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Abstract
Autonomous robotic manipulation in clutter is challenging. A large variety of objects must be perceived in complex
scenes, where they are partially occluded and embedded among many distractors, often in restricted spaces. To tackle
these challenges, we developed a deep-learning approach that combines object detection and semantic segmentation.
The manipulation scenes are captured with RGB-D cameras, for which we developed a depth fusion method. Employing
pretrained features makes learning from small annotated robotic data sets possible. We evaluate our approach on two
challenging data sets: one captured for the Amazon Picking Challenge 2016, where our team NimbRo came in second
in the Stowing and third in the Picking task, and one captured in disaster-response scenarios. The experiments show
that object detection and semantic segmentation complement each other and can be combined to yield reliable object
perception.
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1 Introduction

Robots are increasingly deployed in unstructured and
cluttered domains, including households and disaster
scenarios. To perform complex tasks autonomously,
reliable perception of the environment is crucial.
Different tasks may require different levels of cognition.
In some cases, it may be sufficient to classify certain
structures and objects as obstacles in order to avoid
them. In others, a more fine-grained recognition is
necessary, for instance to determine whether a specific
object is present in the scene. For more sophisticated
interaction, such as grasping and manipulating real-
world objects, a more precise scene understanding
including object detection and pixel-wise semantic
segmentation is essential.

Over the past few years, research in all these
domains has shown remarkable progress. This success
is largely due to the rapid development of deep learning
techniques that allow for end-to-end learning from
examples, without the need for designing handcrafted
features or introducing complex priors. Somewhat
surprisingly, there are not many working examples to
date that employ deep models in real-time robotic
systems. In this paper, we first demonstrate the
application of deep learning methods to the task of
bin-picking for warehouse automation. This particular

problem setting has unique properties: While the
surrounding environment is usually very structured—
boxes, pallets and shelves—the sheer number and
diversity of objects that need to be recognized and
manipulated as well as their chaotic arrangement and
spatial restrictions pose daring challenges to overcome.

In addition to bin-picking, we also validate our
approach in disaster-response scenarios. Contrary to
bin-picking, this setting is much less structured,
with highly varying and cluttered backgrounds. These
scenes may include many unknown objects.

Despite their remarkable success, deep learning
methods exhibit at least one major limitation. Due
to a large number of parameters, they typically
require vast amounts of hand-labeled training data
to learn the features required for solving the task.
To overcome this limitation, we follow the transfer
learning approach (cf. e.g. Girshick et al. (2014);
Pinheiro and Collobert (2015); Lin et al. (2017)), where
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Figure 1. Picking objects from the APC shelf.

the initial layers are pretrained on large collections of
related, already available images. These early layers are
usually responsible for extracting meaningful features
like edges, corners, or other simple structures that are
often present in natural images. Then, merely the few
final layers that perform the high-level task of detection
or segmentation need to be adjusted—or finetuned—to
the task at hand. This strategy enables us to exploit the
power of deep neural networks for robotic applications
with only little amounts of additional training data.

To summarize, our main contributions are as follows.

1. We develop two deep-learning based object per-
ception methods that employ transfer learning to
learn from few annotated examples (Section 3).

2. Both deep-learning techniques are integrated into
a real-life robotic system (Section 4).

3. We present a simple, yet effective technique to
fuse three separate sources of depth information,
thereby improving the overall accuracy of depth
measurements (Section 4.2, Figure 9). The
resulting depth measurements are integrated into
both perception methods.

4. Experimental results of the proposed methods
are presented on two scenarios, bin-picking
(Section 4) and disaster response (Section 5),
showing their validity and generality.

Finally, we discuss lessons learned (Section 6) from
our preparation and the competition at the Amazon
Picking challenge.

2 Related Work

Even though early ideas of deep neural networks
date back several decades (Ivakhnenko and Lapa

1966; LeCun et al. 1989; Behnke 2003), it was not
until recently that they gained immense popularity
in numerous applications including machine transla-
tion (Sutskever et al. 2014), speech recognition (Graves
et al. 2013), and computer vision (Krizhevsky et al.
2012). Powered by the parallel computing architectures
present in modern GPUs as well as the availability of
labeled data (Russakovsky et al. 2015; Krishna et al.
2017; Song et al. 2015), deep learning methods now
easily outperform traditional approaches in tasks like
image classification (Krizhevsky et al. 2012), object
detection (Johnson et al. 2016; Liu et al. 2016), or
semantic segmentation (Chen et al. 2015; Lin et al.
2017). The core of such methods typically constitutes
a multi-layer architecture, where each layer consists
of a series of convolutional operations, passed through
a non-linear activation function, such as e.g. rectified
linear unit (ReLU), followed by spatial maximum
pooling (Scherer et al. 2010) to produce local defor-
mation invariance. Perhaps one of the most popular
of such networks is the architecture proposed by
Krizhevsky et al. (2012), often referred to as AlexNet.
Although initially employed for image classification,
it has been since adapted to various other tasks
including image captioning (Karpathy and Li 2015),
pedestrian detection (Girshick 2015), and semantic
segmentation (Long et al. 2015). The original AlexNet
consists of five convolutional and three fully-connected
layers. Other prominent deep networks include the 16-
layer VGG (Simonyan and Zisserman 2014), Inception
with 22 layers (Szegedy et al. 2015), and more recently
the so-called Deep Residual Networks with skip con-
nections and up to 152 layers (He et al. 2016). Other
works in the area of semantic segmentation include
Badrinarayanan et al. (2015), who use a multi-stage
encoder-decoder architecture that first uses maximum
pooling to reduce spatial resolution and later upsample
the segmentation results using the indices of the local
pooling maxima. For object detection, one line of
work considers the task as region proposal followed
by classification and scoring. Girshick et al. (2014)
process external region proposals using RoI pooling
to reshape intermediate CNN feature maps to a fixed
size. To increase performance, all regions may be
processed in a single forward pass (Girshick 2015).
Finally, region proposal networks that regress from
anchors to regions of interest are integrated into the
Faster R-CNN detection framework (Ren et al. 2015).

