
Finding a needle in an exponential haystack:
Discrete RRT for exploration of implicit

roadmaps in multi-robot motion planning?

Kiril Solovey??, Oren Salzman??, and Dan Halperin

Blavatnik School of Computer Science, Tel-Aviv University, Israel

Abstract. We present a sampling-based framework for multi-robot mo-
tion planning which combines an implicit representation of a roadmap
with a novel approach for pathfinding in geometrically embedded graphs
tailored for our setting. Our pathfinding algorithm, discrete-RRT (dRRT),
is an adaptation of the celebrated RRT algorithm for the discrete case of
a graph, and it enables a rapid exploration of the high-dimensional con-
figuration space by carefully walking through an implicit representation
of a tensor product of roadmaps for the individual robots. We demon-
strate our approach experimentally on scenarios of up to 60 degrees of
freedom where our algorithm is faster by a factor of at least ten when
compared to existing algorithms that we are aware of.

1 Introduction

Multi-robot motion planning is a fundamental problem in robotics and has been
extensively studied. In this work we are concerned with finding paths for a
group of robots, operating in the same workspace, moving from start to target
positions while avoiding collisions with obstacles as well as with each other.
We consider the continuous formulation of the problem, where the robots and
obstacles are geometric entities and the robots operate in a configuration space,
e.g., Rd (as opposed to the discrete variant, sometimes called the pebble motion
problem [5, 12, 18, 23], where the robots move on a graph). Moreover, we
assume that each robot has its own start and target positions, as opposed to the
unlabeled case (see, e.g., [3, 17, 30, 32]).

1.1 Previous work

We assume familiarity with the basic terminology of motion planning. For back-
ground, see, e.g., [10, 21]. Initial work on motion planning aimed to develop
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complete algorithms, which guarantee to find a solution when one exists or re-
port that none exists otherwise. Such algorithms for the multi-robot case ex-
ist [28, 29, 36] yet are exponential in the number of robots. The exponential
running time, which may be unavoidable [14, 31] can be attributed to the high
number of degrees of freedom (dof )—the sum of the dofs of the individual robots.

For two or three robots, the number of dofs may be slightly reduced [4], by
constructing a path where the robots move while maintaining contact with each
other. A more general approach to reduce the number of dofs was suggested by
van den Berg et al. [7]. In their work, the motion-planning problem is decomposed
into subproblems, each consisting of a subset of robots, where every subproblem
can be solved separately and the results can be combined into a solution for the
original problem.

Decoupled planners are an alternative to complete planners trading com-
pleteness for efficiency. Typically, decoupled planners solve separate problems
for individual robots and combine the individual solutions into a global solution
(see, e.g., [6, 22]). Although efficient in some cases, the approach usually works
only for a restricted set of problems.

The introduction of sampling-based algorithms such as the probabilistic road-
map method (PRM) [16], the rapidly-exploring random trees (RRT) [19] and
their many variants, had a significant impact on the field of motion planning
due to their efficiency, simplicity and applicability to a wide range of problems.
Sampling-based algorithms attempt to capture the connectivity of the configura-
tion space (C-space) by sampling collision-free configurations and constructing a
roadmap—a graph data structure where the free configurations are vertices and
the edges represent collision-free paths between nearby configurations. Although
these algorithms are not complete, most of them are probabilistically complete,
that is, they are guaranteed to find a solution, if one exists, given a sufficient
amount of time. Recently, Karaman and Frazzoli [15] introduced several variants
of these algorithms such that, with high probability they produce paths that are
asymptotically optimal with respect to some quality measure.

Sampling-based algorithms can be easily extended to the multi-robot case by
considering the fleet of robots as one composite robot [27]. Such a naive approach
suffers from inefficiency as it overlooks aspects that are unique to the multi-robot
problem. More tailor-made sampling-based techniques have been proposed for
the multi-robot case [13, 26, 30]. Particularly relevant to our efforts is the work
of Švestka and Overmars [33] who suggested to construct a composite roadmap
which is a Cartesian product of roadmaps of the individual robots. Due to the
exponential nature of the resulting roadmap, this technique is only applicable to
problems that involve a modest number of robots. A recent work by Wagner et
al. [35] suggests that the composite roadmap does not necessarily have to be ex-
plicitly represented. Instead, they maintain an implicitly represented composite
roadmap, and apply their M* algorithm [34] to efficiently retrieve paths, while
minimizing the explored portion of the roadmap. The resulting technique is able
to cope with a large number of robots, for certain types of scenarios. Additional
information on these two approaches is provided in Section 2 below.
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1.2 Contribution

