms STABLE_SPARSE_RRT (SST) and STABLE_SPARSE-RRT∗ (SST∗), which use the
BestNear selection process. They apply a pruning operation to keep the number of nodes stored small: they are

3

Fig. 2. Phase plots that show best path cost at each point in the one-link pendulum state space for each of the proposed modifications
(the BestNear primitive and the pruning (mentioned as Drain in the third Figure above)). x-axis: pendulum angle, y-axis: velocity.
Blue corresponds to unexplored regions of the state space. The circle is state {0, 0}, a horizontal placement of the pendulum, the star is
state {π

2
, 0}, an upward configuration. Colors are computed by dividing the best path cost to a state in a pixel by a predefined value (20.0

for RRT and 10.0 for the other methods) and then mapping the result to the range [0,255]. All algorithms were executed for the same
amount of time (5 min). For the last two methods that provide a sparse representation, each state is coloring a 3x3 local neighborhood.
The best path cost for each pixel is displayed.

able to achieve asymptotic near-optimality and optimality respectively. They also have good convergence rate to high
quality paths. SST has reduced per iteration cost relative to the suboptimal RRT given the pruning operation, which
accelerates searching for nearest neighbors.

An illustration of the proposed SST’s performance for a kinematic point system is provided in Fig. 1. This is a simple
challenge, where comparison with RRT∗ is possible. This is a problem where RRT typically does not return a path in the
homotopic class of the optimum one. SST is able to do so, while also maintaining a sparse data structure. Fig. 2 describes
the performance of different components of SST in searching the phase space of a pendulum system relative to RRT. No
method is making use of a steering function for the pendulum system. A summary of the desirable properties of SST and
SST∗ in relation to the efficient RRT and the asymptotically optimal RRT∗ is available in Table 1.
Paper Overview: The following section provides a more comprehensive review of the literature and the relative contribution
of this paper. Then, Section 3 identifies formally the considered problem and a set of assumptions under which the desired
properties for the proposed algorithms hold. Section 4 first outlines how sampling-based algorithms need to be adapted
so as to achieve asymptotic optimality and efficiency in the context of kinodynamic planning. Based on this outline, the
description of SST and SST∗ is then provided, as well as an accompanying nearest neighbor data structure, which allows
the removal of nodes to achieve a sparse tree. The description of the algorithms is followed by the comprehensive analysis of

RRT-Extend RRT∗ SST/SST∗

Probabilistically Complete (under
conditions)

Probabilistically Complete Probabilistically δ-Robust Complete / Probabilisti-
cally Complete

Provably Suboptimal Asymptotically Optimal Asymptotically δ-Robust Near-Optimal / Asymp-
totically Optimal

Forward Propagation Steering Function Forward Propagation
Single Propagation Per Iteration Many Steering Calls Per Iteration Single Propagation Per Iteration
1 NN Query (O(logN)) 1 NN + 1 K-Query (O(logN)) Bounded Time Complexity Per Iteration / 1

Range Query + 1 NN Query
Includes All Collision-Free Samples Includes All Collision-Free Samples Sparse Data Structure / Converges to All

Collision-Free Samples

Table 1. Comparing RRT, RRT∗with the proposed SST / SST∗, which minimize computation cost and space requirements while
providing asymptotic (near-)optimality for kinodynamic planning. This table compares the following from top to bottom: completeness
properties, optimality properties, the process for the extension primitive, the number of extensions per iteration, the type of nearest
neighbor queries (nearest, k-closest, and range), as well as space complexity. The notion of δ-robustness is introduced in this paper.

4 Journal name 000(00)

the described methods in Section 5. Simulation results on a series of systems, including kinematic ones, where comparison
with RRT∗ is possible, as well as benchmarks with interesting dynamics are available in Section 6. A physically simulated
system is also considered in the same section. Finally, the paper concludes with a discussion in Section 7.

2. Background

Planning Trajectories: Trajectory planning for real robots requires accounting for dynamics (e.g., friction, gravity, limits
in forces). It can be achieved either by a decoupled approach (Bobrow et al. 1985, Shiller & Dubowsky 1991) or direct
planning. The latter method searches the state space of a dynamical system directly. For underactuated, non-holonomic
systems, especially those that are not small-time locally controllable (STLC), the direct planning approach is preferred.
The focus here is on systems that are not STLC but are small-time locally accessible (Chow 1940/1941). The following
methodologies have been considered in the related literature for direct planning:

- Optimal control can be applied (Brockett 1982, Lewis & Syrmos 1995) but handles only simple systems. Algebraic
solutions are available primarily for 2D point mass systems (O’Dunlaing 1987, Canny et al. 1991).
- Numerical optimization (Fernandes et al. 1993, Betts 1998, Ostrowski et al. 2000) can be used but it can be expensive
for global trajectories and suffers from local minima. There has been progress along this direction (Zucker et al. 2013,
Schulman et al. 2014), although highly-dynamic problems are still challenging.
- Approaches that take advantage of differential flatness allow to plan for dynamical systems as if they are high-dimensional
kinematic ones (Fliess et al. 1995). While interesting robots, such as quadrotors (Sreenath et al. 2013), can be treated in
this manner, other systems, such as fixed-wing airplanes, are not amenable to this approach.
- Search-based methods compute paths over discretizations of the state space but depend exponentially on the resolution
(Sahar & Hollerbach 1985, Shiller & Dubowsky 1988, Barraquand & Latombe 1993). They also correspond to an active
area of research, including for systems with dynamics (Likhachev & Ferguson 2009).

A polynomial-time, search-based approximation framework introduced the notion of “kinodynamic” planning and solved
it for a dynamic point mass (Donald et al. 1993), which was then extended to more complicated systems (Heinzinger et al.
1989, Donald & Xavier 1995). This work influenced sampling-based algorithms for kinodynamic planning.
Sampling-based Planners: These algorithms avoid explicitly representing configuration space obstacles, which is compu-
tationally hard. They instead sample vertices and connect them with local paths in the collision-free state space resulting in a
graph data structure. The first popular sampling-based algorithm, the Probabilistic Roadmap Method (PRM) (Kavraki et al.
1996), precomputes a roadmap using random sampling, which is then used to answer multiple queries. RRT-Connect
returns a tree and focuses on quickly answering individual queries (Kuffner & Lavalle 2000). Bidirectional tree variants
achieve improved performance (Sanchez & Latombe 2001). All these solutions require a steering function, which connects
two states with a local path ignoring obstacles. For systems with symmetries it is possible to connect bidirectional trees by
using numerical methods for bridging the gap between two states (Cheng et al. 2004, Lamiraux et al. 2004).

Two sampling-based methods that do not require a steering function are RRT-Extend (LaValle & Kuffner 2001a)
and Expansive Space Trees (EST) (Hsu et al. 2002). They only propagate dynamics forward in time and aim to
evenly and quickly explore the state space regardless of obstacle placement. For all of the above methods, probabilistic
completeness can be argued under certain conditions (Kavraki et al. (1998), Hsu et al. (1998), Ladd & Kavraki (2004)).
Variants of these approaches aim to decrease the metric dependence by reducing the rate of failed node expansions (Cheng &
LaValle 2001), or applying adaptive state-space subdivision (Ladd & Kavraki 2005b). Others guide the tree using heuristics
(Bekris & Kavraki 2008), local reachability information (Shkolnik et al. 2009), linearizing locally the dynamics to compute
a metric (Glassman & Tedrake 2010), learning the cost-to-go to balance or bias exploration (Li & Bekris 2010, 2011), or by
taking advantage of grid-based discretizations (Plaku et al. 2010, Şucan & Kavraki 2012). Such tree-based methods have

5

been applied to various interesting domains (Frazzoli et al. 2002, Branicky et al. 2006, Zucker et al. 2007). While RRT is
effective in returning a solution quickly, it converges to a sub-optimal solution (Nechushtan et al. 2010).
From Probabilistic Completeness to Asymptotic Optimality: Some RRT variants have employed heuristics to improve
path quality but are not provably optimal (Urmson & Simmons 2003), including anytime variants (Ferguson & Stentz 2006).
Important progress was achieved through the utilization of random graph theory to rigorously show that roadmap-based
approaches, such as PRM∗ and RRT∗, can achieve asymptotic optimality (Karaman & Frazzoli 2011). The requirement is
that each new sample must be tested for connection with at least a logarithmic number of neighbors as a function of the
total number of nodes using a steering function. Anytime (Karaman et al. 2011) and lazy (Alterovitz et al. 2011) variants of
RRT∗ have also been proposed. There are also techniques that provide asymptotic near-optimality using sparse roadmaps,
which inspire the current work (Marble & Bekris 2011, 2013, Dobson et al. 2012, Dobson & Bekris 2014, Wang et al. 2013,
Shaharabani et al. 2013). Sparse trees appear in the context of feedback-based motion planning (Tedrake 2009). Another
line of work follows a Lazy PRM∗ approach to improve performance (Janson & Pavone 2013). A conservative estimate
of the reachable region of a system can be constructed (Karaman & Frazzoli 2013). This reachable region helps to define
appropriate metrics under dynamics, and can be used in conjunction with the algorithms described here. All of the above
methods, which are focused on returning high-quality paths, require a BVP solver.

Fig. 3. If b′ is close to b and cost(b′) < cost(b), the

shooting variant will prune the edge to b and replace it

with b′. The subset of b is repropagated from b′.

Towards Asymptotic Optimality for Dynamical Systems: A vari-
ation of RRT∗ utilizes a “shooting” approach, shown in Figure 3, to
improve solutions without a steering function (Jeon et al. 2011). When
propagating from node a to state b′within a small distance of node b and
the cost to b′ is smaller, b is pruned and an edge froma to b′ is added. The
subtree of b is repropagated from b′, which may result in node pruning
if collisions occur. This method does not provably achieve asymptotic
optimality. It can be integrated with numerical methods for decreasing
the gap between b and b′. The methods presented here achieve formal
guarantees. Improved computational performance relative to the “shooting” variant is shown in the experimental results.
Recent work provides local planners for systems with linear or linearizable dynamics (Webb & van Den Berg 2013,
Goretkin et al. 2013). There are also recent efforts on avoiding the use of an exact steering function (Jeon et al. 2013). The
algorithms in the current paper are applicable beyond systems with linear dynamics but could also be combined with the
above methods to provide efficient asymptotically near-optimal solvers for such systems.
Closely Related Contributions: Early versions of the work presented here have appeared before. Initially, a simpler version
of the proposed algorithms was proposed, called Sparse-RRT (Littlefield et al. 2013). Good experimental performance
was achieved with this method, but it was not possible to formally argue desirable properties. This motivated the development
ofSTABLE_SPARSE_RRT (SST) andSST∗ in follow-up work (Li et al. 2014). These methods formally achieve asymptotic
(near)-optimality for kinodynamic planning. The same paper was the first to introduce the analysis that is extended in the
current manuscript. Given these earlier efforts by the authors, this paper provides the following contributions:

• It describes a general framework for asymptotic (near-)optimality using sampling-based planners without a steering
function in Section 4.1. The SST and SST∗ algorithms correspond to efficient implementations of this framework.

• It describes for the first time in Section 4.4 a nearest neighbor data structure that has been specifically designed to
support the pruning operation of the proposed algorithms. Implementation guidelines are introduced in the description
of SST and SST∗ that improve performance (Sections 4.2 and 7).

• Section 5 extends the analysis by arguing properties for a general cost function instead of trajectory duration. It also
provides all the necessary proofs that were missing from previous work.

• Additional experiments are provided in Section 6, including simulations for a dynamical model of a fixed-wing airplane.
There is also evaluation of the effects the nearest neighbor data structure has on the motion planners.

6 Journal name 000(00)

There is also concurrent work (Papadopoulos et al. 2014), which presents similar algorithms and argues experimentally
that they return high-quality trajectories for kinodynamic planning. It provides a different way to support the argument that
a simplification of EST, i.e., the NAIVE_RANDOM_TREE approach, is asymptotically optimal. It doesn’t argue, however,
the asymptotic near-optimality properties of the efficient and practical methods that achieve a sparse representation, neither
studies the convergence rate of the corresponding algorithms nor provides efficient tools for their implementation, such as
the nearest neighbor data structure described here.

3. Problem Setup

This paper considers dynamic systems that respect time-invariant differential equations of the following form:

ẋ(t) = f(x(t), u(t)), x(t) ∈ X, u(t) ∈ U (1)

where x(t) ∈ X ⊆ Rd and u(t) ∈ U ⊆ Rl. The collision-free subset of X is Xf . Let µ(X) denote the Lebesgue
measure of X. This work focuses on state space manifolds that are subsets of d-dimensional Euclidean spaces, which allow
the definition of the L2 Euclidean norm ||.||. The corresponding r-radius closed ball in X centered at x will be Br(x). In
other words, the underlying state space needs to exhibit some smoothness properties and behave locally as a Euclidean
space.

Definition 1. (Trajectory) A trajectory π is a function π(t) : [0, tπ] → Xf , where tπ is its duration. A trajectory π is

generated by starting at a given state π(0) and applying a control function Υ : [0, tπ]→ U by forward integrating Eq. 1.

Typically, sampling-based planners are implemented so that the applied control function Υ corresponds to a piecewise
constant one. Such an underlying discretization is often unavoidable given the presence of a digital controller. This is why
the analysis provided in this paper considers piecewise constant control functions, which are otherwise arbitrary in nature.

Definition 2. (Piecewise Constant Control Function) A piecewise constant control function Ῡ with resolution ∆t is the

concatenation of constant control functions of the form Υi : [0, ki ·∆t]→ ui, where ui ∈ U and ki ∈ Z+.

The proposed methods and the accompanying analysis do not critically depend on the piecewise constant nature of the
input control function. They could potentially be extended to also allow for continuous control functions, such as those
generated by splines or using basis functions:

Fig. 4. Two δ-similar trajectories.

A key notion for this work is illustrated in Figure 4 and explained below:

Definition 3. (δ-Similar Trajectories) Trajectories π, π′ are δ-similar if for a

continuous, nondecreasing scaling function σ : [0, tπ] → [0, tπ′], it is true that

π′(σ(t)) ∈ Bδ(π(t)).

The focus in this paper will be initially on optimal trajectories with a certain
clearance from obstacles.

Definition 4. (Obstacle Clearance) The obstacle clearance ε of a trajectory π is the minimum distance from obstacles over

all states in π, i.e., ε = inft∈[0,tπ],xo∈Xo ||π(t)− xo||, where Xo = X \ Xf .

Fig. 5. The STLA property.

Then, the following assumption is helpful for the methods and the analysis.

Assumption 5. The system described by Equation 1 satisfies the properties:

•Chow’s condition (Chow 1940/1941) of Small-time Locally Accessible (STLA)

systems (Choset et al. 2005): For STLA systems, it is true that the reachable set of

states A(x,≤ T) ⊂ V from any state x in time less than or equal to T without exiting a neighborhood V ⊂ X of x, and

for any such V , has the same dimensionality as X.

• It has bounded second derivative: |ẍ(t)| ≤M2 ∈ R+.

7

• It is Lipschitz continuous for both of its arguments, i.e., ∃Ku > 0 and ∃Kx > 0:

||f(x0, u0)−f(x0, u1)|| ≤ Ku||u0−u1||, ||f(x0, u0)−f(x1, u0)|| ≤ Kx||x0−x1||.

The assumption that f satisfies Chow’s condition implies there always exist δ-similar trajectories for any trajectory π.

Lemma 6. Let there be a trajectory π for a system satisfying Eq. 1 and Chow’s condition. Then there exists a positive

value δ0 called the dynamic clearance, such that: ∀ δ ∈ (0, δ0], ∀ x′0 ∈ Bδ(π(0)), and ∀ x′1 ∈ Bδ(π(tπ)), there exists a

trajectory π′, so that: (i) π′(0) = x′0 and π′(tπ′) = x′1; (ii) π and π′ are δ-similar trajectories.

Lemma 6 on the existence of “dynamic clearance” is a necessary condition for all systems where sampling-based
methods work, such as EST, RRT, and RRT∗, are able to find a solution. A proof sketch of Lemma 6 can be found in
Appendix A. The interest is on trajectories with both good obstacle and dynamic clearance, called δ-robust trajectories.

Definition 7. (δ-Robust Trajectories) A trajectory π for a dynamical system following Eq. 1 is called δ-robust if both its

obstacle clearance ε and its dynamic clearance δ0 are greater than δ.

This paper aims to solve a variation of the motion planning problem with dynamics for such optimal trajectories.

Definition 8. (δ-Robust Feasible Motion Planning) Given a dynamical system following Eq. 1, the collision-free subset

Xf ⊂ X, an initial state x0 ∈ Xf , a goal region XG ⊂ Xf , and that a δ-robust trajectory that connects x0 with a state in

XG exists, find a solution trajectory π for which π(0) = x0 and π(tπ) ∈ XG.

It will be necessary to assume that the problem can be solved using trajectories generated by piecewise constant control
functions. This is a reasonable way to generate a trajectory using a computational approach.

Assumption 9. For a δ-robust feasible motion planning problem, there exists a δ-robust trajectory π generated by a

piecewise constant control function Ῡ.

An incremental sampling-based algorithm, abbreviated here asALG, typically extends a graph data structure of feasible
trajectories over multiple iterations. This paper considers the following properties of such sampling-based planners.

Definition 10. (Probabilistic δ-Robust Completeness) Let ΠALG
n denote the set of trajectories discovered by an algorithm

ALG at iteration n. AlgorithmALG is probabilistically δ-robustly complete, if for any δ-robustly feasible motion planning

problem (Xf , x0, XG, δ) the following holds:

lim inf
n→∞

P(∃ π ∈ ΠALG
n : π solution to (Xf , x0,XG, δ)) = 1.

Definition 10 relaxes the concept of probabilistic completeness for algorithms with properties that depend on the robust

clearance δ of trajectories they can discover. An algorithm that is probabilistically δ-robustly complete only demands it
will eventually find solution trajectories if one with robust clearance of δ exists. The following discussion relates to the
cost function of a trajectory π.

Assumption 11. The cost function cost(π) of a trajectory is assumed to be Lipschitz continuous. Specifically, ∃Kc > 0:

|cost(π0)− cost(π1)| ≤ Kc · sup∀t{||π0(t)− π1(t)||},

for allπ1,π2 with the same start state. Consider two trajectoriesπ1, π2 such that their concatenation isπ1|π2 (i.e., following

trajectory π2 after trajectory π1), the cost function satisfies:

• cost(π1|π2) = cost(π1) + cost(π2) (additivity)

• cost(π1) ≤ cost(π1|π2) (monotonicity)

• ∀ t2 > t1 ≥ 0, ∃Mc > 0, t2 − t1 ≤Mc · |cost(π(t2))− cost(π(t1))| (non-degeneracy)

Then, it is possible to relax the property of asymptotic optimality and allow some tolerance depending on the clearance.