Our approach is mainly based on two methods: the
OverFeat feature extractor introduced by Sermanet
et al. (2013), as well as the DenseCap region detection
and captioning approach of Johnson et al. (2016).
In particular, we adopt both approaches to detect
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Figure 2. Architecture of the RGB object detection pipeline. Adapted from Johnson et al. (2016). The input size WxH is
flexible, for the APC situation we used 720x405. VGG-16 produces C=512 feature maps after the last convolution. B=1000
bounding boxes are extracted using non-maximum suppression.

and segment objects for robotic perception and
manipulation in new settings, namely bin picking
and disaster-response tasks. To that end, we rely on
transfer learning, a method for adapting pre-trained
models for a specific task. Note that this training
approach is not entirely new and in fact has been
followed in several of the above works. For example,
R-CNN (Girshick et al. 2014) starts from ImageNet
features and fine-tunes a CNN for object detection.
Pinheiro and Collobert (2015) exploit large amounts
of image-labeled training data to train a CNN for
a more fine-grained task of semantic segmentation.
Schwarz et al. (2015) used pretrained features and
depth preprocessing to recognize RGB-D objects and
to estimate their pose. In this work, we apply transfer
learning to robotic perception and manipulation
scenarios. Recently, combinations of object detection
and semantic segmentation have been introduced, such
as Mask R-CNN (He et al. 2017), which predicts
local segmentation masks for each detected object.
In contrast, our work combines results after separate
object detection and semantic segmentation, allowing
independent training. Nevertheless, combining both
approaches in a single network is both elegant and
effective.

Bin picking is one of the classical problems in
robotics and has been investigated by many research
groups in the last three decades, e.g. (Buchholz et al.
2014; Nieuwenhuisen et al. 2013; Pretto et al. 2013;
Domae et al. 2014; Drost et al. 2010; Berner et al. 2013;
Martinez et al. 2015; Holz et al. 2015; Kaipa et al. 2016;

Harada et al. 2016). In these works, often simplifying
conditions are exploited, e.g. known parts of one type
being in the bin, parts with holes that are easy to grasp
by sticking fingers inside, flat parts, parts composed
of geometric primitives, well textured parts, or ferrous
parts that can be grasped with a magnetic gripper.

During the Amazon Picking Challenge (APC) 2015,
various approaches to a more general shelf-picking
problem have been proposed and evaluated. Correll
et al. (2016) aggregate lessons learned during the APC
2015 and present a general overview and statistics of
the approaches. For example, 36 % of all teams (seven
of the top ten teams) used suction for manipulating
the objects.

Eppner et al. (2016) describe their winning system
for APC 2015. Mechanically, the robot consists of
a mobile base and a 7-DOF arm to reach all shelf
bins comfortably. In contrast, our system uses a larger
arm and can thus operate without a mobile base (see
Section 4.1). The endeffector of Eppner et al. (2016) is
designed as a fixed suction gripper, which can execute
top and side picks. Front picks are, however, not
possible. The object perception system is described
in detail by Jonschkowski et al. (2016). A single
RGB-D camera captures the scene. Six hand-crafted
features are extracted for each pixel, including color
and geometry-based features. The features are then
used in a histogram backprojection scheme to estimate
the posterior probability for a particular object class.
The target segment is found by searching for the
pixel with the maximum probability. After fitting a
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3D bounding box, top or side grasps are selected
heuristically. The team performed very well at APC
2015 and reached 148 out of 190 points.

Yu et al. (2016) reached second place with
Team MIT in the APC 2015. Their system
uses a stationary industrial arm and a hybrid
suction/gripping endeffector. The industrial arm
provides high accuracy and also high speed. Similar to
our approach, an Intel RealSense sensor mounted on
the wrist is used for capturing views of the bin scenes
(together with two base-mounted Kinect2 sensors). A
depth-only GPU-based instance registration approach
is used to determine object poses. Team MIT achieved
88 points in the competition.

In contrast to the first edition, the 2016 Amazon
Picking Challenge introduced more difficult objects
(e.g. the heavy 3 lb dumbbell), increased the difficulty
in the arrangements and the number of items per bin,
and introduced the new stowing task. Leitner et al.
(2017) introduce a physical picking benchmark to ease
reproducibility in warehouse automation research and
present their own approach as a baseline.

Hernandez et al. (2016) reached first place in both
the picking and the stowing task in the APC 2016.
Their system consists of a large industrial 7-DOF
arm mounted on a horizontal rail, resulting in eight
degrees of freedom in the arm and base. The gripper
is a complex custom design, allowing both suction and
pinch grasps. Like our design described in Section 4.1,
the suction cup can be bent to facilitate top, side, and
frontal grasps. Object perception is based on RGB-D
measurements from an Ensenso 3D camera. The
authors report problems with reflections and noise, and
therefore built in heuristics to reject false registrations.
In contrast, we added a second RGB-D camera to be
able to filter out false measurements (see Section 4.2).
Similarly to our architecture, object detection is
carried out using an approach based on Faster R-
CNN (Ren et al. 2015). After detection, object poses
are estimated using a point cloud registration method.
For grasp planning, primitive shapes are fitted to find
grasp candidate spots. Candidates are then filtered
using reachability measures. For deformable objects,
a simple measurement-based heuristic is used, similar
to our approach.