We present a sampling-based algorithm for the multi-robot motion-planning
problem called multi-robot discrete RRT (MRdRRT). Similar to the approach
of Wagner et al. [35], we maintain an implicit representation of the composite
roadmap. We propose an alternative, highly efficient, technique for pathfinding
in the roadmap, which can cope with scenarios that involve tight coupling of
the robots. Our new approach, which we call dRRT, is an adaptation of the
celebrated RRT algorithm [19] for the discrete case of a graph, embedded in
Euclidean space1. dRRT traverses a composite roadmap that may have expo-
nentially many neighbors (exponential in the number of robots that need to be
coordinated). The efficient traversal is achieved by retrieving only partial infor-
mation of the explored roadmap. Specifically, it considers a single neighbor of
a visited vertex at each step. dRRT rapidly explores the C-space represented
by the implicit graph. Integrating the implicit representation of the roadmap
allows us to solve multi-robot problems while exploring only a small portion of
the C-space.

We demonstrate the capabilities of MRdRRT on the setting of polyhedral
robots translating and rotating in space amidst polyhedral obstacles. We provide
experimental results on several challenging scenarios, where MRdRRT is faster
by a factor of at least ten when compared to existing algorithms that we are
aware of. We show that we manage to solve problems of up to 60 dofs for highly
coupled scenarios (Figure 1).

The organization of this paper is as follows. In Section 2 we elaborate on two
sampling-based multi-robot motion planning algorithms, namely the composite
roadmap approach by Švestka and Overmars [33] and the work on subdimen-
sional expansion and M* by Wagner et al. [34, 35]. In Section 3 we introduce
the dRRT algorithm. For clarity of exposition, we first describe it as a general
pathfinding algorithm for geometrically embedded graphs. In the following sec-
tion (Section 4) we describe the MRdRRT method where dRRT is used in the
setting of multi-robot motion-planning problem for the exploration of the implic-
itly represented composite roadmaps. We show in Section 5 experimental results
for the algorithm on different scenarios and conclude the paper in Section 6 with
possible future research directions.

2 Composite roadmaps for multi-robot motion planning

We describe the composite roadmap approach introduced by Švestka and Over-
mars [33]. Here, a Cartesian product of PRM roadmaps of individual robots is

1 We mention that we are not the first to consider RRTs in discrete domains. Branicky
et al. [9] applied the RRT algorithm to a discrete graph. However, a key difference
between the approaches is that we assume that the graph is geometrically embedded,
hence we use random points as samples while they use nodes of the graph as samples.
Additionally, their technique requires that all the neighbors of a visited vertex will
be considered—a costly operation in our setting, as mentioned above.
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(a) Twisty (b) Abstract

(c) Cubicles (d) Home

Fig. 1: 3D environments with robots that are allowed to rotate and translate
(6DOFs). In scenarios (a),(b),(c) robots of the same color need to exchange posi-
tions. (a) Twisty scenario with 8 corkscrew-shaped robots, in a room with a barrier.
(b) Abstract scenario with 8 L-shaped robots. (c) Cubicles scenario with 10 L-shaped
robots. (d) Home scenario with 5 table-shaped robots that are placed in different
rooms. The goal is to change rooms in a clockwise order. The scenario were con-
structed using meshes that are provided by the Open Motion Planning Library [11]
(OMPL 0.10.2) distribution.

considered as a means of devising a roadmap for the entire fleet of robots. How-
ever, since they consider an explicit construction of this roadmap, their technique
is applicable to scenarios that involve only a small number of robots. To over-
come this, Wagner et al. suggest [34, 35] to represent the roadmap implicitly and
describe a novel algorithm to find paths on this implicit graph.

