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Abstract
A unified formulation which accounts for the dynamics of a general class of aquatic multi-body, soft-structured robots
is presented. The formulation is based on a Cosserat formalism where the description of the ensemble of geometrical
entities, such as shells and beams, gives rise to a multi-soft-body system capable of simulating both manipulation and
locomotion. Conceived as an advanced tool for a-priori hardware development, n-dof dynamics analysis and control design
of underwater, soft, multi-body, vehicles, the model is validated against aquatic locomotion experiments of an octopus-
inspired soft unmanned underwater robot. Upon validation, the general applicability of the model is demonstrated by
predicting the self-propulsion dynamics of a diverse range of new viable combinations of multi-soft-body aquatic system.
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Nomenclature

? Variable in the reference configuration.
· Derivative with respect to time.
′ Derivative with respect to space.̂ Converts R6 in se(3).˜ Converts R3 in so(3).
t ∈ R Time.
Xb ∈ R Abscissa along the robot arm.
Xs ∈ R Abscissa along the meridian.
φ ∈ S1 Revolution angle.
g (Xb) ∈ SE(3) Beam configuration matrix.
gb (Xb) ∈ SE(3) Beam shape-configuration matrix.
g (Xs,φ) ∈ SE(3) Shell configuration matrix.
gs (Xs,φ) ∈ SE(3) Shell shape-configuration matrix.
gr ∈ SE(3) Rigid-Root body configuration matrix.
η̂ (Xb) ∈ se(3) Beam velocity vector.
η̂b (Xb) ∈ se(3) Shape-dependent addendum of the beam velocity vector.
η̂ (Xs) ∈ se(3) Shell velocity vector.
η̂s (Xs) ∈ se(3) Shape-dependent addendum of the shell velocity vector.
η̂r ∈ se(3) Rigid-Root body velocity vector.
ξ̂b (Xb) ∈ se(3) Beam strain vector.
ξ̂s(1,2)(Xs) ∈ se(3) Shell strain vector respectively in the direction Xs and φ .
Fbi (Xb) ∈ R6 Beam wrench of internal elastic force.
Fba(Xb) ∈ R6 Beam wrench of internal actuation loads.
F̄be (Xb) ∈ R6 Beam wrench of distributed external loads.
F

(1,2)
si (Xs) ∈ R6 Shell wrench of internal elastic force respectively in the direction Xs and φ .

F
(1,2)
sa (Xs) ∈ R6 Shell wrench of internal actuation loads.

F̄se (Xs) ∈ R6 Shell wrench of distributed external loads.
Fri ∈ R6 Root-body wrench of internal force.
Fra∈ R6 Root-body wrench of actuation loads.
Fre ∈ R6 Root-body wrench of external loads.

1. Introduction

Fostered by the growing needs of the marine and maritime industry to perform increasingly daunting tasks in always
more forbidding environments, a renovated effort is being made nowadays to endow underwater robots with enhanced
manoeuvring capabilities. On one hand this has entailed the revision of traditional systems (Vaganay et al., 2009; Elvander
and Hawkes, 2012; Vasilescu et al., 2010), or by improving navigation and positioning systems, i.e. by combining data
collected jointly from Doppler Velocity Logger (DVL), GPS, pressure-depth sensors, Synthetic Aperture Sonars and
Multibeam Echo Sounders (Hover et al., 2012). On the other hand, alternative design criteria have been taken in consideration
by capitalizing on the study of water dwelling organisms.

In recent times underwater robotics has largely benefited from the growing fascination for bioinspired aquatic locomotion
and, motivated by the abundance of outstanding feats that aquatic animals display, has started to pave the way for the
development of new vehicles capable of feats yet to be seen in commercially available Unmanned Underwater Vehicles
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(UUVs). Hovering, short radius turning, fast start/slowdown and low-speed manoeuvring are just few examples which
highlight how the design of underwater robots can profit massively from the investigation of the swimming strategies,
hydrodynamics and physiology of aquatic animals.

Several examples exist of aquatic organisms which have been taken as the source of inspiration for designing a trust-
worthy robotic replica. These include flagellates (Abbott et al., 2009), turtles (Licht et al., 2004), eels (Yu et al., 2012) and,
of course, fish. The finned and caudal flapping of fish, e.g. (Saimek and Li, 2001; Conte et al., 2010), has gathered the most
recognition in the scientific community, in part because of the sound understanding of the underlying physics involved in
their locomotion (Colgate and Lynch, 2004).

The locomotion of aquatic organisms and their robotics counterparts commonly involves periodic oscillatory deforma-
tions of one or more body parts which in turn give rise to the unsteady hydrodynamics responsible for generating thrust.
The actuation mechanisms which enable these deformations in the bioinspired water dwelling robots has, in most cases,
entailed the replacement of continuously deforming bodies by reducing the number of degrees-of-freedom (DOF) with
a finite sequence of rigid links and joints. Alternatively, the compliant nature and the multi DOF bending capability of
the biological counterpart has been accounted for by resorting to continuously deforming soft structures and actuators
(Marchese et al., 2014). The effort in designing structurally compliant underwater robots is fostered, to a large extent,
by the acknowledgement that safe physical human-robot interaction and manoeuvring in highly perturbed, unstructured
scenarios can effectively be handled via the recourse to soft-bodied components rather than by making the control finer
(Wang and Iida, 2015; Woodman et al., 2012; Mortl et al., 2012). Indeed, commercial underwater robots are safe travelling
in open stretches of sea, but suffer of non-negligible limitations when navigating close to the seabed or in close proxim-
ity with submerged structures where unintended impacts must be prevented consistently. The exploitation of soft-bodied
vehicles which benefit of the assets from bioinspired propulsion and manipulation systems can provide a viable solution to
complex tasks which existing ROVs and AUVs are unfit for such as operations in current-perturbed domains, performing
maintenance over the hull of ships and harbours and working in synergy with divers.

This has encouraged the authors to design and develop an innovative class of soft-bodied, bioinspired, underwater
robots, Fig. 1. These consist of octopus-resembling machines endowed with a number of continuous manipulators (element
4 in Fig. 2), and a central unit devoted to thrust generation (element 1 in Fig. 2), which essentially defines an underwater
multi-limbed soft vehicle (Giorgio-Serchi et al., 2017). The robot is composed for as much as 90% in volume of elastomeric
materials and actuation is provided by electric motors and cable transmission thus enabling the robot to profit from a high
overall degree of structural compliance. In analogy with its biological source of inspiration, this kind of robot is capable
of performing basic manipulation, legged-locomotion and waterborne propulsion. On one hand, this kind of design offers
a number of assets due to its structure and mode of actuation which have been covered at length in (Giorgio-Serchi et al.,
2015, 2016), as far as propulsion is concerned, and in (Renda et al., 2014) for what matters manipulation. On the other hand,
however, the morphology of the robot also requires an ad hoc formulation in order to treat the dynamics of this flexible
multi-body system. This represent the focus of the present work. The mechanical system of Fig. 1, with its articulated
configuration and its combination of flexible and rigid components represents the state-of-the-art paradigm for developing
and validating an advanced mathematical framework capable of dealing with such complexity.