8 Journal name 000(00)

Definition 12. (Asymptotic δ-robust Near-Optimality) Let c∗ denote the minimum cost over all solution trajectories for

a δ-robust feasible motion planning problem (Xf , x0, XG, δ). Let Y ALGn denote a random variable that represents the

minimum cost value among all trajectories returned by algorithm ALG at iteration n for the same problem. ALG is

asymptotically δ-robust near-optimal if for all independent runs:

P(
{

lim sup
n→∞

Y ALGn ≤ h(c∗, δ)
}

) = 1

where h : R× R→ R is a function of the optimum cost and the δ clearance, where h(c∗, δ) ≥ c∗.

The analysis will show that the proposed algorithms exhibit the above property whereh has the form:h(c∗, δ) = (1+α·δ)·c∗

for some constant α ≥ 0. In this case, ALG is asymptotically δ-robust near-optimal with a multiplicative error. Note that
for this form of the h function, the absolute error relative to the optimum cost increases as the optimum cost increases.
This property guarantees that the cost of the returned solution is upper bounded relative to the optimal cost. Recall that
RRT-Connect returns solutions of random cost and the error is unbounded (Karaman & Frazzoli 2011).

If it is possible to argue that an algorithm satisfies the last two properties for all decreasing values of the robust clearance
δ, then this algorithm satisfies the traditional properties of probabilistic completeness and asymptotic optimality.

Regarding Distances: The true cost of moving between two states corresponds to the “cost-to-go”, which typically
does not satisfy symmetry, is not the Euclidean distance, and is not easy to compute. Based on the “cost-to-go”, it is possible
to define an ε-radius sub-riemannian ball centered at x, which is the set of all states where the “cost-to-go” from x to that set
is less than or equal to ε. The analysis presented, which reasons primarily over Euclidean hyper-balls, will show that there
always exists a certain size Euclidean hyper-ball inside the sub-riemannian ball under the above conditions. Therefore, it
will be sufficient to reason about Euclidean norms. In practice, distances may be taken with respect to a different space,
which reflect the application, and may actually be closer to the true “cost-to-go” for the moving system.

4. Algorithms

This section provides sampling-based tree motion planners that achieve the properties of Definitions 10 and 12 for kinody-
namic planning when there is no access to a BVP solver. First a general framework is described for this purpose, and then
an instantiation of this framework is given (SST), which is extended to an asymptotically optimal algorithm (SST∗).

4.1. Change in Algorithmic Paradigm

Traditional Approach: Given the difficulty of kinodynamic planning (Donald et al. (1993)), the early but practical tree-
based planners (LaValle & Kuffner 2001b, Hsu et al. 2002) aimed for even and fast exploration of X even in challenging
high-dimensional cases where greedy, heuristic expansion towards the goal would fail. Given that computing optimal
trajectories corresponds to an even harder challenge, the focus was not on the quality of the returned trajectory in these
early methods.

Algorithm 1: EXPLORATION_TREE(X, U, x0, Tprop, N)

1 G = {V← {x0},E← ∅};
2 for N iterations do
3 xselected ← Exploration_First_Selection(V,X);
4 xnew ← Fixed_Duration_Prop(xselected, U, Tprop);
5 if CollisionFree(xselected → xnew) then
6 V← V ∪ {xnew};
7 E← E ∪ {xselected → xnew};

8 return G(V,E);

9

Algorithm 1 summarizes the high-level selection/propagation operation of these planners. They constructed a graph
data structure G(V,E) in the form of a tree rooted at an initial state x0 in the following two-step process:

• Selection: A reachable state along the tree, such as a node xselected ∈ V , is selected. In some variants a state along
an edge of the tree can also be selected (Ladd & Kavraki 2005a). The selection process is designed so as to increase
the probability of searching underexplored parts of X. For instance, the RRT-Extend algorithm samples a random
state xrand and then selects the closest node on the tree as xselected. The objective is to achieve a “Voronoi-bias” that
promotes exploration, i.e., nodes on the tree that correspond to the largest Voronoi regions of X, given tree nodes as
sites, have a higher probability of being selected 1. In EST implementations, nodes store the local density of samples
and those with low density are selected with higher probability to promote exploration (Phillips et al. 2004).

• Propagation: The procedure for extending the tree has varied in the related literature but the scheme followed in
RRT-Extend has been popular in most implementations. The approach is to select a control that drives the system
towards the randomly sampled point, then forward propagate that control input for a fixed time duration. If the resulting
trajectory xselected → xnew is collision-free, then it is added as an edge in the tree. It was recently shown that this
propagation scheme actually makes RRT-Extend lose its probabilistic completeness guarantees (Kunz & Stilman
2014). In EST, a randomized approach is employed where random controls are used. The analysis of the proposed
methods shows that a randomized approach has benefits in terms of solution quality.

Challenge: Optimality has only recently become the focus of sampling-based motion planning, given the development of
the asymptotically optimal RRT∗ and PRM∗ (Karaman & Frazzoli 2011). This great progress, however, does not address
kinodynamic planning instances. Both planners are roadmap-based methods in the sense that they reason over (in the case
of RRT∗) or explicitly construct (in the case of PRM∗) a graph that makes use of a steering function to connect states. This
raised the following research challenge in the community:

Is it even possible to achieve asymptotic optimality guarantees in sampling-based kinodynamic planning?

This has been an open question in the algorithmic robotics community and resulted in many methods that aim to provide
asymptotic optimality for systems with dynamics (Karaman & Frazzoli 2013, Webb & van Den Berg 2013, Goretkin et al.
2013, Jeon et al. 2013). The majority of these techniques, however, can address only specific classes of problems (e.g.,
systems with linear dynamics) and do not possess the generality of the original sampling-based tree planners.
Progress: The current work provides an answer to the above open question through a comprehensive, novel analysis of
sampling-based processes for motion planning without access to a steering function, which departs from previous analysis
efforts in this domain. In particular, the following are shown:

1. It is possible to achieve asymptotic optimality in the rather general setting of this paper’s problem setup with a

sampling-based process that makes proper use of random forward propagation and a naïve selection strategy.

2. This method, however, is computationally impractical and does not have a good convergence rate to optimal solutions.

Thus, the important question is whether there are planners with practical convergence to high-quality solutions.

3. Given this realization, this work describes a framework for computationally efficient sampling-based planners that

achieve asymptotic near-optimality, which are then also extended to provide asymptotic optimality.

Asymptotic Optimality from Random Primitives: To achieve these desirable properties it is necessary to clearly define
the framework which sampling-based algorithms should adopt. In particular, it is possible to argue asymptotic optimality
for the NAIVE_RANDOM_TREE process described in Algorithm 2. This algorithm follows the same selection/propagation
scheme of sampling-based tree planners but applies uniform selection and calls the MonteCarlo-Prop procedure to
extend the tree.

1 A tree-based planner without access to a BVP solver cannot guarantee a “Voronoi-bias” in general. If the distance function can correctly estimate the
cost-to-go and if the propagation behaves similarly to the steering function, then the “Voronoi-bias” is achieved.

10 Journal name 000(00)

Algorithm 2: NAIVE_RANDOM_TREE(Xf , U, x0, Tprop, N)

1 G = {V← {x0},E← ∅};
2 for N iterations do
3 xselected ← Uniform_Sampling(V);
4 xnew ←MonteCarlo-Prop(xselected, U, Tprop);
5 if CollisionFree(xselected → xnew) then
6 V← V ∪ {xnew};
7 E← E ∪ {xselected → xnew};

8 return G(V,E);

TheMonteCarlo-Propprocedure described in Algorithm 3 is different than theFixed_Duration_Propmethod
that is frequently followed in implementations of sampling-based tree planners. The difference is that the duration of the
propagation is randomly sampled between 0 and a maximum duration Tprop instead of being fixed. The accompanying
analysis (Section 5.1) shows that this random process provides asymptotic optimality when the only primitive to access
the dynamics is forward propagation.

Algorithm 3: MonteCarlo-Prop(xprop, U, Tprop)

1 t← Sample(0, Tprop); Υ← Sample(U, t);
2 return xnew ←

∫ t
0
f(x(t),Υ(t)) dt+ xprop;

Fig. 6. The selection of the best neighbor

in BestNear. The best path cost node in

B(xrandom, δBN) is selected.

Nevertheless, the NAIVE_RANDOM_TREE approach employs a naïve
selection strategy, where a node xselected is selected uniformly at random.
This has the effect that the resulting method does not have a good conver-
gence rate in finding high-quality solutions as a function of iterations. It is
not clear to the authors if a version of the NAIVE_RANDOM_TREE algorithm
using an Exploration_First_Selection strategy is asymptotically
optimal and most importantly whether it has better convergence rate proper-
ties, i.e., whether a method likeESTor a version ofRRT-Extend that employs
MonteCarlo-Prop are asymptotically optimal with good convergence rate.
The experimental indications for RRT-Extend with MonteCarlo-Prop
are that it does not improve path quality quickly.
Improving Convergence Rate: A solution, however, has been iden-
tified to this issue. In particular, the authors propose the use of a
Best_First_Selection strategy as a desirable alternative for node selec-
tion so as to achieve good convergence to high-quality paths. In this context,
best-first means that the node xselected should be chosen so that the method
prioritizes nodes that correspond to good quality paths, while also balancing
exploration objectives. For instance, one way to achieve this in an RRT-like fashion (described in detail in the consecutive
section) is shown in Figure 6, i.e., first sample a random state xrandom and then among all the nodes on the tree within a
certain radius δBN , select the one that has the best path cost from the root. A similar selection strategy has actually been
proposed in the past as a variant of RRT that experimentally exhibited good behavior (Urmson & Simmons 2003). This
previous work, however, did not integrate this selection strategy with the MonteCarlo-Prop procedure and did not
show any desirable properties for the resulting algorithm.

11

Fig. 7. The pruning operation to achieve a sparse data structure that stores asymptotically near-optimal trajectories. Propagation from
xselected results to node xnew, which has a better path cost than a node xpeer in its local vicinity. Node xpeer is pruned and the newly
propagated edge is added to the tree. If xpeer had children with the lowest path cost in their neighborhoods, xpeer would have remained
in the tree but not considered for propagation again. If xnew had worse path cost than xpeer , the old node would have remained in the
tree and the last propagation xselected → xnew would have been ignored.

The analysis shows that the consideration of a best first strategy together with the random propagation procedure
leads to an asymptotically δ-robust near-optimal solution with good convergence rate per iteration. This allows to observe
improvement in solution paths over time in practice. Nevertheless, there are additional considerations to take into account
when implementing a sampling-based planner. In particular, the asymptotically dominant operation computationally for
these methods corresponds to nearest neighbor queries. The implementation of Best_First_Selection described
above and in Figure 6 requires the use of a range query that is more expensive than the traditional closest neighbor query in
RRT making the individual iteration cost of the proposed solution more expensive. Consequently, the challenge becomes
whether this good convergence rate per iteration can be achieved, while also reducing the running time for each iteration.
Balancing Computation Cost with Optimality: The property achieved with the Best_First_Selection strategy
is that of asymptotic δ-robust near-optimality. This means that there should be an optimum trajectory π∗ in X which has
δ-robust clearance, as indicated in the problem setup. This property also implies that it is not necessary to keep all samples
as nodes in the data structure so as to get arbitrarily close to π∗. It is sufficient to have nodes that are in the vicinity of
the path that is defined by its robust clearance δ. Thus, it is possible for a sparse data structure with a finite set of states to
sufficiently represent X as long as it can return δ-similar solutions to all possible optimal trajectories in X.

This allows for a pruning operation, where certain nodes can be forgotten. Which trajectories should a sampling-based
planner maintain during its incremental operation and which ones should it prune? The idea is motivated by the same
objectives as that of the Best_First_Selection strategy and is illustrated in Figures 7 and 8. The pruning operation
should maintain nodes that correspond locally to good paths. For instance, it is possible to evaluate whether a node has
the best cost in a local vicinity and prune neighbors with worse cost as long as they do not have children with good path
costs in their local neighborhood. Nodes with high path cost in a local neighborhood do not need to be considered again
for propagation. There are many different ways to define local neighborhoods. For instance, a grid-based discretization of
the space could be defined. In the accompanying implementation and analysis, this work follows an incremental approach
of defining visited regions of the state space space as described in Figure 8.

Note that, with high probability, the pruned high-cost nodes would not have been selected for propagation by the best
first strategy anyway. In this manner, the pruning operation reinforces the properties of the Best_First_Selection
procedure in terms of path quality. The accompanying analysis shows that the specific pruning operation is actually
maintaining the convergence properties of the selection strategy. But it also provides significant computational benefits.
Since the complexity of all the nearest neighbor queries depends on the number of points in the data structure, having a
finite number of nodes, results in queries that have bounded time complexity per iteration. The benefits of sparsity in motion
planning have been studied over the last few years by some of the authors (Littlefield et al. 2013, Dobson & Bekris 2014)

12 Journal name 000(00)

Fig. 8. Neighborhoods for pruning are defined based on a set of static witness points s ∈ S, which are generated incrementally. The
indicated radii above and in Figure 7 are centered in such witness points. In this figure, the propagation from xselected results in a node
xnew, which is not in the vicinity of an existing witness. In this case, xnew is not compared in terms of its path cost with any existing
tree node. The edge xselected → xnew is added to the tree and a witness at the location of xnew is added to the set of witnesses S.

and others (Wang et al. 2013, Shaharabani et al. 2013). The discussion section of this paper describes the trade-offs that
arise between computational efficiency and the type of guarantee achieved in relation to the requirement for the existence
of δ-robust trajectories.
A New Framework: It is now possible to bring together the recommended changes to the original sampling-based tree
planners and achieve a new framework for asymptotic near-optimality without a steering function in a computationally
efficient way, both in terms of running time and memory requirements. Table 2 is summarizing the differences between the
original methods (corresponding to the EXPLORATION_TREE procedure) and the proposed framework for kinodynamic
sampling-based planning. The new framework is referred to as SPARSE_BEST_FIRST_TREE in Algorithm 4.

EXPLORATION_TREE NAIVE_RANDOM_TREE SPARSE_BEST_FIRST_TREE

Selection Exploration_First_Selection Uniform_Sampling Best_First_Selection
Propagation Fixed_Duration_Prop MonteCarlo-Prop MonteCarlo-Prop
Pruning N/A N/A Prune_Dominated_Nodes

Properties Probabilistically Complete (under con-
ditions), Suboptimal but Computation-
ally Efficient, Dense Data Structure

Asymptotically Optimal but
Bad Convergence Rate and
Impractical, Dense Data
Structure

Asymptotically Near-Optimal with
Good Convergence Rate and Compu-
tationally Efficient with a Sparse Data
Structure

Table 2. Outline of differences between the different frameworks in terms of the modules they employ and their properties.

In summary, the three modules of the new framework operate as follows:

• Selection: The new framework still promotes the selection of nodes in under-explored parts of X, as in the original
approaches, but within each local region only the nodes that correspond to the best path from the root are selected.

• Propagation: The analysis accompanying this work emphasizes the need to employ a fully random propagation process
both in terms of the selected control and duration of propagation, i.e., the MonteCarlo-Prop method, as in EST.

• Pruning: Nodes that are locally dominated in terms of path cost can be removed under certain conditions resulting in
a sparse data structure instead of storing infinitely many points.

The following section provides an efficient instantiation of the SPARSE_BEST_FIRST_TREE framework,
which has been used both in the theoretical analysis and the experimental evaluation of this paper. This algo-
rithm, called STABLE_SPARSE_RRT (SST), provides concrete implementations of the Best_First_Selection,
Is_Node_Locally_the_Best and Prune_Dominated_Nodes procedures. The analysis shows that it is asymp-
totically near-optimal with a good convergence rate and computationally efficient.

The near-optimality property stems from the consideration of δ-robust optimal trajectories. The existence of at least
weak δ-robust clearance for optimal trajectories has been considered in the related literature that achieves asymptotic

13

Algorithm 4: SPARSE_BEST_FIRST_TREE(Xf , U, x0, Tprop, N)

1 G = {V← {x0},E← ∅};
2 for N iterations do
3 xselected ← Best_First_Selection(V,X);
4 xnew ← MonteCarlo-Prop(xselected, U, Tprop);
5 if CollisionFree(xselected → xnew) then
6 if Is_Node_Locally_the_Best(xnew, V) then
7 V← V ∪ {xnew};
8 E← E ∪ {xselected → xnew};
9 Prune_Dominated_Nodes(xnew, G);

10 return G(V,E);

Algorithm 5: STABLE_SPARSE_RRT(X, U, x0, Tprop, N , δBN , δs)

1 Vactive ← {x0},Vinactive ← ∅;
2 G = {V ← (Vactive ∪ Vinactive),E← ∅};
3 s0 ← x0, s0.rep = x0, S ← {s0};
4 for N iterations do
5 xselected ←Best_First_Selection_SST(X, Vactive, δBN);
6 xnew ← MonteCarlo-Prop(xselected, U, Tprop);
7 if CollisionFree(xselected → xnew) then
8 if Is_Node_Locally_the_Best_SST(xnew, S, δs) then
9 Vactive ← Vactive ∪ {xnew};

10 E← E ∪ {xselected → xnew};
11 Prune_Dominated_Nodes_SST(xnew, Vactive, Vinactive, E);

12 return G;

optimality in the kinematic case. To show asymptotic optimality for RRT∗, one can show that the requirement for the δ
value reduces as the algorithm progresses. The true value δ depends on the specific problem to be solved and is typically not
known beforehand. The way to address this issue is to first assume an arbitrary value for δ and then repeatedly shrink the
value for answering motion planning queries. This is the approach considered here for extendingSST into an asymptotically
optimal approach SST∗.

4.2. STABLE_SPARSE_RRT (SST)

Algorithm 5 provides a concrete implementation of the abstract framework of SPARSE_BEST_FIRST_TREE outlined in
the previous section and corresponds to one of the proposed algorithms, STABLE_SPARSE_RRT (SST), which is analyzed
in the next section.