Let r1, . . . , rm be m robots operating in a workspace W with start and target
configurations si, ti. We wish to find paths for every robot from start to target,
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while avoiding collision with obstacles as well as with the other robots. Let
Gi = (Vi, Ei) be a PRM roadmap for ri, |Vi|= n, and let k denote the maximal
degree of a vertex in any Gi. In addition, assume that si, ti ∈ Vi, and that
si, ti reside in the same connected component of Gi. Given such a collection
of roadmaps G1, . . . , Gm a composite roadmap can be defined in two different
ways—one is the result of a Cartesian product of the individual roadmaps while
in the other a tensor product is used [2].

The composite roadmap G = (V,E) is defined as follows. The vertices V
represent all combinations of collision-free placements of the m robots. Formally,
a set ofm robot configurations C = (v1, . . . , vm) is a vertex of G if for every i, vi ∈
Vi, and in addition, when every robot ri is placed in vi the robots are pairwise
collision-free. The Cartesian and tensor products differ in the type of edges in
the resulting roadmap. If the Cartesian product is used, then (C,C ′) ∈ E, where
C = (v1, . . . , vm), C ′ ∈ (v′1, . . . , v

′
m), if there exists i such that (vi, v

′
i) ∈ Ei, for

every j 6= i it holds that vj = v′j , and ri does not collide with the other robots
stationed at vj = v′j while moving from vi to v′i. A tensor product generates
many more edges. Specifically, (C,C ′) ∈ E if (vi, v

′
i) ∈ Ei for every i, and the

robots remain collision-free while moving on the respective single-graph edges.2

Remark. Throughout this work, unless stated otherwise, we refer to the tensor
product composite roadmap.

Note that by the definition of Gi and G it holds that S, T ∈ V, where S =
(s1, . . . , sm), T = (t1, . . . , tm). The following observation immediately follows
(for both product types).

Observation 1 Let C1, . . . , Ch be a sequence of h vertices of G such that S =
C1, T = Ch and for every two consecutive vertices (Ci, Ci+1) ∈ E. Then, there
exists a path for the robots from S to T .

Thus, given a composite roadmap G, it is left to find such a path between
S and T . Unfortunately, standard pathfinding techniques, which require the full
representation of the graph, cannot be used since the number of vertices of G
alone may reach O(nm). One may consider the A* algorithm [25], or its variants,
as appropriate for the task, since it may not need to traverse all the vertices of
graph. A central property of A* is that it needs to consider all the neighbors of
a visited vertex in order to guarantee that it will find a path eventually. Alas,
in our setting, this turns out to be a significant drawback, since the number of
neighbors of every vertex is O(km).

Wagner et al. propose an adaptation of A* to the case of a composite roadmap
called M* [34]. Their approach exploits the observation that only the motion
of some robots has to be coupled in typical scenarios. Thus, planning in the
joint C-space is only required for robots that have to be coupled, while the
motion of the rest of the robots can be planned individually. Hence, their method

2 There is wide consensus on the term tensor product as defined here, and less so on
the term Cartesian product. As the latter has already been used before in the context
of motion planning, we will keep using it here as well.
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dynamically explores low-dimensional search spaces embedded in the full C-
space, instead of the joint high-dimensional C-space. This technique is highly
effective for scenarios with a low degree of coupling, and can cope with large
fleets of robots in such settings. However, when the degree of coupling increases,
we observed sharp increase in the running time of this algorithm, as it has to
consider many neighbors of a visited vertex.

3 Discrete RRT

We describe a technique which we call discrete RRT (dRRT) for pathfinding in
implicit graphs that are embedded in a Euclidean space. For clarity of exposition,
we first describe dRRT without the technicalities related to motion planning.
We add these details in the subsequent section. As the name suggests, dRRT is
an adaptation of the RRT algorithm [19] for the purpose of exploring discrete
geometrically-embedded graphs, instead of a continuous space.

Since the graph serves as an approximation of some relevant portion of the
Euclidean space, traversal of the graph can be viewed as a process of exploring
the subspace. The dRRT algorithm rapidly explores the graph by biasing the
search towards vertices embedded in unexplored regions of the space.

Let G = (V,E) be a graph where every v ∈ V is embedded in a point in
Euclidean space Rd and every edge (v, v′) ∈ E is a line segment connecting the
points. Given two vertices s, t ∈ V , dRRT searches for a path in G from s to t.
For simplicity, assume that the graph is embedded in [0, 1]d.