Zeng et al. (2017) describe the approach of Team
MIT-Princeton, who performed successfully in the
APC 2016 reaching 3rd and 4th place. Like Hernandez
et al. (2016), a high-precision industrial robot arm
with a combination of a two-finger gripper and a
suction cup was used for object manipulation. The
perception pipeline included segmentation and 6D pose
estimation of objects based on a multi-view point

cloud. Segmentation is addressed using a VGG-type
CNN (Simonyan and Zisserman 2014) in each of the 15-
18 RGB-D frames, which are then combined to produce
a semantic 3D point cloud. Pose estimation is then
performed on the dense point cloud by aligning 3D-
scanned objects using a modified ICP algorithm. Note
that over 130,000 training images were used for their
system, which is about three orders of magnitude more
than in our approach.

3 Methods

For perceiving objects in the vicinity of a robot,
we developed two independent methods. The first
one solves the object detection problem, i.e. outputs
bounding boxes and object classes for each detection.
The second one performs semantic segmentation,
which provides a pixel-wise object category labeling.

Since training data and time are limited, it is crucial
not to train from scratch. Instead, both methods
leverage convolutional neural networks (CNNs) pre-
trained on large image classification datasets and
merely adapt the networks to work in the specific
domain.

3.1 Object Detection

We extend an object detection approach based on the
DenseCap network (Johnson et al. 2016). DenseCap
approaches the problem of dense captioning, i.e.
providing detailed textual descriptions of interesting
regions (bounding boxes) in the input image. Figure 2
shows the general architecture of the DenseCap
network. In a nutshell, the network first extracts CNN
features and samples a fixed number of proposals (1000
in our case) using an objectness score within a region
proposal network. Since the sampled regions can be
of arbitrary size and shape, the intermediate CNN
feature maps are interpolated to fit a fixed size for
each proposal. The proposals are then classified using a
recognition network. In contrast to other recent works
on object detection (e.g. Faster R-CNN, Ren et al.
2015), the DenseCap architecture can be trained end-
to-end without the need for approximations, since its
bilinear interpolation layer is fully differentiable. The
underlying VGG-16 CNN (Simonyan and Zisserman
2014) used for feature extraction was pretrained on
the ImageNet (Russakovsky et al. 2015) dataset.
Afterwards, the entire pipeline was trained end-to-end
on the Visual Genome dataset (Krishna et al. 2017).

Obviously, textual descriptions of image regions are
not relevant for bin-picking scenarios. However, these
captions are generated from an intermediate feature
vector representation, which is highly descriptive and
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Figure 3. RGB-D based additional region proposals. Left: RGB frame. Center: Regions labeled using the connected
components algorithm. Right: Extracted bounding box proposals.

therefore should not be simply ignored. To exploit
the power of this feature representation, we use the
network up until the captioning module for feature
extraction, and replace the language processing part
by a classification component that uses a linear
support vector machine (SVM). As an alternative, we
investigate a soft-max classifier layer, which allows us
to fine-tune the network during training.

3.1.1 Linear SVM. In the first case, we remove the
language generation model and replace it with a linear
SVM for classification. We also introduce two primitive
features based on depth: The predicted bounding box
is projected into 3D using the depth value of its center.
The metric area and size are then concatenated to
the CNN features. Since linear SVMs can be trained
very efficiently, the training can happen just-in-time
before actual perception, exploiting the fact that the
set of possible objects in the bin is known. Note that
restricting the set of classes to the ones present in the
current scene also has the side-effect that training time
and memory usage are constant with respect to the set
of all objects present in a warehouse. This allows us to
potentially scale this approach to an arbitrarily large
number of object categories.

The SVM is used to classify each predicted bounding
box. To identify a single output, the bounding box with
the maximum SVM response is selected. This ignores
duplicate objects, but since the goal is to retrieve only
one object at a time, this reduction is permissible.

3.1.2 Softmax Classification. For finetuning the net-
work, we use a soft-max classification layer instead
of the SVM. All layers except the initial CNN layers
(see Fig. 2) are optimized for the task at hand. Con-
trary to SVM classification, the softmax layer predicts
confidences over all object classes. In the bin-picking
scenario, the bounding box with the highest score in
the desired object class is produced as the final output,
i.e. the object to pick.

3.1.3 Incorporating Depth. The existing object detec-
tion network does not make use of depth measure-
ments. Here, we investigate several methods for incor-
porating depth into the network.

As with all architectures based on R-CNN, it is
straightforward to classify bounding boxes generated
from an external proposal generator. One way to
include depth information is therefore to use an
external RGB-D proposal generator. To this end,
we augment the network-generated proposals with
proposals from a connected components algorithm
running on the RGB and depth frames (see Fig. 3).
Two pixels are deemed connected if they do not differ
more than a threshold in terms of 3D position (5 mm),
normal angle (50◦), saturation, and color (10). Final
bounding boxes are extracted from regions with an
area above a predefined threshold (10,000 pixels for
1920×1080 input).

A second possibility is to treat depth as an additional
mid-level feature. For this purpose, we use the popular
three-channel HHA encoding (Gupta et al. 2014),
which augments depth with two geometric features
(height above ground and angle to gravity). We
downsample the HHA map and concatenate it to
the feature maps generated by the pretrained first
convolutional layers (see Fig. 4). Furthermore, we can
also use the same pretrained CNN to extract higher-
level features from HHA, as shown in Fig. 5.