With the advancement in bioinspired robots, increasingly sophisticated mathematical models have been developed
with the scope of accounting for the growing complexity of such systems (Krieg et al., 2015). As far as aquatic robots
are concerned, swimming routine commonly entail caudal or finned flapping and whole-body ondulatory oscillations. An
extensive literature exists which accounts for the dynamics entailed with these kind of swimming routines, as well as with
the accurate flow features hence associated. While a rigorous treatment of these kind of system requires the solution of a
full hydroelastic problem, physically sound and less numerically intensive approaches have been found to be well suited
for the purpose of control and design optimization. These have entailed the reduction of the problem to a coupling between
the body, regarded either as a series of rigid links or as continuously deforming beams, and the fluid as a quasi-inviscid
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(a) (b)

Fig. 1. The soft, multi-body aquatic robot developed by the authors (a). During testing at sea (b).

one, where reactive inertial terms are computed via potential flow theory and resistive viscous terms are derived from
empirically determined coefficients.

This approach has been applied in recent years to the swimming of fish via an extended Lighthill model which expands
the Large Amplitude Elongated Body Theory (LAEBT) of (Lighthill, 1970) to the case of self propelled three-dimensional
swimming (Boyer et al., 2010). This latter formulation has been employed to encompass the case of non quiescent ambient
flows, such as in the Von Karman vortex street from which a dead fish is shown to extract energy in order to passively propel
itself upstream (Candelier et al., 2013). This model accounts for most of fish morphologies (anguilliform, carangiform) by
treating the fish body as a non-linear Cosserat beam in finite transformations (deformations and rotations), i.e. an infinite
set of rigid cross sections (thus modelling, in a way, the fish vertebrae) regarded as continuously stacked along the vertebral
axis of the animal. It can be shown (Candelier et al., 2011), by exploiting the tapered shape of the body, that the fluid forces
exerted on a beam cross section only depend on the fluid velocities and acceleration of the water slice which prolongs
the beam cross section in the fish surrounding. Based on this remark, it becomes possible to extend the Newton-Euler
based approach of rigid discrete multibody systems dynamics to the case of continuous systems where the cross-sections
label stand for the body index of the discrete case. In this context, the inverse (computed torque) algorithm of Luh and
Walker (Luh et al., 1980) has been extended to the locomotion of continuous elongated systems in (Boyer et al., 2006).
Remarkably, the resulting dynamics approach exploits the topology of these continuous systems to design fast dynamics
algorithms where the usual recursions of the Newton-Euler algorithms are replaced by ordinary differential equations that
are solved forward and/or backward along the beams axis in a global time loop. Furthermore, compared to other approaches,
such as those based on the floating frame (Canavin and Likins, 1977), they can naturally tackle the finite deformations
observed in soft animals, an advantage which is crucial in the context of this article.

While modern modelling paradigms essentially pertain to the multi-body or continuous approach, the need arise to
reconcile these supposedly divergent perspectives into a more general view capable of encompassing both counterparts.
In the present work, of which a preliminary version has been presented in (Renda et al., 2018), the dichotomy between
the multi-rigid-body and the single-continuous-body paradigms is relaxed by expressing the whole body dynamics of an
octopus-like robot via a multi-soft-body formulation. To do so, we expand on the state-of-the-art geometrical models of
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Fig. 2. A schematic of the soft, multi-body aquatic vehicle developed by the authors. Numbers refer to: (1) pulsed-jet thruster, (2) the
nozzle, (3) the cables which drive the shell collapse, (4) the continuum manipulators, (5) the actuators of the manipulators, (6) the actuator
of the shell and (7) the cable which drives manipulator actuation.

archetypal elements, such as beams and shells, in order to construct a unified framework where various appendages are
allowed to participate to the dynamics of a single entity. As a mean of validating this construct, the model is employed to
replicate the robot depicted in Fig. 1 and Fig. 2 and compare the simulated with the experimentally observed dynamics
during aquatic self-propulsion. The versatility of the mathematical framework introduced is demonstrated by extending it
to account for a set of diverse geometrical configurations and actuation routines.

The first section of this paper entail an extended general description of the mathematical frames exploited throughout. In
section 3 this is employed to illustrate the modelling formalism adopted for beams and shell-shaped soft bodies, which are
later considered in a unified system (section 5). The model thus formulated is then validated for the case of a four-limbed,
self-propelling, soft robot closely resembling one of the vehicles previously developed by the authors, section 6. Eventually,
in section 7 it is demonstrated how this unified model for multi-soft-body vehicles can be exploited with the purpose of
exploring innovative design paradigms by predicting the locomotion performances of two distinct soft underwater vehicles.

2. Model Description

The basic structure of the model is made by a rigid body, called rigid root-body, and several soft appendages attached to
it through one extreme or boundary of the soft body (beams and axisymmentric shells in this work). The rigid root-body
is not kinematically attached to any hard frame, but instead it is free to move in the 3D space, while the soft appendages
are not connected to each other preventing the realization of closed loops mechanism. This kind of multi-body systems are
said to have a star structure (Selig, 2007).

Let us call (o,e1,e2,e3) the inertial frame of the Euclidean space and (o,E1,E2,E3) the reference orthogonal frame
attached to the rigid root-body whose inertial motion defines the net (rigid overall) motion of the entire system. The
configuration space of the root-body is gr ∈ SE(3), which maps the inertial onto the reference mobile frame.

Each of the soft appendages are modeled as Cosserat medium, which can be intuitively considered as a continuous
staking of a rigid small solid named "microstructure" along one (beam) or two (shell) material dimensions. As a result, the
configuration space of such a medium can be intrinsically defined as the set of maps (Fig. 3):

C = {g : (X1,X2, ...X p) 7→ g(X1,X2, ...X p) ∈ SE(3)}, (1)
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Fig. 3. Schematic description of the general NE configuration of a multi-soft-body system.

where g is here a field of rigid transformations mapping the inertial frame onto the frames attached to each of the
microstructures which constitute the medium. This definition holds for beams (p = 1) and shells (p = 2).

2.1. Multi-Soft-Body Configuration Space

In our definition of the configuration space of the multi-soft-body system, the net motion is separated from the deformation of
the soft subsystems and the configuration space of the system is defined as SE(3)×C ×C ×·· ·×C where SE(3) stands for
the configuration space of the reference rigid root-body and each copy C of (1), stands for a field of transformations mapping
a dummy frame connecting the reference rigid body and a soft subsystem, onto its microstructures. In this context, grs,
grb ∈ SE(3) denote the constant transformations that map the reference frame onto the dummy frames respectively attached
to shells and beams ((Os,E1s,E2s,E3s)) and ((Ob,E1b,E2b,E3b)) (Fig. 4 b), while gs(Xs,φ) and gb(Xb) ∈ SE(3) denote the
set of maps of (1) which map the dummy frame onto the microstructure frames of the two dimensional axisymmetric shell,
parameterized by the curvilinear abscissa Xs and the revolution angle around the symmetry axis φ , and to the material element
of the one dimensional beam, parameterized by the curvilinear abscissa Xb respectively. With these definitions at hand, the
connections between the rigid and soft subsystem are defined as locked joints through the equations grgrbgb(0) = g(0) and
grgrsgs(0,φ) = g(0,φ) for beams and shells respectively.

It is worth noting that the configuration spaces of the constitutive bodies (soft or rigid) sharing as common structure the
Lie group SE(3), their dynamic models can be encompassed in a common framework that is presented in the subsequent
developments.

3. Cosserat Model for Soft Robotics

In this section, a brief description, based on the authors previous works (Renda et al., 2014), (Renda et al., 2015c), of the
kinematics and dynamics of Soft Robot Arms (SRA) and Soft Shell Mantles (SSM) for underwater soft robotics is given.
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Fig. 4. Schematic description of the multi-soft-body configuration and map’s hierarchy between the frames used in the model.

