Journal Title
XX(X):2-43

Towards Efficient and ©Tho Auihor(s) 2016

Reprints and permission:

Sca I a b I e V i S u a I sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/ToBeAssigned

Hom i ng ggsggépéb.com/

Annett Stelzer!, Mallikarjuna Vayugundla', ElImar Mair', Michael
Suppa?, Wolfram Burgard®

Abstract

Visual homing describes the ability of a robot to autonomously return to its starting
position along a previously traversed path using visual information. In this paper,
we propose a method for visual homing that is solely based on bearing angles to
landmarks. During the first traversal of a path, the robot creates a sequence of
viewframes, which are rotationally aligned landmark angle configurations at certain
locations. During homing, the robot calculates homing vectors which subsequently
lead it in the direction to align the currently perceived set of landmark observations
with the reference viewframe until the home location is reached. This paper
discusses methods for homing vector calculation and proposes new methods which
are more robust and yield straighter homing paths in case of non-isotropic landmark
distributions and false landmark matches. Furthermore, we present the Trail-Map,
which is a novel data structure for storing a sequence of viewframes in a non-
redundant and scalable way. The Trail-Map exploits the fact that the bearing angles
to distant landmarks and landmarks in the direction of movement hardly change
when the robot moves, whereas close landmarks change their bearing angles
quickly. Thus, the Trail-Map allows easy downscaling by deleting observations that
correspond to nearby, quickly-changing landmarks and, thus, retaining the stable,
translation invariant landmark information. We show the memory efficiency and
scalability of the data structure in simulations and in real-world indoor and outdoor
experiments. This makes the proposed method for visual homing suitable for mobile
robots with limited computational and memory resources.

Keywords
visual homing, range-free navigation, omnidirectional vision

Prepared using sagej.cls [Version: 2015/06/09 v1.01]

2 Journal Title XX(X)

1 Introduction

In recent years, mobile robots have become part of our daily lives. They vacuum
our floors, mow our lawns and clean our windows. While these robots work in well-
defined environments and perform well-defined and simple tasks fully autonomously,
mobile robots are also demanded to work in unstructured and unpredictable areas.
For example, the exploration of foreign planets, mines, or disaster sites poses high
risks to humans, which drives the demand for mobile robots as robust tools to support
scientists or rescue workers. In such scenarios, full robot autonomy is neither required
nor desired, because the decision of what places are interesting and what information
to record is better to be made by a human, who can rapidly respond to unforeseeable
events (Murphy (2014)). Rather, the robot should be a tool which supports the human
operators by providing an overview of the situation, which is necessary for further
decisions and task planning. For this, the robot should provide basic autonomy, such as
obstacle avoidance, autonomous navigation to a given goal location, and autonomous
homing, i.e. returning to the start location once the operator has finished the task or
in case objects or samples have to be returned to a base. Robots which are applicable
to this task usually have very limited computational resources and limited memory,
because they have to be small and agile for rough terrain locomotion, or they have
to use space-qualified hardware for planetary exploration. For this reason, the robot’s
autonomous skills have to be implemented in a very efficient way.

This manuscript aims at the development of an efficient method for visual homing.
The term homing is borrowed from biology, where it describes the ability of insects to
return to their nests after foraging. This special navigation task comprises learning and
retracing a path. The robot memorizes a path while either being remotely controlled by
an operator, or while autonomously navigating to intermediate waypoints given by the
operator. For this, it uses an omnidirectional camera for observing the surrounding
visual panorama. Once the robot is commanded to return to its base, it uses the
memorized information for retracing the path. To allow for long-range homing,
the stored path should be scalable. For this, the robot should store all information
as long as possible, but then in case of memory shortage forget non-crucial path
information to extend its motion range. This should only affect the homing accuracy,
but should still enable the robot to reach its home position. Furthermore, considering
the limited computational resources of the robot, it is important that the computational
requirements of the homing method stay constant with respect to the length of the
travelled path.

In literature, techniques for retracing learned paths can be divided into appearance-
based and feature-based navigation approaches. In appearance-based navigation

'German Aerospace Center (DLR), Institute of Robotics and Mechatronics, Oberpfaffenhofen, Germany
2Roboception GmbH, Munich, Germany
SUniversity of Freiburg, Department of Computer Science, Freiburg, Germany

Corresponding author:

Annett Stelzer, Institute of Robotics and Mechatronics, DLR German Aerospace Center, Miinchener Str.
20, 82234 Oberpfaffenhofen, Germany.

Email: annett.stelzer@dir.de

Prepared using sagej.cls

Stelzer et al. 3

methods, the robot memorizes full images or special image properties in a topological
map (Tapus et al. (2006)) during a training phase and then navigates by matching the
stored information with the current view (Matsumoto et al. (1996); Kosecka et al.
(2003); Vardy (2006); Zhang and Kleeman (2009)). Feature-based approaches only
store the configurations of landmarks in the environment at certain places. Cartwright
and Collett (1983, 1987) developed the snapshot model based on experiments with
honey bees. This model stores the perceived landmark configuration at a certain
location in a so-called snapshot, which contains the bearing angles and the sizes of
the landmarks projected on the insect’s retina. For homing, the robot computes the
direction that matches the current landmark configuration with the stored snapshot. Dai
and Lawton (1993) introduced the term viewframe, which consists of a set of landmarks
and their corresponding bearing angles as they are observed from a certain location.
Kawamura et al. (2002) transferred the viewframe concept into 3-dimensional space by
describing distinct places by the projection of landmarks on the surrounding egosphere.
Other works on retracing paths also make use of features, but are not explicitly inspired
by insect navigation models. Argyros et al. (2005) proposed robot homing by using
only angular information of visual features in panoramic images. The robot tracks
image corners to build up a visual memory containing the life cycle of all features.
For homing, the robot selects intermediate milestone positions that allow tracking of
at least three image features in-between. Then, it employs a local control strategy
to subsequently move to the milestone positions until the home position is reached.
Goedemé et al. (2005) presented a method for visual path following of an automatic
wheelchair based on sparsely captured omnidirectional images of the environment.
Local 2D maps of image features are created by triangulation and corrected using a
SLAM approach, while the robot performs a homing motion to the location of the
goal. gegvié et al. (2007) introduced a hierarchical environment representation, which
contains a graph of key images with extracted 2D features at the top level, and local
3D reconstructions at the bottom level. The information in the top level enables robust
navigation by visual servoing, while the bottom level is used for predicting feature
locations to support tracking. Using this approach, the robot can cover large distances
without a consistent reconstruction of the environment. Furgale and Barfoot (2010b)
proposed Visual Teach and Repeat, which enables a robot to follow a taught path over
several kilometers. In this work, overlapping feature submaps are created during the
teach pass which are used for localization in the repeat pass. Global consistency is
not enforced, since local consistency is sufficient for the task. This approach requires
about 348MB of data per kilometer on average. In the method introduced by Krajnik
et al. (2010) the robot learns straight line sequences, where each segment is associated
with a landmark map, the initial orientation of the robot and the segment length. For
homing, the robot uses the landmark map only for correcting its current heading,
but then moves straight until it has traversed the segment according to its odometry
measurements. Krajnik et al. (2010) reported that this method required 848MB for a
run of 8km length, which means an average of 106MB per kilometer. Cherubini and
Chaumette (2013) proposed a method in which the robot stores a sequence of key
images along its path, such that subsequent images contain common static features.
For repeating the path, the robot extracts and matches common features in the current

Prepared using sagej.cls

4 Journal Title XX(X)

and the goal image and moves to align the x-coordinates of the centroids of the feature
point clouds.

All works mentioned above fail to give information about how to scale the resulting
maps and how to efficiently organize the information to save memory and computation
time. To our knowledge, the first work addressing the problem of scalability and
memory efficiency for feature-based homing is the Landmark Tree-Map (LT-Map)
developed by Augustine et al. (2012). The LT-Map organizes landmark views in a tree
so that slowly changing, translation invariant landmarks are located near the root of the
tree while translation variant landmarks are located in the leaves. The LT-Map can be
scaled by pruning the tree and, thus, discarding the information about quickly changing
landmarks.

In this paper, we develop a constant-time and memory efficient visual homing
method based on the idea of the LT-Map. This method is independent of any distance
information, but solely relies on bearing angle measurements to landmarks, which
are extracted from an omnidirectional sensor. The robot memorizes the landmark
bearing configurations, so-called viewframes, of certain locations and stores them in the
Trail-Map (Translation Invariance Level Map), which is a novel, non-redundant data
structure that can easily be pruned in case of memory shortage and outperforms the
LT-Map. For homing, the robot retrieves the viewframes and computes homing vectors
which subsequently lead the robot to the previous viewframe until the original home
position is reached. Using this approach the robot can reliably retrace long-range paths
without the need to maintain a metrically correct Cartesian map. Thus, the method runs
in constant time independent of the length of the path and is suitable for robots with
limited computational resources.

The paper is organized as follows: In the next section, we will explain the concept of
viewframe-based homing and introduce viewframe dissimilarity measures and homing
vector calculation methods. Section 3 introduces the Trail-Map, a novel, scalable data
structure for viewframe-based homing. Section 4 gives simulation results of homing
using the Trail-Map and compares it with the LT-Map data structure. In Section 5
we explain what is necessary to apply the Trail-Map-based homing method to a
real robot and Section 6 gives experimental results in indoor and outdoor real-world
environments. Section 7 concludes this paper.

2 Viewframe-Based Homing

A viewframe (VF) is defined as the configuration of landmark views which corresponds
to a certain location in two- or three-dimensional Euclidean space (ref. Fig. 1). Each
landmark view (LV) contains the landmark’s ID, its descriptor and its bearing angle
containing the azimuth ¢; , (and elevation ¢; . in the 3D case) under which the
landmark L; is observed. The landmark views are extracted from omnidirectional
images. All viewframes are assumed to be rotationally aligned with each other, either
using compass information or an estimated orientation. The unit vector pointing in the

Prepared using sagej.cls

Stelzer et al. 5

direction of landmark L; is I; and can be computed from (¢; o, ¢;.¢) as

COS @j ¢ COS Pj g

li=| cosgjesing;q |. (D
Sin¢i7e
* Ly
Ls g
*
s N
Lg(c0) Ly (o0)

Figure 1. lllustration of a viewframe (adapted from Mair et al. (2014)). L; are the
landmarks and I; the unit vectors pointing to them.