Finally, Gupta et al. (2016) propose to use an RGB
reference network to generate the training data needed
for the other modality, a technique they call Cross
Modal Distillation. In essence, the pretrained RGB
network φ computes a feed-forward pass on the RGB
frame Is, generating the target feature maps φ(Is). A
back-propagation step then trains the depth network
ψ to imitate these features on the corresponding depth
frame Id, minimizing the objective

min
Wd

∑
(Is,Id)∈Us,d

||ψ(Id)− φ(Is)||2, (1)
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Figure 4. Detection pipeline with CNN features from RGB and downsampled HHA-encoded depth. C denotes the number of
CNN feature maps after the last convolutional layer (512 for VGG-16). The internal proposal generator produces B proposals
(1000).
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Figure 5. Detection pipeline with concatenated CNN features from RGB and HHA-encoded depth. C denotes the number of
CNN feature maps after the last convolutional layer (512 for VGG-16). The internal proposal generator produces B proposals
(1000). For the Cross Modal Distillation approach, CNN ψ is trained to imitate the pretrained CNN φ.

where Wd are the weights of the depth network, and
Us,d is the training set of RGB and depth frame pairs.
Note that no annotation is necessary on Us,d, so any
RGB-D video (ideally of the target domain) can be
used to perform the supervision transfer. In our case,
the (annotated) training set is used for distillation,
since additional unlabeled RGB-D sequences of the
target domain are not available.

After the initial Cross Modal Distillation training,
the trained network can be used in place of the RGB
network for depth feature extraction (see Fig. 5).

3.1.4 Implementation Details. As in the original
DenseCap work, the ADAM optimizer (Kingma and Ba
2015) is used for training the network with parameters
β1 = 0.9, β2 = 0.999 and ε = 10−8. However, we adapt
a custom learning rate schedule to dampen training
oscillations at the end of training (annealing): The
learning rate starts at 1 · 10−5 and is kept constant for
15 epochs, then linearly lowered to 1 · 10−6 during the
next 85 epochs. At 200 epochs, the rate is lowered to 5 ·
10−7, and finally to 1 · 10−7 at 250 epochs. To prevent

overfitting, 50% dropout is used throughout the entire
network. As in the original DenseCap pipeline, input
images are scaled such that the longest side has 720
pixels.

3.2 Semantic Segmentation

Manipulation of real-world objects requires a precise
object localization. Therefore, we also investigated
pixel-level segmentation approaches in the context
of robot manipulation tasks. As opposed to object
detection, which only provides a rather coarse
estimate of object location in terms of a bounding
box, segmentation offers a much more detailed
representation by classifying each pixel as one of the
known categories.

Our segmentation network is based on the work of
Husain et al. (2016) and consists of six convolution
layers, as shown in Figure 7. Only the last three layers
of the network are trained on the domain specific
dataset. For RGB data, the first two convolutional
layers from the OverFeat network (Sermanet et al.
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(a) RGB frame (b) Water bottle (c) Glue (d) Bubble mailer (e) Gloves

Figure 6. DenseCap probability estimates for an example frame. The objectness in each pixel is approximated by rendering a
Gaussian that corresponds to the bounding box center and extent.

Figure 7. Our network architecture for semantic object
segmentation.

2013) are applied. OverFeat was trained on the
ImageNet dataset (Russakovsky et al. 2015) consisting
of over one million images, each of which was labeled
with one of 1000 available categories. For depth data,
we also use the HHA encoding, similar to the object
detection pipeline. Since the OverFeat network was
trained in the RGB domain, and its higher-level
features are not meaningful on HHA, we only use the
first convolutional layer of the network for HHA. Still,
CNN pretraining on RGB can be used on HHA, as
demonstrated by Gupta et al. (2014). The extracted
RGB and HHA features are then concatenated. The
dimension of the final convolution layer is adjusted
for each task to reflect the number of classes (#Cl.)
present in the dataset.

3.2.1 Implementation Details. The network is fine-
tuned using stochastic gradient descent. We fol-
low Husain et al. (2016) and set the learning rate to
10−3, use a momentum of 0.9, and a 50% dropout in
the final three layers. The learning rate is set to decay
over time at a rate of 10−4.

Both detection and segmentation methods were
implemented using the Torch7 deep learning frame-
work∗ and integrated into a real-time robotics system
based on ROS (Quigley et al. 2009). We hope that our
implementation, which is publicly available†, will lower
the burden for other researchers to apply deep learning
methods for robotic tasks.

3.3 Combining Detection and Segmentation

During the APC competition, we used a combination
of the SVM object detection approach and the
semantic segmentation. In particular, the bounding
boxes predicted by the object detection network were
rendered with a logistic estimate of their probability
and averaged over all classes. This process produced a
“probability map” that behaved similar to a pixel-wise
posterior. In the next step, the detection probability
map was multiplied element-wise with the class
probabilities determined in semantic segmentation. A
per-pixel max-probability decision then resulted in the
final segmentation mask used in the rest of the pipeline.

After the APC, we replaced the hard bounding
box rendering with a soft Gaussian whose mean and
covariance were derived from the box location and
size, respectively, cf. Fig. 6 for an illustration. This
yielded better results, because such a representation
matches the actual object shape more closely than an
axis-aligned bounding box. The Gaussian blobs for all
detections are accumulated and the resulting map Pdet

is normalized, i.e. scaled so that the maximum equals
to one. To allow for detection mistakes, we introduce a
weak prior that accounts for false negatives. The final
combined posterior is computed as

Pcombined = Pseg(0.1 + 0.9Pdet), (2)

where Pseg is the posterior resulting from semantic
segmentation and Pdet is the estimated posterior from
object detection.

While this combination is relatively straightforward
(note that the product assumes conditional indepen-
dence) and the shape approximations by Gaussian
masks are rather coarse, this strategy yields a con-
sistent increase in performance nonetheless (see Sec-
tion 4.4).