3.1. Kinematics

In the Cosserat theory, according to equation (1), the configuration of a micro-solid of a soft body with respect to the inertial
frame at a certain time is characterized by a position vector u and a material orientation matrix R, parameterized by the
material abscissas, that are φ ∈ [0,2π[ (the angle of revolution of the axisymmetric surface) and Xs ∈ [0,Ls] (the abscissa
along the meridian) for the SSM; and Xb ∈ [0,Lb] (the abscissa along the robot arm) for the SRA, the subscripts s and b

stand respectively for shell and beam. Thus, the configuration space is defined as a curve g(·) : Xb 7→ g(Xb) ∈ SE(3) or a
surface g(·) : (Xs,φ) 7→ g(Xs,φ) ∈ SE(3), with

g =

(
R u

0 1

)
.

As described in the previous section, the map g is the composition of three transformations, gr, grs and gs for shells and
correspondingly gr, grb and gb for beams, giving g = grgrsgs or g = grgrbgb (Fig. 5), with

gr =

(
Rr ur

0 1

)
,grs =

(
Rrs urs

0 1

)
,grb =

(
Rrb urb

0 1

)
,gs =

(
Rs us

0 1

)
,gb =

(
Rb ub

0 1

)
.

Furthermore, exploiting the axisymmetry of the shell, the transformation gs can be specified as the following
combination:

gs = g1g2g3 =

(
exp(ẽ3φ) us

0 1

)(
exp(ẽrπ/2) 0

0 1

)(
exp(−ẽφ θ) 0

0 1

)
.

Where exp is the exponential in SO(3), the tilde is the isomorphism between a vector of R3 and the corresponding skew-
symmetric matrix (∈ so(3)) and θ(Xs) is the angle between E3s and the shell microstructure located at any Xs along the
φ -meridian (Fig. 5a). In this case us(·) takes the form: us(Xs) = (cos(φ)r(Xs),sin(φ)r(Xs),z(Xs))

T for which, r(.) and
z(.) are two smooth functions which define the radius and the altitude of the point Xs on the profile (g2 is a constant
transformation chosen by the authors for the sake of convenience).

Based on these kinematics, the strain state of the beam is defined by the vector field along the curve g(·) : Xb 7→ g(Xb)

given by ξ̂ (·) : Xb 7→ ξ̂ (Xb) = g−1∂g/∂Xb = g−1
b ∂gb/∂Xb = g−1

b g′b = ξ̂b(Xb) ∈ se(3) and the two vector fields on the
surface g(·) : (Xs,φ) 7→ g(Xs,φ), defined by the two vector fields: ξ̂1(·) : Xs 7→ ξ̂1(Xs) = g−1∂g/∂Xs = g−1

s ∂gs/∂Xs =

g−1
s g′s = ξ̂s1(Xs) and ξ̂2(·) : Xs 7→ ξ̂2(Xs) = g−1∂g/∂φ = g−1

s ∂gs/∂φ = ξ̂s2(Xs) (where the hat̂ represents the isomorphism
between the twist vector space R6 and the Lie algebra se(3)). After simple algebra based on the above transformation
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kinematics, the components of these fields are specified in the microstructure frames as:

ξb =

(
kb

qb

)
,ξs1 =

(
ks1

qs1

)
=



0
0
θ ′

cos(θ)r′+ sin(θ)z′

cos(θ)z′− sin(θ)r′

0


=



0
0
µ

λ

β

0


,ξs2 =

(
ks2

qs2

)
=



sin(θ)
cos(θ)

0
0
0
−r


∈ R6.

Whereqs(Xs),qb(Xb) represents the linear strains, and ks(Xs), kb(Xb) the angular strain. It is worth to notice that the two fields
ξ̂s1 and ξ̂s2 depend only on Xs due to the shell’s axisymmetry. The time evolution of the configuration curve g(·) : Xb 7→ g(Xb)

and surface g(·) : (Xs,φ) 7→ g(Xs,φ) is represented by the twist vector fields η̂(·) : Xb 7→ η̂(Xb) and η̂(·) : Xs 7→ η̂(Xs) ∈
se(3) defined respectively by η̂(Xb) = g(Xb)

−1∂g(Xb)/∂ t = g−1ġ and η̂(Xs) = g(Xs,φ)
−1∂g(Xs,φ)/∂ t = g−1ġ. It can

be shown that these two vector fields can be written as: η̂(Xb) = η̂b +
b η̂r and η̂(Xs) = η̂s +

s η̂r. Where we have defined
η̂b = g−1

b ġb, η̂s = g−1
s ġs and η̂r = g−1

r ġr. Note that this decomposition is consistent with our definition of the multi-soft-body
configuration space which separates the fields of inertial transformations on each of the subsystems into a rigid component
gr and a shape component (gb and gs). These twist can be detailed in terms of their components in the microstructure frames
as:

ηb =

(
wb

vb

)
,ηs =

(
ws

vs

)
=



0
0
θ̇

cos(θ)ṙ+ sin(θ)ż
cos(θ)ż− sin(θ)ṙ

0


=



0
0
Ω

Vx

Vy

0


,ηr =

(
wr

vr

)
∈ R6,

where vb(Xb), vs(Xs), vr and wb(Xb), ws(Xs), wr are respectively the linear and angular velocity at a given instant. The back-
superscripts s and b represent an element of the Lie algebra se(3) of gr expressed in the microstructure frame of the shell
and of the beam respectively while the absence of any back-superscripts indicate that the Lie algebra element is expressed
in the frame to which it is related. In order to exploit the axisymmetry of the SSM, we limit gr of g(Xs,φ) = grgrsgs to its
translational component about the axis of symmetry E3s, leading to ηr = (0,0,0,(0,0,VE3s)R

T
rs)

T (i.e. the velocity of the
multi-soft-body system in the E3s direction) in that case. Remembering this distinction, the twist versions sηr and bηr can
be calculated as Adg−1

s g−1
rs

ηr and Adg−1
b g−1

rb
ηr, where Ad is the Adjoint map, defined as:

Adg =

(
R 0
ũR R

)
.

Strain Measures There are different ways to measure the strain of a continuous media, we choose the most commonly
used in the specialized literature for the beam (Simo, 1985) and shell (Simo and Fox, 1989) respectively.

For the SRA, the strains are defined as the difference between the X-rate of g in the deformed configuration ξ , and on the
reference configuration ξ ? (denoted with a ?). In particular, the components of k−k? measure the torsion and the bending
state in the two directions. Similarly, the components of q−q? represent the longitudinal strain (extension, compression)
and the two shear strains.

For the SSM, in accordance with (Simo and Fox, 1989) as described in (Renda et al., 2015c), the strain tensor field which
describes the membrane strain state in the mid-surface is e(·) : Xs 7→ e(Xs) = 1/2(h− h?) ∈ R2⊗R2 where h is the first
fundamental form of the Reissner shell equal to h = diag(λ 2+β 2,r2). Thus we have e = (1/2)diag(λ 2+β 2−1,r2−r?2),
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Fig. 5. Sketch of the kinematics which show the geometrical meaning of the elements g, ξ and η . The reference frames on the figure
are those used in the model.

in which we have defined h?11 = 1. For what concerns the shear strain state, we have s(Xs) = β −β ?. Finally, the flexural
strain state is parametrized by the tensor field d(·) : Xs 7→ d(Xs) = k− k? ∈ R2⊗R2, where k is the second fundamental
form equal to k = diag(−µλ ,−r sin(θ)). Thus we have d = diag(µ?−µλ ,r? sin(θ ?)−r sin(θ)). Furthermore, it is natural
to consider that there is no transverse shearing in the reference resting configuration, i.e. β ? = 0.