In a nutshell: The robot records viewframes during a mapping phase while it
explores unknown regions either autonomously or remotely controlled by an operator.
A dissimilarity measure is required to decide when a new viewframe is recorded. At
some point, the robot is commanded to return to its starting position. For this, it has to
compute homing vectors that successively give the direction to the previously recorded
viewframe until the viewframe corresponding to the starting position is reached. The
robot decides whether a viewframe is reached based on another dissimilarity measure,
which can be, but not necessarily has to be the same measure as for viewframe
recording. More details are provided in the following.

2.1 Viewframe Dissimilarity Measures

In the mapping phase the robot has to detect when the current view becomes
significantly different from the viewframe that it previously recorded. Additionally,
during homing it is important for the robot to recognize a known place or to know when
the desired goal viewframe is reached. Thus, a measure of viewframe dissimilarity has
to be computed.

There are different ways for computing a dissimilarity measure dgiss. In this paper,
we use the average angle between the N corresponding landmark unit vectors I, of the
current view and [; of the goal viewframe:

N
1
S = N Z acos(lngi). 2)
i1

When using this measure, large angle changes of nearby landmarks can be
compensated by a high number of distant landmarks. To prevent this, the kth maximum

Prepared using sagej.cls

6 Journal Title XX(X)

value of all difference angles between corresponding unit vectors can be used:

X — kth-max {acos(l'iTli)} , 3)
where the value for k can be set according to the number of corresponding landmarks,
for example as a ratio, which would result in a percentile rank. As a disadvantage, this
measure is strongly affected by noise in the angle measurements and by false landmark
matches. Thus, we will use the kth maximum dissimilarity measure only in simulations
with perfect landmark observations, and switch to the average angle measure for real
world experiments.

A new viewframe is acquired when the dissimilarity measure of the current view
compared to the previously recorded viewframe exceeds the threshold s, .. Thus, the
density of the viewframes depends on the local landmark configuration: In areas with
only few close landmarks, the viewframes will be further apart than in areas with many
nearby landmarks. That leads to an implicit adaption of the map resolution to the local
conditions. The smaller the threshold &, the higher the resolution and, hence, the
accuracy and the memory requirements of the resulting map. The threshold should
be chosen according to the measurement accuracy of the bearing sensor and to the
required path accuracy. Since usually no high accuracy is required for the traversal
between different workspaces, higher thresholds should be preferred for the benefit of
less memory.

2.2 Homing Vector Calculation Methods

To move from the current position to a goal viewframe, the moving direction has to
be computed from the landmark angle information that the robot currently perceives
compared to the stored configuration in the viewframe. The resulting direction is
usually represented by a vector, called the homing vector.

In literature, different methods for calculating homing vectors from the current view
to a goal view have been proposed. Apart from image-based methods, where whole
images are compared for homing vector calculation (Franz et al. (1998); Zeil et al.
(2003)), we will focus on the landmark-based methods for homing vector calculation.

The homing vector calculation method of the snapshot model (Cartwright and Collett
(1983)) is based on dark and bright sectors on the insect’s retina caused by projections
of the surrounding landmarks. Several modifications of this method were proposed
by Lambrinos et al. (2000), e.g. the proportional vector model, the average landmark
vector (ALV) model and the difference vector model. However, all these methods
assume that the projection of a landmark on the retina results in a bright or dark sector.
Furthermore, the landmark is assumed to have a perceivable size that only changes with
the distance from the landmark but not with the bearing the landmark is perceived at.
That is only true for cylindrical objects which can clearly be distinguished from the
background. This is not always the case in real world scenarios. Landmarks that are
detected using feature detection algorithms appear as characteristic points in images.
They can have a scale but they usually do not have a size which is clearly perceivable.

Considering landmarks as point image features without a perceivable size, the
difference vector model proposed by Lambrinos et al. (2000) can be adjusted to

Prepared using sagej.cls

Stelzer et al. 7

calculate the homing vector h as

1 N
h:N;(li—li), “4)

where I are the unit landmark vectors in the current view and I; are the corresponding
unit landmark vectors of the goal view. Here, the sum of the difference vectors is
normalized by the number of corresponding landmarks V.

In this model, the difference vectors are always secants of the unit circle around the
current viewframe. For the method to work well, it is assumed that the landmarks are
distributed isotropically around each viewframe and that a 360° panorama of the scene
is taken. Then, errors in the orthogonal direction to the homing vector cancel each other
out. When landmarks are located only in one direction of the viewframe, errors cannot
cancel out. Hence, the homing vector is biased, especially when the landmarks appear
only in the homing direction. This behavior is shown in Fig. 2a, where the homing
vectors near the connecting line between the landmark cluster and the home position
are approximately perpendicular to the desired homing direction. This leads to zigzag-
like viewframe approaching behaviors (ref. Fig. 4a). The case of having a landmark
cluster in the direction of motion must be considered when downscaling the Trail-Map
data structure, which will be introduced in the next section.

Creating radial homing vector components using the apparent size of the landmark
would solve this problem. However, when landmarks are assumed to be points, they do
not have an apparent size. In that case, the apparent width of an imaginary landmark
between two landmark observations can be used to achieve more direct homing vectors.
We propose the improved difference vector model, which uses the angles between two
landmarks and the robot as apex to generate radial homing vector components. When
moving towards two landmarks, the angle between them increases. Hence, a component
x; in the positive direction of the bisecting line of the two landmarks is added when
the angle between those landmarks in the goal viewframe is greater than in the current
viewframe. Otherwise, the component is subtracted:

N N=1/y | o
1 1 (L+1,)
h=—>" (1) + Y ©)
N pt N -1 p 2
T = ‘acos(l?liﬂ)’ — ‘acos(l;Tl;H)’ = Biit1 — 5;’1.“.

The construction of a homing vector with and without the angle differences is
illustrated in Fig. 3 for an environment with only two landmarks.

The resulting streamline and angle deviation plot is shown in Fig. 2b. The homing
vectors have now improved when only landmarks in the direction of movement are
available as shown in Fig. 4b. However, the width of an imaginary landmark not only
decreases when the robot travels away from it, but also when the imaginary landmark
is perceived at a flat angle. Hence, in these areas the resulting homing vectors are still
eIroneous.

We propose another variant of the difference vector model, called the normalized
difference vector model. In contrast to the original difference vector model, the homing

Prepared using sagej.cls

8 Journal Title XX(X)

50 80°
60°
0 40°
\ i 20°
0 . ; \ N e 00
50 -50 0 50
(a) leference vector model (ref. Eq. 4)
50 50 80°
60°
0 \ 0 2 40°
g iiieeen S
(/ &\\ = 200
-50 -50 = 0°
-50 0 50 -50 0 50

(b) Improved difference vector model (ref. Eq. 5)
Figure 2. Homing vector streamlines (left) and angle deviations from the direct path (right)
for the difference vector model and improved difference vector model with a landmark

cluster (green asterisks). The red circle denotes the goal location. The x and y coordinates
are given in units.

vector is calculated by summing the normalized difference vectors, as

Nz|l’fl| ©

The same kind of normalization can be applied to the improved difference vector
model:

N—1 /g7 /
1 (t + i)
i 7
NZ |l’ —1, | T2, e @
1=1
T = ‘acos(li li+1)’ — ‘acos(li l;H)’ = Bii+1 — Blit1-

The advantage of the normalization becomes apparent when false landmark matches
occur. Since false landmark matches are likely to yield unit vectors pointing in a

Prepared using sagej.cls

Stelzer et al. 9

VEF2

hs = l/l -1 + (l/2 — lg)
Tl hy = (8= (13 +13)/2
h = hs + hr

Figure 3. Homing vector construction (adapted from Stelzer et al. (2014)): hs: homing
vector using difference vector model with only secant components. h,.: radial component
from angle differences. h: homing vector using improved difference vector model

76 ‘ : ‘ ; 76 ; : : :
learning path f learning path /

74 | — homing path g ‘ 74 | —homing path / ‘

72 vg 72

70 ; 70 J/

; v
68 ‘g 68 /
66 66

64 / /X 64 //
62 62

8 10 12 14 16 18 20 8 10 12 14 16 18 20
(a) Difference vector model (b) Improved difference vector model

Figure 4. Resulting homing paths using the difference vector model and the improved
difference vector model (adapted from Stelzer et al. (2014)). The x and y coordinates are
given in units.

very different direction than the unit vector corresponding to the true match, the
resulting difference vectors are often large. Thus, these false matches have a very
strong influence on the homing vector direction. This influence is decreased when all
difference vectors are used in the normalized form. Fig. 5a shows the streamlines and
deviations of the homing vectors computed by the improved difference vector model
when 10% landmark outliers are present. In this case, homing would most probably
fail when the robot starts at the lower left corner of the plot. In contrast, when the
normalized version is used, the homing vectors are more stable in the presence of
outliers (ref. Fig. 5b).

Other authors also proposed methods for homing vector calculation. Weber et al.
(1999) presented a method for homing vector calculation based on tangential correction

Prepared using sagej.cls

10 Journal Title XX(X)

50 50 80°
u 60°
= i
of b a0°
i Y
N 20°
N
NSRS N
NS = ,
-50 0 50 -50 0 50

(a) Improved difference vector model (ref. Eq. 5)

50 80°
60°
0 40°
20°
E :
-50 iE H 0°
-50 0 50

(b) Normalized improved difference vector model (ref. Eq. 7)

Figure 5. Homing vector streamlines (left) and angle deviations from the direct path (right)
for the improved difference vector model and the normalized improved difference vector
model with a landmark cluster (green asterisks) and 10% outliers. The red circle denotes
the goal location. The x and y coordinates are given in units.

vectors that are perpendicular to the current landmark bearing ¢, and proportional to
the difference between the current and the goal bearing ¢; as

i a<
Ry
and R(a):(cos((oz)) —sin(a)>.

sin(a) cos(w)

90°)1!

N
h=> |¢;—j|l;, with I, = B)
— 7 il Ye L il R(—QO

This homing vector calculation method leads to a landmark avoiding behavior. This
is beneficial when the landmarks are also obstacles, which is not the case when using
image features as landmarks, since image features can also be detected on flat, but
textured ground.