At a high-level, SST follows the abstract framework. For N iterations, a selection/propagation/pruning procedure is
followed. The selection follows the principle of the best first strategy to return an existing node on the tree xselected (line
5). Its concrete implementation is described in detail here. Then MonteCarlo-Prop is called (line 6), which samples
a random control and a random duration and then integrates forward the system dynamics according to Eq. 1. If the path
xselected → xnew is collision-free (line 7), the new node xnew is evaluated on whether is the best node in terms of path
cost in a local neighborhood (line 8). If xnew is indeed better, it is added to the tree (lines 9-10) and any previous node in
the same local vicinity that is dominated, is pruned (line 11).

The new aspects of the approach introduced by the concrete implementation are the following:

14 Journal name 000(00)

i)SST requires an additional input parameter δBN , used in the selection process of theBest_First_Selection_SST
procedure shown in Alg. 6, inspired from previous work (Urmson & Simmons 2003).

ii) SST requires an additional input parameter δs, used to evaluate whether a newly generated node xnew has locally
the best path cost in the Is_Node_Locally_the_Best_SST procedure of Alg. 7, useful for pruning.

iii) SST splits the nodes of the tree V into two subsets: Vactive and Vinactive. The nodes in Vactive correspond to nodes
that in a local neighborhood have the best path cost from the root. The nodes Vinactive correspond to dominated nodes in
terms of path cost but have children with good path cost in their local neighborhoods and for this reason are maintained on
the tree for connectivity purposes. Lines 1 and 2 of Algorithm 5 initialize the sets and the graph data structure G(V,E),
which will be returned by the algorithm. Only nodes in Vactive are considered for propagation and participate in the
Best_First_Selection_SST procedure (line 5). These two sets are updated when a new state xnew is generated
that dominates its local neighborhood and pruning is performed (lines 9 and 11).

iv) In order to define local neighborhoods, SST uses an auxiliary set of states, called “witnesses” and denoted as S.
The approach maintains the following invariant with respect to S: for every witness s kept in S, a single node in the tree
will represent that witness (stored in the field s.rep of the corresponding witness), and that node will have the best path
cost from the root within a δs distance of the witness s. All nodes generated within distance δs of the witness s with a
worse path cost then s.rep are removed from Vactive, thereby resulting in a sparse data structure. Line 3 of Algorithm 5
initializes the set S to correspond to the root state of the tree, which becomes its own representative. The set S is used by the
Is_Node_Locally_the_Best_SST procedure to identify whether the newly generated sample xnew is dominating
the δs-neighborhood of its closest witness s ∈ S. The same procedure is responsible for updating the set S.

There are two input parameters to SST, δBN and δs. δBN influences the number of nodes that are considered when
selecting nodes to extend. The larger this parameter is, the more likely that exploration will be ignored and path quality will
take precedent. For this reason, care must be taken to not make δBN too large. δs is the parameter responsible for performing
pruning and providing a sparse data structure. As with δBN , there is a tradeoff with δs. The larger this parameter is, the
more pruning will be performed, which helps computationally but then problems may not be solved if it is not possible
to sample inside narrow passages. Given the analysis that follows, these two parameters need to satisfy the relationship
specified in the following proposition:

Proposition 13. The parameters δBN and δs need to satisfy the following relationship given the robust clearance δ of the

δ-robust feasible motion planning problem that needs to be solved:

δBN + 2 · δs < δ

.

Figure 9 summarizes the relationship between setsVactive,Vinactive andS in the context of the algorithm. The following
discussion outlines the implementation of the three individual functions for the best first selection and the pruning operation.
Best First Selection for SST: Algorithm 6 outlines the operation. The method first samples a random point xrand in the
state space X (line 1) and then finds a set of states Xnear within distance δBN of xrand (Line 2). If the set Xnear is empty,
then BestNear defaults to using the nearest neighbor to the random sample as in RRT (line 3). Among the states inXnear,
the procedure will select the vertex that corresponds to the lowest trajectory cost from the root of the tree x0 (Line 4).

Algorithm 6: Best_First_Selection_SST(X, V, δBN)

1 xrand ← Sample_State(X);
2 Xnear ←Near(V, xrand, δBN);
3 If Xnear = ∅ return Nearest(V, xrand);
4 Else return arg minx∈Xnear cost(x);

15

Fig. 9. Relation between S, Vactive, and Vinactive. (A) A tree and a trajectory x0 → xc → xa where xa is the representative of s;
Some of the nodes along this path are locally dominated in terms of path cost and exist in the Vinactive set. They remain in the tree,
however, because xa is a representative. (B) The algorithm extends a new trajectory x0 → xb where xb has better cost than xa. Then,
xa is removed from Vactive and inserted into Vinactive. (C) The representative of s is now xb. The leaf trajectory xc → xa that lies in
Vinactive is recursively removed because all of these nodes are dominated and have no longer any children in the active set.

Relative to RRT∗, this method also uses a neighborhood and tries to propagate a node along the best path from the root.
Nevertheless, RRT∗ propagates the closest node to xrand and then attempts connections between all nodes in Xnear set to
the new state. These steps require multiple calls to a steering function. Here, a near-optimal node in a neighborhood of the
random sample is directly selected for propagation, which is possible without a steering function but only using a single
forward propagation of the dynamics. A procedure similar to BestNear was presented as a heuristic version of RRT in
previous work (Urmson & Simmons 2003). Here it is formally analyzed to show its mathematical guarantees in terms of
path quality and convergence properties.
Pruning in SST: Algorithm 7 describes the conditions under which the newly propagated node xnew is considered for
addition to the tree. First, the closest witness snew to xnew from the set S is computed (line 1). If the closest witness is
more than δs away, then the sample xnew becomes a new witness itself (lines 2-5). The representative of the witness s is
stored in the variable xpeer (line 6). Then the new sample xnew is considered viable for addition in the tree, if at least one
of two conditions holds (line 7): i) there is no representative xpeer, i.e., the sample xnew was just added as a witness or
ii) the cost of the new sample cost(xnew) is less than the cost of the witness’ representative cost(xpeer). If the function
returns true, node xnew is added to the tree and the active set of nodes Vactive. If not, then the last propagation is ignored.

Algorithm 7: Is_Node_Locally_the_Best_SST(xnew, S, δs)

1 snew ← Nearest(S,xnew);
2 if ||xnew − snew|| > δs then
3 S ← S ∪ {xnew};
4 snew ← xnew;
5 snew.rep← NULL;

6 xpeer ← snew.rep;
7 if xpeer == NULL or cost(xnew) < cost(xpeer) then
8 return true;

9 return false;

Algorithm 8 describes the pruning process of dominated nodes when SST is adding node xnew. First the witness snew
of the new node and its previous representative xpeer are found (lines 1-2). The previous representative, which is dominated
by xnew in terms of path cost, is removed from the active set of nodes Vactive and is added to the inactive one Vinactive
(lines 4-5). Then, xnew replaces xpeer as the representative of its closest witness s (line 6). If xpeer is a leaf node, then it
can also safely be removed from the tree (lines 7-11). The removal of xpeer may cause a cascading effect for its parents, if

16 Journal name 000(00)

they were already in the inactive set Vinactive and the only reason they were maintained in the tree was because they were
leading to xpeer (lines 7-11). This cascading effect is also illustrated in Figure 9 (C).

Algorithm 8: Prune_Dominated_Nodes_SST(xnew, Vactive, Vinactive, E)

1 snew ← Nearest(S,xnew);
2 xpeer ← snew.rep;
3 if xpeer! = NULL then
4 Vactive ← Vactive \ {xpeer};
5 Vinactive ← Vinactive ∪ {xpeer};
6 snew.rep← xnew;
7 while xpeer! = NULL and IsLeaf (xpeer) and xpeer ∈ Vinactive do
8 xparent ←Parent(xpeer);
9 E← E \ {xparent → xpeer};

10 Vinactive ← Vinactive \ {xpeer};
11 xpeer ← xparent;

Implementation Guidelines: The pseudocode provided here for SST contains certain inefficiencies to simplify its
description, which should be avoided in an actual implementation.

In particular, in line 7 of the STABLE_SPARSE_RRT procedure, the trajectory xselected → xnew is collision checked
and then the algorithm evaluates whether xnew is useful to be added to the tree. Typically, the operations for evaluating
whether xnew is useful (nearest neighbor queries, data structure management and mathematical comparisons) are faster
than collision checking a trajectory. Consequently, it is computationally advantageous if the check for whether xnew is
useful, is performed before the collision checking of xselected → xnew. This is possible if the underlying moving system is
modeled through a set of state update equations of the form of Equation 1. If, however, the moving system is a physically
simulated one, then it is not possible to figure out what is the actual final state xnew of the propagated trajectory, without
first performing collision checking. Thus, in the case of a physically simulated system, the description of the algorithm is
closer to the implementation.

Another issue relates to the first two lines of Algorithm 8, which find the closest witness to the new node xnew and its
previous representative. These operations have actually already taken place in Algorithm 7 (lines 1 and 6 respectively). An
efficient implementation would avoid the second call to a nearest neighbor query and reuse the information regarding the
closest witness to node xnew between the two algorithms.

4.3. STABLE_SPARSE-RRT∗ (SST*)

SST is providing only asymptotic δ-robust near-optimality. Asymptotic optimality cannot be achieved by SST directly
primarily due to the fixed sized pruning operation employed. The solution to this is to slowly reduce the radii δBN and δs
employed by the algorithm eventually converging to iterations that are similar to the NAIVE_RANDOM_TREE approach.
The key to SST∗, which is provided in Algorithm 9, is to make sure that the rate of reducing the pruning is slow enough
to achieve an anytime behavior, where initial solutions are found for large radii and then they are improved. As the radii
decrease, the algorithm is able to discover new homotopic classes that correspond to narrow passages where solution
trajectories have reduced clearance.

SST∗ provides a schedule for reducing the two radii parameters to SST, δBN and δs over time. It receives as input an
additional parameter ξ, which is used to decrease the radii δBN and δs over consecutive calls to SST (note that d and l are
the dimensionalities of the state and control spaces respectively). This, in effect, makes pruning more difficult to occur,
turns the selection procedure more towards an exploration objective instead of a best-first strategy and increases the number

17

Algorithm 9: SST∗(X, U, x0, Tprop, N0, δBN,0, δs,0, ξ)

1 j ← 0; N ← N0;
2 δs ← δs,0; δBN ← δBN,0;
3 while true do
4 SST (X,U, x0, Tprop, N, δBN , δs);
5 δs ← ξ · δs; δBN ← ξ · δBN ;
6 j ← j + 1;
7 N ← (1 + log j) · ξ−(d+l+1)j ·N0;

of nodes in the data structure. As the number of iterations approaches infinity, pruning will no longer be performed, the
selection process works in a uniformly at random manner and all collision-free states will be generated.

Alg. 9 is a meta-algorithm that repeatedly calls SST as a building block. In the above call, SST is assumed to be
operating on the same graph data structure G over repeated calls. It is possible to take advantage of previously generated
versions of the graph data structures with some additional considerations, e.g., instead of clearing out all states in Vactive
from previous iterations, one can carefully modify the pruning procedure to take advantages of the existing Vactive set
given the updated radii.

4.4. Nearest Neighbor Data Structure

The implementation of SST imposes certain technical requirements from the underlying nearest neighbor data structure
that are not typical for existing sampling-based motion planners. In particular, given the pruning operation, it is necessary to
have an efficient implementation of deletion from the nearest neighbor data structure. In most nearest neighbor structures,
a removal of a node will cause the entire data structure to be frequently rebuilt, severely increasing run times.

Algorithm 10: Find_Closest(G,v)

1 Vrand ← Sample_Random_Vertices(G.V);
2 vmin ← arg min

x∈Vrand
||x− v||;

3 repeat
4 Nodes← Neighbors(vmin) ∪ {vmin};
5 vmin ← arg min

x∈Nodes
||x− v||;

6 until vmin unchanged;
7 return vmin;

The goal here is to describe a simple idea for performing approximate nearest neighbor search using a graph structure
G that stores the nodes of the tree and on its edges stores distances between them according to dx(·, ·). This approach
builds on top of ideas from random graph theory. Graphs are conducive to easy removal, but some overhead is placed in
node addition to maintain this data structure incrementally.

The key operation is finding the closest node in a graph, which is performed by following a hill climbing approach
shown in Algorithm 10. A random set of nodes is first sampled from the existing structure, proportional to

√
‖V‖ (line 1).

From this set of nodes, the closest node to the query node v is determined by applying linear search according to dx(·, ·)
(line 2). From the closest node, a hill climbing process is performed by searching the local neighborhood of the closest
node on the graph to identify whether there are nodes that are closer to the query one (line 3-6). Once no closer nodes can
be found, the locally best node is returned (line 7).

On top of this operation, it is also possible to define a way for approximately finding the k-closest nodes or the nodes
that are within a certain radius δ.

18 Journal name 000(00)

Algorithm 11: Find_K_Close(G,v,k)

1 vmin ← FindClosest(G, v);
2 Knear ← {vmin};
3 repeat
4 Nodes← Neighbors(Knear);
5 Knear ← Knear ∪Nodes;
6 Knear ← Keep_K_Closest(Knear,v,k);
7 until Knear unchanged;
8 return Knear;

The idea in both cases is to start from the closest node by calling Algorithm 10. Then, each corresponding method
searches the local neighborhoods of the discovered nodes (initially just the closest node) for either the k-closest ones or
those nodes that are within δ distance. The methods iterate by searching locally until there is no change in the list.

Algorithm 12: AddNode(G,v)

1 G.V← G.V ∪ {v};
2 Knear ←FindKClose(G, v, k ∝ log(|G.V|));
3 foreach x ∈ Knear do
4 G.E← G.E ∪ {(v, x)} ∪ {(x, v)};
5 return G;

The process of adding nodes to the nearest neighbor data structure is shown in Algorithm 12. It is achieved by first
finding the k closest nodes and then adding edges to them. The number k should be at least a logarithmic number of nodes
as a function of the total number of nodes to ensure the graph is connected (similar to PRM∗).

Algorithm 13: RemoveNode(G,v)

1 foreach {e ∈ G.E | e.source = v ‖ e.target = v} do
2 G.E← G.E \ e;
3 G.V← G.V \ v;
4 return G;

The reason for using a graph data structure for the nearest neighbor operations is the ease of removal shown in Algorithm
13. Most implementations of graph data structures provide such a primitive that is typically quite fast. This can be sped up
even more if a link to the nearest neighbor graph node is kept with the tree node allowing for constant time removal.

5. Analysis

In this section, arguments for the proposed framework are provided. Sec. 5.1 begins by discussing the require-
ments of MonteCarlo-Prop and what properties this primitive provides. Then, in Sec. 5.2, an analysis of the
NAIVE_RANDOM_TREE approach is outlined, showing that this algorithm can achieve asymptotic optimality. To address
the poor convergence rate of that approach, the properties of using the best-first selection strategy are detailed in Sec. 5.3.
Finally, in order to introduce the pruning operation, properties of SST and SST∗ are studied in Sec. 5.4 and 5.5.

5.1. Properties of MonteCarlo-Prop

TheMonteCarlo-Prop procedure is a simple primitive for generating random controls, but provides desirable properties
in the context of achieving asymptotic optimality properties for systems without access to a steering function. This section

19

aims to illustrate these desirable properties, given the assumptions from Section 3. Much of the following analysis will
use these results to prove the probabilistic completeness and asymptotic near-optimality properties of SST and asymptotic
optimality of SST∗. These algorithms are using MonteCarlo-Prop for generating random controls.

The analysis first considers a δ-robust optimal path for a specific planning query, which is guaranteed to exist for the
specified problem setup. For such a path, consider a covering ball sequence (an illustration is shown in Fig. 10(left)):

Fig. 10. (left) An example of a covering ball sequence over a given trajectory of radius δ, where each ball is placed so that its center has
costC∆ from the previous ball center. (right) The states involved in the arguments regarding the properties of random local propagation.

Definition 14. (Covering Balls) Given a trajectory π(t): [0, tπ]→ Xf , robust clearance δ ∈ R+, and a cost valueC∆ > 0,

the set of covering balls B(π(t), δ, C∆) is defined as a set of M + 1 hyper-balls: {Bδ(x0), Bδ(x1), ..., Bδ(xM)} of radius

δ, where xi are defined such that Cost(xi → xi+1)= C∆ for i = 0, 1, ...,M − 1.

Note that Assumption 11 about the Lipschitz continuity of the cost function and Definition 14 imply that for any given
trajectory π, where cost(π) = C, and a given duration T > 0, it is possible to define a set of covering balls B(π(t), δ,
C∆) for some C∆ > 0, where the centers xi of those balls occur at time ti of the executed trajectory. Since for the given
problem setup, the cost function is non-decreasing along the trajectory and non-degenerate, every segment of π will have
a positive cost value.

The covering ball sequence, in conjunction with the following theorem, provide a basis for the remaining arguments.
In particular, much of the arguments presented in the rest of Section 5 will consider this covering ball sequence and the fact
that the proposed algorithm can generate a path, which exists entirely in this covering ball sequence. Once the generation
of such a path asymptotically is proven, its properties in terms of path quality relatively to the δ-robust optimal path will
be examined.

Theorem 15. For two trajectoriesπ, π′ and any periodT ≥ 0, so thatπ(0) = π′(0) = x0 and ∆u = supt(||u(t)−u′(t)||):

||π′(T)− π(T)|| < Ku · T · eKx·T ·∆u.

Intuitively, this theorem guarantees that for two trajectories starting from the same state, the distance between their
end states, in the worst case, is bounded by a function of the difference of their control vectors. This theorem examines
the worst case, and as a result, the exact bound value is conservative. The proof can be found in Appendix B. From this
theorem, the following corollary is immediate.

Corollary 16. For two trajectories π and π′ such that π(0) = π′(0) = x0 and ∆u = supt(||u(t), u′(t)||):

lim∆u→0+ ||π(T)− π′(T)|| = 0 for any period T ≥ 0.

Corollary 16 is the reason why MonteCarlo-Prop can be used to replace a Steering function. By having the
opportunity to continuously sample control vectors and propagate them forward from an individual state x0, one can get
arbitrarily close to the optimal control vector, i.e., producing a δ-similar trajectory, where the δ value can get arbitrarily
small.

20 Journal name 000(00)

The following theorem guarantees that the probability of generating δ-similar trajectories is nonzero when starting from
a different initial point inside a δ-ball, allowing situations similar to Figure 10 (right) to occur. This property shows why
MonteCarlo-Prop is a valid propagation primitive for use in an asymptotically optimal motion planner.