∗http://torch.ch
†http://ais.uni-bonn.de/apc2016/
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4 Application to Bin-Picking

In July 2016, in conjunction with RoboCup, Amazon
held the second Amazon Picking Challenge (APC)‡,
which provided a platform for comparing state-of-the-
art solutions and new developments in bin picking and
stowing applications. The challenge consisted of two
separate tasks, where contestants were required to pick
twelve specified items out of chaotically arranged shelf
boxes—and to stow twelve items from an unordered
pile in a tote into the shelf. Amazon provided a set of
objects from 39 categories, representing a large variety
of challenging properties, including transparency (e.g.
water bottle), shiny surfaces (e.g. metal or shrink
wrap), deformable materials (e.g. textiles), black and
white textureless surfaces which hamper reliable depth
measurements, heavy objects, and mesh-like objects
with holes that could not be grasped by using suction
alone. Moreover, the shiny metal floors of the shelf
boxes posed a considerable challenge to the perception
systems, as all objects are also visible through their
mirrored image. Before the run, the system was
supplied with a task file that specified which objects
should be picked as well as with all object locations
(which shelf box they are stored in). After the run, the
system was expected to output the new locations of the
items. For completeness, before presenting our results
we will briefly describe our mechatronic design as well
as motion generation and grasp selection methods that
were developed for the APC competition.

4.1 Robotic System

Our robot consists of a 6-DOF arm, a 2-DOF
endeffector, a camera module, and a suction system. To
limit system complexity, we chose to use a stationary
manipulator. This means the manipulation workspace
has to cover the entire shelf, which places constraints
on the possible robotic arm solutions. In our case,
we chose the UR10 arm from Universal Robotics,
because it covers the workspace sufficiently, is cost-
effective, lightweight, and offers safety features such as
an automatic (and reversible) stop upon contact with
the environment.

Attached to the arm is a custom-built endeffector
(see Fig. 8). For reaching into the deep and narrow
APC shelf bins, we use a linear actuator capable of
37 cm extension. On the tip of the linear extension, we
mounted a rotary joint to be able to carry out both
front and top grasps.

For grasping the items, we decided to employ
a suction gripper. This choice was motivated by
the large success of suction methods during the
APC 2015 (Correll et al. 2016), and also due to
the presented set of objects for the APC 2016, most

Linear Joint

Rotary Joint

Dual RGB-D
Camera

Figure 8. Our dual-camera setup on the UR10 arm used for
the Amazon Picking Challenge 2016.

of which could be manipulated easily using suction.
Our suction system is designed to generate both high
vacuum and high air flow. The former is needed to
lift heavy objects, the latter for objects on which the
suction cup cannot make a perfect vacuum seal.

The suction cup has a 3 cm diameter. For most
objects, it is sufficient to simply place the suction
cup anywhere on the object. For simple arrangements,
this suction pose could be inferred from a bounding
box. For more complex arrangements with occlusions,
there is an increased risk of retrieving the wrong
object. Similarly, very small objects can be easily
missed. For these reasons, a high-quality localization
such as offered by pixel-wise semantic segmentation is
required. The final suction pose is derived using two
different heuristics (top- or center grasp) operating
on the segmentation mask depending on the object
height. A nullspace-optimizing IK solver and keyframe
interpolation are used to generate motions, similar to
the one described in Schwarz et al. (2017b). Further
details on robot motion control and grasp generation
are described by Schwarz et al. (2017a).

For control and computations, two computers are
connected to the system. The first, tasked with high-
and low-level control of the robot, is equipped with an
Intel Core i7-4790K CPU (4 GHz). The second is used
for vision processing, and contains two Intel Xeon E5-
2670 v2 (2.5 GHz) and four NVIDIA Titan X GPUs.
For training, all four GPUs can be used to accelerate
training time. At test time, two GPUs are used in
parallel for the two deep learning approaches: object
detection and semantic segmentation (see Section 3).

‡ http://amazonpickingchallenge.org/
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(a) RGB frame (b) Upper depth (c) Lower depth (d) Stereo depth (e) Fused result

Figure 9. RGB-D fusion from two sensors. Note the corruption in the left wall in the lower depth frame, which is corrected in
the fused result.

4.2 RGB-D Preprocessing

After experimenting with multiple sensors setups in the
APC setting, we decided to use the Intel RealSense
SR300 RGB-D sensor due to its low weight, high
resolution, and short-range capabilities. However, we
noticed that the depth sensor produced systematic
artifacts on the walls of the shelf (cf. Figure 9(c)). The
artifacts seem to depend on the viewing angle, i.e. they
were present only on the right side of the image. To
rectify this situation, we designed a dual sensor setup,
with one of the sensors rotated 180◦ (see Fig. 8). To
reduce the undesirable effect of external illumination,
we used local LED lighting while capturing the data.

Using two separate sensors also makes a second RGB
stream available. To exploit this, we also compute
dense stereo disparity between the two RGB cameras
using LIBELAS (Geiger et al. 2010). The three depth
streams are projected into one common frame (the
upper camera in our case) and are then fused using
a linear combination with predefined weights αi

§. In
particular, the stereo stream is fused using a low
weight, since the depth measurements of the SR300
cameras are usually more precise (but not always
available). Finally, we distrust measurements where
the different depth sources disagree by introducing
an additional “spread” weight w. In summary, we
obtain the following equations for combining depth
measurements Di of a single pixel to a depth
measurement D and weight w:

D =

∑
αiDi∑
αi

, (3)

w = exp(−(max
i
Di −min

i
Di)). (4)

Pixels where maxiDi −miniDi > 5 cm are disre-
garded entirely. Figure 9 shows an exemplary scene
with individual raw sensor measurements as well as
the fused depth map.

Since the resulting fused depth map is usually sparse,
we need to fill in the missing data. We follow the
work of Ferstl et al. (2013), who upsample depth
images guided by a high-resolution grayscale image. In

contrast to many other guided upsampling approaches,
this one does not assume a regular upsampling grid.
Instead, any binary (or even real-valued) weight matrix
can be used to specify the location of source pixels
in the output domain. This makes the approach
applicable to our scenario, where the mask of valid
pixels has no inherent structure.