Prepared using sagej.cls

Stelzer et al. 11

Liu et al. (2010) introduced an image-based visual servoing method for homing
vector calculation based on bearing-only landmark information in 3D. It uses the angles
83; formed between the unit vectors I; and I;_; to the landmarks L; and L;; to generate
homing vector components along the bisecting lines of these angles. The homing vector
is then calculated as

N
h=2 vnl] ©)
i=1
cos(’%) 0 , 0 ... 0 COS(%) B — B
cos(%) cos(%) 0 .. 0 0 ! — By
vp, =2 0 cos(%) cos(%) .. 0 0 B — Bs
eee ee e eee vee , e) "'/ 3
0 0 0 cos(ﬁN—Q‘l) COS(BTN) By — Bw
B; =acos(l]l;41) and f = acos(l;Tlgﬂ) for i< N
Bl = acos(lly " 1}).

To compare the performance of the discussed homing vector calculation methods,
we defined a reference scenario consisting of an environment with a general
landmark distribution that is neither isotropic nor totally clustered. We added angular
measurement noise with a standard deviation of 1°, 10% landmark occlusions
and 10% false landmark matches as outliers. Then, we generated homing vector
streamline plots and computed the angular deviations from the direct path to the home
position. We define a homing vector computation method as robust, if all streamlines
from any direction reach the home location. Furthermore, the angular deviation from
the direct path to the home location should be as small as possible. Table 1 gives an
overview of the discussed homing vector calculation methods, their robustness and
their angular deviations from the direct path. Fig. 6 and Fig. 7 visualize the streamlines
and angle deviations. As can be seen, only the normalized difference vector model and
the normalized improved difference vector model are robust according to our definition,
which means that all streamlines reach the home location. Furthermore, the normalized
improved difference vector method has the lowest angle deviations from the direct path
to the home position. Hence, in a general environment with outliers and noise, the
normalized improved difference vector method should be chosen.

Except for the tangential correction vector method (Weber et al. (1999)), all of the
described methods for calculating homing vectors also work in 3D. Flying robots
can make use of three-dimensional homing vectors, but wheeled or legged robots
are restricted to the ground, so that they can only change the yaw component of
their orientation actively. That means, the z-component of the homing vector or the
homing elevation angle can be ignored, and only the azimuth component of the homing
angles or the x- and y-components of the homing vector are considered. However, in
environments with large height changes, the elevation angle can help to ensure that the
robot is on the correct path, which for example leads uphill.

Prepared using sagej.cls

12 Journal Title XX(X)

Table 1. Comparison of homing vector calculation methods for reference scenario

standard .
mean Iy maximum
deviation
robust angle angle
e of angle e
deviation .S deviation
deviation
Difference vector model (Fig. 6a) o o o
(Lambrinos et al. (2000))) 14.1 212 176.7
Normalized difference vector o o o
model (Fig. 6b) v 12.2 10.5 60.7
Improved dlffe.rence vector model i 11.1° 17.8° 178.9°
(Fig. 6¢)
Normalized improved difference 5 o o
vector model (Fig. 7a) v 73 37 386
Tangential correction vector
method (Fig. 7b) (Weber et al. - 25.9° 23.1° 177.6°
(1999))
IBVS based on bisecting
components (Fig. 7c) (Liu et al. - 36.4° 31.5° 180.0°
(2010))

Prepared using sagej.cls

Stelzer et al. 13

50 80°
60°
=
:
0 e 40°
1
L 20°
=k
-50 &= 0°
-50 0 50

(a) Difference vector model after Lambrinos et al. (2000) (Eq. 4)

50 80°

(c) Improved difference vector model (Eq. 5)

Figure 6. Homing vector streamlines (left) and deviations from the direct path (right) for the
reference scenario (general landmark configuration (green asterisks), noise (1.0°), outliers
(10%), occlusions (10%)). Red circle: home location. The x and y coordinates are given in
units.

Prepared using sagej.cls

14 Journal Title XX(X)

80°

60°

40°

20°

00

(a) Normalized improved difference vector model (Eq. 7)

50 50 s 80°

0\ O_LJ g1 40°

£ 20°

-50 5o MRl 00
. 50 0 50

(b) Tangential correction vector method after Weber et al. (1999) (Eq. 8)

50 50 80°

£ s 60°

0 0 40°

i 20°

-50 50 - .‘-:- 0°
550 ’50 0 S0

(c) Image based visual servoing after Liu et al. (2010) (Eq. 9)

Figure 7. Homing vector streamlines (left) and deviations from the direct path (right) for the
reference scenario (general landmark configuration (green asterisks), noise (1.0°), outliers
(10%), occlusions (10%)). Red circle: home location. The x and y coordinates are given in
units.

Prepared using sagej.cls

Stelzer et al. 15

3 The Trail-Map

While moving through the environment, the robot has to record a new viewframe every
time the dissimilarity measure exceeds the defined threshold. The bearing angle to far
landmarks and landmarks in the direction of travel hardly changes between successive
viewframes, which makes them translation invariant. In contrast, close landmarks are
translation variant since they are perceived at significantly different angles between
two viewframes. Thus, simply storing the sequence of viewframes would lead to many
redundancies. Rather, only one instance of each landmark view should be stored as
long as its bearing angle does not change more than a threshold dune. This was the
key idea behind the LT-Map introduced by (Augustine et al. (2012)). In their work,
landmark views are organized in a tree such that the translation invariant landmark
views are at the top of the tree, so that they are shared among several viewframes. The
quickly changing translation variant landmark views are stored in the leaves. This data
structure not only avoids redundancies, but it also allows scaling the stored information
in case of memory shortage by simply pruning the leaves of the tree. Thus, only quickly
changing volatile information is discarded but the long-term stable landmark views are
preserved.

However, as already shown in our previous work (Stelzer et al. (2014)), the LT-Map
is not the best data structure for storing a sequence of viewframes. We will explain the
shortcomings of the LT-Map using the simplified scenario in Fig. 8. Here, the robot path
leads through an environment with three landmarks and we assume that a landmark
view changes significantly when the bearing angle difference to its previous instance
in the map is more than d,,, = 45°. That results in eight §,,e-sectors originating from
each landmark in the environment®. As long as the robot is within the same sector
of a landmark, it perceives the landmark with a bearing angle difference of less than
dang. This is visualized by connected path segments in the corresponding color of the
landmark. Assuming that two places are sufficiently different as soon as one landmark
view changes significantly, the intersecting regions of the landmark sectors form the
viewframe locations. That means, every time the robot crosses the border of a landmark
sector, it records a new viewframe. The first three viewframes are highlighted in Fig. 8.

The LT-Map which the robot would create by following the path in Fig. 8 is shown
in Fig. 9. From viewframe 1 to 2, only the bearing angle to landmark I; changes
significantly. From viewframe 2 to 3, only landmark L, changes more than Gypg.
However, caused by the structure of the tree, also a new instance of the landmark view
to L; has to be stored, because the tree does not permit overlaps between neighbouring
branches. As soon as a landmark view in a higher level of the tree changes significantly,
new instances of the landmark views in all child branches have to be stored. During
the traverse of the path more of these redundancies occur, which are indicated by
connecting bars in Fig. 9. In the end, the LT-Map consists of 20 landmark views.

To find a better data structure for the sequence of viewframes, we projected the
connected path segments for each landmark in a table as shown in Fig. 10. A landmark

*For the sake of simplicity we assume that the d.ng intervals are aligned with each other and do not start at
the first observation of each landmark.

Prepared using sagej.cls

16 Journal Title XX(X)

Figure 8. Scenario with 11 viewframes VF1 to VF11 and three landmarks L; to L3
(adapted from Stelzer et al. (2014))

VF10 VF11

= Vgs
! }

VF1 VF2 VF3 VF4 VF6 VF7 VF8 VF9

Figure 9. Resulting LT-Map. The connecting bars indicate redundancies caused by the tree
data structure.

view is shared among several viewframes as long as its bearing angle does not change
significantly (i.e. more than d,,g). To introduce a hierarchy for scaling the map, we
order the landmark views by the number of viewframes in which they stay constant.
This corresponds to the level of translation invariance. For this reason, we call the new
data structure Translation Invariance Level Map (Trail-Map). Now, each level contains
all the landmark views which span exactly the number of viewframes corresponding
to the level number. Level 4 is empty since no landmark view stays within the angle
threshold §ang for exactly four viewframes. The Trail-Map has 13 landmark views, and,
thus, already saves 35% compared to the number of landmark views in the LT-Map
for the same simple scenario, only by avoiding redundancies. When the map has to be
scaled, the lower levels in the Trail-Map can be deleted and only the landmark views
which change quickly along the path are discarded.

This data structure can be implemented without much overhead as a linked list of
linked lists as shown in Fig. 11. A landmark view (LV) in this structure consists of the

Prepared using sagej.cls

Stelzer et al. 17

VE. 1 |2 3 4 15 16 |78 9 1011

¢ ordering by the level of translation invariance

VF| 1 2 3 4 5 6 7 8 9 10 11
Level 6 S i A A R —
Level 5 | @i s o — — — —
Level 4
Level 3 D
Level 2 | cEmmmm—) [i)

[C)

Level | D)))

Figure 10. Derivation of the Trail-Map data structure (adapted from Stelzer et al. (2014))

landmark’s ID, its descriptor, its bearing angle as a unit vector and the number of the
viewframe when the LV was added to the map. The latter is required to derive for each
landmark view which viewframes it belongs to. A level consists of the level number and
the list of landmark views in the order in which they were added to the map. The list of
levels is also sorted by the level number. For adding more viewframes to the Trail-Map,
an open list has to be maintained, which contains pointers to all landmark views of the
latest recorded viewframes, also sorted by the number of the corresponding level.