3.2. Compatibility Equations

We have seen above that g(Xb)
′ = gξ̂b and g(Xs,φ)

′ = gξ̂s1. By taking the derivative of these equations with respect to
time and recalling that ġ(Xb) = g(η̂b +

b η̂r) and ġ(Xs,φ) = g(η̂s +
s η̂r), we obtain ξ̇b = (ηb +

b ηr)
′+ adξb

(ηb +
b ηr) and

ξ̇s1 = (ηs +
s ηr)

′+ adξs1
(ηs +

s ηr), where ad is the adjoint map defined as:

adξ =

(
k̃ 0
q̃ k̃

)
.

Then, we can simplify these equations by noticing that (bηr)
′ = (Adg−1

b g−1
rb

ηr)
′ = (Adg−1

b g−1
rb
)′ηr =−Adg−1

b g−1
rb
(adrξb

ηr) =

−adξb
bηr (the same holds for sηr), leading to the following compatibility equations between velocity and deformation

variables:
ξ̇b = η

′
b + adξb

ηb, (2)

ξ̇s1 = η
′
s + adξs1

ηs, (3)

which remarkably depend only on the "shape" component of the multi-soft-body configuration space.

3.3. Dynamics

The p.d.e.’s describing the evolution of a Cosserat rod and shell (not necessarily axisymmetric) have been derived by
Reissner (Reissner, 1990) and exploited respectively in (Simo, 1985) and (Simo and Fox, 1989) for non-linear Finite
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Element Analysis. More recently, they have been used in the context of continuous and soft robotics in (Boyer et al., 2006)
(Candelier et al., 2013), (Renda et al., 2014), and (Renda et al., 2015c). In (Boyer and Primault, 2005; Boyer and Renda,
2016), it is shown that these beam (respectively shell) p.d.e’s, together with their boundary conditions, can be directly
derived from an extension of a variational calculus on Lie groups historically introduced by Poincaré (Poincaré, 1901):

Mb[η̇b +
˙(bηr)] = (Fbi−Fba)

′− adT
ξb
(Fbi−Fba)+ F̄be + adT

(ηb+
bηr)

Mb(ηb +
b

ηr) ,

ηb(0) = 0 , (Fbi−Fba)(Lb) = Fbe(Lb) ,
(4)

Ms[η̇s + ˙(sηr)] =

[
r?
(
F 1

si−F 1
sa
)]′

r?
− adT

ξsα
(F α

si −F α
sa)+ F̄se + adT

(ηs+sηr)
Ms(ηs +

s
ηr)

ηs(0) = 0 ,
(
F 1

si−F 1
sa
)
(Ls) = Fse(Ls) ,

(5)

where Fbi(Xb) and F α
si (Xs) are the wrenches of internal elastic forces in the surface directions given by qb and qsα

(α running over {1,2}), Fba(Xb, t) and F α
sa(Xs, t) are the internal actuation loads, F̄be(Xb) and F̄se(Xs) are the external

wrench of distributed applied forces, Mb(Xb) and Ms(Xs) are the screw inertia matrix. For the repeated α , the Einstein
convention has to be used as in the rest of the paper.

Let us specify the angular and linear components of the internal and external wrenches (for the axisymmetric shell refer
to (Renda et al., 2015c) and (Antman, 2006)):

Fbi =

(
Mbi

Nbi

)
, F 1

si =

(
M1

si

N1
si

)
=



0
0

MX

NX

H

0


, F 2

si =

(
M2

si

N2
si

)
=



Mφx

Mφy

0
0
0
−Nφ


∈ R6,

Fba =

(
Mba

Nba

)
, F 1

sa =

(
M1

sa

N1
sa

)
=



0
0

Lza

Fxa

Fya

0


, F 2

sa =

(
M2

sa

N2
sa

)
=



Lxa

Lya

0
0
0
−Fza


∈ R6,

F̄be =

(
mb

nb

)
, F̄se =

(
ms

ns

)
=



0
0
l

fx

fy

0


∈ R6,

where Nα
si(Xs), Nbi(Xb) and Mα

si(Xs), Mbi(Xb) are the internal elastic force and torque vectors, respectively, Nα
sa(Xs, t),

Nba(Xb, t) andMα
sa(Xs, t),Mba(Xb, t) are the internal actuation force and torque, while ns(Xs), nb(Xb) andms(Xs),mb(Xb) are

the external force and torque for unit of Xs, Xb, r?φ . The screw inertia matrices are equal to: Mb = diag(Ib,Jb,Jb,A,A,A)ρb

and Ms = diag(Js, Is,Js,2hs,2hs,2hs)ρs ∈R6⊗R6, where ρb and ρs are the body densities, A(Xb) is the section area equal
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to A = πh2
b (hb(Xb) being the cross section radius), hs is the half of the shell thickness and Js(Xs), Jb(Xb), Is(Xs), Ib(Xb) are

the second moment of inertia of the micro-solid equal to Jb = πh4
b/4, Js = h2

s/3, Ib = πh4
b/2, Is ∼ 0.

As for the compatibility equations, we have ˙(bηr) = Adg−1
b g−1

rb
η̇r + ˙(Adg−1

b g−1
rb
)ηr =

bη̇r− adηb
bηr (the same holds for

sηr), hence the left side of equation (4) and (5) become Mb(η̇b +
bη̇r− adηb

bηr) and Ms(η̇s +
s η̇r− adηs

sηr).
The imposed internal actuation wrenches (F α

sa(Xs, t), Fba(Xb, t)) represents the input of the model and depends directly
on time. It can be thought as the action of the muscle fiber of the body in the case of a living organism or the result of
embedded cable-driven actuation as in (Renda et al., 2014).

3.4. Constitutive Equations

A linear visco-elastic constitutive equation, based on the Kelvin Voigt model, is chosen. Following (Linn et al., 2013) for
the SRA and (Simo and Fox, 1989) for the SSM we get respectively:

Fbi = Σ(ξb−ξ
?
b )+ϒ(ξ̇b), (6)

NX = 2Ehs
1−ν2

[
λ

(
e11 +

ν

r?2 e22

)
− Jsµ

(
d11 +

ν

r?2 d22

)]
+ 6υhs

1−ν2

[
λ

(
ė11 +

ν

r?2 ė22

)
− Jsµ

(
ḋ11 +

ν

r?2 ḋ22

)]
Nφ = 2Ehs

1−ν2

[
r
(

e22
r?4 +

ν

r?2 e11

)
− Js sin(θ)

(
d22
r?4 +

ν

r?2 d11

)]
+ 6υhs

1−ν2

[
r
(

ė22
r?4 +

ν

r?2 ė11

)
− Js sin(θ)

(
ḋ22
r?4 +

ν

r?2 ḋ11

)]
H = 2hsβ

[
G+ E

1−ν2

(
e11 +

ν

r?2 e22

)]
+2hsβ̇

[
υ + 3υ

1−ν2

(
ė11 +

ν

r?2 ė22

)]
MX =− 2EhsJs

1−ν2 λ

(
d11 +

ν

r?2 d22

)
− 6υhsJs

1−ν2 λ

(
ḋ11 +

ν

r?2 ḋ22

)
Mφx =−

2EhsJs
1−ν2 r

(
d22
r?4 +

ν

r?2 d11

)
− 6υhsJs

1−ν2 r
(

ḋ22
r?4 +

ν

r?2 ḋ11

)
Mφy = 0

(7)

where Σ(X) and ϒ(X) ∈ R6 ⊗ R6 are the screw stiffness matrix and the screw viscosity matrix, equal to Σ =

diag(GIb,EJb,EJb,EA,GA,GA), ϒ = diag(Ib,3Jb,3Jb,3A,A,A)υ , E being the Young modulus (different between the
shell and the beam), G is the shear modulus (equal to G = E/2(1+ν) for an isotropic material with Poisson ratio ν) and
υ is the shear viscosity modulus.