The upsampling is formulated as an optimization
problem, minimizing the energy term

min
u,v

{
α1

∫
ΩH

|T 1
2 (∆u− v)|dx+

α0

∫
ΩH

|∆v|dx+

∫
ΩH

w|(u−Ds)|2 dx

}
, (5)

where the first two summands regularize the solution
using Total Generalized Variation, and the last
summand is the data term. For details about the
problem formulation and the solver algorithm, we
refer the reader to Ferstl et al. (2013). The guided
upsampling was implemented in CUDA to achieve near
real-time performance (<100 ms per image).

4.3 Overall Results

The system performed both the picking and stowing
task successfully during the APC 2016.

4.3.1 Stowing task. Our system was able to stow
eleven out of twelve items into the shelf.¶ However,
one of the successfully stowed items was misrecognized:
Our approach falsely identified a whiteboard eraser
as a toothbrush and placed it into the shelf. This
meant that the system could not recognize the
toothbrush as the final item remaining in the tote.
This unlikely event was expected to be caught by a
built-in fallback mechanism which would attempt to
recognize all known objects. However, this mechanism
failed because the only remaining object was thin and
therefore discarded based on a size threshold. The

§Our experiments use αstereo = 0.1 and αRGB-D = 40.0.
¶Video at https://youtu.be/B6ny9ONfdx4
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Table 1. Picking Run at APC 2016

Bin Item Pick Drop Report

A duct tape × × ×
B bunny book X X ×2

C squeaky eggs X × X
D crayons1 X × X
E coffee X X ×2

F hooks X × X
G scissors × × ×
H plush bear X × X
I curtain X × X
J tissue box X × X
K sippy cup X × X
L pencil cup X X ×2

Sum 10 3 7

1 Misrecognized, corrected on second attempt.
2 Incorrect report, resulting in penalty.

misrecognition of the item led to the attainment of the
second place in the stow task.

4.3.2 Picking task. In the picking task, our system
picked ten out of twelve items.‖ Despite the high
success rate (the winning Team DELFT achieved a
success pick-up rate of only nine items), only a third
place was achieved as a consequence of dropping three
items during picking. Note that we could correctly
recognize that the objects were not picked successfully
using the air velocity sensor of our robot. However,
the system incorrectly deduced that the items were
still in the shelf, when they actually dropped over the
ledge and into the tote. Since the system was required
to deliver a report on the final object locations, the
resulting penalties reduced our score from 152 points
to 97 points—just behind the first and second place of
Team DELFT and PFN, both of which achieved 105
points.

4.4 Object Detection and Semantic
Segmentation

In addition to the system-level evaluation at the APC,
we evaluated our perception approaches on our own
annotated dataset, which was also used for training
the final APC model. The dataset contains 201 shelf
frames, and 132 tote frames. The frames vary in the
number of objects and location in the shelf. As far as
we are aware, this number of frames is quite low in
comparison to other teams (e.g. Team Princeton-MIT,
Zeng et al. 2017), which highlights the effectiveness
of our transfer learning approach. Figure 10 shows an

Figure 10. Object perception example. Upper row: Input
RGB and depth frames. Lower row: Object detection and
semantic segmentation results (colors are not correlated).

exemplary scene from the dataset with object detection
and segmentation results.

For evaluation, we define a five-fold cross validation
split on the shelf and tote datasets. To ensure that
the examples for each class are distributed as evenly
across the splits as possible, we use Iterative Stratified
Sampling (Sechidis et al. 2011).

Please note that the DenseCap pipeline has been
thoroughly evaluated on the Visual Genome Dataset by
Johnson et al. (2016) and the semantic segmentation
network has been evaluated on the NYU Depth v2
dataset by Husain et al. (2016). Both achieved state-
of-the-art results on the respective datasets.

4.4.1 Object detection. Traditionally, object detectors
are evaluated using a retrieval metric like mean
Average Precision (mAP), which measures the quality
of ranked results over the whole test set. Usually,
an Intersection-over-Union (IoU) threshold of 0.5 is
chosen, focusing on detection and rough localization
instead of precise localization. Generally, the mAP
metric as defined above places greater weight on correct
detection than on precise localization. Indeed, it is
much easier to achieve perfect average precision scores
than perfect localization precision.

To also provide location sensitivity, one can define
a metric for object detection based on pixel-level
precision and recall. In this work, we consider the use
case for an object detector in the context of warehouse
automation: It is known that a particular object resides
in a particular shelf bin, and we need to retrieve
it. Here, we are only interested in the detection i
with maximum confidence ci for this object class. We

‖Video at https://youtu.be/q9YiD80vwDc
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Table 2. Evaluation of object detection architectures on the shelf dataset. The mAP
object detection score and the F1 localization score are shown for each architecture.

mAP

Input Variant Uninf. Inf. F1

RGB SVM (plain) – 0.288 0.685
RGB SVM (tailor) – 0.289 0.684

RGB Softmax (no augmentation) 0.860 0.890 0.769
RGB Softmax (with augmentation) 0.865 0.896 0.771

RGB-D (TGV) HHA Features (Fig. 4) 0.865 0.898 0.776
RGB-D (TGV) Ext. Proposals 0.870 0.898 0.775
RGB-D (TGV) HHA CNN (Fig. 5) 0.865 0.901 0.790
RGB-D (TGV) Distillation 0.878 0.911 0.798

RGB-D (single)1 Distillation 0.865 0.901 0.787
RGB-D (DT)2 Distillation 0.875 0.903 0.788

1 Without depth fusion, only from upper camera. Filled using TGV method.
2 Old filling method used during APC 2016 based on a color-guided

smoothing filter.