Trail-Map

open list

? i pointer to LV

[~ pointer to LV

il

pointer to LV

Figure 11. Implementation of the Trail-Map (adapted from Stelzer et al. (2014))

1L

Pseudocode for appending a new viewframe to the map is given in Algorithm 1. As
an extension of the basic algorithm proposed in Stelzer et al. (2014), we added code
lines for assigning a waiting flag to unobserved landmark views to account for possibly
occluded landmarks. Initially, the Trail-Map consists of the empty level 1. The open list
is also empty. Thus, all landmark views in first viewframe are added to level 1 of the
Trail-Map and pointers to these entries are stored in the open list (lines 39-42). Before
the second viewframe is added to the map, a new level is appended, because now level 1

Prepared using sagej.cls

18 Journal Title XX(X)

is not empty anymore (lines 1-3). After that, the algorithm loops through the open list.
For each landmark view carrying the waiting flag it is checked how long it could not be
observed. If it has not been visible for more than the number of viewframes specified
by the bufferSize variable, it is removed from the open list (lines 5-10). The remaining
landmark views in the open list are compared to all landmark views in the viewframe
to be added. If matching descriptors are found, the bearing angle difference is checked.
If the bearing angle of the landmark view in the open list has not changed significantly,
the landmark view is deleted from its current level in the map and appended to the next
higher level (lines 22-23). Its pointer in the open list is updated (line 24). In case the
landmark view is marked as waiting, it is checked in which level the landmark view
would have been if it had been visible all the time (line 16), the corresponding levels
are added to the map (lines 17-19) and the waiting flag is removed (line 20). Thus, the
landmark view is stored in a way as if it had been visible all the time. If the bearing
angle of the landmark view in the open list has changed significantly, its pointer is
removed from the open list, the new landmark view is appended to level 1 and a pointer
to this new landmark view is appended to the open list (lines 26-28). A landmark view
which could be matched with the open list is removed from the viewframe and the
search for matches terminates (lines 30-32). If a landmark in the open list could not
be matched with the current viewframe, it is assigned the waiting flag (lines 35-37). In
the end, all landmark views in the viewframe that were not found in the open list are
added to level 1 of the map and pointers to these landmarks are appended to the open
list (lines 39-42).

This method for adding a viewframe to the Trail-Map automatically yields an open
list which is sorted by the level number of the landmark views. Additionally, the
landmark view lists are sorted by the number of the viewframe when the landmark view
was inserted in the map. This helps for retrieving a viewframe from the map, when all
landmark views belonging to the demanded viewframe number have to be collected
from the levels. Furthermore, since for homing the viewframes are extracted in reverse
order of their first visit, only the neighboring landmark views on the landmark view
lists in the levels have to be considered instead of searching through the whole lists.

4 Simulations of Trail-Map-Based Homing

To show the superior performance of the Trail-Map compared to the LT-Map, we
created the simulation environment shown in Fig. 12 with 100 uniquely identifiable
randomly distributed landmarks in an area of 200 x 200 units and commanded a
learning path of about 130 units length starting at (0,0). The simulated robot was
equipped with a noise-free omnidirectional landmark sensor, which was able to observe
and identify all landmarks in the environment correctly. During the traverse of the
path, the robot recorded a Trail-Map. For acquiring a new viewframe, we chose the kth
maximum dissimilarity measure 03% (Eq. 3) with k = 1, because no outliers or noise
were simulated. The dissimilarity threshold was set to 52;5 = 5°. That means, every
time one landmark changed its bearing angle by more than this value, a new viewframe
was created. The Trail-Map was also created with the parameter d,,, = 5°. That means,
anew instance of a landmark view was only stored if it changed more than 5° compared

Prepared using sagej.cls

Stelzer et al. 19

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Input : viewframe V' F'; trail M ap; open List
Output: trail M ap; openList

if !trail M ap.GetHighestLevel IsSEmpty then
trail M ap.addLevel;
end
foreach [in open List do
if l.isWaiting then
if trail M ap.getViewframeCount - (l.insertionFrame + l.getLevel-1) > bufferSize then
open List.removePointerTo(l);
continue;
end
end
foreach f in V " LandmarkViews do
if f.descriptor matches [.descriptor then
if | f.angle-l.angle| < dang then
l.insertionLevel:=l.getLevel;
if l.isWaiting then
l.insertionLevel:=trail M ap.getViewframeCount - [.InsertionFrame;
while trail M ap.getHighestLevel. Number < l.insertionLevel + 1 do
| trailMap.addLevel;
end
l.isWaiting:=false;
end
trail M ap[l.getLevel].remove(l);
trail M ap|l.insertionLevel+1].append(l);
open List.updatePointerTo(l);
else
open List.removePointerTo(l);
trail M ap[1].append(f);
open List.appendPointerTo(f);
end
V F.remove(f);
found:=true;
break;
end
end
if !found then
‘ l.isWaiting:=true;
end
end
foreach f in V F.LandmarkViews do
trail M ap[1].append(f);
open List.appendPointerTo(f);

end

Algorithm 1: Appending a viewframe to the Trail-Map (extended from Stelzer et al.

(2014))

to its current instance in the map. We ran the simulation 100 times for each parameter
set and randomly changed the landmark positions after each run.

Prepared using sagej.cls

20 Journal Title XX(X)

150 T T "
* landmarks *
*
=== learning path x ¥
100 - O goal point afooy
* * x ** ** * *
* ¥ * %
50 * * R *
** /. Fex *e A
K * *
" k!
*
* ok & * %
0 * * *
* * * ¥
*x . *
* % * ¥ %k
* *
_50 N E'S
-100 -50 0 50 100

Figure 12. Simulation environment with learning path. The robot should retrace the path to
reach the goal location.

First, the robot built a Trail-Map and an LT-Map during the traverse of the learning
path. On average, the recorded LT-Maps had 3315 landmark views, while the Trail-
Maps only consisted of 1278 landmark views, which means memory savings of more
than 60%. This shows, how many redundancies were present in the LT-Map, which
were avoided in the Trail-Map data structure.

To compare the homing performances using both data structures, we implemented
homing using the difference vector model (Eq. 6). In this simulation, we placed the
robot back to the starting position after learning the path and let the robot compute
homing vectors to retrace the path in the same direction as during learning. Since the
robot has a perfect omnidirectional sensor, the direction of retracing the learned path
has no influence on the performance. We used the same dissimilarity measure as in the
mapping phase §§§m = g;‘i = 5°. That means, every time the dissimilarity measure of
the currently percé\isved view and the reference viewframe dropped below the threshold
fg‘&%‘x’, the robot assumed to have reached the reference viewframe and started homing
to the next viewframe in the Trail-Map. Homing finished when the robot reached the
viewframe corresponding to the goal position of the robot. We simulated homing for
different pruning levels of the LT-Map and the Trail-Map and compared the resulting
path error as the area between the learning trajectory and the homing trajectories. To
ensure that the goal viewframe could always be reached, we never pruned landmark
views belonging to the goal viewframe. For each pruning level, the simulation was
run 100 times and the landmark configuration was randomly changed after each run.

Fig. 13 shows that the Trail-Map always has a significantly lower number of
landmark views than the LT-Map. The most noticeable plot is shown in Fig. 14, which
visualizes the path error based on the percentage of remaining landmark views in
both maps. It can be seen that the Trail-Map can be pruned by about 50% without
significantly losing path accuracy, while the homing performance using the LT-Map
already degrades after deleting less than 10% of the landmark views. Keeping in mind

Prepared using sagej.cls

Stelzer et al. 21

that the 100% mark in this plot corresponds to 3315 landmark views for the LT-Map,
but only to 1278 landmark views for the Trail-Map, this advantage of the Trail-Map
becomes even more remarkable.

4000 I
— Trail-Map

2000 = TT

-1 +
wol = Iy
==, T

0 == =

S
s
_|
i
| 1

—]

number of LVs in map

0 5 10 15 20 25 30 35 40
number of pruned levels

Figure 13. Means and standard deviations of the number of landmark views in the LT-Map
and the Trail-Map depending on the number of pruned levels (adapted from Stelzer et al.
(2014))

! 1
; 1 -~ LT-Map
600 ——Trail-Map |
N
2
2400
g
b5
=
3 X \s\s\
2200 g
’&‘&x’* \e—_e\s_e_
e —eeeog H
0

i
0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
remaining landmark views

Figure 14. Comparison of path errors of LT-Map and Trail-Map for different pruning ratios
(adapted from Stelzer et al. (2014))

To get an impression of what the homing trajectories using the LT-Map and the
Trail-Map look like, Fig. 15 shows some trajectories recorded at different pruning
levels for one sample environment. Comparing the path errors using the full Trail-
Map (ref. Fig. 15d) and the full LT-Map (ref. Fig. 15a), the trajectory using the LT-Map
is slightly more accurate, which can also be observed in Fig. 14. The reason for that
is the large number of landmark views in the LT-Map. Since not only new instances
of the landmark views that changed significantly are stored, but also new instances of
other landmark views are inserted in the LT-Map to comply with the tree structure, the
resulting resolution of the LT-Map is higher than the angle threshold of d,,, = 5°. That
results in slightly more accurate homing paths using the full LT-Map. However, the

Prepared using sagej.cls

22 Journal Title XX(X)

LT-Map (not pruned, 3682 LVs) LT-Map (pruned by 8 levels, 3034 LVs) LT-Map (pruned by 17 levels, 1392 LVs)
. * % ¥
100 . 1000
80| 801
* 4 *
o, 60,
40 P S, i S— Ty |
kS * | * landmarks H
=~ learning path
20| —retraced path 20r
o goal location
* 4k o viewframe reached * *
S
0 " 0|
-20 0 20 40 60 -20 0 20 40 60 -20 0 20 40 60
(a) 100% LVs, € = 54.7 (b) 82% LVs, e = 72.7 (c) 38% LVs, e = 174.8
Trail-Map (not pruned, 1364 LVs) Trail-Map (pruned by 3 levels, 799 LVs) Trail-Map (pruned by 6 levels, 387 LVs)
. * % ¥
100/ 7 1007
80y 4 80p
* o *
1 eob
60 ** H¥
40 — 40
* | * landmarks H
~learning path
20 —retraced path 200
o goal location
P © viewframe reached * o ¥
*
0 ¥ 0|
-20 0 20 40 60 -20 0 20 40 60 -20 0 20 40 60
(d) 100% LVs, € = 55.5 () 59% LVs, € = 56.0 (f) 28% LVs, € = 61.9

Figure 15. Comparison of Trail-Map and LT-Map pruning behavior (adapted from Stelzer
et al. (2014)). Top row: LT-Map, Bottom row: Trail-Map. e: path error in units?.

accuracy degrades quickly when the LT-Map is pruned. After pruning only 18% of the
landmark views, the path error increases visibly (ref. Fig. 15b). In contrast, the accuracy
of Trail-Map-based homing hardly decreases after pruning 3 levels, which corresponds
to deleting more than 40% of all landmark views (ref. Fig. 15¢). Pruning the LT-Map to
an approximately similar number of viewframes as in the full Trail-Map already results
in a path error of € = 174.8, as shown in Fig. 15c. In contrast, Fig. 15f shows that the
even after pruning more than 70% of the landmark views in the Trail-Map, the homing
performance is still good.