Similarly to its continuous counterpart, dRRT grows a tree rooted in s and
attempts to connect it to t to form a path from s to t. As in RRT, the growth
of the tree is achieved by extending it towards random samples in [0, 1]d. In our
case though, vertices and edges that are added to the trees are taken from G,
and we do not generate new vertices and edges along the way.

As G is represented implicitly, the algorithm uses an oracle to retrieve infor-
mation regarding neighbors of visited vertices. We first describe this oracle and
then proceed with a full description of the dRRT algorithm. Finally, we show
that this technique is probabilistically complete.

3.1 Oracle to query the implicit graph

In order to retrieve partial information regarding the neighbors of visited vertices,
dRRT consults an oracle described below. We start with several basic definitions.

Given two points v, v′ ∈ [0, 1]d, denote by ρ(v, v′) the ray that starts in v
and goes through v′. Given three points v, v′, v′′ ∈ [0, 1]d, denote by 6 v(v′, v′′)
the (smaller) angle between ρ(v, v′) and ρ(v, v′′).

Definition 1 (Direction Oracle). Given a vertex v ∈ V , and a point u ∈
[0, 1]d we define

OD(v, u) := argmin
v′

{ 6 v(u, v′)|(v, v′) ∈ E} .
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In other words, the direction oracle returns the neighbor v′ of v such that the
direction from v to v′ is closest to the direction from v to u.

3.2 Description of dRRT

At a high level, dRRT proceeds similar to the RRT algorithm, and we repeat it
here for completeness. The dRRT algorithm (Algorithm 1) grows a trees T which
is a subgraphs of G and is rooted in s (line 1). The growth of T (line 3) is achieved
by an expansion towards random samples. Additionally, an attempt to connect
T with t is made (line 4). The algorithm terminates when this operation succeeds
and a solution path is generated (line 6), otherwise the algorithm repeats line 2.

Expansion of T is performed by the EXPAND operation (Algorithm 2) which
performs N iterations that consist of the following steps: A point qrand is sampled
uniformly from [0, 1]d (line 2). Then, a node qnear that is the closest to the sample
(in Euclidean distance), is selected (line 3). qnear is extended towards the sample
by locating the vertex qnew ∈ V , that is the neighbor of qnear in G in the direction
of qrand (by the direction oracle OD). Once qnew is found (line 4), it is added
to the tree (line 6) with the edge (qnear, qnew) (line 7). See an illustration of
this process in Figure 2. This is already different from the standard RRT as we
cannot necessarily proceed exactly in the direction of the random point.

After the expansion, dRRT attempts to connect the tree T with t using the
CONNECT TO TARGET operation (Algorithm 3). For every vertex q of T ,
which one of the K nearest neighbors of t in T (line 1), an attempt is made
to connect q to t using the method LOCAL CONNECTOR (line 2) which is a
crucial part of the dRRT algorithm (see Subsection 3.3).

Finally, given a path from some node q of T to t the method RETRIEVE PATH
(Algorithm 1, line 6) returns the concatenation of the path from s to q, with Π.

3.3 Local connector

We show in the following subsection that it is possible that T will eventu-
ally reach t during the EXPAND stage, and therefore an application of LO-
CAL CONNECTOR will not be necessary. However, in practice this is unlikely
to occur within a short time frame, especially when G is large. Thus, we employ
a heavy-duty technique, which given two vertices q0, q1 of G tries to find a path

Algorithm 1 dRRT PLANNER (s, t)

1: T .init(s)
2: loop
3: EXPAND(T )
4: Π← CONNECT TO TARGET(T , t)
5: if not empty(Π) then
6: return RETRIEVE PATH(T ,Π)
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between them. We mention that it is common to assume in sampling-based al-
gorithms that connecting nearby samples will require less effort than solving the
initial problem and here we make a similar assumption. We assume that a local
connector is effective only on restricted pathfinding problems, thus in the general
case it cannot be applied directly on s, t, as it may be highly costly (unless the
problem is easy). A concrete example of a local connector is provided in the next
section.