Theorem 17. Given a trajectory π of duration tπ , the success probability for MonteCarlo-Prop to generate a δ-similar

trajectory π′ to π when called from an input state π′(0) ∈ Bδ(π(0)) and for a propagation duration tπ′ = Tprop > tπ is

lower bounded by a positive value ρδ > 0.

Proof: As in Figure 11, consider that the start of trajectory π is π(0) = xi−1, while its end is π(tπ) = xi. Similarly for
π′: π′(0) = x′i−1 and π′(tπ′) = x′i. From Lemma 6 regarding the existence of dynamic clearance we have the following:
regardless of where x′i−1 is located inside Bδ(xi−1), there must exist a δ-similar trajectory π′ to π starting at x′i−1 and
ending at x′i. Therefore, if the reachable set of nodesATprop from x′i−1 is considered, it must be true that Bδ(xi) ⊆ ATprop .

Fig. 11. An illustration of the local reachability set for

x′i−1. Gray region ATmax = ATprop denotes the set of

states that is reachable from x′i−1 within duration [0, tπ′].

In other words,ATprop has the same dimensionalityd as the state
space (Assumption 5), as in in Fig. 11. The goal is to determine a
probability ρ that trajectory π′ will have an endpoint in Bδ(π(tπ)).

Consider Fig. 12 (left). Given a λ ∈ (0, 1), construct a ball
region b = Bλδ(xb), such that the center state xb ∈ π(t) and
b ⊂ Bδ(xi). Let Λδ denote the union of all such b regions. Clearly,
all of xb form a segment of trajectory π(t). Let Tδ denote the time
duration of this trajectory segment. For any state xb, there must
exist a δ-similar to π trajectory πb = x′i−1 → xb, due to Lemma 6.

Recall that MonteCarlo-Prop samples a duration for inte-
gration, and then, samples a control vector in Υ. The probability
to sample a duration tπb for πb so that it reaches the region Λδ is

Tδ/Tprop.
Since the trajectory segment exists, it corresponds to a control vector um ∈ Υ. MonteCarlo-Prop only needs to

sample a control vector u′m, such that it is close to um and results in a δ-similar trajectory. Then Theorem 15 guarantees that
MonteCarlo-Prop can generate trajectory π′b = x′i−1 → x′b, which has bounded “spatial difference” from x′i−1 → xb.
And both of them have exactly the same duration of tπb (see Fig. 12 (right) for an illustration). More formally, given the
“spatial difference” λδ, if MonteCarlo-Prop samples a control vector u′m such that:

||u′m − um|| ≤
λδ

Ku · Tprop · eKx·Tprop
⇒ ||xb − x′b|| < λδ.

Therefore, starting from state x′i−1, with propagation parameter Tprop, MonteCarlo-Prop generates a δ-similar
trajectory x′i−1 → x′b to xi−1 → xi with probability at least

Fig. 12. (left) A constructed segment of trajectory π of duration Tδ . (right) The dotted curve illustrates the existence of a trajectory, and
the solid curve above it illustrates one possible edge that is created by MonteCarlo-Prop.

21

ρδ =
Tδ
Tprop

·
ζ · (λδ

Ku·Tprop·eKx·Tprop
)w

µ(Um)
> 0.

�
This theorem guarantees that the maximum “spatial difference” between π(t) and π′(t), within time T , can be bounded

and the bound is proportional to the maximum difference of their control vectors. This duration bound also implies a cost
bound, which will be leveraged by the following theorems.

5.2. Naive Algorithm: Already Asymptotically Optimal

This section considers the impractical sampling-based tree algorithm outlined in Algorithm 2, which does not employ a
steering function. Instead, it selects uniformly at random a reachable state in the existing tree and applies random propagation
to extend it. The following discussion argues that this algorithm eventually generates trajectories δ-similar to optimal ones.
The general idea is to prove by induction that a sequence of trajectories between the covering balls of an optimal trajectory
can be generated. This proof shows probabilistic completeness. Then, from the properties of MonteCarlo-Prop, the
quality of the trajectory generated in this manner is examined. Finally, if the radius of the covering-ball sequence tends
toward zero, asymptotic optimality is achieved.

Consider an optimal trajectory π∗ and its covering ball sequence B(π∗(t), δ, C∆). Let A(n)
k denote the event that at the

nth iteration of ALG, a δ-similar trajectory π to the kth segment of the optimal sub-trajectory x∗k−1 → x∗k is generated,
such that π(0) ∈ Bδ(x∗k−1) and π(tπ) ∈ Bδ(x∗k). Then, let E(n)

k denote the event that from iteration 1 to n, an algorithm
generates at least one such trajectory, thereby expressing whether an event A(n)

k has occurred. The following theorems
reason about the value of E(∞)

k where k is the number of segments in π∗ resulting from the choice of Tprop.

Theorem 18. NAIVE_RANDOM_TREE will eventually generate a δ-similar trajectory to an optimal one for any robust

clearance δ > 0.

The proof of Theorem 18 is in Appendix C. From this theorem, the following is true.

Corollary 19. NAIVE_RANDOM_TREE is probabilistically complete.

Theorem 20. NAIVE_RANDOM_TREE is asymptotically optimal.

The proof of Theorem 20 is in Appendix D and shows it is possible to achieve asymptotic optimality in a rather naïve
way. This approach is impractical to use however. Consider the rate of convergence for the probability P(E

(n)
k) where k

denotes the kth ball and n is the number of iterations. Given Theorem 18, P(E
(n)
k) converges to 1. But the following is

also true.

Theorem 21. For the worst case, the kth segments of the trajectory returned by NAIVE_RANDOM_TREE converges

logarithmically to the near optimal solution, i.e., limn→∞
|P(E

(n+2)
k)−P(E

(n+1)
k)|

|P(E
(n+1)
k)−P(E

(n)
k)|

= 1.

The significance of Theorem 21 (proven in Appendix E) comes from the realization that expecting to generate a δ-
similar trajectory segment to an optimal trajectory π∗ requires an exponential number of iterations with this approach. This
can also be illustrated in the following way. In the NAIVE_RANDOM_TREE approach, as in RRT-Connect, each vertex
in V has unbounded degree asymptotically.

Theorem 22. For any state xi ∈ V , such that xi is added into V at iteration i, NAIVE_RANDOM_TREE will select xi to

be propagated infinitely often as the execution time goes to infinity.

P(lim sup
n→∞

{xi is selected}) = 1.

Theorem 22 (proven in Appendix F) indicates thatNAIVE_RANDOM_TREEwill attempt an infinite number of propaga-
tions from each node, and the duration of the propagation does not decrease, unlike in RRT-Connect where the expected
length of new branches converge to 0 (Karaman & Frazzoli 2011). The assumption of Lipschitz continuity of the system is
enough to guarantee optimality. Due to this reason, NAIVE_RANDOM_TREE is trivially asymptotically optimal.

22 Journal name 000(00)

Another way to reason about the speed of convergence is the following. Let p be the probability of an event to happen.
The expected number of independent trials for that event to happen is 1/p. Then, the probability of such an event happening
converges to and is always greater than 1− e−1 ≈ 63.21%, after 1/p independent trials, as p→ 0 (Grimmett & Stirzaker
2001). Consider event A1 from the previous discussion (the event of generating the first δ-similar trajectory segment to
an optimum one at any particular iteration) and recall that the success probability of the MonteCarlo-Prop function
is ρ. If x0 is selected for MonteCarlo-Prop, then the probability of P(A1|{x0 is selected}) = ρ. Then the “expected
number” of times we need to select x0 for A1 to happen is 1/ρ. The expected number of times that x0 is selected after n
iterations is

∑n
i=1

1
i . This yields the following expression for sufficiently large n: 1

ρ =
∑n
i=1

1
i ≈ ln(n) + cγ where cγ is

the Euler-Mascheroni constant, which yields: n ≈ e(ρ−1−cγ). Therefore, in order even for eventE1 (event ofA1 happening
at least once) to happen with approximately 1 − e−1 probability for small ρ values, the expected number of iterations is
exponential to the reciprocal of the success probability ρ of the MonteCarlo-Prop function. This implies intractability.
For efficiency purposes it is necessary to have methods where n does not depend exponentially to 1

ρ .

5.3. Using BestNear: Improving Convergence Rate

A computationally efficient alternative to NAIVE_RANDOM_TREE for finding a path, if one exists, is referred to here as
RRT-BestNear, which works like NAIVE_RANDOM_TREE but switches line 3 in Algorithm 2 with the procedure in
Algorithm 6. An important observation from the complexity discussion for NAIVE_RANDOM_TREE is that the exponential
term arises from the use of uniform random sampling for selection among the existing nodes. By not using any path cost
information when performing selection, the likelihood of generating good trajectories becomes very low, even if it is still
non-zero.

Fig. 13. (left) Illustration of different trajectories generated by MonteCarlo-Prop inside the covering balls B(π∗,δ,C∆). Many
trajectories may enter these balls, but may not be δ-similar to the optimal one. (right) Sampling xrand in the gray region guarantees that
a node zi ∈ Bδ(xi) is selected for propagation so that either zi = yi or cost(zi) < cost(yi).

The analysis of RRT-BestNear involves similar event constructions as in the previous section: A(n)
k and E(n)

k are
defined as in the previous section, except the endpoint of the trajectory segment generated must be in BδBN (x∗k). The
propagation from MonteCarlo-Prop still has positive probability of occurring, but is different from ρδ . The changed
probability for MonteCarlo-Prop to generate such a trajectory is defined as ρδ→δBN The probabilities of these events
will also change due to the new selection process and more constrained propagation requirements. It must be shown that
nodes that have good quality should have a positive probability of selection. Consider the selection mechanism BestNear

in the context of Figure 13.

Lemma 23. Assuming uniform sampling in the Sample function of BestNear, if ∃ x s.t. x ∈ BδBN (x∗i) at iteration

n, then the probability that BestNear selects for propagation a node x′ ∈ Bδ(x∗i) can be lower bounded by a positive

constant γ for every n′ > n.

Proof: Consider the case that a random sample xrand is placed at the intersection of a small ball of radius θ = δ − δBN
(guaranteed positive from Proposition 13), and of a δBN -radius ball centered at a state yi ∈ BδBN (xi) that was generated

23

during an iteration of an algorithm. State yi exists with probability P(E
(n)
k). In other words, if xrand ∈ Bθ(xi)∩BδBN (yi),

then yi will always be considered by BestNear because yi will always be within δBN distance of a random sample there.
The small circle is defined so that the δBN ball of xrand can only reach states in Bδ(xi). It is also required that xrand is in
the δBN -radius ball centered at yi, so that at least one node in Bδ(xi) is guaranteed to be returned. Thus, the probability
the algorithm select for propagation a node x′ ∈ Bδ(x∗i) can be lower bounded by the following expression:

γ =
µ(Bθ(xi) ∩ BδBN (x′))

µ(Xf)
> 0

�

With Theorem 17 and Lemma 23, both the selection and propagation probabilities are positive and it is possible to argue
probabilistic completeness of RRT-BestNear. The full proof is provided in Appendix G.:

Theorem 24. RRT-BestNear will eventually generate a δ-similar trajectory to any optimal trajectory.

The proof of asymptotic δ-robust near-optimality follows directly from Theorem. 24, the Lipschitz continuity, additivity,
and monotonicity of the cost function (Assumption 11). Theorem 24 is already examining the generation of a δ-similar
trajectory to π∗, but the bound on the cost needs to be calculated (as is constructed in Appendix H).

Theorem 25. RRT-BestNear is asymptotically δ-robustly near-optimal.

The addition of BestNear was introduced to address the convergence rate issues of NAIVE_RANDOM_TREE. Theorem
26 quantifies this convergence rate.

Theorem 26. For the worst case, the kth segment of the trajectory returned by RRT-BestNear converges linearly to the

near optimal solution, i.e, limn→∞
|P(E

(n+1)
k)−1|

|P(E
(n)
k)−1|

= (1− γρδ→δBN) ∈ (0, 1).

Proof: Applying the boundary condition of Equation 28, consider the ratio of the probabilities between iteration n+ 1 and
n.

|P(E
(n+1)
k)− 1|

|P(E
(n)
k)− 1|

=

∏n+1
j=1 (1− P(E

(j)
k−1) · γρδ→δBN)∏n

j=1(1− P(E
(j)
k−1) · γρδ→δBN)

= 1− P(E
(n+1)
k−1) · γρδ→δBN

Taking limn→∞, and given Theorem 24 such that limn→∞ P(E
(n+1)
k−1) = 1, the following holds:

lim
n→∞

|P(E
(n+1)
k)− 1|

|P(E
(n)
k)− 1|

= lim
n→∞

(1− P(E
(n+1)
k−1) · γρδ→δBN) = 1− γρδ→δBN ∈ (0, 1). �

Theorem 26 states that RRT-BestNear converges linearly to near optimal solutions. Recall that
the NAIVE_RANDOM_TREE approach converges logarithmically (sub-linearly). This difference indicates that
RRT-BestNear converges significantly faster than NAIVE_RANDOM_TREE. Now consider the expected number of
iterations, i.e. the iterations needed to return a near-optimal trajectory with a certain probability. Specifically, the conver-
gence rate depends on the difficulty level of the kinodynamic planning problem, which is measured by the probability
ρδ→δBN of successfully generating a δ-similar trajectory segment connecting two covering balls.

Recall that the expected number of iterations for E1 to succeed for NAIVE_RANDOM_TREE was n ≈ ecγ · e(ρ−1). In
the case of RRT-BestNear for event E1, this expected number of iterations is 1

1−e−1 · 1
γρδ→δBN

. This is a significant
improvement already for event E1 (though providing a weaker near-optimality guarantee). For the cases of Ek, (k > 1),
the expected number of iterations for RRT-BestNear linearly depends on the length of the optimal trajectory. While for
NAIVE_RANDOM_TREE, it is already intractable even for the first ball.

On the other hand, in terms of “per iteration” computation time, RRT-BestNear is worse than RRT. The BestNear
procedure requires a δBN -radius query operation which is computationally more expensive than the nearest neighbor query
in RRT. Therefore, RRT-BestNear shall be increasingly slower than RRT. Nevertheless, the following section shows
that maintaining a sparse data structure can help in this direction.

24 Journal name 000(00)

5.4. STABLE_SPARSE_RRT Analysis

This section argues that the introduction of the pruning process inSST does not compromise asymptotic δ-robust optimality
and improves the computational efficiency. Consider the selection mechanism used in SST.
Lemma 27. Let δc = δ − δBN − 2δs. If a state xnew ∈ Vactive is generated at iteration n so that x ∈ Bδc(x∗i), then for

every iteration n′ ≥ n, there is a state x′ ∈ Vactive so that x′ ∈ B(δ−δBN)(x
∗
i) and cost(x′) ≤ cost(x).

Proof: Given x, a node generated by SST, then it is guaranteed that a witness point s is located near x. As in Fig. 14 (A),
the witness point s can be located, in the worst case, at distance δs away from the boundary of Bδc(x∗i) if x ∈ Bδc(x∗i).

Note that x can be removed from Vactive by SST in later iterations. In fact, x almost surely will be removed if x 6= x0.
It is possible that when x is removed, there could be no state in the ball Bδc(x∗i). Nevertheless, the witness sample s
will not be deleted. A node x′ representing s will always exist in Vactive and x′ will not leave the ball Bδs(s). It is
guaranteed by SST that the cost of the x′ will never increase, i.e., cost(x′)≤cost(x). In addition, x′ has to exist inside
Bδ−δBN (x∗i) = Bδc+2δs(x

∗
i). �

Lemma 27 is where SST gains its Stable moniker. By examining what happens when a trajectory is generated that
ends in Bδc(x∗i), a guarantee can be made that there will always be a state in the Bδ(x∗i), thus becoming a stable point. The
relationship between δBN ,δs, and δ must satisfy the requirements of Proposition 13 in order to provide this property. After
proving the continued existence of x′ ∈ Bδ−δBN (x∗i), Lemma 28 provides a lower bound for the probability of selecting
x′.
Lemma 28. Assuming uniform sampling in the Sample function of BestNear, if ∃ x ∈ Vactive so that x ∈ Bδc(x∗i) at

iteration n, then the probability that BestNear selects for propagation a node x′ ∈ Bδ(x∗i) can be lower bounded by a

positive constant γsst for every n′ > n.
Proof: See Fig. 14(A): BestNear performs uniform random sampling in X to generate xrand, and then examines the ball
BδBN (xrand) to find the best path node. In order for a node inBδ(x∗i) to be returned, the sample needs to be inBδ−δBN (x∗i).
If the sample is outside this ball, then a node not in Bδ(x∗i) can be considered, and therefore may be selected.

Fig. 14. The selection mechanism of SST.

Next, consider the size of the intersection of
Bδ−δBN (x∗i) and a ball of radius δBN that is entirely
enclosed in Bδ(x∗i). Let xv denote the center of this
ball. This intersection, highlighted in Fig. 14(B), rep-
resents the area that a sample can be generated so as
to return a state from ball Bδ−δBN (x∗i). In the worst
case, the center of this ball BδBN (xv) could be on the
border of Bδ−δBN (x∗i), as seen in Fig. 14 B. Then, the
probability of sampling a state in this region can be com-
puted as: γsst = inf P

({
x′ returned by BestNear :

x′ ∈ Bδ(x∗i)
})

=
µ(Bδ−δBN (x∗i)∩BδBN (xv))

µ(Xf) . This is the
smallest region that will guarantee selection of a node in Bδ(xi).

�

Lemma 28 shows that the probability to select a near optimal state within the covering ball sequence with a non-
decreasing cost can be lower bounded. It is almost identical to the selection mechanism of RRT-BestNear. Similarly
to the analysis of RRT-BestNear, the probability that MonteCarlo-Prop is now again different. The trajectories
considered here must enter balls of radius δc, so the changed probability for MonteCarlo-Prop to generate such a
trajectory is ρδ→δc . With γsst and ρδ→δc defined, the completeness of SST can be argued.

Theorem 29. STABLE Sparse-RRT is probabilistically δ-robustly complete. e.g.,

lim inf
n→∞

P(∃ π ∈ ΠSST
n : π solution to (Xf , x0,XG, δ)) = 1.

25

Theorem 30. STABLE Sparse-RRT is asymptotically δ-robustly near-optimal. e.g.

P
({

lim sup
n→∞

Y SSTn ≤ (1 +
Kxδ

C∆
) · C∗

})
= 1.