3.5. External Loads

The external loads taken into account are the ones exerted by the fluid (i.e. drag, added mass, buoyancy and thrust) in
addition to the gravity load. Mathematically we have:

nb = sb +bb +db +ab (8)

ns = ds +as + ts (9)

where sb(Xb) is the gravity, bb(Xb) is the buoyancy, ts is the thrust load, ds(Xs), db(Xb) are the drag and as(Xs), ab(Xb) are
the added mass, while mb =ms = (0,0,0)T .

An exhaustive derivation and interpretation of the fluid force model for the SSM has been presented in (Renda et al.,
2015b), based on the usual model of net external forces exerted on a rigid rocket, uniformly distributed over the mantle. In
this formulation, certain terms which participate in the definition of the total propulsive thrust are neglected. These concern,
in particular, the internal pressure contribution associated with the dynamics of the cavity collapse, referred to by (Krieg
and Mohseni, 2015) as total jetting force (see also (Anderson and DeMont, 2000)), as well as the positive feedback from
the added mass variation of the collapsible shell (Giorgio-Serchi and Weymouth, 2016a,b). Here only the final equation
are reported, while the SSM gravity and buoyancy loads are accounted for together with the rigid root-body in order not
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to break the shell symmetry. For the SRA, the fluid force models have been originally derived in (Boyer et al., 2006) and
then introduced in a soft robotics context in (Renda et al., 2014).

Gravity and buoyancy are simply the product between the mass per unit of Xb of the robot arm respectively of the water
and the gravity acceleration.

sb +bb = (ρb−ρw)ART G (10)

where G is the gravity acceleration vector, equal to G = (0,0,−9.81)T .

The drag load vector is proportional to the square of the velocity vector and is directed in the opposite direction.
The amplitude of the drag load is also determined by the geometry of section Xs, Xb and by hydrodynamics phenomena
expressed by empirical coefficients. The equations are:

db =−ρwDb(vb +
b vr)‖vb +

b vr‖ (11)

ds =−RT
s

(
0,0,

ρwCdAre fVE3s |VE3s |
2Am

)T

(12)

where Db(Xb) ∈ R3⊗R3 is equal to Db = diag( 1
2 πCbx,Cby,Cbz)hb for circular cross sections of radius hb; Cbx, Cby, Cbz

being the empirical hydrodynamic coefficients; Cd is the net drag coefficient of the SSM, Are f is the reference area equal
to π(max(r(X)))2 and Am is the total surface of the SSM equal to Am =

∫ Ls
0 2πr?dXs.

The added mass load vector is proportional to the acceleration vector and is directed in the opposite direction. The
amplitude is also determined by the geometry of section Xs, Xb and by hydrodynamics phenomena expressed in part by
correction coefficients. The equations are:

ab =−
d[ρwFb(vb +

b vr)]

dt
=−ρwFb[v̇b +

˙(bvr)]− (wb +
b wr)×ρwFb(vb +

b vr) (13)

as =−Bsρs2hs[v̇s + ˙(svr)] =−Bsρs2hs

 V̇x + sin(θ)V̇E3s +Ωcos(θ)VE3s

V̇y + cos(θ)V̇E3s −Ωsin(θ)VE3s

0

 (14)

where Bs is the net added mass coefficient and Fb(Xb) ∈ R3 ⊗R3 is a tensor which incorporates the geometric and
hydrodynamics factors, equal to Fb = diag(0,ABb,ABb), Bb being the hydrodynamic correction coefficient.

The thrust load is:

ts =−RT
s

(
0,0,

ρwC fU̇ |U̇ |
AnAm

)T

(15)

where An is the nozzle area equal to An = Ano for the outflow and equal to An = Ani for the inflow, C f defines a flow loss
coefficient at the nozzle entrance, which is taken to vary between 0.6 and 1 (Johnson et al., 1972), and U is the mantle inner
volume equal to U =

∫ Ls
0 πr2

√
λ 2 +β 2dXs.

4. Rigid Root-Body Model

We here seek the dynamic model of the system net motions controlled by the shape deformations of the soft subsystems
(Boyer and Porez, 2015). In order to do that, the kinematics and dynamics of the rigid root-body which connects the soft
bodies in a star system are presented, together with the reaction wrenches due the soft appendages. This leaves to the
following equation:

Mrη̇r = Fria +Fre + adT
ηrMrηr (16)
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Fig. 6. illustrative scheme of the Soft Unmanned Underwater Vehicle (SUUV) kinematics, where (e1,e2,e3) is the Euclidean fixed
frame, (E1,E2,E3) represent the root-body net-motion and is the soft bodies reference frame and (x,y,z) is the microstructure frame.

where Mr is the screw inertia matrix and Fria, Fre are respectively the internal elastic/actuation (due to the soft appendages)
and external wrench loads acting on the root-body. This dynamic equation has to be supplemented with the following
kinematic model:

ġr = grη̂r (17)

which plays the role of a reconstruction equation. For our Soft Unmanned Underwater Vehicle, the rigid root-body is
composed by four rectangular parallelepiped bars in a pyramidal configuration (Fig. 6), hence, the inertia matrix takes the
form:

Mr =
4

∑
β=1

AdT
g−1

rrβ

MrrAdg−1
rrβ

where Mrr = diag(mrr(L2
rr + h2

rr)/12,mrr(L2
rr + h2

rr)/12,mrr(2h2
rr)/12,mrr,mrr,mrr) is the principal inertia matrix of a

single parallelepiped (mrr, Lrr and hrr being respectively its mass, length and thickness) and grrβ (β running from 1 to 4)
is the constant rigid transformation between the frame (O,E1,E2,E3) and the principal inertia frame of the bar β (centered
in the middle of the bar and aligned with the long axis).

4.1. Root-Body External Loads

The external loads comes from the interaction of the rigid root-body with the environment. In our case, they are equal to:

Fre = Frs +Frb +

(
0

dr +ar

)
(18)

Where Frs is the gravity, Frb is the buoyancy, dr is the drag load and ar is the added mass.
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Similarly to section 3.5, for the external loads we have

Frs +Frb = (1−ρw/ρr)MrAd−1
gr (0,0,0,G

T )T (19)

dr =−
1
2

ρwCrvr‖vr‖ (20)

ar =−
d(mrBrvr)

dt
=−mrBrv̇r−wr×mrBrvr (21)

where ρr and mr are respectively the root-body density and total mass, whileCr ([m2]) and Br are the empirical hydrodynamic
coefficients.