3.4 Probabilistic completeness of dRRT

Recall that an algorithm is probabilistically complete if the probability it finds
a solution tends to one as the run-time of the algorithm tends to infinity (when
such a solution exists). For simplicity, we show that dRRT possesses a stronger
property and with high probability will reveal all the vertices of the traversed
graph, assuming this graph is connected.

The proof relies on the assumption that the vertices of the traversed graph
G are in general position, that is, every pair of distinct vertices are embedded
in two distinct points in Rd, and for every triplet of distinct vertices the points
in which they are embedded are non-collinear. This issue will be addressed in
the following section, where we consider the application of dRRT on a specific
type of graphs. The proof does not need to take into consideration the local
connector.

Theorem 1. Let G = (V,E) be a connected graph embedded in [0, 1]d where the
vertices are in general position. Then ,with high probability, every vertex of G
will be revealed by the dRRT algorithm, given sufficient amount of time.

Proof. Denote by U the set of vertices of T after the completion of an iteration
of the algorithm. Let v∗ ∈ V \ U be an unvisited vertex such that there exists

Algorithm 2 EXPAND (T )

1: for i = 1→ N do
2: qrand ← RANDOM SAMPLE()
3: qnear ← NEAREST NEIGHBOR(T , qrand)
4: qnew ← OD(qnear, qrand)
5: if qnew 6∈ T then
6: T .add vertex(qnew)
7: T .add edge(qnear, qnew)

Algorithm 3 CONNECT TO TARGET(T , t,)
1: for q ∈ NEAREST NEIGHBORS(T , t,K) do
2: Π← LOCAL CONNECTOR(q, t)
3: if not empty(Π) then
4: return Π
5: return ∅

8



(v, v∗) ∈ E, where v ∈ U . We wish to show that the probability that T will be
expanded on the edge (v, v∗), and thus v∗ will be added to U , is bounded away
from zero. For simplicity we assume that there exists a single vertex v ∈ U that
has an edge to v∗.

Denote by Vor(v) the Voronoi cell [8] of the site v, in the Euclidean (stan-
dard) Voronoi diagram of point sites, where the sites are the vertices of U (Fig-
ure 2(b)). In addition, denote by Vor′(v, v∗) the Voronoi cell of ρ(v, v∗), in a
Voronoi diagram of the ray sites ρ(v, v∗), ρ(v, u1), . . . , ρ(v, uj), where u1, . . . , uj
are the neighbors of v in T , not including v∗ (Figure 2(c)).

Notice that in order to extend T from v to v∗ the random sample qrand in
EXPAND (Algorithm 2) has to fall inside Vor(v) ∩ Vor′(v, v∗). Thus, in order
to guarantee that v∗ will be added to T , with non-zero probability, we show
that the shared region between these two cells has non-zero measure, namely
|Vor(v) ∩Vor′(v, v∗)|> 0, where |Γ| denotes the volume of Γ.

By the general position assumption we can deduce that |Vor(v)|> 0 and
|Vor′(v, v∗)|> 0. In addition, the intersection between the two cells is clearly
non-empty: There is a ball with radius r > 0 whose center is v and is completely
contained in Vor(v); similarly, there is a cone of solid angle α > 0 with apex at
v fully contained in Vor′(v, v∗). Hence, it holds that |Vor(v) ∩ Vor′(v, v∗)|> 0,
otherwise v and v∗ are embedded in the same point. ut

We note that a more careful analysis can yield an explicit bound on the
convergence rate of dRRT. Such a bound may be computed using the size of the
smallest cell in the Voronoi diagram of all nodes of G.

4 Multi-robot motion planning with dRRT

In this section we describe the MRdRRT algorithm. Specifically, we discuss the
adaptation of dRRT for pathfinding in a composite roadmap G, which is embed-
ded in the joint C-space of m robots. In particular, we show an implementation
of the oracle OD, which relies solely on the representation of G1, . . . , Gm. Ad-
ditionally, we discuss an implementation of the local connector component that
takes advantage of the fact that G represents a set of valid positions and move-
ments of multiple robots. Finally, we discuss the probabilistic completeness of
our entire approach to multi-robot motion planning.

4.1 Oracle OD

Recall that given C ∈ V and a random sample q, OD(C, q) returns C ′ such
that C ′ is a neighbor of C in G, and for every other neighbor C ′′ of C, ρ(C, q)
forms a smaller angle with ρ(C,C ′) than with ρ(C,C ′′), where ρ is as defined in
Section 3.4.