The proofs for Theorem 29 and Theorem 30 are almost identical to the proofs of Theorem 24 and Theorem 25
respectively. The only differences are the different probabilities γsst and ρδ→δc . By changing the radii in the proofs of
Theorem 29 and Theorem 30 to their correct values in SST, the proofs hold.

Theorem 31. In the worst case, the kth segment of the trajectory returned by SST converges linearly to the near optimal

one, i.e.,

lim
n→∞

|P(E
(n+1)
k)− 1|

|P(E
(n)
k)− 1|

= (1− γρδ→δc) ∈ (0, 1).

The convergence rate and expected iterations for SST are again almost identical to that of RRT-BestNear, since both
the selection mechanism and the propagation probability of SST can be bounded by constants.

The benefit of SST is that the per iteration complexity ends up being smaller than RRT-BestNear. The most
expensive operation for the family of algorithms discussed in this paper asymptotically is the near neighbor query. SST
delivers noticeable computational improvement over RRT-BestNear due to the reduced size of the tree data structure.
The rest of this section examines the influence of the sparse data structure, which is brought by the pruning process in SST.

Among a set of size n points, the average time complexity for a nearest neighbor query is O(log n). The average time
complexity of the range query for near neighbors is O(n), since the result is a fixed proportional subset of the whole set.
Using this information, it is possible to estimate the overall asymptotic time complexities for RRT-BestNear and SST
to return near-optimal solutions with probability at least 1− e−1 ≈ 63.21%.

Lemma 32. For a k segment optimal trajectory with δ clearance, the expected running time for RRT-BestNear to return

a near-optimal solution with 1− e−1 probability can be evaluated as: O
(

(k
γρδ→δc

)2
)

Proof: Let Np denote k
(1−e−1)γρ . The total time computation after Np iterations can be evaluated as, O

(∑Np
i=1 c · i

)
=

O
(
c · Np(Np+1)

2

)
= O

(
(k
γρδ→δc

)2
)
. �

For RRT-Extend the expected number iterations needed to generate a trajectory can be bounded by k
ργrrt

(LaValle
& Kuffner 2001a). For the kth segment of a trajectory with δ clearance, the expected running time for RRT-Extend to
return a solution with 1− e−1 probability can be evaluated as: O

(
k

ργrrt
· log(k

ργrrt
)
)

.
Now consider SST. Since each s ∈ S has claimed a δs radius hyper-ball in the state space, then the following is true:

Lemma 33. For any two distinct witnesses of SST: s1, s2 ∈ S, where s1 6= s2, the distance between them is at least δs,

e.g., ∀s1, s2 ∈ S : ||s1 − s2|| > δs.

Lemma 33 implies that the size of the set S can be bounded, if the free space Xf is bounded.

Corollary 34. IfXf is bounded, the number of points of the set S and nodes inVactive is always finite, i.e., ∃M ∈ O(δ−d) :

|S| = |Vactive| ≤M .

Corollary 34 indicates that the total number of points in set S can be bounded. Then, the complexity of any near
neighbors query can be bounded. Now the improved time complexity of SST relative to RRT can be formulated.

Lemma 35. For a k segment optimal trajectory with δ clearance, the expected running time forSST to return a near-optimal

solution with 1− e−1 probability can be evaluated as, O
(
δ−d · k

γρδ→δc

)
.

Proof: Let Np denote k
(1−e−1)γρδ→δc

. Due to Corollary 34, the total computation time after Np iterations is: O
(∑Np

i=1 c ·

δ−d +Np

)
= O

(
δ−d · k

γρδ→δc

)
. Note that the second term Np describes the worst case of deletion of nodes in Vinactive

in Algorithm 5. For Np iterations, in the worst case, the algorithm can delete at most Np nodes. �

26 Journal name 000(00)

5.5. SST* Analysis

In SST, for given δ, δs, and δBN values, γsst and ρδ→δc are two constants describing the probability of selecting a near-
optimal state for propagation and of successfully propagating to the next ball region. Note that if δBN and δs are reduced
over time, the related δ value can be smaller. This is the intuition behind why SST∗ provides asymptotic optimality. If after
a sprint of iterations where δBN and δs are kept static, they are reduced slightly, this should allow for the generation of
trajectories with smaller clearance, i.e., closer to the true optimum.

Lemma 36. For a Bi of radius δ and a ball B′i with radius δ′, such that δ′/δ = α, where α ∈ (0, 1), there is ρ̂δ′
ρ̂δ

= αw+1

Lemma 36 says that when the probability ρ decreases over time, it is reduced by a factor α set to the power of the size
of the piecewise constant control vector plus one. The proof of this relationship is in Appendix I.

Lemma 37. Given δ > 0, and δBN > 0, for a scale α ∈ (0, 1), let δ′ = αδ and δ′BN = αδBN , there is γ′

γ = αd

Lemma 37 says that a similar relationship exists for values of γ. This probability is defined purely geometrically in the
state space, so its proof is trivial. Now that these relationships have been established, properties of SST∗ can be shown.

Theorem 38. SST ∗ is probabilistically complete. i.e., lim infj→∞ P({∃ xgoal ∈ (V SST
∗

n ∩ XG)}) = 1

Proof: LetE(i)
k,j (k ≥ 1) denote the eventEk (as seen from earlier proofs) at sprint j, after i iterations within the sub-function

SST. Then:

P(Ek,j) = 1−
K(j)∏
i=1

(1− P(E
(i)
k−1,j)γ

(j)ρ(j)). (2)

where γ(j) and ρ(j) are the values that have been used to bound selection and trajectory generation probability, but for the
δBN and δs values during the jth sprint. Let cbe a constant 1 ≤ c ≤ K(j) andpc be the value ofP(E

(c+1)
k−1,j) for a given j. Note

that within the same sprint j, Eq. 2 is equivalent to Eq. 28. LetPc be a constant, such thatPc =
∏c
i=1(1−P(E

(i)
k−1,j)γ

(j)ρ(j)).
Then, Eq. 2 becomes:

P(Ek,j) = 1− Pc
K(j)∏
i=c+1

(1− P(E
(i)
k−1,j)γ

(j)ρ(j)). (3)

And clearly, any P(E
(i)
k,j) (k ≥ 0) is strictly positive and non-decreasing, as i increases, meaning pc can be used as a

lower bound. Then Eq. 3 becomes:

P(Ek,j) = 1− Pc
K(j)∏
i=c+1

(1− P(E
(i)
k−1,j)γ

(j)ρ(j)) ≥ 1− Pc
K(j)∏
i=c+1

(1− pc · γ(j)ρ(j))

= 1− Pc(1− pc · γ(j)ρ(j))K(j)−c = 1− Pc
[
(1− pc · γ(j)ρ(j))

1

γ(j)ρ(j)

]·γ(j)ρ(j)·(K(j)−c)
. (4)

Since the inequality (1− α
x)x < e−α for all x > 1 and α > 0. Then Eq. 4 becomes, borrowing from Algorithm 9 the

expression for the number of iterations K(j), expression (4) becomes:

P(Ek,j) ≥ 1− Pc
[
(1− pc · γ(j)ρ(j))

1

γ(j)ρ(j)

]γ(j)ρ(j)·(K(j)−c)

> 1− Pc(e−pc)γ
(j)ρ(j)·(K(j)−c)

= 1− Pc(e−pc)γ
(j)ρ(j)·ξ−(d+w+1)j ·k0·(1+log j)−γ(j)ρ(j)c. (5)

27

Let β = k0 · γ(0)ρ(0), Eq. 5 becomes:

P(Ek,j) > 1− Pc(e−pc)γ
(j)ρ(j)·ξ−(d+w+1)j ·k0·(1+log j)−γ(j)ρ(j)c

= 1− Pc(e−pc)γ
(0)ρ(0)·k0·(1+log j)−γ(j)ρ(j)c

= 1− Pc(e−pc)β·(1+log j)−γ(j)ρ(j)c (6)

because of Lemma 36-37. As j increases to infinity, the following holds:

lim
j→∞

P(Ek,j) > lim
j→∞

1− Pc(e−pc)β·(1+log j)−γ(j)ρ(j)c = lim
j→∞

1− Pc · (e−pc)β·(1+log j)

(e−pc)γ(j)ρ(j)c
= 1− 0

1
= 1.

Since the limit exists, therefore it is true that lim infj→∞ P(Ek,j) = 1. �

Next, the argument regarding asymptotic optimality.

Theorem 39. SST∗ is asymptotically optimal. i.e., P({lim supj→∞ Y SST
∗

j = c∗}) = 1.

Proof: Since event Ek,j implies event {Y SST
∗

n ≤ (1 + cαδ) · c∗}, therefore at the end of the jth sprint, from Eq. 6:

P({Y SSTj ≤ (1 + cαδ
(j)) · c∗}) = P(Ek,j) > 1− Pc · (e−pc)β·(1+log j)

eγ(j)ρ(j)c

As j →∞, clearly limj→∞ δ(j) = 0, limj→∞ γ(j) = 0, and limj→∞ ρ(j) = 0. Then, it is true that:

P({ lim
j→∞

Y SSTj ≤ lim
j→∞

(1 + cαδ
(j)) · c∗}) = P({ lim

j→∞
Y SSTj ≤ c∗}) > lim

j→∞

[
1− Pc · (e−pc)β·(1+log j)

eγ(j)ρ(j)c

]
= 1− 0

1
= 1.

�

Algorithm 9 describes a process that gradually relaxes the “sparsification”, which increasingly allows adding active
states. At a high level perspective, RRT∗ employs the same idea implicitly. Recall that RRT∗ also allows adding states as
the algorithm proceeds. The difference is that RRT∗ adds one state per iteration, while SST∗ adds a set of states per batch
of iterations. Generally speaking, all sampling-based algorithms need to increasingly add states to cover the space. With
this approach, sampling-based algorithms avoid knowing the minimum clearance parameter δ.

In SST∗, the data structure is always a tree, meaning that, at any moment there are n edges and n+ 1 vertices (RRT∗

trims edges from the underlying RRG graph). The system accessibility property (Ball-Box theorem) guarantees that it is
possible to extend edges from one ball region to the next. It is also possible to argue that this will happen almost surely.
The Lipschitz continuity assumption of the cost function allows a near-optimal bound on the trajectories. The best-first
selection strategy and the pruning process make the above guarantees practical and computationally efficient.

6. Experimental Evaluation

In order to evaluate the proposed method, a set of experiments involving several different systems have been conducted. The
proposed algorithmSST is compared againstRRT (LaValle & Kuffner 2001a) as a baseline and also with another algorithm:
(a) if a steering function is available, a comparison with RRT∗ (Karaman & Frazzoli 2011) is conducted, (b) if RRT∗ cannot
be used, a comparison with an alternative based on a “shooting” function is utilized (Jeon et al. 2011). Different versions
of RRTwere evaluated depending on the benchmark. In the case where a steering function is available, RRT corresponds to
RRT-Connect. When a steering function is not available, a version of RRT using MonteCarlo-Prop is used, which
is similar to RRT-Extend.

The overall results show that SST can provide consistently improving path quality given more iterations as RRT∗ does
for kinematic systems, achieving running times equivalent (if not better than) RRT, and maintaining a small number of
nodes, all while using a very simple random propagation primitive.

28 Journal name 000(00)

Fig. 15. The different benchmarks. From left to right and top to bottom, a kinematic point, 3D rigid body, a pendulum, a cart-pole
among obstacles, a passive-active acrobot, a 12-dim quadrotor, fixed-wing aircraft (with much more restricted movement compared to
the quadrotor). Each experiment is averaged over 50 runs of each algorithm.

System Parameters Distance Function δs δBN
Kinematic Point 2 Dim. State, 2 Dim. Control Euclidean Distance .5 1
3D Rigid Body 6 Dim. State, 6 Dim. Control Euclidean Distance 2 4
Simple Pendulum 2 Dim. State, 1 Dim. Control, No Damp-

ing
Euclidean Distance .2 .3

Two-Link Acrobot (Spong
1997)

4 Dim. State, 1 Dim. Control, Euclidean Distance .5 1

Cart-Pole (Papadopoulos
et al. 2014)

4 Dim. State, 1 Dim. Control, Euclidean Distance 1 2

Quadrotor (Ai-Omari et al.
2013)

12 Dim. State, 4 Dim. Control, Distance in SE3 3 5

Fixed-Wing Airplane
(Paranjape et al. 2013)

9 Dim. State, 3 Dim. Control, Euclidean Distance in R3 2 6

Table 3. The experimental setup used to evaluate SST. Parameters are available in the corresponding references. Values for δs and δBN
have been selected based on the features of each planning challenge.

Figure 15 illustrates the various setups that the algorithms have been evaluated on and Table 3 shows details about the
experimental setups. The parameters of SST are chosen by hand from an expert user, but could be determined by examining
performance of previous attempts.
Kinematic Point. A simple system for a baseline comparison. The state space is 2D (x, y), the control space is 2D (v, θ),
and the dynamics are:

ẋ = v cos(θ) ẏ = v sin(θ).

3D Rigid Body. A free-flying rigid body. The state space is 6D (x, y, z, α, β, γ) signifying the space of SE(3) and the
control space is 6D (ẋ, ẏ, ż, α̇, β̇, γ̇) representing the velocities of these degrees of freedom.
Simple Pendulum. A pendulum system typical in control literature. The state space is 2D (θ, θ̇), the control space is 1D
(τ), and the dynamics are:

29

Fig. 16. The average cost to each node in the tree for each algorithm (RRT, RRT∗ or the shooting approach, and SST).

θ̈ =
(τ −mgl ∗ cos(θ) ∗ 0.5) ∗ 3

ml2
.

where m = 1 and l = 1.
Cart-Pole. Another typical control system where a block mass on a track has to balance a pendulum. The state space is

4D (x, θ, ẋ, θ̇) and the control space is 1D (f) which is the force on the block mass. The dynamics are from (Papadopoulos
et al. 2014).
Two-link Acrobot. The two-link acrobot model with a passive root joint. The state space is 4D (θ1, θ2, θ̇1, θ̇2) and the

control space is 1D (τ) which is the torque on the active joint. The dynamics are from (Spong 1997).

30 Journal name 000(00)

Fixed-wing airplane. An airplane flying among cylinders. The state space is 9D (x, y, z, v, α, β, θ, ω, τ), the control space
is 3D (τdes, αdes, βdes), and the dynamics are from (Paranjape et al. 2013).
Quadrotor. A quadrotor flying through windows. The state space is 12D (x, y, z, α, β, γ, ẋ, ẏ, ż, α̇, β̇, γ̇), the control space
is 4D (w1, w2, w3, w4) corresponding to the rotor torques, and the dynamics are from (Ai-Omari et al. 2013).

Fig. 17. The time for execution for each algorithm (RRT, RRT∗ or the shooting approach, and SST).

6.1. Quality of Solution Trajectories

In Figure 16 the average solution quality to nodes in each tree is shown. This average is a measure of the quality of
trajectories generated to all reachable parts of the state space. In every case, SST is able to improve quality over time.
By looking at all of the nodes in the tree as a whole, the global behavior of improving path costs can be observed. RRT

31

will increase this average over time because it chooses suboptimal nodes and further propagates them, thus making those
average values increase over time.

It is interesting to note that the approach based on the shooting function had varying success in these scenarios. The
systems with highly nonlinear dynamics (e.g., all the systems with a pendulum-like behavior) did not perform better than
RRT. This could result from the choice of distance function for these scenarios or from the inaccuracy in the shooting
method. Notably, SST does not have this problem for the same distance function and with random propagations and
continues to provide good performance. The shooting method did perform well in the quadrotor environment, but failed to
return solutions for most of the fixed-wing airplane runs and was therefore omitted.

6.2. Time Efficiency

Figure 17 shows time vs. iterations plots for each of the systems. The graphs show the amount of time it took to achieve
a number of iterations. The running time of SST is always comparable or better than RRT. RRT∗ has a higher time cost
per iteration as expected. Initially SST is slightly slower than RRT for the kinematic point, but becomes increasingly more
efficient later on. This is explained by Lemma 35, since SST has better running time than RRT given the sparse data
structure.

SST has another advantage over other RRT variants. Due to the pruning operation, there is another criterion in addition
to being collision-free that newly generated states must satisfy to be added to the tree. Any new state must both be collision-
free and dominant in the region around the witness sample in S. Because of this, the collision check at Line 8 of Algorithm
5 can be shifted to after Line 15. In the event that collision checking is more expensive than a nearest neighbor query in
S, this can result in improved computational efficiency depending on the scenario. This strategy was not used in these
experiments, but can be beneficial in domains where collision checking is the dominant computational factor.

6.3. Space Efficiency

One of the major gains of using SST is the smaller number of nodes that are needed in the data structure. Figure 18 shows
the number of nodes stored by each of the algorithms. The number of nodes is significantly lower in SST, even when
considering the witness set S. The sparse data structure of SST makes the memory requirements quite small, in contrast
to RRT and RRT∗, which do not perform any pruning operations. In the case of shooting, sometimes the inaccuracy of the
shooting primitive will cause collisions to occur in resimulated trees, pruning them from the data structure. This can lead
to losing solution trajectories.

These results showcase the large efficiency gains when a sparse data structure can be generated. There is a tradeoff,
however, between the sparseness of the data structure and allowing for a diverse set of paths to be generated. Path diversity
can be helpful for discovering the homotopic class of the optimal solution in practice. In all of these scenarios, there is
either only one homotopic class for solutions or the pruning radius δs is small enough to allow each homotopic class to be
potentially explored. Even considering this, significant pruning can still be achieved.

One can draw parallels between SST and grid-based methods, as both methodologies end up maintaining a discrete set
of witness states in the state space. One concern with grid-based approaches is that they have an exponential dependency
in the dimensionality of the state space. In the worst case, SST shares the same property. At the same time, however, it has
certain advantages. Typically, the discretization followed by grid-based methods corresponds to fixed witnesses defined
before the problem is known. In SST the witnesses arise on the fly and are adaptive to the features of the state space. A
benefit of following this approach is the capability to find solutions sooner in practice without explicitly constructing or
reasoning over the entire grid, which has an exponential number of points. After an initial solution is found, witness nodes
can be removed, improving space complexity even further, similar to branch-and-bound techniques.

32 Journal name 000(00)

Fig. 18. The number of nodes stored in each algorithm (RRT, RRT∗ or the shooting approach, and SST).