In Stelzer et al. (2014) we showed that the memory savings of the Trail-Map do
not come at the expense of runtime. Instead, adding viewframes to the map, retrieving
viewframes in the same or reverse order of their acquisition and map pruning are faster
than using the LT-Map, assuming the number of landmark views for each viewframe is
less than 1000. Especially the pruning operation is magnitudes faster for the Trail-
Map. The runtimes for adding viewframes to the map and retrieving subsequent

Prepared using sagej.cls

Stelzer et al. 23

viewframes does not depend on the length of the travelled path but only on the number
of landmark views per viewframe. This is an important property for robots with limited
computational resources.

5 Application to Real Data

Bringing the homing method to the real world poses several challenges that were not
present in the simulations. This section will address these issues.

5.1 Landmark Detection and Matching

The main challenge of the real world implementation of Trail-Map-based homing is
the landmark detection and matching process, which was neglected in the simulations,
where we assumed known data association. Landmarks are extracted from the
omnidirectional camera images which are unwarped to panorama images. We decided
to use BRISK (Leutenegger et al. (2011)) for this task, because it is computationally
efficient. To reject outliers from the set of matches, we make use of the method
suggested by Jdger et al. (2013), which is based on a RANSAC algorithm. First,
RANSAC is applied to the feature matches using a translation invariant model for
estimating the rotation between the two image acquisition points. Then, RANSAC is
applied to the remaining feature matches using a translation variant model to estimate
the translation between the images. Fig. 16 shows the result of landmark detection
and matching for two sample panorama images taken at nearby locations in our
laboratory test environment. Around 900 landmarks were detected in each image, but
only about 240 landmarks could be matched, of which 30 were detected as outliers.

Gl
I TITENY ¥

llIIIIIIl“ o

Figure 16. Landmark matches: Black: valid matches, white: rejected outliers.

5.2 Rotational Alignment of the Viewframes

As previous simulations (Stelzer et al. (2015)) have shown, the homing algorithm is
very sensitive to rotational misalignments of the viewframes. If no reliable compass
is available, an estimated yaw angle by fusing inertial and visual odometry data will
drift over time. That does not pose a problem during the mapping phase, because

Prepared using sagej.cls

24 Journal Title XX(X)

the viewframes are recorded sequentially, so that the errors between two subsequent
viewframes are small. However, during homing the error in the yaw estimate can
have become large, especially for homing towards early viewframes close to the
home position. For this reason, we use the rotation that is estimated by the RANSAC
algorithm in the outlier rejection step for aligning the viewframes before dissimilarity
measures or homing vectors are computed. Thus, we can entirely omit a compass or
any other yaw estimate. Only in case the robot moves on hilly ground, roll and pitch
angle measurements are additionally required to align the landmark unit vectors. These
angles can be estimated from an IMU, for example.

5.3 Homing Vector Smoothing

Since the single homing vectors computed from the current panorama image and the
goal viewframe using Eq. 5 are noisy, we use a method described in (Jéger et al. (2013))
for smoothing the homing vectors. In this method, the median out of the last » homing
vectors to the current goal viewframe is computed, where n was empirically chosen
to be 7. The longer this buffer, the more robust is the result, but also the larger is the
delay in the control. To avoid waiting times when the robot reaches a viewframe and
starts homing to the next one, the robot computes homing vectors to the current and the
following goal viewframe simultaneously for each panorama image. Thus, a median
homing vector for the next goal viewframe is already available when the robot starts
homing to it.

5.4 Robot Motion Control

To make the robot follow the computed homing vector, we applied a very simple motion
strategy. A homing vector is calculated continuously as the robot moves through the
environment. At every time step, the robot computes its forward velocity vy and its
turn velocity w, depending on the difference between its current yaw angle o and the
current homing vector direction ¢y, as

o = v max <o, = Who‘) , (10)
ry

W, = Wpax Max (—1,min <1, W)) , (11)
on

where Umax and wpax are the maximal forward and turn speeds. If the difference between
the current yaw angle and the current homing vector direction is higher than a threshold
¢y, the robot performs pure turning. Otherwise, the robot combines forward and turn
motions, while the forward velocity increases and the turning velocity decreases the
closer the robot’s yaw angle gets to the desired homing direction.

6 Experiments

To experimentally evaluate Trail-Map based homing, we used a Pioneer 3-DX robot
equipped with an omnidirectional camera, a stereo camera and an inertial measurement
unit (IMU). The omnidirectional camera was a catadioptric system with a PointGrey

Prepared using sagej.cls

Stelzer et al. 25

USB camera providing images of 896 x 896 pixels, which were unwarped to panorama
images of 1440 x 280 pixels and downscaled to 30%, i.e. 432 x 84 pixels, for
landmark detection. The stereo camera and the IMU are used for pose estimation by
fusing visual odometry and inertial data as presented by Chilian et al. (2011). However,
only the estimated roll and pitch angles are used for computing aligned landmark unit
vectors. The computational hardware is an Intel Core i7-3740QM CPU with 2.70GHz
and a Spartan 6 LX75 FPGA Eval Board to perform dense stereo matching using
SGM (Hirschmiiller (2008)) at a rate of more than 10Hz. The next section will show
the results of experiments conducted in an indoor laboratory environment. After that,
in Section 6.2 we will analyze the long-range performance based on experiments in
outdoor terrain.

6.1 Indoor Laboratory Experiments

The first set of experiments was conducted in an indoor laboratory environment on flat
ground without obstacles. Ground truth for the experiments was provided by an optical
tracking system based on several infrared cameras that track a reflecting target body
mounted on the robot.

Figure 17. Experimental setup for the indoor laboratory experiment with home position,
path and goal position

6.1.1 Mapping We remotely controlled the robot along a trajectory of
about 5.1 meters length to a goal point in the laboratory environment. The setup
and the path are shown in Fig. 17. During the traverse the robot recorded a
Trail-Map, using an angle threshold of d,,; = 10° and a dissimilarity threshold of
ot = 0.05rad ~ 2.9° for mapping. The viewframe dissimilarities were computed

diss

using the average angle error method in Eq. 2. The resulting Trail-Map consisted
of 17 viewframes which contained 882 landmark views on average. Thus, in
total 15000 landmark views were recorded for this path. However, the Trail-Map
had only 10992 landmark views, because slowly changing landmark views are not
stored redundantly. Thus, the Trail-Map saved more than 26% of memory compared to

Prepared using sagej.cls

26 Journal Title XX(X)

straightforward viewframe storage. The trajectory with the recorded viewframes, along
with the number of landmark views in each viewframe and the landmark matches
between the viewframes is shown in Fig. 18. It can be seen that the viewframes
VF11 to VF15 in the center of the free area are further apart from each other than the
viewframes which are closer to the border of the free driving area. This shows that
the distances between the viewframes are smaller in regions with close landmarks and
grow if only distant landmarks can be observed. The landmark views were spread
over 12 levels (ref. Table 2), where nearly 75% of the landmark views were located
in level 1. The reason for the large amount of landmark views in level 1 can already
be inferred from the number of matches between the viewframes, which is on average
only 261 compared to an average of 882 landmark views per viewframe. That means
that many landmarks in the viewframes cannot be matched with the landmarks in the
neighboring viewframes, which leaves them in level 1.

25 mapping trajectory VET7(898)
O viewframe recorded
153
) VF 16 (938)
VET5 027 @ 376
220
VF 14 (909)
15 £.200
_ VE 13 (880)
£
- 171
1 VE12 (849)
245
VF 11
0.5
VF 1
e A 283 26
5 209 239; 339374)0
O (\ &e———'—e_-_-\';]:e“—-g-;e F6 ‘VTF’II
VE 1 VE2 VF 3
@e O 69 ©93 @8O0 G
0 0.5 -1 15 2 2.5 y[m]

Figure 18. Path with viewframes (VF) for the indoor laboratory experiment. Numbers in
brackets: number of landmark views in the viewframe. Orange numbers: number of
landmark matches between the viewframes

6.1.2 \Validation of Homing Next, the robot performed homing using the recorded
Trail-Map. We placed the robot back to the goal position after each homing run and
recorded 10 homing trajectories. For homing we used a dissimilarity threshold of
525’"‘;‘ = 0.03rad ~ 1.7° average angle error for detecting when a viewframe is reached.

diss

Prepared using sagej.cls

Stelzer et al. 27

Table 2. Distribution of landmark views (LV) over the levels in the indoor laboratory
experiment

level| 1 [2 [3]4[5]6 7 [8]9] 10711 [12]
LVs[[8171[1430[634[328 [185[108[79 [31 16 6 | 3 [1
ratio|[74.3%[13.0%)5.8%|3.0%]|1.7%|1.0%0.7%0.3%|0.1%]0.05%[0.03%[0.01%

2.5|_| — mapping trajectory
O viewframe recorded
——homing trajectory
viewframe reached ,4
(mean & 20 covariance)
2 P
1.5
T
<
1
0.5
0 O

0 -0.5 -1 -1.5 2 -2.5 y [m]

Figure 19. Mapping and homing trajectories using the full Trail-Map in the indoor
laboratory experiment

The robot computed the homing vectors using the improved difference vector model in
Eq. 5 at a rate of about 2.5Hz. Fig. 19 shows the resulting trajectories with the centers
and covariance ellipses of the coordinates where the robot reached a viewframe. It can
be seen that all homing paths were close together and the robot followed the mapping
trajectory. The deviation from the recorded trajectory can be explained by the area in
which the dissimilarity measure for a viewframe falls below the threshold fg‘jm The
shape and size of this area depends on the landmark configuration in the environment.
This relation is illustrated in Fig. 20, which shows a mapping path with two viewframes
VF1 and VF2 in an environment with three landmarks L1, L2 and L3. Two landmarks
on one side are close to the mapping path, the other landmark on the opposite side is far
away. That represents the landmark distribution in our experiment for the viewframes
VF1 to VF9, where the robot had close objects to its right and only distant objects to
its left hand side (ref. Fig. 17). The areas in which the dissimilarity measures for the

Prepared using sagej.cls

28 Journal Title XX(X)

reached

Figure 20. Shape of the areas in which the dissimilarity measures for the corresponding
viewframes fall below the threshold 52252 depending on the landmark distribution
diss

corresponding viewframes fall below the threshold are the shaded polygons that result
from the intersections of sectors originating at the landmarks. The opening angle of the
sectors is 252‘:";‘ and the viewframes are in the centers of the sectors’. It can be seen
that the shape of the shaded area is stretched in the direction of the far landmark. Now,
as soon as the robot enters the shaded area of a viewframe, it detects the viewframe as
reached and switches to the next viewframe. That explains, why the deviation from the
mapping path in Fig. 19 had an offset in the direction of the far landmarks.