Denote by C(ri) the C-space of ri. Let q = (q1, . . . , qm) where qi ∈ C(ri),
and let C = (c1, . . . , cm) where ci ∈ Vi. To find a suitable neighbor for C we
first find the most suitable neighbor for every individual robot and combine
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the m single-robot neighbors into a candidate neighbor for C. We denote by
c′i = OD(ci, qi) the neighbor of ci in Gi that is in the direction of qi. Notice that
the implementation of the oracle for individual roadmaps is trivial—for example,
by traversing all the neighbors of ci in Gi. Let C ′ = (c′1, . . . , c

′
m) be a candidate

for the result of OD(C, q). If (C,C ′) represents a valid edge in G, i.e., no robot-
robot collision occurs, we return C ′. Otherwise, OD(C, q) returns ∅. In this case,
the new sample is ignored and another sample is drawn in the EXPAND phase
(Algorithm 2).

The completeness proof of the dRRT (Theorem 1) for this specific implemen-
tation of OD, is straightforward. Notice that in order to extend C = (c1, . . . , cm)

qrand

T
(a)

qrand

qnear

(b)

qrand

qnear

qnew

(c)

qrand

qnear

qnew

(d)

Fig. 2: An illustration of the expansion step of dRRT. The tree T is drawn with
black vertices and edges, while the gray elements represent the unexplored portion
of the graph G. (a) A random point qrand (purple) is drawn uniformly from [0, 1]d.
(b) The vertex qnear of T that is the Euclidean nearest neighbor of qrand is extracted.
(c) The neighbor qnew of qnear, such that its direction from qnear is the closest to the
direction of qrand from qnear, is identified. (d) The new vertex and edge are added to
T . Additional information for Theorem 2 : In (b) the Voronoi diagram of the vertices
of T is depicted in blue, and the Voronoi cell of qnear ,Vor(qnear), is filled with light
blue. In (c) the Voronoi diagram of the rays that leave qnear and pass through its
neighbors is depicted in red, and the Voronoi cell of ρ(qnear, qnew), Vor′(qnear, qnew),
is filled with pink. The purple region in (d) represents Vor(qnear) ∩ Vor′(qnear, qnew).
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to C ′ = (c′1, . . . , c
′
m) the sample q = (q1, . . . , qm) must obey the following re-

striction: For every robot ri, qi must lie in Vor(ci) ∩ Vor′(ci, c
′
i) (where in the

original proof we required that q will lie in Vor(C)∩Vor′(C,C ′)). Also note that
the points in C(ri) are in general position, as required by Theorem 1, since they
were uniformly sampled by PRM.

4.2 Local connector implementation

Recall that in the general dRRT algorithm the local connector is used for
connecting two given vertices of a graph. As our local connector we rely on
a framework described by van den Berg et al. [7]. Given two vertices V =
(v1, . . . , vm),V′ = (v′1, . . . , v

′
m) of G we find for each robot i a path πi on Gi

from vi to v′i. The connector attempts to find an ordering of the robots such
that robot i does not leave its start position on πi until robots with higher pri-
ority reached their target positions on their respective path, and of course that
it also avoids collisions. When these robots reach their destination robot i moves
along πi from πi(0) to πi(1). During the movement of this robot the other robots
stay put.

The priorities are assigned according to the following rule: if moving robot i
along πi causes a collision with robot j that is placed in vj then robot i should
move after robot j. Similarly, if i collides with robot j that is placed in v′j
then robot i should move before robot j. This prioritization induces a directed
graph I. In case this graph is acyclic we generate a solution according to the
prioritization of the robots. Otherwise, we report failure.

We decided to use this simple technique in our experiments due to its low
cost, in terms of running time, regardless of whether it succeeds finding a solution
or not. We wish to mention that we also experimented with M* with a bounded
degree of coupling (to avoid considering exponentially many neighbors) as the
local connector in our algorithm. However, the ordering algorithm of [7] turned
out to be considerably more efficient.