measure its precision and recall as follows:

precision =
|B ∩G|
|B ∪G|

= IoU(B,G) (6)

recall =
|B ∩G|
|G|

, (7)

where B is the detected bounding box and G denotes
the closest ground truth bounding box. Note that a
complete mislocalization results in zero precision and
recall. Both quantities are then combined into the final
F1 score:

F1 = 2 · precision · recall

precision + recall
. (8)

Table 2 shows the influence of the design choices
described in Section 3.1. Both mAP (informed and
uninformed case) and the custom F1 metric are shown
for each architecture. As a first result we note that
the softmax variant with its ability to finetune the
entire network including region proposal is far superior
to a fixed network paired with an SVM classifier. In
particular, the SVM classifier is bad at ranking the
detections across images, which is evident in the mAP
metric. A calibration step (e.g. Platt scaling) could
improve this behavior. Note that the F1 score, which
is more relevant in the APC scenario, is closer to the
rest of the methods, but still suboptimal. Training the
SVM on-the-fly for just the items in the current shelf
bin (“tailor” variant) makes little difference in both
metrics. All remaining tests were performed with the
superior softmax classifier. Data augmentation (image

mirroring) slightly improves performance, so all other
tests were performed with augmentation.

As expected, incorporating depth measurements
results in increased performance. The external RGB-
D proposal generator performs better than the
naive HHA concatenation. However, reusing the RGB
CNN for depth feature computation outperforms the
proposal generator. Finally, training a depth CNN
using Cross Modal Distillation gives the best results.

We also investigate the depth fusion method
described in Section 4.2. The TGV-regularized method
is superior to a simple color-guided smoothing filter.
The advantage of fusing the two camera streams can
be seen. Table 4 shows the final object detection results
on the shelf and tote datasets.

4.4.2 Semantic Segmentation. For segmentation,
pixel-level precision and recall are calculated. Resulting
F1 scores are shown in Table 5. Knowledge of the set
of possible objects improves the performance slightly
but consistently. The chosen HHA encoding of depth is
far superior to raw depth (∼ 7% increase). Finally, the
combination of the finetuned object detector and the
semantic segmentation yields a small but consistent
increase in performance.

Figure 11 shows the distribution of difficulty across
all object classes. Both methods struggle mostly with
small and/or shiny objects (tooth brush, scissors), the
semantic segmentation even more so, reaching an F1
score below 0.5. We believe that both methods are
affected by insufficient image resolution and annotation
errors, which result in a greater effect on objects
of smaller size. The object detection also struggles

Prepared using sagej.cls
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Table 3. Perception runtimes.

Phase Object detection Segmentation

RGB-D proposal SVM Softmax (RGB) Softmax (RGB-D)

Train - - 45 min 4.5 h ≈ 5 h
Test 1006 ms 3342 ms1 340 ms 400 ms ≈ 900 ms

1 Includes just-in-time SVM training

Table 4. Final object detection results on the APC dataset.

mAP F1

Dataset Uninformed Informed

Shelf 0.878 0.912 0.798
Tote 0.870 0.887 0.779
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Figure 11. F1 score distribution over the objects for object
detection (top) and semantic segmentation (bottom).
Results are averaged over the cross validation splits. For
object detection, the best RGB-D model is used.

Table 5. F1 scores for semantic segmentation.

Shelf Tote

Method Uninf. Inf. Uninf. Inf.

Raw depth 0.713 0.735 - -
HHA depth 0.780 0.813 0.817 0.839

Det+Seg1 0.795 0.827 0.831 0.853

1 Object Detection + Segmentation.

with elongated shapes (e.g. toothbrush), where the
approximation of the contour as a bounding box may
be deficient under certain viewing angles.

We also measured the runtime of the different
modules in our setup (see Table 3). The training

time for the RGB-D object detection pipeline is
much longer, due to high memory utilization on
the GPU. This could probably be improved e.g.
through precomputation of the initial pretrained
layers, however training time was not taken into
consideration in our application. At test time, all
approaches achieve sufficient runtimes (≤ 1 s) for bin-
picking applications. Note that object detection and
semantic segmentation usually run in parallel.

5 Application to Disaster Response

To show the general applicability of the developed
pipeline in other contexts, we also evaluate it in a
second, unrelated domain. Note that the pipeline was
initially designed for bin-picking perception, and is now
merely adapted to this new scenario.

The dataset that was used for validating our
approach was captured in the European CEN-
TAURO∗∗ project, which aims to develop a human-
robot symbiotic system for disaster response. To reduce
the work load of the human operator, several per-
ception and manipulation capabilities should be done
autonomously by the robot system. For example,
the robot should be able to identify commonly used
tools like wrenches or drillers, correctly grasp and
utilize them. Here, we apply the techniques that
were used for bin-picking during the APC to the
disaster response scenario. The dataset consists of 127
manually annotated RGB-D frames, captured in a
cluttered mechanics workshop with six different object
classes: Five mechanic tools (clamp, driller, extension
box, stapler, wrench) and door handles. The dataset
was captured with a Kinect version 2 camera and
annotated manually with a tool developed in-house.
Figure 12 shows a screenshot of the annotation tool
and examples of three annotated frames. In addition
to the unique setting, the dataset differs from common
RGB-D datasets by offering pixel-wise labeling, highly
cluttered background, and the high capture resolution
of the Kinect v2 camera.

∗∗https://www.centauro-project.eu
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Figure 12. Our annotation tool (left) and three exemplar cropped frames from the captured dataset (right).

Table 6. Object detection results on the CENTAURO dataset.