6.4. Dependence on Parameters

Table 4 shows statistics for running SST with several different parameter choices. The problem setup is the simple case of
the 2D kinematic point. Larger values for the pruning radius, δs, result in initial solutions being discovered sooner. Larger
values also restrict the convergence to better solutions. Larger values for the selection radius, δBN , provide better solution
cost for initial solutions, but requires more computational effort. These tradeoffs can be weighed for the application area
depending on the importance of finding solutions early and the quality of those solutions.

33

δBN
1.0 1.2 1.4 1.6 1.8

IT IC FC IT IC FC IT IC FC IT IC FC IT IC FC

δs

0.2 0.1105 3.4201 1.7782 0.1296 3.2891 1.7798 0.1516 3.2248 1.7866 0.1687 3.0865 1.7890 0.2095 3.0641 1.7949
0.4 0.1190 3.2445 1.7851 0.0915 3.2614 1.7797 0.0938 3.1364 1.7833 0.0961 3.0506 1.7829 0.0906 3.1027 1.7852
0.6 0.0603 3.2155 1.7916 0.0999 3.2105 1.7973 0.0670 2.9795 1.7988 0.0671 2.9523 1.7987 0.0679 2.8082 1.7971
0.8 0.0451 3.0468 1.8229 0.0593 2.9554 1.8273 0.0498 2.8908 1.8193 0.0545 2.8334 1.8232 0.0724 2.6549 1.8416
1.0 0.0548 2.7695 1.8627 0.0635 2.7371 1.8723 0.0567 2.7365 1.8621 0.0595 2.7185 1.8853 0.0601 2.7493 1.8846

Table 4. A comparison of different parameter choices in SST. The problem setup is the 2D point where the distance function is the
typical Euclidean metric. For each parameter selection, the time to compute an initial solution (IT), the initial solution cost in seconds
(IC), and final solution cost in seconds (FC) after 60 seconds of execution time.

Fig. 19. Experimental results for the physically-simulated car-like system. The time complexity of the approach is similar to RRT, but
maintains a much smaller data structure.

6.5. Physically-simulated Car Evaluation

One of the more interesting applications of SST is in the domain of planning for physically-simulated systems (Coumans
2012). SST is able to provide improving path quality given enough time and keeps the number of forward propagations
to one per iteration as shown in Figure 19. In this setup, the computational cost of propagation overtakes the cost of
nearest neighbor queries. Nearest neighbor queries become the bottleneck in problems, such as the kinematic point, where
propagation and collision checking are cheap. In the physically simulated case, however, these primitives are expensive,
therefore focusing the motion planner on good quality paths is especially important. In this respect, SST is suited to plan
for physically-simulated systems.

This physically-simulated car is modeled through the use of a rectangular prism chassis, two wheel axles, and four
wheels, creating a system with 7 rigid bodies. These rigid bodies are linked together with virtual joints in the Bullet physics
engine (Coumans 2012). The front axle is permitted to rotate to simulate steering angle and thrust is simulated as a force
on the chassis. The data provided in Figure 19 is generated by planning for the car in an open environment and attempting
to reach a goal state denoted by x,y and heading.

Using SST for a physically simulated system raises the question of whether this is a case where asymptotic optimality
can be argued formally. Note, that in this case, contacts arise between the moving system and the plane. Such contacts
typically violate the assumptions specified in the problem setup and in this manner the formal guarantees described in this
work do not necessary apply. Nevertheless, it is encouraging that the algorithm is still exhibiting good performance, in
terms of being able to improve the quality of the solution computed over time. This is probably because such real-world
problems still exhibit a certain level of smoothness that allows the algorithm to prune suboptimal solutions. As described
in the Discussion section of this paper, future research efforts will focus on generalizing the provided analysis and include
interesting challenges where contacts arise, including dexterous manipulation and locomotion.

6.6. Graph-based Nearest Neighbor Structure

In order to evaluate the graph-based nearest neighbor structure, comparisons to two other alternatives are shown. First,
a baseline comparison with a brute force search is provided. This provides the worst-case performance computationally
that more intelligent search methods should be able to overcome. Next, an approximate nearest neighbor structure is used

34 Journal name 000(00)

Fig. 20. A comparison of three different nearest neighbor structures in terms of solution quality at different iteration milestones for the
point system. This is not considering the amount of time to reach these iteration milestones.

Fig. 21. A comparison of three different nearest neighbor structures in terms of solution quality at different iteration milestones for the
airplane system. This is not considering the amount of time to reach these iteration milestones.

(Arya et al. 1998). This approach follows the popular kd-trees approach to space decomposition and nearest neighbor
queries. In the following experiments, the same environments for the kinematic point and the airplane systems are used,
and comparisons are made between RRT, RRT∗, and SST.

Fig. 22. A comparison of three different nearest neighbor structures in terms of time of execution at different iteration milestones for
the point system.

A comparison of the resulting solution quality between planners that use different nearest neighbor structures is shown
in Figures 20 and 21. In the case of RRT, where the Voronoi bias heavily affects the expansion process, having an exact
brute force metric actually provides small benefits in terms of quality. For RRT∗ and SST, small approximation errors when
returning nearest neighbors can actually result in generating longer edges that help in path quality. This causes a small
improvement in path quality for these algorithms.

Structure Single Query Range Query k-Query
Brute-Force 100% 100% 100%
ANN 100% 93.48% 99.74%
Graph-based 100% 99.96% 100%

Table 5. The accuracy of the graph-based nearest neighbor structure. These results state that over 5000 queries to a data structure holding
50000 states, these are the percentages of queries that were returned with the correct result. Most errors occurred from not returning all
relevant results (states that should have been returned) or returning false positives (states that should not have been returned).

In Figure 22, timing data for each of the nearest neighbor structures is shown. As expected in RRT and RRT∗, the
brute force method is worse than either of the approximate structures. The graph-based structure slightly outperforms the

35

alternative method. An interesting effect occurs in the case of SST however. Since SST maintains a small number of nodes
for this problem instance, the brute force search can actually be competitive with the graph-based nearest neighbor. The
alternative method that does not explicitly handle removal is much slower than the graph structure for SST, mainly due to
having to rebuild its internal structure when too many nodes are removed.

Table 5 shows the accuracy of the graph-based method compared to the other methods. While resulting in some query
errors, the number of errors is less than the comparison method.

7. Discussion and Conclusion

Recently, the focus in sampling-based motion planning has moved to providing optimality guarantees, while balancing the
computational efficiency of the related methods. Achieving this objective for systems with dynamics has generally required
the generation of specialized steering functions. This work shows that a fully-random selection/propagation procedure can
achieve asymptotic optimality under reasonable assumptions for kinodynamic systems. The same method, however, has
a very slow convergence rate to finding high-quality solutions, which indicates that the focus should primarily be on the
convergence rate of methods that provide path improvement over time.

To address these issues, this work proposed a new framework for asymptotically optimal sampling-based motion
planning. The departure from previous work is the utilization of best-first selection strategy and a pruning process, which
allow for fast convergence to high-quality solutions and a sparse data structure. Experiments and analytical results show
the running time and space requirements of a concrete implementation of this framework, i.e., the SST approach, are better
even than that of the efficient but suboptimal RRT, while SST can still improve path quality over time. This performance
increase is seen in many different scenarios, including in the case of a physically-simulated system.

Parameter Selection: The two parameters ofSST, namely δs and δBN , directly affect the performance of the algorithm.
Since the δs radius controls how much pruning SST will perform, it is necessary that this parameter is not set too high
because it can lead the algorithm not to discover paths through narrow passages. Practically, δs can be as large as the
clearance of paths desired from a given problem instance. It is also helpful to choose this value to be smaller than the radius
of the goal region, so as to allow the generation of a sample close to the goal.

The parameter δBN should be larger than δs to allow the tree data structure to properly expand. A value for δBN that is
too large will result in poor exploration of the state space since nodes closer to the root will be selected repetitively. Overall,
a balance between the state space size, δBN , and δs must be maintained to achieve good performance. The SST∗ approach
allows to start the search using rather arbitrary large values for δs and δBN , which then automatically decrease over time.

Finite-time Properties: Since SST maintains a relatively small data structure, and in bounded spaces it results in a
finite size data structure, it is interesting to consider the finite-time properties that can be argued (Dobson & Bekris 2013).
This depends significantly on the rate at which the witness set S can cover the free space. After this initial coverage, it may
be possible to examine the quality of the existing paths.

Planning under Uncertainty: By removing the requirement of the steering function, SST can be applied to other
problems where steering functions are difficult to construct. One of these areas is planning under uncertainty, where
planning is performed in belief space. It is difficult to compute a steering function that connects two probability distributions
in this domain, but forward propagation can update the corresponding beliefs. Some challenges in applying SST to this
domain involve computing appropriate distance metrics for the best first and pruning operations, as well as the increased
dimensionality of the problem. Some progress has been recently achieved in this direction, where it has been shown that in
the context of the methods described in the current paper a suitable function based on the Earth Mover’s distance can lead
to efficient solutions when planning under uncertainty (Littlefield et al. 2015). This can lead eventually to the application
of such solutions to important problems that involve significant uncertainty, such as kinodynamic and non-prehensile
manipulation (e.g., pushing, throwing, pulling, etc).

36 Journal name 000(00)

Feedback-based Motion Planning: Another extension relates to feedback-based motion planning and the capability
to argue that the computed trajectories are dynamically stable. The current work follows the majority of the literature in
sampling-based kinodynamic planning and is providing only nominal trajectories and not feedback-based plans or policies.
There has been work that takes advantage of sampling in the context of feedback-based motion planning, such as the work
on LQR-trees (Tedrake 2009). Nevertheless, it has been typically difficult to argue about the optimality of a feedback-based
solution when it comes to realistic and relatively high-dimensional dynamical robotic systems. In this way, an interesting
research direction is to identify the conditions under which it will be possible to provide such guarantees in the context of
feedback-based planning.

Real-world Experiments and Applications: It is also important to evaluate the effectiveness of the approach on real
systems with significant dynamics, especially aerial systems that perform aggressive maneuvers and systems modeled
through the use of physics engines. For example, future planetary exploration missions may involve more capable rovers.
They will have the capability to move at higher speeds in low gravity environments, potentially acquiring ballistic trajectories
for small periods of time. Thus, reasoning about the dynamics becomes more important during the planning process. SST
may be useful in this domain to optimize paths with respect to path length, energy expenditure, or the sensitivity of the
sensor payload on-board.

Locomotion and Dexterous Manipulation: Other potential research domains whereSSTmay be used include locomo-
tion and dexterous manipulation. These challenges involve planning using models of contact between objects and physical
considerations, such as balancing of a locomotion system or stability of a grasp for a manipulator. The use of a physics
engine to model friction and mass effects can be useful here. As demonstrated above, SST provides control sequences that
improve over time when a physics engine is used. Nevertheless, the presence of contacts introduces important complexities
that are not currently handled by the presented analysis.

In particular, there are two critical assumptions which complicate the generalization of the provided results: (a) the
system dynamics are expressed in the form of equation 1, which is a nonlinear ordinary differential equation, and (b) the
manifolds in which the systems live are smooth subsets of a d-dimensional Euclidean space. These assumptions do not
allow to consider models of rigid body dynamics and stick-slip friction, which are useful idealizations of locomotion and
dexterous manipulation. Such systems exhibit jump-discontinuities and in general cannot be represented by expressions
of the form in Equation 1. There is also a question of whether it is possible to address challenges in spaces, which are not
locally Euclidean.

It would be interesting to study manifolds generated by contact constraints. Such manifolds can be algebraic varieties,
which need not be smooth. Furthermore, such manifolds can be of different dimensions, as finger gaiting and locomotion
problems really don’t live on varieties of a single dimension, but live on stratified sets in a higher-dimensional ambient
state space. These issues motivate further research in the direction of providing general sampling-based algorithms that
exhibit asymptotic optimality guarantees for proper models of dexterous manipulation and locomotion systems.

Acknowledgments

The authors would like to thank the anonymous reviewers of the earlier versions of this work that appeared in IROS 2013
(Littlefield et al. 2013) and WAFR 2014 (Li et al. 2014), as well as the reviewers of the IJRR version for their thoughtful
comments. This work has been supported by NSF awards (IIS-1451737, CCF-1330789) and a NASA Space & Technology
Research Fellowship to Zakary Littlefield (NNX13AL71H).

References

Ai-Omari, M. A. R., Jaradat, M. A. & Jarrah, M. (2013), Integrated Simulation Platform for Indoor Quadrotor Applications, in

‘Mechatronics and its Applications (ISMA), 2013 9th International Symposium on’.

37

Alterovitz, R., Patil, S. & Derbakova, A. (2011), Rapidly-Exploring Roadmaps: Weighing Exploration vs. Refinement in Optimal Motion

Planning, in ‘IEEE Intl. Conf. on Robotics and Automation (ICRA)’.

Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R. & Wu, A. Y. (1998), ‘An Optimal Algorithm for Approximate Nearest Neighbor

Searching Fixed Dimensions’, Journal of the ACM 45(6), 891–923.

Barraquand, J. & Latombe, J.-C. (1993), ‘Nonholonomic Multibody Mobile Robots: Controllability and Motion Planning in the Presence

of Obstacles’, Algorithmica 10(2-4), 121–155.

Bekris, K. & Kavraki, L. (2008), Informed and Probabilistically Complete Search for Motion Planning under Differential Constraints, in

‘First International Symposium on Search Techniques in Artificial Intelligence and Robotics (STAIR)’, Chicago, IL.

Betts, J. T. (1998), ‘Survey of numerical methods for trajectory optimization’, AIAA Journal of Guidance, Control and Dynamics

21(2), 193–207.

Bobrow, J. E., Dubowsky, S. & Gibson, J. S. (1985), ‘Time-Optimal Control of Robotic Manipulators along Prespecified Paths’,

International Journal of Robotics Research (IJRR) 4(3), 3–17.

Branicky, M. S., Curtis, M. M., Levine, J. & Morgan, S. (2006), Sampling-based planning, control, and verification of hybrid systems,

in ‘IEEE Proc. Control Theory and Applications’.

Brockett, R. W. (1982), Control Theory and Singular Riemannian Geometry, in P. J. Hilton & G. S. Young, eds, ‘New Directions in

Applied Mathematics’, Springer-Verlag, pp. 11–27.

Canny, J., Rege, A. & Reif, J. (1991), ‘An Exact Algorithm for Kinodynamic Planning in the Plane’, Discrete and Computational

Geometry 6, 461–484.

Cheng, P., Frazzoli, E. & LaValle, S. M. (2004), Improving the Performance of Sampling-based Planners by using a Symmetry-Exploiting

Gap Reduction Algorithm, in ‘IEEE Intl. Conf. on Robotics and Automation (ICRA)’.

Cheng, P. & LaValle, S. M. (2001), Reducing Metric Sensitivity in Randomized Trajectory Design, in ‘IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS)’.

Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L. E. & Thrun, S. (2005), Principles of Robot Motion, The

MIT Press.

Chow, W. (1940/1941), ‘Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung’, Math. Ann. 117, 98–105.

Coumans, E. (2012), ‘Bullet Physics Engine’, http://bulletphysics.org.

Dobson, A. & Bekris, K. (2014), ‘Sparse Roadmap Spanners for Asymptotically Near-Optimal Motion Planning’, International Journal

of Robotics Research (IJRR) 33(1), 18–47.

Dobson, A. & Bekris, K. E. (2013), Finite-Time Near-Optimality Properties Of Sampling-Based Motion Planners’, in ‘IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS)’, Tokyo Big Sight, Japan.

Dobson, A., Krontiris, A. & Bekris, K. (2012), Sparse Roadmap Spanners, in ‘Workshop on Algorithmic Foundations of Robotics

(WAFR)’.

Donald, B. R. & Xavier, P. G. (1995), ‘Provably good approximation algorithms for optimal kinodynamic planning for cartesian robots

and open chain manipulators.’, Algorithmica 4(6), 480–530.

Donald, B. R., Xavier, P. G., Canny, J. & Reif, J. (1993), ‘Kinodynamic Motion Planning’, Journal of the ACM 40(5), 1048–1066.

Ferguson, D. & Stentz, A. (2006), Anytime RRTs, in ‘IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)’.

Fernandes, C., Gurvits, L. & Li, Z. (1993), Optimal Non-holonomic Motion Planning for a Falling Cat, in Z. Li & J. Canny, eds,

‘Nonholonomic Motion Planning’, Kluwer Academic.

Fliess, M., Lévine, J., Marin, P. & Rouchon, P. (1995), ‘Flatness and Defect of Nonlinear Systems: Introductory Theory and Examples’,

International Journal of Control 61(6), 1327–1361.

Frazzoli, E., Dahleh, M. A. & Feron, E. (2002), ‘Real-Time Motion Planning for Agile Autonomous Vehicles’, Journal of Guidance,

Control and Dynamics 25(1), 116–129.

Glassman, E. & Tedrake, R. (2010), A Quadratic Regulator-based Heuristic for Rapidly Exploring State Space, in ‘IEEE Intl. Conf. on

Robotics and Automation (ICRA)’.

38 Journal name 000(00)

Goretkin, G., Perez, A., Platt, R. & Konidaris, G. (2013), Optimal Sampling-based Planning for Linear-Quadratic Kinodynamic Systems,

in ‘IEEE Intl. Conf. on Robotics and Automation (ICRA)’.

Grimmett, G. & Stirzaker, D. (2001), Probability and Random Processes, 3 edn, Oxford University Press.

Heinzinger, G., Jacobs, P., Canny, J. & Paden, B. (1989), Time-optimal Trajectories for a robot manipulator: A provably good

approximation algorithms, in ‘IEEE Intl. Conf. on Robotics and Automation (ICRA)’, pp. 150–156.

Hsu, D., Kavraki, L., Latombe, J.-C., Motwani, R. & Sorkin, S. (1998), On Finding Narrow Passages with Probabilistic Roadmap Planners,

in ‘Workshop on Algorithmic Foundations of Robotics (WAFR)’.

Hsu, D., Kindel, R., Latombe, J. C. & Rock, S. (2002), ‘Randomized Kinodynamic Motion Planning with Moving Obstacles’, International

Journal of Robotics Research (IJRR) 21(3), 233–255.

Janson, L. & Pavone, M. (2013), Fast Marching Trees: a Fast Marching Sampling-Based Method for Optimal Motion Planning in Many

Dimensions, in ‘International Symposium of Robotics Research (ISRR)’.

Jeon, J.-H., Cowlagi, R., Peters, S., Karaman, S., Frazzoli, E., Tsiotras, P. & Iagnemma, K. (2013), Optimal Motion Planning with the

Half-Car Dynamical Model for Autonomous High-Speed Driving, in ‘American Control Conference (ACC)’.