4.3 Probabilistic completeness of MRdRRT

In order for the motion-planning framework to be probabilistically complete,
we still need to show that (i) as the number of samples used for each single-
robot roadmap tends to infinity, the composite roadmap will contain a path
(if such a path exists) and (ii) that the proof of Theorem 1 still holds when
the size of the graph tends to infinity. Indeed, Švestka and Overmars [33] show
that the composite roadmap approach is probabilistically complete when the
graph-search algorithm is complete. However, in our setting, the graph-search
algorithm is only probabilistically complete and the proof may need to be refined
as the size of each Voronoi cell tends to zero.

We note that as the composite roadmap is finite, it is easy to modify the
dRRT algorithm such that it will be complete. This may be done by keeping
a list of exposed nodes that still have unexposed edges. At the end of every
iteration of the main loop of dRRT (Algorithm 1, line 2) one node is picked
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from the list and one of its unexposed edges is exposed (finding an unexposed
edge is done in a brute force manner). Although the above modification ensures
completeness of dRRT and hence probabilistic completeness of MRdRRT, we
are currently looking for an alternative proof that does not require altering the
dRRT algorithm.

5 Experimental results

We implemented MRdRRT for the case of polyhedral robots translating and ro-
tating among polyhedral obstacles (see Figure 1). We compared the performance
of MRdRRT with RRT and an improved (recursive) version of M* that appears
in [34]. To make the comparison as equitable as possible, as dRRT does not
take into consideration the quality of the solution, we use the inflated version of
M* [34] with relaxed optimality guarantees.

Implementation details. The algorithms were implemented in C++. The ex-
periments were conducted on a laptop with an Intel i5-3230M 2.60GHz processor
with 16GB of memory, running 64-bit Windows 7. We implemented a generic
framework for multi-robot motion planning based on composite roadmaps. The
implementation relies on PQP [1] for collision detection, and performs nearest-
neighbor queries using the Fast Library for Approximate Nearest Neighbors
(FLANN) [24]. Metrics, sampling and interpolation in the 3D environments fol-
lowed the guidelines presented by Kuffner [20]. To eliminate the dependence of
dRRT on parameters we assigned them according to the number of iterations
the algorithm performed so far, i.e., the number of times that the main loop has
been repeated. Specifically, in the i’th iteration each EXPAND (Algorithm 2)
call performs 2i iterations (N = 2i), while CONNECT TO TARGET uses K = i
candidates that are connected with t.
Test scenarios. We report in Table 1 the running times of M* and dRRT for
the scenarios. The first three scenarios are especially challenging as they consist
of a large number of robots, and require a substantial amount of coordination
between them. The fourth scenario (“Home”) is more relaxed and consists of
only five robots and requires little coordination.

We ran each of the three algorithms 10 times on each scenario. RRT proved
incapable of solving any of the test scenarios, running for several tens of minutes
until terminating due to exceeding the memory limits. We believe that RRT
as-is is not suitable for high-dimensional, coupled, multi-robot motion planning.
M* exhibited slightly better performance. For the first three scenraios, which
involve multiple robots and require a substantial amount of coordination, it
never exceeded a success rate of 40%. In particular, it often ran out of memory
or ran for a very long duration (we terminated it if its running time exceeded
ten times the running time of MRdRRT). On the other hand, MRdRRT was
stable in its results and managed to solve all the scenarios for each of the 10
attempts. When M* did manage to solve one of the first three scenarios, it
explored between 2.5 to 10 times the number of vertices that dRRT explored.
For the fourth scenario the results of MRdRRT and M* were comparable and in
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PRM M* MRdRRT

scenario n time
visited total success visited connect expand total success
vertices time rate vertices time time time rate

Twisty 8k 10s DNF DNF 0% 8k 3.3s 6.7s 11s 100%
Abstract 10k 24.8s 300k 267s 30% 34k 30.4s 25.5s 55.9s 100%
Cubicles 10k 16.2s 27k 31s 40% 12k 16.3s 36.8s 53.1s 100%

Home 5k 10.1s 2k 3.9s 100% 8k 1.5s 2.9s 4.4s 100%

Table 1: Results for M* and MRdRRT on the scenarios depicted in Figure 1. We
first report the number of vertices (reported in thousands) used in the construction
of the single-robot PRM roadmaps and the elapsed time (all times reported are in
seconds). Then we report the number of visited vertices, the total running time, and
the success rate of M*. A similar report is given for dRRT, but we also specify the
duration of the connection phase (using local connector) and the expansion phase.
The running times and the amount of explored vertices are averaged over the number
of successful attempts.

general we found M* more suitable for situations where only a small number of
robots have to interact at any given time. We mention that MRdRRT was unable
to solve scenarios that consist of a substantially larger number of robot than we
used in our experiments. We believe that it would be beneficial to consider a
stronger local connector in such cases.