4.2. Root-Body Reaction Loads

For what concern the reaction loads due to the attached soft appendages (Fria), it has to be equal and opposite to the load
which support the motion of the soft body through the junction (Featherstone, 2014). Thus, as for any kinematic tree, we
have:

Fria =
4

∑
β=1

∫ Lb

0
AdT

g−1
bβ

g−1
rbβ

(
F̄beβ −Mb[η̇bβ + ˙(bβ ηr)]+ adT

(ηbβ+
bβ ηr)

Mb(ηbβ +bβ
ηr)
)

dXb+AdT
g−1

bβ
g−1

rbβ
(Lb)

Fbeβ (Lb)

+
∫ Ls

0

∫ 2π

0
AdT

g−1
s g−1

rs

(
F̄se−Ms[η̇s + ˙(sηr)]+ adT

(ηs+sηr)
Ms(ηs +

s
ηr)
)

r?dφdXs +
∫ 2π

0
AdT

g−1
s g−1

rs (Ls,φ)
Fse(Ls,φ)r?(Ls)dφ ,

where Fbe(Lb) and Fse(Ls,φ) are the beam and shell boundary external loads.
Making use of the dynamic equations (4) and (5) (and their boundary condition), the right hand side of the equation

above can be derived by integrating the internal and actuation loads of the soft bodies leading to:

Fria =
4

∑
β=1

AdT
g−1

bβ
g−1

rbβ
(0)

(
Fbiβ (0)−Fbaβ (0)

)
+
∫ 2π

0
AdT

g−1
s g−1

rs (0,φ)

(
F 1

si(0,φ)−F 1
sa(0,φ)

)
r?dφ

+
∫ Ls

0

∫ 2π

0
(1−ρw/ρs)AdT

g−1
s g−1

rs
MsAd−1

g (0,0,0,GT )T r?dφdXs ,

(22)

where the neglected gravity and buoyancy loads of the SSM have been recovered.

5. Multi-Soft-Body Dynamic Model

In section 3, the kinematics, compatibility and dynamic equations for two type of soft bodies, i.e. the Soft Robot Arm and
the Soft Shell Mantle, have been given. While, in section 4, the rigid root-body kinematics and dynamics governed by
the reaction wrenches of the soft appendage have been developed. Finally, here we are able to present the multi-soft-body
system model and outline the solution algorithm which leads to the complete motion of the underwater soft vehicle.

5.1. Star System Dynamic Model

The final system of equations is composed by the ordinary differential equations of the root-body and the second order
partial differential equations of the soft bodies. The system of ode for the root-body is composed by the kinematic equation
(17) and the dynamic equation (16), endowed with the reaction load (22) and external loads (19), (20), (21). The system
of p.d.e.’s for the SSM and the SRA is composed by the kinematics equation presented in 3.1, the compatibility equations
(3) and (2), and the dynamic equations (5) and (4), in turn complemented with the internal elastic stresses (7), (6) and the



A Unified Multi-Soft-Body Dynamic Model for Underwater Soft Robots 15

external loads (10), (11), (12), (13), (14), (15). Finally, in the state form ẋ = f (x,x′,x′′, t), the star system dynamic model
is:

ġr = grη̂r

ġb = gbη̂b

ġs = gsη̂s

ξ̇b = η
′
b + adξb

ηb

ξ̇s1 = η
′
s + adξs1

ηs

η̇r = M−1
r (Fria +Fre + adT

ηrMrηr)

η̇b = M−1
b [(Fbi−Fba)

′− adT
ξb
(Fbi−Fba)+ F̄be + adT

(ηb+
bηr)

Mb(ηb +
b

ηr)]− ˙(bηr)

η̇s = M−1
s

[[
r?
(
F 1

si−F 1
sa
)]′

r?
− adT

ξsα
(F α

si −F α
sa)+ F̄se + adT

(ηs+sηr)
Ms(ηs +

s
ηr)

]
− ˙(sηr)

(23)

In Fig. 7 a diagram of the time integration loop is shown. The input of the model, directly function of time, are the
actuation loads Fba(Xb, t) and Fsa(Xs, t) of the SRAs and SSM respectively. They enter in the dynamic equation of the
soft appendages ((4), (5)) as well as in the expressions of the reaction wrenches acting on the rigid root-body (22). At each
time step, given the current status (composed by gr, gs, gb, ξs, ξb, ηr, ηs and ηb) and the actuation input, the kinematics
equations, compatibility equations and dynamics equations are computed, which returns the time derivative of the status
vector. It is worth to notice here that the dynamic of the soft bodies (5) and (4) take advantage of the calculation of the
root-body dynamic (16) that returns η̇r in order to calculate the relative acceleration η̇s and η̇b, as indicate in Fig. 7.
Furthermore, the system (23) is infinite dimensional since all its components are some functions of the profile abscissas
Xs and Xb. As a result, it has to be first space-discretised on a grid of nodes before being time integrated using explicit or
implicit time integrators starting from the initial state. In this grid, all the space derivatives appearing in the pde’s system
can be approximated by finite difference schemes, with the following boundary conditions given in (5), (4).

The algorithm has been implemented in MATLAB®. The numerical scheme used is a decentralized (for the SRA)
and centralized (for the SSM) space differentiation finite difference method, based on a fourth-order Runge-Kutta time
integration with variable time-step (by means of the MATLAB® ode45 function) (Renda et al., 2014, 2015b). A spatial
distribution of one material point for every 5 mm (for SRA) and 1 mm (for the SSM) was adopted. Our implementation
of the MATLAB® code is available on GitHub (github.com/federicorenda/Unified-Multi-soft-body-Dynamics) under the
permissive BSD 3-clause license.

6. Experimental Results

Having defined the modelling framework valid for an arbitrary multi-soft-body system, it is necessary to assess the degree
of accuracy of such formulation with respect to experimental data. With this purpose in mind, the data collected from
experimental trials of the vehicle depicted in Fig. 1 and Fig. 2 are employed. Upon assessment of the degree of accuracy of
the formulation presented, the model can be employed for innovative design exploration, as later demonstrated in section
7, design optimization and control purposes.

Tests on the vehicle were performed in a controlled environment in order to provide the basis for model verification. The
tests entailed the robot moving along a straight track inside a working space with the shape of a rectangular box delimited
by 8 markers, see Fig. 8. By making use of two cameras and three additional markers (see element [2] in Fig. 8) fitted on
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Fig. 7. Diagram of the time integration loop algorithm. On the left, the current status of the state variables is plug into the multi-soft-body
model where gr transforms the inertial frame into the reference frame of the rigid body, gs transforms the dummy frame of the shell into
the microstructure frames of the shell, gb does the same job for the beam, ξs and ξb represent the strain fields respectively for the shell
and the beam, ηr is the velocity screw vector of the rigid body and finally ηs, ηb are the velocity fields of the shell and beam respectively.
On the right, the time evolution of the state variables is the output of the multi-soft-body model.

the central part of the robot, a three-dimensional reconstruction of the body position and orientations is derived via Direct
Linear Transformation.

The experiments were performed in a 1150 mm long, 590 mm wide and 500 mm deep tank filled with fresh water. The
tests consist in recording the displacement of the body as it propels itself from one end of the tank to the other. Recordings
are performed with a digital camera at 25 fps and later processed with an image tracking software and a Savitzky-Golay
low-pass filter eventually yielding the displacement and velocity in the surge direction.

The robot is allowed to travel along a straight line inside the tank by letting the motor revolve at a quasi-constant angular
velocity. The overall body of the vehicle is slightly negatively buoyant, thus requiring the use of an inflatable buoyancy
module (see element [3] in Fig. 8) fitted to the dorsal part of the robot in order to achieve a condition of consistent neutral
buoyancy. Tests were repeated at motor angular velocity ranging from 5 to 15 rad/s, i.e. from 0.8 to 2.4 pulsations per
second (pps). The vehicle is allowed to translate along the surge direction only, while the motor is supplied with a constant
voltage. The result of the pulsed-jet mode of propulsion generates a quasi-sinusoidal velocity signal.

In addition, from the recordings of electric current, the tension of the cable bundle at the crank is derived; this is taken
as the input force in the elastodynamics model. The electric current supplied to the motor throughout the pulsation cycle
was measured in the case of a forcedly stationary prototype. This grants that the dynamic effect of the external flow during
vehicle displacement could not affect the load acted upon the shell during actuation. A short section of the recordings of
the cable tension pattern during actuation of the prototype is shown in Fig. 9.