We analyzed the homing paths by computing the mean path error and the
corresponding standard deviation, the maximal path error and the endpoint error. We
computed the path error at a certain point of the homing trajectory as the shortest
distance of this point to the mapping trajectory. The path error statistics were then
computed from the path errors of all points of the homing trajectory. The statistics
of the 10 homing runs are shown in Fig. 21. The average of all mean path errors
was 0.14m, the maximal path deviation was 0.27m on average and the average endpoint
error was about 0.48m. These values, especially the endpoint error seem to be large
compared to the path length of 5.1m. However, these values do not depend on the
length of the path, but only on the configuration of landmarks in the environment and
the chosen dissimilarity threshold. Thus, also for longer paths with the same home
position, the endpoint error would be approximately 0.5m. For this reason, we will not
give any errors as percentage of the driven path length, but will only state the absolute
erTors.

6.1.3 Landmark Matching Fig. 22 shows how the landmark views in a viewframe
were distributed among the levels and how many of the landmark views in each
level were matched during the homing process. It becomes obvious that only 8%
of the landmarks in level 1 could be matched, while in higher levels this ratio was
about 20%. This fact is caused by many spurious landmarks being added to the map.

TPlease note that this is a simplification. The dissimilarity is also lower than the threshold in some border

areas, in which the angle error to one landmark is higher than 522;‘;, but which is compensated by the other

diss

landmarks having errors lower than the threshold.

Prepared using sagej.cls

Stelzer et al. 29

T T T T
[]mean path deviation
I maximal path deviation
| Il endpoint error

error [m]

run number

Figure 21. Path errors and endpoint errors for the single homing runs in the indoor
laboratory experiment

A spurious landmark is a landmark which does not correspond to a specific object
in the environment but appears as characteristic point in the image at object borders
due to the high contrast between the object in the foreground and the background.
Thus, it is only visible within a relatively small angle and changes or disappears if
the viewpoint shifts. For this reason, the landmarks cannot be matched from other
viewpoints, which explains the low matching ratio in level 1 and also the high number
of landmark views in this level. However, instead of applying prefiltering methods for
selecting only stable landmarks, we can exploit the Trail-Map structure and discard
these landmark observations by pruning the lower levels of the Trail-Map.

500 T

T T T
[unmatched
,,,,,, |l matched

IS
S
(=]

(%]
(=
(=]

NS}
(=)

10

number of landmarks

level

Figure 22. Average number of matched and unmatched landmarks per viewframe and
their distribution over the levels in the indoor laboratory experiment. The percentage
corresponds to the ratio of matched landmarks.

Fig. 23 shows how the landmark matches of the different levels were distributed in
the panorama image. It can be seen that the landmarks in the higher levels were located
in the direction of motion and on distant objects.

6.1.4 Pruning Behavior To evaluate the homing performance when pruning the
recorded Trail-Map at different levels, we performed 10 homing runs for each pruning
level. To ensure that the robot reached the home position, the home viewframe

Prepared using sagej.cls

30 Journal Title XX(X)

motion direction

Figure 23. Distribution of the landmark matches of the different levels in the image for the
indoor laboratory experiment

was never pruned. The resulting statistics are shown in Fig. 24. When pruning
one level, already 2/3 of all landmark views were deleted. However, the homing
performance degraded only slightly. When pruning the Trail-Map to less than 20% of
its original size, also only slightly higher path errors occurred. The endpoint errors
were independent from the pruning level since the home viewframe was not pruned.
We stopped pruning after 7 levels, because the robot frequently entered a spiral
search pattern that we implemented when not enough landmark matches can be found.
However, it still reached the home position in all trials.

1 [ratio of remaining LVs
[|mean path deviation [m] l
0.8 [maximal path deviation [m
'I' [l endpoint error [m]

0.6

0.4

ook LB LAR 8 N R i

2 3
number of pruned levels

Figure 24. LVs, path and endpoint errors for different pruning levels in the indoor
laboratory experiment

To further show how the homing paths change depending on the pruning level, we
recorded another Trail-Map for a meandering path of 17.7m length. The Trail-Map
contained 64 viewframes and 29586 landmark views spread over 23 levels. Then, we
let the robot perform single homing runs at different pruning levels and recorded the
homing trajectories. The results are shown in Fig. 25. It can be observed that the robot
took shortcuts the more the Trail-Map was pruned. However, with only 975 landmark
views left (which is only 3.3% of the full Trail-Map size), the robot still found the
home position. Of these 975 landmark views, 711 corresponded to viewframe 1, which
was not pruned to ensure that the robot reached the home position.

For a better understanding of how much memory is saved, we should note that one
landmark view needs about 100 bytes of memory. In detail, a landmark view consists
of the landmark’s ID (4 bytes integer), the landmark’s descriptor (64 bytes for BRISK),

Prepared using sagej.cls

Stelzer et al. 31

31 not pruned (29586 LVs) 6 levels pruned (1441 LVs)
1 level pruned (9787 LVs) — 8 levels pruned (975 LVs)

— 2 levels pruned (5356 LVs) — mapping trajectory

— 3 levels pruned (3392 LVs)

2.
2Q B / /_/ ~—
-~
= SN SN
1 Q~7%/% |
home position i %__’_/
0 :
0.5 0 —O|.5 -1 -2 -2.5 -3 -3.5

-15
y [m]

Figure 25. Homing paths for different pruning levels in the indoor meandering experiment

a 3D unit vector (24 bytes for 3 double numbers®) and the number of the viewframe
when the landmark view was added to the Trail-Map (4 bytes integer). Thus, the
landmark descriptor is the main memory consumer. The Trail-Map consists of a list
of levels, in which each level contains a list of landmark views and the level number (4
bytes integer). In the list of landmark views, each node has some additional memory
requirements, depending on the programming environment. Thus, the full Trail-Map
of the meandering path of 17m length requires about 3MB, which would extrapolate to
about 18MB for 100m. This value is in the region of the memory consumption reported
for Visual Teach and Repeat (Furgale and Barfoot (2010b)) (35MB for 100m) and the
method introduced by Krajnik et al. (2010) (10MB per 100m). However, by pruning
the map by 2 levels, the path deviation is still acceptable, but the memory requirements
decrease to about 500kB for 17m, which corresponds to approximately 3MB per 100m.
Furthermore, when pruning 8 levels of the map, only 100kB are sufficient to still reach
the home position — where most of the required memory stems from the first viewframe
that has not been pruned. This corresponds to less than 600kB per 100m. Whether this
kind of extrapolation holds for longer paths will be discussed in the next section on
long-range outdoor experiments.

6.2 Long-Range Outdoor Experiments

To show the long-range performance of Trail-Map-based homing, we performed
outdoor experiments on untraveled roads on the DLR Oberpfaffenhofen site, using the

By knowing that it is a unit vector, only 2 elements would also be sufficient.

Prepared using sagej.cls

32 Journal Title XX(X)

same Pioneer 3-DX robot as in the indoor laboratory experiments. Ground truth was
obtained by a tachymeter, which automatically tracked a prism mounted on the robot
and recorded the x, y and z coordinates using an infrared laser beam.

home position

Figure 26. Pioneer robot and experimental setup with path for the outdoor carpark
experiment (satellite imagery (©2015, DigitalGlobe, GeoBasis-DE/BKG)

6.2.1 Carpark Experiment In a first experiment, we remotely controlled the robot
along a U-shaped path of 98.7m length in an empty carpark between two buildings.
Fig. 26 shows the experimental setup and visualizes the robot path in a satellite image.

For mapping, we chose the average angle error dissimilarity measure (ref. Eq. 2)

and a dissimilarity threshold of {5 = 0.12rad (approx. 6.9°) for creating a new

viewframe. The angle threshold for cc:hls%ating the Trail-Map was 6,y = 10°. With these
parameters, the robot recorded 49 viewframes and 36024 landmark views in total. The
resulting Trail-Map had 31323 landmark views spread over 17 levels, which means
memory savings of 15% compared to storing all landmark views. Again, the majority
of landmark views (88%) was in level 1 of the Trail-Map. Although each viewframe
had 735 landmark views on average, only a mean of 122 of them could be matched

Prepared using sagej.cls

Stelzer et al. 33

between successive viewframes. Thus, all the unmatched landmarks remained in level 1
of the map, additionally to the landmark views that changed their bearing by more than
Jang compared to the last viewframe. Statistics of the mapping process are summarized
in Table 3. The mapping trajectory is shown in Fig. 27.