6 Discussion

In this section we state the benefits of MRdRRT, which consists of an implic-
itly represented roadmaps for multi-robot motion planning combined with an
efficient approach for pathfinding for such roadmaps.

Recall that the implicitly-represented composite roadmap G results from a
tensor product of m PRM roadmaps G1, . . . , Gm. The reliance on the precom-
puted individual roadmaps eliminates the need to perform additional collision
checking between robots and obstacles while querying G. This has a substan-
tial impact on the performance of MRdRRT as it is often the case that check-
ing whether m robots collide with obstacles is much more costly than checking
whether the m robots collide between themselves. This is in contrast with more
naive approaches, such as RRT which consider the group of robots as one large
robot. In such cases, checking whether a configuration (or an edge) is collision
free requires checking for the two types of collisions simultaneously.

The M* algorithm, which also uses the underlying structure of G, performs
very well in situations where only a small subset of the robots need to coor-
dinate. In these situations it can cope, almost effortlessly, with several tens of
robots while outperforming our framework. However, in scenarios where a sub-
stantial amount of coordination is required between the robots M* suffers from
a disadvantage, since it is forced to consider exponentially many neighbors when
performing the search on G. In contrast, dRRT performs a “minimalistic” search
and advances in small steps, little by little, regardless of the difficulty of the
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problem at hand. Moreover, dRRT strives to reach unknown regions in G while
avoiding spending too much time in the exploration of regions that are in the
vicinity of explored vertices. This is done via the Voronoi bias, as shown in the
proof of Theorem 1. This is extremely beneficial when working on G since it con-
tains vertices which represent essentially the same conformation of the robots,
and thus considering many vertices within a small region would not lead to a
better understanding of the problem at hand. To justify this claim, consider the
following example. Suppose that for every robot i, vi is a vertex of Vi that has
k neighbors in Gi at distance at most ε. Then the vertex (v1, ..., vm) ∈ V might
have as much as km neighbors that are at distance at most ε

√
m in G.

7 Future work

Towards optimality. Currently, our algorithmic framework is concerned with
finding some solution. Our immediate future goal is to modify it to provide a
solution with quality guarantees, possibly by taking an approach similar to the
continuous RRT* algorithm [15], which is known to be asymptotically optimal.
A fundamental difference between RRT* and the original formulation of RRT is
in a rewiring step, where the structure of the tree is revised to improve previously
examined paths. Specifically, when a new node is added to the tree, it is checked
as to whether it will be more beneficial for some of the existing nodes to point to
the new vertex instead of their current parent in the tree. This can be adapted,
to some extent, to the discrete case, although it is not clear whether this indeed
will lead to optimal paths.

dRRT in other settings of motion planning. In this paper we combined
the dRRT algorithm with implicit composite roadmaps to provide an efficient
algorithm for multi-robot motion planning. One of the benefits of our framework
comes from the fact that it reuses some of the already computed information to
avoid performing costly operations. In particular, it refrains from checking colli-
sions between robots with obstacles by forcing the individual robots to move on
precalculated individual roadmaps (i.e., Gi). We believe that a similar approach
can be used in other settings of motion planning. In particular, we are currently
working on a dRRT-based approach for motion planning of a multi-linked robot.
The new approach generates an implicitly-represented roadmap, which encapsu-
lates information on configurations and paths between configuration that do not
induce self-intersections of the robot, while ignoring the existence of obstacles.
Then, we overlay this roadmap on the workspace, an operation which invalidates
some of the nodes and edges of the roadmap. Thus, we know only which configu-
rations are self-collision free, but not obstacles collision-free. Then we use dRRT
for pathfinding on the new roadmap, while avoiding self-collision tests and while
exploring a small portion of the infinite roadmap.
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