6.1. Underwater Locomotion Comparison

The separated model for the SRA and the SSM have been experimentally validated respectively in (Renda et al., 2014) and
(Renda et al., 2015b)(see also (Renda et al., 2015a) for the SSM in steady state condition). Taking advantage of this fact,
the same mechanical and dynamical parameters obtained there are applied here to the new geometries. The geometry of
the SSM has been represented with an half sphere with a radius Ts = 31 mm truncated with a rigid cup on the section of
angle π/4 and merged with a cylinder of length 94 mm, for a total profile length of Ls = 118 mm. The shell half thickness
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Fig. 8. Two screenshots from the digital camera recordings taken during robot testing at (a) the starting and (b) end point of the experiment.
The robot is portrayed with an arm twirled around a screwdriver [1]; the variable buoyancy module [3] and the LED markers for 3D
tracking [2] are visible.

is homogeneously equal to hs = 1 mm. The SRA has a conical shape with a radius linearly decreasing from hbmax = 10
to hbmin = 2 mm and a length of Lb = 245 mm. These descriptions, together with the natural assumption of no shear in
the reference configuration define the initial condition for the kinematics maps gb and gs. The mechanical, dynamical
and geometrical parameters are summarized for the SRA and the SSM in Table 1. For what concerns the rigid root-body,
the geometrical and inertia parameters have been directly measured while the dynamical parameters have been manually
calibrated in order to minimize the experimental error, which includes the effect of the buoyancy module. Each of the
four bars has a length equal to Lrr = 141 mm, and a width equal to hrr = 5 mm. The total mass of the root-body is 204
g, hence we assume the mass of a single bar to be mrr = 51 g. The initial condition for the map gr is simply the identity
I4 (i.e. the Euclidean fixed frame (o,e1,e2,e3) and the reference frame (o,E1,E2,E3) coincide at t = 0). The dynamical
and geometrical parameters of the root-body are summarized in Table 2. The constant maps grs and grbβ are fixed and
determined by the design of the prototype. In our case we have (reference unit [mm]):

grb1 =


0.70 −0.71 0.06 76
0.70 0.71 −0.06 76
0.09 0 0.99 −90

0 0 0 1

 ,grs =


0 0 1 90
0 1 0 0
−1 0 0 −50
0 0 0 1

 ,grr1 =


0.45 −0.71 −0.54 38
0.45 0.71 −0.54 38
0.77 0 0.64 −45

0 0 0 1

 .

While grb2, grb3, grb4 and grr2, grr3, grr4 are obtained by repetitively rotating respectively grb1 and grr1 of π/2 with respect
to the axis E3.

In order to derive a force input for the model, readings from the motor encoder are employed. Given a torque constant
of 6.6 mNm/A, a motor maximum efficiency of 79% and a gearhead transmission efficiency of 73%, the estimate of time-
varying experimental torque output, and hence model force input, is computed from current data as depicted in Fig. 9. The
harmonic oscillations depicted in Fig. 9 are associated with the stages of inflation and deflation of the elastic shell which
result in the periodic pull and release exerted upon the cables, as discussed at length in (Giorgio-Serchi et al., 2016). The
input of the model is the rhythmic actuation of the SSM provided by the cables. This can be modeled by taking the radial
force fr(Xs, t) as a T-periodic function with two phases: a contraction phase and a relaxation phase, with the period T being
the inverse of the motor frequency of the experiments. The actuation pressure fr(Xs, t) has been taken equal to zero for
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Fig. 9. Cables tension of a forcedly not moving prototype with a motor frequency of 2 pps (pulsation per second).

Table 1. Parameters of the Soft Robot Arm and the Soft Shell Mantle.
Beam Parameter Value Shell Parameter Value
Young Modulus E 110 kPa Young Modulus E 40 KPa
Poisson Ratio ν 0 Poisson Ratio ν 0

Shear Viscosity Modulus υ 300 Pa · s Shear Viscosity Modulus υ 500 Pa∗ s
Mass Density ρb 1080 kg/m3 Mass Density ρs 7415 Kg/m3

Hydrodynamic Coefficient Cbx 0.01 Drag Coefficient Cd 1.7
Hydrodynamic Coefficient Cby 2.5 Added Mass Coefficient Bs 1.1
Hydrodynamic Coefficient Cbz 2.5 Flow Loss Coefficient C f 1
Hydrodynamic Coefficient Bb 1.5 Length Ls 118 mm

Length Lb 245 mm Thickness hs 1 mm
Maximum Radius hbmax 10 mm Cylinder Radius Ts 31 mm
Minimum Radius hbmin 2 mm Outflow Area Ano 491 mm2

Inflow Area Ani 1400 mm2

Left Limit Actuation Xs1 25 mm
Right Limit Actuation Xs2 110 mm

all the Xs except for a central interval of application [Xs1 ,Xs2 ] (equal to 85 mm in our case). At these points, fr(Xs, t) has
been modeled as the ratio of the sum of the cable tension (F(t), Fig. 9) and the surface of the area of application, giving:
fr(Xs, t) = −F(t)/

∫ Xs2
Xs1

2πr?dXs. The soft robot arms have not been actuated in these experiments, i.e. Fba(Xb, t) = 0. It
can be shown that in order to have a redial pressure on the SSM with distribution fr(Xs, t) the internal actuation wrench
takes the form:

Fsa(Xs, t) =



RT
s

 −sin(φ)
cos(φ)

0

 fr
r?

(∫ Xs2
Xs

zr?dXs− z
∫ Xs2

Xs
r?dXs

)

RT
s

 cos(φ)
sin(φ)

0

 fr
r?
∫ Xs2

Xs
r?dXs


, (24)

where the lower bound of the integral therein become equal to Xs1 for all Xs ≤ Xs1 and Xs2 for all Xs ≥ Xs2 . Furthermore,
in order to meet the experimental constrain of traveling on a straight line, the pitch and lift motions have been controlled.
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Table 2. Parameters of the rigid root-body for the Poseidron, Quadropus and Monopus.
Parameter Poseidron Value Parameter Quadropus and Monopus Value

Parallelepiped Mass mrr 51 g Body Mass mrr 204 g
Drag Coefficient Cr 0.02 m2 Drag Coefficient Cr 0.02 m2

Added Mass Coefficient Br 0 Added Mass Coefficient Br 0
Parallelepiped Length Lrr 141 mm Body Length Lrr 112 mm

Parallelepiped Thickness hrr 5 mm Body Radius hrr 20 mm

The results of the comparison for three motor frequencies (1.89, 1.51 and 1.26 pulsation per second pps) are shown in
Fig. 10. The distance between the two values has been evaluated with respect to the mean swimming velocity V̄E3s , thus
the error is defined as: e = |V̄E3s −V̄ ∗|/V̄ ∗ where V̄ ∗ is the average experimental swimming speed. The error for the three
experiments are 15.5 %, 18.4 % and 22.9 % respectively from the fastest (1.89 pps) to the slowest (1.26 pps) case.

At present, the main source of error pertains to the hydrodynamic loads prediction which is largely affected by the
difficulty to estimate in closed-form solution the contribution from the time-varying shape-variations inside and around the
SSM body. Inertial and viscous effect during expulsion and suction of fluid from the cavity do represent prominent terms
in the dynamics of the shell. However, given the accuracy of the validation, it is reasonable to expect that, for the range of
actuation frequencies investigated, neglecting these terms may represent an acceptable assumption.