Table 3. Mapping statistics of the carpark experiment

Trail-Map angle threshold 0,y | 10°
mapping dissimilarity threshold fgdf 0.12rad ~ 6.9°
path lengih 98.7m
observed LVs | 36024
recorded viewframes |49
levels in Trail-Map | 17
LVs in in full Trail-Map | 31323
avg. LVs per viewframe | 735 &£ 25.5
avg. matches between viewframes | 122 £ 24.7
LVsin Level 1 | 27681 (88.4%)
LVsin Level 2 | 1967 (6.3%)
LVsin Level 3 | 720 (2.3%)
LVsin Level 4 | 383 (1.2%)
LVsin Level 5|253 (0.8%)

10 T ; i i i
| ©-O-« ~~mapping trajectory (ground truth)
goa
5 position %o O viewframe recorded
. home - o¢ MV&Q\Q‘S
5 |.position 00, \&

-10 |
-5 0 5 10 15 20 25 30 35 40 45 50

X [m]

Figure 27. Mapping trajectory for the outdoor carpark experiment

For homing, we pruned the Trail-Map — except for the home viewframe — by 2 levels,
which proved to be a good trade-off between memory consumption and path accuracy
in the indoor experiments. As a result 2355 landmark views remained in the Trail-
Map, which corresponds to approximately 250kB of memory. On average, each
viewframe had 155 remaining landmark views after pruning. The dissimilarity measure
for detecting a viewframe as reached was set to 522’,,“1 = (0.05rad average angle error
(approx. 2.9°) and the robot computed homing vectors using the normalized improved
difference vector model in Eq. 7, which is robust against outliers. The homing process

Prepared using sagej.cls

34 Journal Title XX(X)

~— mapping trajectory
10 — homing trajectory (ground truth)
Q viewframe reached
(%——\
E 5 gf‘a.l' \x-_év% X viewframe exceeded
- position
—_—
0 s & SN =
home W o S
position ! WM\
-5)
-10
-5 0 5 10 15 20 25 30 35 40 45 50

X [m]

Figure 28. Homing trajectory for the Trail-Map pruned by 2 levels in the outdoor carpark
experiment

took 14.4 minutes and the robot could drive at a maximal velocity of 0.2m/sec. The
robot’s homing trajectory is shown in Fig. 28. This figure shows the locations where
the robot assumed to have reached or exceeded a viewframe. The robot assumes to
have exceeded a viewframe when the homing vector jumps by more than 90° (Jdger
et al. (2013)). As the figure shows, the robot performed homing successfully, but took
a short-cut near the curve. That could be caused by the bigger size of the viewframes
after pruning two levels of the map. We observed a similar behavior in our indoor
experiments (ref. Section 6.1.4). During homing, the robot could match 20 landmark
views on average, which is only 12.9% of the available landmark views in each
viewframe. The robot’s homing trajectory had an average path error of 0.88 4= 0.60m
and a maximal deviation from the mapping path of 2.5m. The endpoint error when
the robot assumed to have reached the home position was 4.33m. This large deviation
from the home position could be caused by the lack of nearby landmarks. The homing
statistics are summarized in Table 4.

Table 4. Homing statistics of the carpark experiment

homing dissimilarity threshold g};;?‘g 0.05rad ~ 2.9°
pruned levels | 2
remaining LVs in Trail-Map | 2355
memory requirements | ~ 250kB
average number of LVs per viewframe | 155 £ 29.0
average number of matched LVs per viewframe | 20 & 6.4 (12.9%)
average path deviation | 0.88 + 0.60m
maximal path deviation | 2.5m
endpoint error | 4.33m

Prepared using sagej.cls

Stelzer et al. 35

This experiment shows that the robot is able to retrace a path of nearly 100m length
with a Trail-Map size of about 250kB. However, the robot moved through a bounded
environment and was theoretically able to detect the majority of landmarks it observed
at the home position along the whole path. Since this might have an effect on the
memory consumption, we will present another experiment in a segmented environment.

6.2.2 Urban Experiment In another experiment, we remotely controlled the robot
along a curved path of 87.4m length on a road between buildings, so that the landmarks
which were visible from the home position could not be observed from the goal
position. Fig. 29 shows the commanded path in a satellite image. The robot used the

same mapping parameters as in the previous experiment (§g§§£ = 0.12rad average angle
o

error and dape = 10°) and recorded 49 viewframes with an average of 601 landmark
views per viewframe. The resulting Trail-Map had 16 levels and 25130 landmark
views. Again, 87% of all landmark views were in level 1 of the Trail-Map, and only an
average of 107 landmarks could be matched between successive viewframes. Table 5
shows the statistics of the urban mapping results. The mapping trajectory with the
viewframes is shown in Fig. 30. As can be seen, the viewframes were closer together
near the curve in the area where the robot left the carpark, because in this region the
landmarks were closer to the robot trajectory than in the rest of the environment.

Table 5. Mapping statistics of the urban experiments

10°

0.12rad =~ 6.9°
87.4m

29437

49

16

25130

601 £ 82.2
107 +£29.5

Trail-Map angle threshold Jne
mapping dissimilarity threshold &g
diss

path length

observed LVs

recorded viewframes

levels in Trail-Map

LVs in in full Trail-Map

avg. LVs per viewframe

avg. matches between viewframes

LVsin Level 1

21845 (86.9%)

LVs in Level 2

1780 (7.1%)

LVsin Level 3

725 (2.9%)

LVs in Level 4

301 (1.2%)

LVsin Level 5

189 (0.8%)

For homing, we first pruned the Trail-Map by 2 levels but did not prune the home
viewframe, so that the resulting Trail-Map had 2195 landmark views. This corresponds
to 220kB of memory. The homing parameters were also equal to the carpark experiment
(fg;’(f}: = 0.05rad average angle error). The homing vectors were computed using the

diss

normalized improved difference vector model in Eq. 7 at a rate of about 3.4Hz parallel
to the pose estimation process on the Pioneer’s Intel Core i7 CPU with 2.7GHz. The
homing trajectory is shown in Fig. 31. We had a tracking drop out of a few meters,
when the tachymeter lost the connection to the prism. We filled the gap in the plot

Prepared using sagej.cls

36 Journal Title XX(X)

Figure 29. Experimental setup and robot path for the outdoor urban experiments (satellite
imagery (©2015, DigitalGlobe, GeoBasis-DE/BKG)

with the pose estimate that the robot obtained by fusing IMU data and visual odometry.
The robot successfully retraced the path with an average path error of 0.77 £ 0.51m, a
maximal path error of 2.3m and an endpoint error of 1.74m. On average, the robot could
match 22 landmark views in each image with the landmark views in the corresponding
goal viewframe. Fig. 32 presents some sample images of the homing run with color-
coded landmark matches. It can be seen that after pruning 2 levels mainly landmarks
in the direction of motion were left. For this reason, it is important to choose a homing
vector calculation method can deal with landmark clusters located in the direction
of motion, such as the proposed improved difference vector model or its normalized
version. Furthermore, the figure shows that the red landmarks, which are in the highest
levels of the Trail-Map, could be observed over a large range of viewframes.

To evaluate if homing is still possible with even less memory, we pruned the
same Trail-Map by 3 levels, resulting in 1484 remaining landmark views. The robot
performed homing for nearly 60 meters but then failed to compute stable homing
vectors. On average, the robot matched only 17 landmarks in each image with the
corresponding goal viewframe. The homing vectors started jumping, so that the robot

Prepared using sagej.cls

Stelzer et al. 37

40 ;
35 0-0 500 eefe'eeeee,e 000"
; goal position
30 \
. missing ground truth dat
250 replaced by:robot pose estimat
20
E q
s 15 (o)
[«
10 ¢
5 - . |
= mapping trajectory (ground truth)
0 ©-home-position — mapping trajectory (odometry) | |
O viewframe recorded
S50 5 10 15 20 25 30 35 40 45 50 55
y [m]
Figure 30. Mapping trajectory for the outdoor urban experiment
40
(@)
35 T —’g]% i
() — %
30) goal position
251 issing ground truth data
placed: by robot pose estimate
_ 208
g
“1s
10 ... - K -
~———mapping trajectory
5 — homing trajectory (ground truth) | |
homing trajectory (estimate)
0 ; _— { viewframe reached .
home pposition .
X viewframe exceeded
SST0 5 10 15 20 25 30 35 40 45 50 55
y [m]

Figure 31. Homing trajectory for the Trail-Map pruned by 2 levels (2195 LVs) with marked
image locations for Fig. 32 in the outdoor urban experiment

assumed it had exceeded the viewframes and started homing to the next one. In the end,
the current goal viewframe was too far away from the robot’s current position, so that
not enough landmark matches could be found. We stopped the homing process at this

Prepared using sagej.cls

38 Journal Title XX(X)

(d)

Figure 32. Sample panorama images with matched landmarks during homing in the urban
experiment with the Trail-Map pruned by 2 levels for robot positions shown in Fig. 31. Color
code: blue-green-yellow-red corresponds to landmarks in levels 3-16 in this order.

point. Fig. 33 shows the robot trajectory. Table 6 summarizes the statistics for the two
homing experiments.

These experiments show that a Trail-Map size of about 220kB for 87m length is
sufficient for the robot to retrace a path through a segmented environment, in which
the visibility of landmarks is restricted to certain parts of the trajectory. Thus, we can
assume that these memory requirements scale approximately linearly with the length
of the traversed path, even for longer traverses of more than a kilometer in length, for
example. The memory requirements in this experiment also correspond to about 250kB

Prepared using sagej.cls

Stelzer et al.

39

40
20 5 goal posﬁtion
25 /
.20
E
“1s
10
5 = mapping trajectory i
——homing trajectory (ground truth)
0 home position ¢ viewframe reached H
X viewframe exceeded
S50 5 10 15 20 25 30 35 40 45 50 55

y [m]

Figure 33. Homing trajectory for the Trail-Map pruned by 3 levels (1484 LVs) in the outdoor
urban experiment. In this experiment, homing failed because the number of landmark
matches was not sufficient to compute stable homing vectors.

Table 6. Homing statistics of the urban experiments

homing dissimilarity threshold &

0.05rad =~ 2.9°

0.05rad =~ 2.9°

s
pruned levels 2 3
remaining LVs in Trail-Map 2195 1484
memory requirements ~ 220kB ~ 150kB
avg. number of LVs per viewframe 137 £ 22.7 116 + 29.7
avg. matched LVs per viewframe || 22 = 7.1 (16.0%) | 17 £ 7.2 (14.7%)

avg. path deviation || 0.77 £ 0.51m homing failed
maximal path deviation 2.3m homing failed
endpoint error 1.74m homing failed

for 100m as in the previous experiment in the bounded carpark environment. However,
stronger pruning of the Trail-Map can lead to a failure of the homing process.