Jeon, J.-H., Karaman, S. & Frazzoli, E. (2011), Anytime Computation of Time-Optimal Off-Road Vehicle Maneuvers using the RRT*,

in ‘IEEE Conference on Decision and Control (CDC)’.

Karaman, S. & Frazzoli, E. (2010), Incremental Sampling-based Algorithms for Optimal Motion Planning, in ‘Robotics: Science and

Systems (RSS)’.

Karaman, S. & Frazzoli, E. (2011), ‘Sampling-based Algorithms for Optimal Motion Planning’, International Journal of Robotics

Research (IJRR) 30(7), 846–894.

Karaman, S. & Frazzoli, E. (2013), Sampling-Based Optimal Motion Planning for Non-holonomic Dynamical Systems, in ‘IEEE Intl.

Conf. on Robotics and Automation (ICRA)’.

Karaman, S., Walter, M., Perez, A., Frazzoli, E. & Teller, S. (2011), Anytime Motion Planning using the RRT*, in ‘IEEE Intl. Conf. on

Robotics and Automation (ICRA)’.

Kavraki, L. E., Kolountzakis, M. N. & Latombe, J.-C. (1998), ‘Analysis of Probabilistic Roadmaps for Path Planning’, IEEE Transactions

on Robotics and Automation (TRA) 14(1), 166–171.

Kavraki, L. E., Svestka, P., Latombe, J.-C. & Overmars, M. (1996), ‘Probabilistic Roadmaps for Path Planning in High-Dimensional

Configuration Spaces’, IEEE Transactions on Robotics and Automation (TRA) 12(4), 566–580.

Kuffner, J. & Lavalle, S. (2000), An efficient approach to single-query path planning, in ‘IEEE Intl. Conf. on Robotics and Automation

(ICRA)’.

Kuindersma, S., Permenter, F. & Tedrake, R. (2014), An Efficiently Solvable Quadratic Program for Stabilizing Dynamic Locomotion,

in ‘IEEE Intl. Conf. on Robotics and Automation (ICRA)’.

Kunz, T. & Stilman, M. (2014), Kinodynamic RRTs with Fixed Time Step and Best-Input Extension Are Not Probabilistically Complete,

in ‘Workshop on Algorithmic Foundations of Robotics (WAFR)’.

Ladd, A. M. & Kavraki, L. E. (2004), ‘Measure Theoretic Analysis of Probabilistic Path Planning’, IEEE Transactions on Robotics and

Automation (TRA) 20(2), 229–242.

Ladd, A. M. & Kavraki, L. E. (2005a), Fast Tree-Based Exploration of State Space for Robots with Dynamics, in ‘Algorithmic Foundations

of Robotics VI’, Springer, STAR 17, pp. 297–312.

Ladd, A. M. & Kavraki, L. E. (2005b), Motion planning in the presence of drift, underactuation and discrete system changes, in ‘Robotics:

Science and Systems (RSS)’.

Lamiraux, F., Ferre, E. & Vallee, E. (2004), Kinodynamic Motion Planning: Connecting Exploration Trees using Trajectory Optimization

Methods, in ‘IEEE Intl. Conf. on Robotics and Automation (ICRA)’.

Laumond, J.-P., Sekhavat, S. & Lamiraux, F. (1998), Robot Motion Planning and Control - Chapter 1: Guidelines in Nonholonomic

Motion Planning for Mobile Robots, Springer.

39

LaValle, S. & Kuffner, J. (2001a), ‘Randomized Kinodynamic Planning’, International Journal of Robotics Research (IJRR) 20(5), 378–

400.

LaValle, S. & Kuffner, J. (2001b), Rapidly exploring random trees: Progress and prospects, in ‘Workshop on Algorithmic Foundations

of Robotics (WAFR)’.

Lewis, F. L. & Syrmos, V. L. (1995), Optimal Control, John Wiley and Sons Inc.

Li, Y. & Bekris, K. E. (2010), Balancing state-space coverage in planning with dynamics, in ‘IEEE Intl. Conf. on Robotics and Automation

(ICRA)’.

Li, Y. & Bekris, K. E. (2011), Learning Approximate Cost-to-Go Metrics To Improve Sampling-based Motion Planning, in ‘IEEE Intl.

Conf. on Robotics and Automation (ICRA)’.

Li, Y., Littlefield, Z. & Bekris, K. E. (2014), Sparse Methods For Efficient Asymptotically Optimal Kinodynamic Planning, in ‘Workshop

on Algorithmic Foundations of Robotics (WAFR)’, Istanbul, Turkey.

Likhachev, M. & Ferguson, D. (2009), ‘Planning Long Dynamically-feasible Maneuvers for Autonomous Vehicles’, International Journal

of Robotics Research (IJRR) 28, 933–945.

Littlefield, Z., Kurniawati, H. & Bekris, K. E. Klimenko, D. (2015), The Importance Of A Suitable Distance Function In Belief-Space

Planning, in ‘International Symposium on Robotic Research (ISRR)’, Sestri Levante, Italy.

Littlefield, Z., Li, Y. & Bekris, K. (2013), Efficient Sampling-based Motion Planning with Asymptotic Near-Optimality Guarantees with

Dynamics, in ‘IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)’.

Marble, J. D. & Bekris, K. (2013), ‘Asymptotically Near-Optimal Planning With Probabilistic Roadmap Spanners’.

Marble, J. D. & Bekris, K. E. (2011), Asymptotically near-optimal is good enough for motion planning, in ‘International Symposium of

Robotics Research (ISRR)’.

Nechushtan, O., Raveh, B. & Halperin, D. (2010), Sampling-Diagrams Automata : a Tool for Analyzing Path Quality in Tree Planners,

in ‘Workshop on Algorithmic Foundations of Robotics (WAFR)’.

O’Dunlaing, C. (1987), ‘Motion planning with inertial constraints’, Algorithmica 4(2), 431–475.

Ostrowski, J. P., Desai, J. P. & Kumar, V. (2000), ‘Optimal Gait Selection for Non-holonomic Locomotion Systems’, International Journal

of Robotics Research (IJRR) 19(3), 225–237.

Papadopoulos, G., Kurniawati, H. & Patrikalakis, N. (2014), Analysis of Asymptotically Optimal Sampling-based Motion Planning

Algorithms for Lipschitz Continuous Dynamical Systems. http://arxiv.org/abs/1405.2872.

Paranjape, A., Meier, K., Shi, X., Chung, S.-J. & Hutchinson, S. (2013), Motion primitives and 3-D path planning for fast flight through

a forest, in ‘IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)’.

Phillips, J. M., Bedrosian, N. & Kavraki, L. E. (2004), Guided expansive spaces trees: A search strategy for motion and cost-constrained

state spaces, in ‘IEEE Intl. Conf. on Robotics and Automation (ICRA)’.

Plaku, E., Kavraki, L. E. & Vardi, M. Y. (2010), ‘Motion Planning with Dynamics by a Synergistic Combination of Layers of Planning’,

IEEE Transactions on Robotics 26(3), 469–482.

Richter, C., Bry, A. & Roy, N. (2013), Polynomial Trajectory Planning for Aggressive Quadrotor Flight in Dense Indoor Environments,

in ‘International Symposium of Robotics Research (ISRR)’, Singapore.

Sahar, G. & Hollerbach, J. (1985), Planning of Minimum-Time Trajectories for Robot Arms, in ‘IEEE Intl. Conf. on Robotics and

Automation (ICRA)’.

Sanchez, G. & Latombe, J.-C. (2001), A Single-Query, Bi-Directional Probabilistic Roadmap Planner with Lazy Collision Checking, in

‘International Symposium of Robotics Research (ISRR)’, pp. 403–418.

Schulman, J., Duan, Y., Ho, J., Lee, A., Awwal, I., Bradlow, H., Pan, J., Patil, S., Goldberg, K. & Abbeel, P. (2014), ‘Motion planning

with sequential convex optimization and convex collision checking’, International Journal of Robotics Research (IJRR) .

Shaharabani, D., Salzman, O., Agarwal, P. & Halperin, D. (2013), Sparsification of motion-planning roadmaps by edge contraction, in

‘IEEE Intl. Conf. on Robotics and Automation (ICRA)’.

Shiller, Z. & Dubowsky, S. (1988), Global time-optimal motions of robotic manipulators in the presence of obstacles, in ‘IEEE Intl. Conf.

40 Journal name 000(00)

on Robotics and Automation (ICRA)’.

Shiller, Z. & Dubowsky, S. (1991), ‘On Computing the Global Time-Optimal Motions of Robotic Manipulators in the Presence of

Obstacles’, IEEE Transactions on Robotics and Automation (TRA) 7(6), 785–797.

Shkolnik, A., Walter, M. & Tedrake, R. (2009), Reachability-Guided Sampling for Planning under Differential Constraints, in ‘IEEE Intl.

Conf. on Robotics and Automation (ICRA)’.

Spong, M. W. (1997), Underactuated mechanical systems, in B. Siciliano & K. P. Valavanis, eds, ‘Control Problems in Robotics and

Automation, Lecture Notes in Control and Information Sciences’.

Sreenath, K., Lee, T. & Kumar, V. (2013), Geometric control and differential flatness of a quadrotor uav with a cable-suspended load, in

‘IEEE Conference on Decision and Control (CDC)’, Florence, Italy.

Şucan, I. A. & Kavraki, L. E. (2012), ‘A Sampling-Based Tree Planner for Systems with Complex Dynamics’, IEEE Transactions on

Robotics .

Sussmann, H. (1987), ‘A General Theorem on Local Controllability’, SIAM Journal of Control and Optimization .

Tedrake, R. (2009), LQR-trees: Feedback Motion Planning on Sparse Randomized Trees, in ‘Robotics: Science and Systems (RSS)’,

June.

Urmson, C. & Simmons, R. (2003), Approaches for Heuristically Biasing RRT Growth, in ‘IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS)’, pp. 1178–1183.

Wang, W., Balkcom, D. & Chakrabarti, A. (2013), A fast streaming spanner algorithm for incrementally constructing sparse roadmaps,

in ‘IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)’.

Webb, D. & van Den Berg, J. (2013), Kinodynamic RRT*: Asymptotically Optimal Motion Planning for Robots with Linear Differential

Contstraints, in ‘IEEE Intl. Conf. on Robotics and Automation (ICRA)’.

Zucker, M., Kuffner, J. & Branicky, M. S. (2007), Multiple RRTs for Rapid Replanning in Dynamic Environments, in ‘IEEE Intl. Conf.

on Robotics and Automation (ICRA)’.

Zucker, M., Ratliff, N. D., Dragan, A. D., Pivtoraiko, M., Klingensmith, M., Dellin, C. M., Bagnell, J. A. & Srinivasa, S. (2013), ‘CHOMP:

Covariant Hamiltonian Optimization for Motion Planning’, International Journal of Robotics Research (IJRR) 32(9-10), 1164–1193.

Appendix A

This appendix provides an informal proof of Lemma 6, which argues that given Assumption 5, there exist δ-similar
trajectories for any specific trajectory π. The existence of δ-similar trajectories relates to notions that have been used in
previous analysis efforts, such as the linking sequence in ε-good free spaces (Hsu et al. 2002), or attraction sequences

(LaValle & Kuffner 2001a), or being homotopic in δ-interior of Xfree (Karaman & Frazzoli 2011, 2013).
Lemma 6. Let there be a trajectory π for a system satisfying Eq. 1 and Chow’s condition. Then there exists a positive

value δ0 called the dynamic clearance, such that: ∀ δ ∈ (0, δ0], ∀ x′0 ∈ Bδ(π(0)), and ∀ x′1 ∈ Bδ(π(tπ)), there exists a

trajectory π′, so that: (i) π′(0) = x′0 and π′(tπ′) = x′1; (ii) π and π′ are δ-similar trajectories.

Proof Sketch: Informally speaking, Chow’s condition implies that the Ball Box theorem holds. It also implies that
the manifold Xf is regular and involutory (Choset et al. 2005). A real-analytic control-affine system is small-time locally
accessible (STLA), if and only if the distribution satisfies Chow’s condition (Sussmann 1987). Assume every state on the
optimal trajectory is a regular point. Then, the sub-Riemannian ball up to a small constant radius tε contains a weighted
box of the same dimension of the state space and it is oriented according to vector fields of the Lie brackets. The bases are
real analytical. Therefore there exists an open neighborhood at each point x such that the bases evaluated at a different point
x′ converge to the bases at x as x′ approaches x. Then, the weighted boxes centered by two sufficiently close states have
a non-empty intersection. It implies that a hyper ball of some positive radius δ0 can be fitted into this intersection region.
Overall, there are two sufficiently close hyper-ball regions on the optimal trajectory such that between any point x in one
ball and any point in the other ball there exists a horizontal curve and the length of the curve is less or equal to the radius

41

tε of the sub-Riemannian ball. Then concatenating all hyper balls along a specified trajectory, results in the generation of
δ-similar trajectories. �

Appendix B

This appendix proves Theorem 15, which shows that sampling piece-wise constant controls can generate trajectories that
are δ-similar to one another. If one trajectory in question is an optimal one, then a trajectory that is δ-similar to that optimal
trajectory can be generated.

Theorem 15. For two trajectories π and π′ such that π(0) = π′(0) = x0 and ∆u = supt(||u(t)− u′(t)||):

||π′(T)− π(T)|| < Ku · T · eKx·T ·∆u,

for any period T ≥ 0.

Proof: Given Assumption 5, for any two states x0, x1 and two controls u0, u1:

||f(x0, u0)− f(x0, u1)|| ≤ Ku||u0 − u1|| ||f(x0, u1)− f(x1, u1)|| ≤ Kx||x0 − x1||.

By summing these two inequalities:

||f(x0, u0)− f(x0, u1)||+ ||f(x0, u1)− f(x1, u1)|| ≤ Ku||u0 − u1||+Kx||x0 − x1||. (7)

Given the Euclidean distance, the following inequality is true:

||f(x0u0)− f(x1, u1)|| ≤ ||f(x0, u0)− f(x0, u1)||+ ||f(x0, u1)− f(x1, u1)||.

By joining this with (7):

||f(x0, u0)− f(x1, u1)|| ≤ Ku||u0 − u1||+Kx||x0 − x1||. (8)

Now, divide [0, T] into n segments with equal length ∆t. Approximating the value of a trajectory π(T) using Euler’s
Method, there is a sequence of states {x0, x1, ..., xn}. Let ui denote u(i∆t) corresponding to the control applied at each
state.

xi = f(xi−1, ui−1)∆t+ x(i−1).

For two trajectories π and π′ such that π(0) = π′(0) = x0, u(t) and u′(t) are the corresponding control functions. Then:

xn = xn−1 + f(xn−1, un−1)∆t

x′n = x′n−1 + f(x′n−1, u
′
n−1)∆t.

Then:

|xn − x′n|| ≤ ||xn−1 − x′n−1||+ ||f(xn−1, un−1)− f(x′n−1, u
′
n−1)||∆t. (9)

Using (8) and (9):

||xn − x′n|| ≤ ||xn−1 − x′n−1||+ (Ku||un−1 − u′n−1||+Kx||xn−1 − x′n−1||)∆t,

||xn − x′n|| ≤ Ku∆t||un−1 − u′n−1||+ (1 +Kx∆t)||xn−1s− x′n−1||. (10)

Reusing (10) to expand ||xn−1 − x′n−1||:

42 Journal name 000(00)

||xn − x′n|| ≤ Ku∆t||un−1 − u′n−1||+ (1 +Kx∆t)(Ku∆t||un−2 − u′n−2||+ (1 +Kx∆t)||xn−2 − x′n−2||).

||xn − x′n|| ≤ Ku∆t||un−1 − u′n−1||+ (1 +Kx∆t)Ku∆t||un−2 − u′n−2||+ (1 +Kx∆t)2||xn−2 − x′n−2||).

By repeatedly expanding the right side:

||xn − x′n|| ≤ (1 +Kx∆t)n||x0 − x′0||+Ku∆t||un−1 − u′n−1||+ (1 +Kx∆t)Ku∆t||un−2 − u′n−2||+

· · ·+ (1 +Kx∆t)n−1Ku∆t||u0 − u′0||.

Since x0 = x′0 = x0, and ∆u = maxn−1
i=0 (||ui − u′i||.:
||xn − x′n|| ≤ Ku∆t

n−1∑
i=0

(1 +Kx∆t)i∆u.

Since n∆t = T :

||xn − x′n|| ≤ KuT
1

n

n−1∑
i=0

(1 +
KxT

n
)i∆u

Due to the fact that 1 < (1 + α
n)i < eα, where 1 ≤ i ≤ n and α > 0:

||xn − x′n|| < KuTn
1

n
eKxT∆u⇒ ||xn − x′n|| < KuTe

KxT∆u.

Given Assumption 5, Euler’s method converges to the solution of the Initial Value Problem. Then:

||π(T)− π′(T)|| = lim
n→∞

||xn − x′n||, where n∆t = T.

Therefore:||π(T)− π′(T)|| < KuTe
KxT∆u �

Appendix C

This appendix proves Theorem 18. The proof shows that given an optimal trajectory, it is possible for
NAIVE_RANDOM_TREE to generate a trajectory that is close to the optimal. In effect, this shows that
NAIVE_RANDOM_TREE is probabilistically complete. Appendix D will examine the path cost of this generated trajectory.

Theorem 18. NAIVE_RANDOM_TREE will eventually generate a δ-similar trajectory to any optimal trajectory for

any robust clearance δ > 0.