Resolution Clamp Door handle Driller Extension Stapler Wrench Mean

AP / F1 AP / F1 AP / F1 AP / F1 AP / F1 AP / F1 AP / F1

720×507 0.881/0.783 0.522/ 0.554 0.986/0.875 1.000/0.938 0.960/0.814 0.656/0.661 0.834/0.771
1080×760 0.926/0.829 0.867/ 0.632 0.972/0.893 1.000/0.950 0.992/0.892 0.927/0.848 0.947/0.841
1470×1035 0.913/0.814 0.974/ 0.745 1.000/0.915 1.000/0.952 0.999/0.909 0.949/0.860 0.973/0.866

Table 7. Class-wise pixel classification F1 score of the semantic segmentation method in disaster-response environments.

Clamp Door handle Driller Extension Stapler Wrench Background Mean

0.727 0.751 0.769 0.889 0.775 0.734 0.992 0.805

As in Section 4.4, we define a five-fold cross
validation using Iterative Stratified Sampling (Sechidis
et al. 2011) for evaluating object detection and
semantic segmentation. Since Kinect v2 does not
measure depth in the margin areas (especially left and
right borders) of the 1920× 1080 RGB image, we crop
the frames to the area where depth measurements are
available (1470× 1035).

5.1 Detection and Segmentation

The object detection pipeline is identical to the one
described in Section 3.1. However, since there are
frames in the dataset that are either very cluttered,
making it harder to robustly estimate a ground plane,
or have no ground plane in the image at all (see Fig. 13,
bottom), we do not use the geometric HHA features
here. Instead, we train the depth CNN using Cross
Modal Distillation on raw depth. The segmentation
network is also very similar to the one illustrated in
Fig. 7. Here, we feed raw depth (replicated to the three
input channels) instead of HHA into the depth branch.

5.2 Evaluation

Object detection results for the CENTAURO dataset
are shown in Table 6. With the configuration from the
APC dataset, the detector shows an acceptable mAP
of 83.4%. However, by default the DenseCap pipeline
scales the input images such that the largest side is 720
pixels—reducing the available resolution. Since there
are very small objects that occupy as little as 4% of
the image width (e.g. door knobs, see Fig. 13, bottom
row), higher resolutions increase the performance by
a large margin (see Table 6), of course at the cost of
training and prediction time. Increasing the input size
to the highest available resolution (1470×1035) yields
near-perfect detection performance (97.3% mAP).
This increase is equally visible in the localization
score, suggesting that mis-localization (and not mis-
detection) is the main cause for the low mAP at lower
resolution. The full resolution model takes about 10 h
to train and has longer prediction times of around
1 s per image. An intermediate resolution yields 94.7%
mAP with a prediction time of 550 ms.
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ExtensionClamp StaplerDrill Wrench BackgroundDoor handle

Figure 13. Example scenes (left) and results of object detection (center) and semantic segmentation (right) on the disaster
response dataset. For object detection, the highest resolution model is used.

The segmentation results are presented in Table 7.
Here the segmentation achieves good results, which is
notable in the presence of highly cluttered background
with many other objects that are visually rather
similar. Finally, Figure 13 shows an example result
of our detection and segmentation approaches on
the CENTAURO dataset. Surprisingly, the highly
cluttered background does not affect the overall
performance. Rather, the main difficulty with this
dataset is the small object size w.r.t. to the image size,
in contrast to the APC data.

6 Lessons Learned

Designing the system, participating in the APC 2016,
and finally the experiments on disaster scenes was a
valuable learning experience for us. We summarize and
discuss some of the points related to the perception
system here.

First of all, our transfer learning approach has shown
to work effectively in real-life robotic applications,
requiring only few annotated images. We expect that
further work (which is necessary for the ARC 2017)
will reduce the number of required images even further,
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paving the way for one-shot or few-shot learning.
The main insight here is that these problems can be
approached successfully with deep learning techniques,
even if the amount of training data is low. Furthermore,
our experiments showed that it is beneficial to finetune
pretrained architectures rather than relying on classical
CNN+SVM combination in the considered scenarios,
despite the limited training data.

One valuable lesson from the disaster response sce-
nario is that input resolution is an important parame-
ter for the performance of detection approaches. Sadly,
this is currently a highly domain-specific parameter,
requiring careful adaptation to the task at hand—and
the processing time available. More generally, state-of-
the-art deep learning techniques still require significant
amounts of manual tuning to adapt the models to the
target domain. Despite the replacement of handcrafted
features with learned ones, hyperparameters have to be
chosen carefully to guarantee success. Finally, tricks
such as the HHA encoding may boost the performance
in certain settings, but are not generally applicable to
all domains.

7 Conclusion

We presented a successful adaptation of two different
deep-learning-based image understanding methods to
robotic perception. Our experiments showed that
by exploiting transfer learning, such approaches can
be applied to real-world manipulation tasks without
excessive need for annotating training images. We
demonstrated their performance in two different
settings. One is a bin-picking scenario, carried out in
the context of the Amazon Picking Challenge (APC)
2016, where the number of categories, narrow working
spaces, as well as shiny and textureless surfaces pose
major challenges. The APC 2016 was our very first
attempt to apply deep-learning techniques in a live
robotic system. Our team’s success underlines the
effectiveness of such methods in practice. We believe
that the reduction of training data is a key factor in
such scenarios. This will become even more crucial
in future editions of the APC, where the number of
categories will increase and some categories may not
even be known during the training phase.

The second application scenario is disaster response.
Here, the main challenges for perception include severe
clutter and unstructured background. Nevertheless,
we showed that similar ideas can be transferred to
this setting. To validate this claim, we collected and
annotated a domain-specific dataset and observed
encouraging performance in both detection and
segmentation tasks.

In future, we plan to bring both tasks closer
together by integrating them into a single network
architecture. This would allow for end-to-end training
of both components simultaneously. Finally, we make
the entire code base used for the APC as well as the
collected and annotated data publicly available††. We
hope this will encourage other researchers to apply
deep models in live robotic systems.
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