Prepared using sagej.cls

40 Journal Title XX(X)

The real-world experiments have shown that a robust landmark matching method
is the key component for robust homing using the Trail-Map. Nevertheless, we
could demonstrate in different environments that successful homing is possible with
less than 300kB of memory for a path of 100 meters length. Extrapolating the
memory requirements for longer traverses results in average memory requirements
of about 3MB per kilometer. Compared to the teach-and-repeat approach described
by Furgale and Barfoot (2010a), which is based on overlapping metric submaps and
requires about 350MB of data per kilometer, the Trail-Map-based homing approach
requires two orders of magnitudes less memory and the computational complexity
is also constant during mapping and homing. The Trail-Map also significantly
outperforms the method proposed by Krajnik et al. (2010), who reported memory
requirements of 848MB for a path of 8km.

7 Conclusion

In this paper we presented a landmark-based navigation method for autonomous visual
homing, which is solely based on landmark bearing angles and does not use metric
distance information. Landmark observations and their angular configurations are
stored in so-called viewframes at certain locations along the robot’s path. The robot
retraces this path by computing homing vectors, which point in the direction to align
the robot’s current landmark configuration with the one stored in the goal viewframe.
In this work, we gave an overview of several existing homing vector computation
methods and introduced new methods, which outperform the existing ones in case of
landmark outliers and non-isotropic landmark distributions. The main contribution was
the development of the Trail-Map, which is a novel data structure for scalable and non-
redundant viewframe storage that also allows constant-time mapping and homing. It is
based on the insight that the bearing angles to distant landmarks and landmarks in the
direction of travel hardly change during motion (translation invariant landmarks), while
the bearing angles of nearby landmarks change significantly as the robot passes them
(translation variant landmarks). Thus, the Trail-Map stores the landmark observations
in a hierarchical order of their level of translation invariance and avoids redundant
storage of landmark observations that do not change significantly between subsequent
viewframes. In case of memory shortage, the Trail-Map can be pruned by deleting the
landmark views in the lower levels of the map. By doing so, only the information of
quickly changing and possibly unstable landmarks and outliers is discarded, and the
information of stable, translation invariant landmarks is preserved. In simulations we
could show the superior performance of the Trail-Map compared to the LT-Map, which
is the only existing scalable data structure for viewframe-based homing. We validated
the approach in indoor and outdoor experiments with a robot using natural landmarks
extracted from omnidirectional camera images, where we could show the scalability
and memory efficiency of the method. In particular, we demonstrated in long-range
outdoor experiments that a Trail-Map pruned by 2 levels with less than 300kB is
sufficient to store and retrace a path of 100 meters length, which saves 97% of
memory compared to state-of-the-art methods, while still offering constant runtimes
for mapping and homing. Since the method achieved these values also in a segmented
environment, in which the home and the goal location had no common landmarks, we

Prepared using sagej.cls

Stelzer et al. 41

can assume that the memory requirements can be approximately linearly extrapolated
for longer traverses of more than a kilometer in length, for example. Due to these
properties, we also claim that a Trail-Map-based method is a promising alternative to
state-of-the-art metric approaches for the task of robot homing.

The bottleneck of the whole method is the landmark detection and matching process,
because Trail-Map-based homing heavily depends on correct and reliable landmark
matches. Unstable landmarks unnecessarily inflate the Trail-Map, and false matches
affect the correctness of the homing vector. Using a more robust landmark detector
and matcher would improve the homing performance and decrease the memory
requirements of the Trail-Map. Furthermore, the robot should be able to automatically
identify and adjust the parameters of the homing method, for example the dissimilarity
thresholds and the number of levels to be pruned. Additionally, the homing method
should be combined with local obstacle avoidance to ensure that the robot always stays
on a safe path.

Acknowledgements

We would like to thank Wolfgang Stiirzl for providing the omnidirectional camera, its calibration
and the image remapping functions, and Franz Andert and Thomas Jost for providing the outdoor
ground truth measurement equipment.

References

A. A. Argyros, K. E. Bekris, S. C. Orphanoudakis, and L. E. Kavraki. Robot homing by
exploiting panoramic vision. Autonomous Robots, 19(1):7-25, 2005.

M. Augustine, E. Mair, A. Stelzer, F. Ortmeier, D. Burschka, and M. Suppa. Landmark-
Tree Map: A biologically inspired topological map for long-distance robot navigation. In
Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO)
2012, Guangzhou, China, 2012.

B. A. Cartwright and T. S. Collett. Landmark learning in bees: Experiments and models. Journal
of Comparative Physiology, 151(4):521-543, 1983.

B. A. Cartwright and T. S. Collett. Landmark maps for honeybees. Biological Cybernetics, 57
(1-2):85-93, 1987.

A. Cherubini and F. Chaumette. Visual navigation of a mobile robot with laser-based collision
avoidance. The International Journal of Robotics Research, 32(2):189-205, 2013.

A. Chilian, H. Hirschmiiller, and M. Gorner. Multisensor data fusion for robust pose estimation
of a six-legged walking robot. In Proceedings of the IEEE International Conference on
Intelligent Robots and Systems (IROS) 2011, pages 2497-2504, 2011.

D. Dai and D. T. Lawton. Range-free qualitative navigation. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA) 1993, pages 783-790, 1993.

M. O. Franz, B. Scholkopf, H. A. Mallot, and H. H. Biilthoff. Where did I take that snapshot?
Scene-based homing by image matching. Biological Cybernetics, 79(3):191-202, 1998.

P. Furgale and T. Barfoot. Stereo mapping and localization for long-range path following
on rough terrain. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA) 2010, pages 4410-4416, 2010a.

Prepared using sagej.cls

42 Journal Title XX(X)

P. Furgale and T. D. Barfoot. Visual teach and repeat for long-range rover autonomy. Journal of
Field Robotics, 27(5):534-560, 2010b.

T. Goedemé, T. Tuytelaars, L. Van Gool, G. Vanacker, and M. Nuttin. Feature based
omnidirectional sparse visual path following. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) 2005, pages 1806-1811, 2005.

H. Hirschmiiller. Stereo processing by semi-global matching and mutual information. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 30(2):328-341, February 2008.

B. Jager, E. Mair, C. Brand, W. Stiirzl, and M. Suppa. Efficient navigation based on the landmark-
tree map and the Z°° algorithm using an omnidirectional camera. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2013, pages
1930-1937, 2013.

K. Kawamura, A. B. Koku, D. M. Wilkes, R. A. Peters, and A. Sekmen. Toward egocentric
navigation. International Journal of Robotics and Automation, 17(4):135-145, 2002.

J. Kosecka, L. Zhou, P. Barber, and Z. Duric. Qualitative image based localization in indoors
environments. In IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, volume 2, pages 11-3, 2003.

T. Krajnik, J. Faigl, V. Vondsek, K. KoSnar, M. Kulich, and L. Pfeucil. Simple yet stable bearing-
only navigation. Journal of Field Robotics, 27(5):511-533, 2010.

D. Lambrinos, T. Labhart, and R. Pfeifer. A mobile robot employing insect strategies for
navigation. Robotics and Autonomous Systems, 30(1-2):39-64, 2000.

S. Leutenegger, M. Chli, and R. Y. Siegwart. BRISK: Binary robust invariant scalable keypoints.
In Proceedings of the IEEE International Conference on Computer Vision (ICCV) 2011,
pages 2548-2555, 2011.

M. Liu, C. Pradalier, Q. Chen, and R. Siegwart. A bearing-only 2D/3D-homing method under
a visual servoing framework. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA) 2010, pages 4062-4067, 2010.

E. Mair, M. Augustine, B. Jiger, A. Stelzer, C. Brand, D. Burschka, and M. Suppa. A biologically
inspired navigation concept based on the Landmark-Tree Map for efficient long-distance
robot navigation. Advanced Robotics, 28(5):289-302, 2014.

Y. Matsumoto, M. Inaba, and H. Inoue. Visual navigation using view-sequenced route
representation. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA) 1996, pages 83-88, 1996.

R. R. Murphy. Disaster robotics. MIT Press, 2014.

S. §egvié, A. Remazeilles, A. Diosi, and F. Chaumette. Large scale vision-based navigation
without an accurate global reconstruction. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) 2007, pages 1-8, 2007.

A. Stelzer, E. Mair, and M. Suppa. Trail-Map: A scalable landmark data structure for biologically
inspired range-free navigation. In Proceedings of the IEEE International Conference on
Robotics and Biomimetics (ROBIO) 2014, Bali, Indonesia, pages 2138-2145, 2014.

A. Stelzer, M. Suppa, and W. Burgard. Trail-Map-based homing under the presence of sensor
noise. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) 2015, pages 929-936, 2015.

A. Tapus, F. P. Battaglia, and R. Siegwart. The hippocampal place cells and fingerprints of places:
Spatial representation animals, animats and robots. In Proceedings of the 9th Intelligent

Prepared using sagej.cls

Stelzer et al. 43

Autonomous Systems Conference (IAS), pages 104-113, 2006.

A. Vardy. Long-range visual homing. In Proceedings of the IEEE International Conference on
Robotics and Biomimetics (ROBIO) 2006, pages 220-226, 2006.

K. Weber, S. Venkatesh, and M. Srinivasan. Insect-inspired robotic homing. Adaptive Behavior,
7(1):65-97, 1999.

J. Zeil, M. 1. Hofmann, and J. S. Chahl. Catchment areas of panoramic snapshots in outdoor
scenes. Journal of the Optical Society of America A, 20(3):450-469, 2003.

A. M. Zhang and L. Kleeman. Robust appearance based visual route following for navigation in
large-scale outdoor environments. The International Journal of Robotics Research, 28(3):
331-356, 2009.

Prepared using sagej.cls

	1 Introduction
	2 Viewframe-Based Homing
	2.1 Viewframe Dissimilarity Measures
	2.2 Homing Vector Calculation Methods

	3 The Trail-Map
	4 Simulations of Trail-Map-Based Homing
	5 Application to Real Data
	5.1 Landmark Detection and Matching
	5.2 Rotational Alignment of the Viewframes
	5.3 Homing Vector Smoothing
	5.4 Robot Motion Control

	6 Experiments
	6.1 Indoor Laboratory Experiments
	6.1.1 Mapping
	6.1.2 Validation of Homing
	6.1.3 Landmark Matching
	6.1.4 Pruning Behavior

	6.2 Long-Range Outdoor Experiments
	6.2.1 Carpark Experiment
	6.2.2 Urban Experiment

	7 Conclusion