Proof: Let π∗ denote an optimal trajectory of cost C∗ for a δ-robustly feasible motion planning problem (Xf , x0,
XG, δ) and consider the covering ball sequence B(π∗(t), δ, C∆) over the optimal trajectory. Recall that from Def. 14 and
Assumption 11, for a given value Tprop, which is one parameter of MonteCarlo-Prop, it is always possible to find
a value C∆ such that a ball sequence can be defined. Consider the event ¬E(n)

k that the algorithm fails to generate any
near-optimal trajectory inside a δ-ball centered at the kth segment of π∗, Bδ(x∗k), after n iterations, which only happens
when all the n consecutive iterations fail, i.e.:

¬E(n)
k = ¬A(1)

k ∩ ¬A
(2)
k ∩ ... ∩ ¬A(n)

k

P(¬E(n)
k) = P(¬A(1)

k) · P(¬A(2)
k |¬A

(1)
k) · ... · P(¬A(n)

k |
n−1⋂
j=1

¬A(j)
k). (11)

43

The probability that ¬A(n)
k happens given

⋂n−1
j=1 ¬A

(j)
k is equivalent to the probability of failing to generate a trajectory

to Bδ(x∗k−1) plus the probability that a trajectory has been generated to Bδ(x∗k−1), but the algorithm has to generate a new
trajectory to Bδ(x∗k), i.e.:

P(¬A(n)
k |

n−1⋂
j=1

¬A(j)
k) = P(¬E(n)

k−1) + P(E
(n)
k−1) · P({fail stepping to Bδ(x∗k)})

≤ P(¬E(n)
k−1) + P(E

(n)
k−1)(1− ρδ→δ

n
)

= 1− P(E
(n)
k−1) · ρδ→δ

n
. (12)

Therefore, using Equation 11 and Equation 12:

P(E
(n)
k) ≥ 1−

n∏
j=1

(1− P(E
(j)
k−1) · ρδ→δ

j
). (13)

For the base case, P(E
(j)
0) = 1 because x0 is always in Bδ(x0). Then, consider event E1 from iteration 1 to n using

Equation (13), and set y(n)
1 =

∏n
j=1(1− ρδ→δ

j):

P(E
(n)
1) ≥ 1−

n∏
j=1

(1− ρδ→δ
j

) = 1− y(n)
1 .

The logarithm of y(n)
1 behaves as follows:

log y
(n)
1 = log

n∏
j=1

(1− ρδ→δ
j

) =

n∑
j=1

log(1− ρδ→δ
j

) <

n∑
j=1

−ρδ→δ
j

= −ρδ→δ ·
n∑
j=1

1

j
. (14)

Clearly, Equation 14 diverges as n→∞:

lim
n→∞

log y
(n)
1 < lim

n→∞
−ρδ→δ ·

n∑
j=1

1

j
= −∞ ⇐⇒ lim

n→∞
y

(n)
1 = 0.

lim
n→∞

P(E
(n)
1) ≥= 1− 0 = 1. (15)

Now consider the induction step, if limn→∞ P(E
(n)
k−1) = 1, we need to show that the same will be true forE(n)

k . Similarly,
set y(n)

k =
∏n
j=1(1− P(E

(j)
k−1) · ρδ→δj). The logarithm of y(n)

k behaves as follows:

log y
(n)
k = log

n∏
j=1

(1− P(E
(j)
k−1) · ρδ→δ

j
) =

n∑
j=1

log(1− P(E
(j)
k−1) · ρδ→δ

j
) < −ρδ→δ ·

n∑
j=1

P(E
(j)
k−1)

j
. (16)

Next, we want to show that for any constant c1 ∈ (0, 1):
∞∑
j=1

P(E
(j)
k−1)

j
>

∞∑
j=1

c1
j
.

To show the above expression holds, let c2 be another constant such that c1 < c2 < 1. Clearly, Equation 13 indicates that
E

(n)
k monotonically increases when ρδ→δ > 0 and P(E

(j)
k−1) > 0. From the induction assumption, limn→∞ P(E

(n)
k−1) = 1,

then there exist corresponding numbers j1 < j2 such that c1 ≥ P(E
(j1−1)
k−1), c1 < P(E

(j1)
k−1) and c2 ≥ P(E

(j2−1)
k−1), c2 <

P(E
(j2)
k−1).

44 Journal name 000(00)

Now examine the following summation from j1 to∞, according to the definition of summation:

∞∑
j=j1

P(E
(j)
k−1)− c1
j

(17)

=

j2−1∑
j=j1

P(E
(j)
k−1)− c1
j

+

∞∑
j=j2

P(E
(j)
k−1)− c1
j

>

j2−1∑
j=j1

P(E
(j)
k−1)− c1
j

+

∞∑
j=j2

c2 − c1
j

=∞. (18)

Clearly, the first term in Equation 18 is positive. The second term in 18 diverges to infinity. Then 17 is positive and
unbounded. Consider the following summation from 1 to j1 − 1:

−∞ <

j1−1∑
j=1

P(E
(j)
k−1)− c1
j

< 0. (19)

Clearly, Equation 19 is negative but bounded, since there are only finite terms.
Then combining Equation 17 and Equation 19,

∞∑
j=1

P(E
(j)
k−1)− c1
j

> 0 ⇐⇒
∞∑
j=1

P(E
(j)
k−1)

j
>

∞∑
j=1

c1
j
. (20)

Combining Equation 16 and Equation 20,

lim
n→∞

log y
(n)
k < −ρδ→δ · lim

n→∞

n∑
j=1

P(E
(j)
k−1)

j
< −ρδ→δ · lim

n→∞

n∑
j=1

c1
j

= −∞ ⇐⇒ lim
n→∞

y
(n)
k = 0.

Then, the induction step holds, i.e.:

lim
n→∞

P(E
(n)
k) = 1− 0 = 1, if lim

n→∞
P(E

(n)
k−1) = 1. (21)

Both of the base case 15 and induction step 21 hold. Therefore, it is true that:

lim
n→∞

P(E
(n)
k) = 1 =⇒ lim inf

n→∞
P(E

(n)
k) = 1. (22)

Therefore, NAIVE_RANDOM_TREE will eventually generate a δ-similar trajectory to any optimal trajectory for any robust
clearance 0 < δ′ ≤ δ.

�

Appendix D

Theorem 20. NAIVE_RANDOM_TREE is asymptotically optimal.

Proof: Theorem 18 indicates that a δ-similar trajectory to an optimal trajectory π∗ with cost of C∗ almost surely exists
and is discovered by NAIVE_RANDOM_TREE. According to the definition of δ-similar trajectories and assumption 11:
|cost(π) − cost(π∗)| ≤ Kc · δ. Then: cost(π) ≤ cost(π∗) + Kc · δ. Therefore, event E(∞)

k implies event {Y RT∞ ≤
cost(π∗) + k ·Kc · δ}, where k = C∗

C∆
. In other words, Theorem 18 implies that:

P({lim sup
n→∞

Y RTn ≤ (1 +
Kc · δ
C∆

) · cost(π∗)}) = 1. (23)

45

Therefore, the NAIVE_RANDOM_TREE is asymptotically δ-robust near-optimal for the given δ. In fact, however, due
to Theorems 17 and 18 the above holds true for any δ > 0. Note that C∆ is the step cost of the optimal trajectory segment
between x∗i and x∗i+1. And, most importantly, C∆ is determined by the ball sequence, which means C∆ does not shrink
when δ decreases. Then, as δ → 0: P({lim supn→∞ Y RTn ≤ cost(π∗(t))}) = 1 �

Appendix E

Theorem 21 In the worst case, the kth segment of the trajectory returned by NAIVE_RANDOM_TREE converges

logarithmically to the near optimal solution, i.e.: limn→∞
|P(E

(n+2)
k)−P(E

(n+1)
k)|

|P(E
(n+1)
k)−P(E

(n)
k)|

= 1

Proof: Considering the worst case of Equation 13:

|P(E
(n+2)
k)− P(E

(n+1)
k)|

|P(E
(n+1)
k)− P(E

(n)
k)|

=

∏n+1
j=1 (1− P(E

(j)
k−1)·ρ
j)−

∏n+2
j=1 (1− P(E

(j)
k−1)·ρ
j)∏n

j=1(1− P(E
(j)
k−1)·ρ
j)−

∏n+1
j=1 (1− P(E

(j)
k−1)·ρ
j)

=
(1− P(E

(n+1)
k−1)·ρ
n+1)− (1− P(E

(n+1)
k−1)·ρ
n+1)(1− P(E

(n+2)
k−1)·ρ
n+2)

1− (1− P(E
(n+1)
k−1)·ρ
n+1)

= (1−
P(E

(n+1)
k−1) · ρ
n+ 1

) ·
P(E

(n+2)
k−1)·ρ
n+2

P(E
(n+1)
k−1)·ρ
n+1

= (1−
P(E

(n+1)
k−1) · ρ
n+ 1

) · n+ 1

n+ 2
·
P(E

(n+2)
k−1)

P(E
(n+1)
k−1)

(24)

Clearly for Equation 24, as n→∞, (1− P(E
(n+1)
k−1)·ρ
n+1) converges to 1, as well as n+1

n+2 converges to 1. Given Thm. 18, the

limit for P(E
(n)
k−1) exists and is non-zero. Furthermore, the monotonicity of P(E

(n)
k−1) implies that

P(E
(n+2)
k−1)

P(E
(n+1)
k−1)

converges to

1. Therefore:

lim
n→∞

|P(E
(n+2)
k)− P(E

(n+1)
k)|

|P(E
(n+1)
k)− P(E

(n)
k)|

= 1 · 1 · 1 = 1.

�

Appendix F

Theorem 22. For any state xi ∈ V such that xi is added into the set of vertices V at iteration i, then

NAIVE_RANDOM_TREE will select xi for MonteCarlo-Prop infinitely often as the number of iterations reach infinity,

i.e.:

P(lim sup
n→∞

{xi is selected}) = 1.

Proof: Let xi denote a state which is added to V at iteration i and let S(n)
i denote the event such that xi is selected for

MonteCarlo-Prop at iteration n (clearly i < n). During each iteration, the algorithm uniformly at random selects a
state for MonteCarlo-Prop. The probability of such an event can be written as P(S

(n)
i) = 1

n . The summation of the
first n− i terms of the sequence is:

n∑
j=1

P(S
(j)
i) =

n∑
j=1

1

j
−

i∑
j=1

1

j
. (25)

46 Journal name 000(00)

The first term on the right side is harmonic series, and the second term is the i-th harmonic number. A property of harmonic

series is: n∑
j=1

1

j
= ln(n) + cγ + εn

cγ = 0.577... (Euler-Mascheroni constant), εn ∼
1

2n
such that lim

n→∞
εn = 0.

Therefore, Eq. 25 diverges as n→∞.

∞∑
j=1

P(S
(j)
i) = lim

n→∞
[ln(n) + cγ + εn −

i∑
j=1

1

j
] ≥ +∞.

Selecting xi is independent at any two different iterations (and combinations) after xi has been extended. This is because
the algorithm uniformly at random picks one vertex among existing ones at each iteration. Then, according to the second

Borel−Cantelli lemma,
P(lim sup

n→∞
S

(n)
i) = 1

Therefore, xi shall be selected for MonteCarlo-Prop infinitely often as the number of execution times n→∞. �

Appendix G

Theorem 24. RRT-BestNear will eventually generate a δ-similar trajectory to any optimal trajectory.

Proof: The probability of ¬E(n)
k occurring depends on a sequence of Ak events failing:

P(¬E(n)
k) = P(¬A(1)

k) · P(¬A(2)
k |¬A

(1)
k) · ... · P(¬A(n)

k |
n−1⋂
j=1

¬A(j)
k) (26)

The probability that ¬A(n)
k happens given

⋂n−1
j=1 ¬A

(j)
k is equivalent to the probability of failing to generate a trajectory

reaching BδBN (x∗k−1) plus the probability that a trajectory has been generated to BδBN (x∗k−1), but fails to generate a new
trajectory segment to BδBN (x∗k), i.e.:

P(¬A(n)
k |

n−1⋂
j=1

¬A(j)
k) = P(¬E(n)

k−1) + P(E
(n)
k−1) · P({step fail to BδBN (x∗k)})

≤ P(¬E(n)
k−1) + P(E

(n)
k−1)(1− γρδ→δBN)

= 1− P(E
(n)
k−1) · γρδ→δBN . (27)

Therefore, using Equation 26 and Equation 27:

P(E
(n)
k) ≥ 1−

n∏
j=1

(1− P(E
(j)
k−1) · γρδ→δBN). (28)

For the base case, P(E
(j)
0) = 1 because x0 is always in BδBN (x0). Then, consider event E1 from iteration 1 to n using

the last equation above. The probability of E1 is:

P(E
(n)
1) ≥ 1−

n∏
j=1

(1− γρδ→δBN) = 1− (1− γρδ→δBN)n ⇒

lim
n→∞

P(E
(n)
1) ≥ 1− lim

n→∞
(1− γρδ→δBN)n = 1− 0 = 1.

47

For the induction step, if limn→∞ P(E
(j)
k) = 1, we need to show that the same will be true for E(n)

k+1. Set y(n)
k =∏n

j=1(1− P(E
(j)
k−1) · γρδ→δBN). The logarithm of y(n)

k behaves as follows:

log y
(n)
k = log

n∏
j=1

(1− P(E
(j)
k−1) · γρδ→δBN) =

n∑
j=1

log(1− P(E
(j)
k−1) · γρδ→δBN)⇒

log y
(n)
k <

n∑
j=1

−P(E
(j)
k−1) · γρδ→δBN = −γρδ→δBN ·

n∑
j=1

P(E
(j)
k−1). (29)

From the inductive assumption that, P(E
(j)
k) converges to 1 as j →∞, then limn→∞

∑n
j=1 P(E

(j)
k) =∞. Then:

lim
n→∞

log y
(n)
k+1 < −γρδ→δBN · lim

n→∞

n∑
j=1

P(E
(j)
k) = −∞ ⇐⇒ lim

n→∞
y

(n)
k+1 = 0.

Using Equation (28), with limn→∞ y
(n)
k+1 = 0, it can be shown that: limn→∞ P(E

(n)
k+1) = 1− limn→∞ y

(n)
k+1 = 1− 0 = 1.

�

Corollary 40. RRT-BestNear is probabilistically δ-robustly complete.

Appendix H

Theorem 25. RRT-BestNear is asymptotically δ-robustly near-optimal.

Proof: Let x′i−1 → xi denote the δ-similar trajectory segment generated by RRT-BestNear where x′i−1 ∈ Bδ(x∗i−1) of
the optimal path and xi ∈ BδBN (x∗i). Theorem 17 guarantees the probability of generating it by MonteCarlo-Prop can
be lower bounded as ρδ→δBN . Then from the definition of δ-similar trajectories and Lipschitz continuity for cost:

cost(x′i−1 → xi) ≤ cost(x∗i−1 → x∗i) +Kc · δ. (30)

Lemma 23 guarantees that when xi exists in BδBN (x∗i), then x′i, returned by the BestNear function with probability
γ, must have equal or less cost, i.e., x′i can be the same state as xi or a different state with smaller or equal cost:

cost(x′i) ≤ cost(xi). (31)

Consider Bδ(x∗1), as illustrated in Figure 13, according to Equation 30 and Equation 31: cost(x0 → x′1) ≤
cost(x0 → x1) ≤ cost(x0 → x∗1) +Kc · δ. Assume this is true for k segments,

cost(x0 → x′k) ≤ cost(x0 → x∗k) + k ·Kc · δ.

Then, the cost of the trajectory with k + 1 segments is:

cost(x0 → x′k+1) ≤ cost(x0 → xk+1) = cost(x0 → x′k) + cost(x′k → xk+1)

≤ cost(x0 → x∗k) + kKcδ + cost(x′k → xk+1)

≤ cost(x0 → x∗k) + kKcδ + cost(x∗k → x∗k+1) +Kcδ

= cost(x0 → x∗k+1) + (k + 1)Kcδ.

By induction, this holds for all k. Since the largest k is C∗

C∆
:

cost(x0 → x′k) ≤ cost(x0 → x∗k) + k ·Kc · δ = (1 +
Kc · δ
C∆

) · C∗.

Recall from Theorem 24, event Ek of generating a δ-similar trajectory to the k-th segment of the optimal trajectory π∗.
Then:

48 Journal name 000(00)

P
(
E

(n)
k

)
= P

({
Y SSTn ≤ (1 +

Kc · δ
C∆

) · C∗
})

As n→∞, since ρδ→δBN > 0, E(∞)
k almost surely happens:

P
({

lim sup
n→∞

Y SSTn ≤ (1 +
Kc · δ
C∆

) · C∗
})

= lim
n→∞

P
(
E

(n)
k

)
= 1. �

Appendix I

In Lemma 36, the goal is to show that given different radii for covering balls, the probability for extending new trajectories
to the small ball is proportional to the original probability.

Lemma 36. For a Bi of radius δ and a ball B′i with radius δ′, such that δ′/δ = α, where α ∈ (0, 1), there is

ρδ′

ρδ
= αw+1

Proof: Recall the system equation 1. If x1 and x2 are on the same trajectory x(t) such that x1 = x(t1) and x2 =

x(t1 + ∆t), then:

x2 = x1 +

∫ (t1+∆t)

t1

f(x(t), u(t)) · dt

Then

||x2 − x1|| = ||
∫ (t1+∆t)

t1

f(x(t), u(t)) · dt||

From Assumption 5, f(x(t), u(t)) is bounded as well, e.g., f(x(t), u(t)) ≤Mf ∈ R+, meaning that:

||x2 − x1|| ≤ ||
∫ (t1+∆t)

t1

Mf · dt|| = Mf ·∆t

In other words, for two states that are on a same trajectory, the duration of the trajectory connecting them and their
Euclidean distance in the state space satisfy the following property:

∆t ≥ ||x2 − x1||
Mf

Recall that ρ is lower bounded by Theorem 17. It can be further reduced to

ρδ =
2(1− λ)δ

Mf · Tprop
·
ζ · (λδ

Ku·Tprop·eKx·Tprop
)w

µ(Um)
> 0

Consider two sets of B(x(t), δ, T) and B(x(t), δ′, T). Note that the only difference between δ and δ′ is that δ′/δ = α ∈
(0, 1]. Given the above expression, if the ratio ρdelta′

ρdelta
is evaluated, then it will always be possible to express this ratio in

terms of α, so that ρδ′ρδ = αw+1 �

	1 Introduction
	2 Background
	3 Problem Setup
	4 Algorithms
	4.1 Change in Algorithmic Paradigm
	4.2 STABLE_SPARSE_RRT (SST)
	4.3 STABLE_SPARSE-RRT* (SST*)
	4.4 Nearest Neighbor Data Structure

	5 Analysis
	5.1 Properties of MonteCarlo-Prop
	5.2 Naive Algorithm: Already Asymptotically Optimal
	5.3 Using BestNear: Improving Convergence Rate
	5.4 STABLE_SPARSE_RRT Analysis
	5.5 SST* Analysis

	6 Experimental Evaluation
	6.1 Quality of Solution Trajectories
	6.2 Time Efficiency
	6.3 Space Efficiency
	6.4 Dependence on Parameters
	6.5 Physically-simulated Car Evaluation
	6.6 Graph-based Nearest Neighbor Structure

	7 Discussion and Conclusion