7. Exploration of Alternative Designs

In this section, we explore the capabilities of the model to predict the dynamics of new conceptual prototype which are
based on different arrangements of the baseline reference structures. In particular, the behavior of an underwater soft robot,
referred to as Quadropus due to its four-limbed structure, with four SRAs stacked at the back of the SSM is analyzed,
and the navigation capabilities of a vehicle, called Monopus, with one single SRA used as a steering mechanism are
shown. These examples demonstrate the capability of the model to deal with simultaneous actuation of different modules
during six-dimensional underwater swimming scenarios. While these analysis are not meant to be conclusive, we aim
at demonstrating the flexibility of the present model to treat a broad range of geometrical configurations and actuation
routines and how these can be used to infer critical design parameters relevant to robot design such as power consumption
and control optimization. Ultimately, this kind of analysis may be of value to study aquatic living organisms in order to
derive an accurate biomechanical characterization of their swimming strategies.

In Fig. 11, the new configurations of the soft bodies and the rigid root-body for the Quadropus and the Monopus is
illustrated. From a modeling perspective, the description of these new morphological configuration is reflected in the value
of the constant transformations grr, grs, grbβ (Quadropus) and grb (Monopus) which are the only variations which need to
be implemented in order to model the new systems. The values used in the simulations are (reference unit [mm]):

grb =


0 0 1 −110
0 1 0 0
−1 0 0 0
0 0 0 1

 ,grb1 =


0 0 1 −112
0 1 0 0
−1 0 0 −10
0 0 0 1

 ,grs =


0 0 1 0
0 1 0 0
−1 0 0 0
0 0 0 1

 ,grr =


0 0 1 −84
0 1 0 0
−1 0 0 0
0 0 0 1

 .

While grb2, grb3 and grb4 (Quadropus) are obtained by repetitively rotating grb1 of π/2 with respect to the axis E1 (Fig. 11).
For both of these designs, the parameters which define the SRA and SSM are kept as in the previous section and

summarized in Table 1. The rigid root-body, on the other hand, is now a solid cone 112 mm long, with a base radius of
20 mm and the same mass and hydrodynamic coefficients of the prototype root-body (Table 2). Hence, the only variation
introduced in terms of parameters lies in the different rotational inertia of the cone geometry with respect to the four bar
system.
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7.1. Quadropus Dynamics

The Quadropus represent an octopus-like body which is able to exploit the combined effects of pulsed-jetting as well as
the sculling of its tentacles. Pulsed-jet activation is implemented as a force acting along the circumference of the shell and
given by: F 2

sa(Xs, t) = (0,0,0,0,0,−Fza(Xs, t))
T , where Fza(Xs, t) is a time-dependend triangular shaped function with a

frequency of 1.51 pps and a negative amplitude (i.e., contracting force) from 0 to −15/r?(Xs). In order to qualitatively
estimate the swimming performance of the Quadropus, the locomotion velocity profile is compared for different actuation
of the SRAs. As a matter of fact, the Quadropus design can benefit of impulsive acceleration thanks to the coordinated
actuation of the SRAs at the beginning of the sequence. This swimming mode is used by the octopus during fast escape
maneuvers and has been thoroughly studied and implemented in a octopus inspired prototype in (Sfakiotakis et al., 2014).
To reproduce such behavior in our model, the following actuation wrench for each SRAs is used:

Fba(Xb, t) =



0
0(

mbaz− mbaz
Lbt/∆t Xb

)
H (Lbt/∆t−Xb)

0
0
0


, (25)

for 0< t ≤∆t, while Fba(Xb, t)= (0,0,0,0,0,0)T otherwise. Here, H(·) is the Heaviside step function, mbaz is the maximum
torque load experienced by the Xb = 0 section, and ∆t is the time of recruitment of all the sections. Hence, the function
F(Xb, t) =

(
mbaz− mbaz

Lbt/∆t Xb

)
assigns a linear decreasing torque load to each section Xb while the function H (Lbt/∆t−Xb)

recruits a portion of the sections (from the base to the tip) proportional to the portion of time elapsed before the total
recruitment time ∆t.

The employment of different amount of torque in the actuation of the SRMs for mbaz respectively equal to 0, 5 and 7
([mN-m]) yields different swimming speeds shown in Fig. 12, where the high acceleration of the Quadropus with active
arms can be appreciated. A sequence of snapshots of the fast escape maneuver are presented in Fig. 13.

Decomposition of the force contributions to the whole-body dyanamics from the actuated components can be observed
in Fig. 14. The force exerted by the arms at the three actuation values can be appreciated during the initial phase of
arm expansion (1.0 < t < 2.0) followed by the thrust peak coincident with the arm sudden closure. From this point
onwards, the arms remain unactuated and the effect of their passive elasticity is projected on the root-body dynamics as a
periodic retarding effect. This is due to alternate phases of stretching and compression of the back-bone under the co-axial
contribution of the thrust force generated by the pulsed-jetting. This analysis highlights how force characterization in such
complex morphological structures can be performed in a segregated manner.

We estimate efficiency of this system by using the definition of (Maertens et al., 2015) for fish. This is the quasi-
propulsive efficiency ηQP = Pout

Pin
and it is defined by the ratio between the useful work Pout and the expended energy Pin,

i.e. the power required to overcome the resisting viscous forces at the terminal speed recorded

Pout =−
∫ Ls

0

∫ 2π

0

(
0,0,VE3s

)
Rsdsr?dφdXs−

∫ Lb

0
(vb +

b vr)
TdbdXb−vT

r dr (26)

and the power required to actuate the pulsed-jetting. with,

Pin =
∫ Ls

0

∫ 2π

0
F 2T

sa ξ̇s2r?dφdXs. (27)
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Because the analysis must be performed at steady state, the initial contribution from the sculling arms does not paricipate
in the estimation of the quasi propulsive efficiency. The comparison between actuation power and steady-swimming power
is portraied in Fig. 15. Based on these, an estimate efficiency of 31% is inferred, which falls within the range of values
observed for fish in (Maertens et al., 2015).

7.2. Monopus Dynamics

A further example of the the capabilities of the presented model is provided by the case of a sperm-like body actuated by the
synergic actuation of a pulsed-jetting shell and by the flapping of a rear-pointing soft manipulator. The SRA, in this case,
is studied as a mean of steering actuator for the system. This example lends itself to the analysis of the turning moments
generated by the actuation of differential parts within the system. In this case, the SSM of the Monopus is actuated as in
the previous example with a frequency of 1.51 pps, while the SRA is bent in different directions in order to produce a 6D
underwater turning motion. The actuation wrench for the SRA takes the form:

Fba(Xb, t) =



0
0

F(Xb, t)H (Lbt/∆t1−Xb)

0
0
0


,Fba(Xb, t) =



0

F(Xb, t)H
(

Lb
∆t3

(t−∆t1−∆t2)−Xb

)
0
0
0
0


, (28)

respectively for 0 < t ≤ ∆t1 and ∆t1+∆t2 < t ≤ ∆t1+∆t2+∆t3, while Fba(Xb, t) = (0,0,0,0,0,0)T otherwise. This implies
that the SRA is first gradually bent and released, from the base to the tip, around the local z axis and than around the local
y axis. This results in a smooth and natural rotation, as reported in the sequence of Fig. 16.

The dynamics of the Monopus is decomposed with the purpose of inferring baseline metrics which are commonly
employed in maneuvring tests of aquatic vehicles. With reference to the screw parameters (Murray et al., 1994):

r = ||w̃rvr ||
(Ls+Lb)||wr ||2

for w 6= 0

m = ||wr|| for wr 6= 0

(29)

These enable the derivation of the non-dimensional time-dependent radius of curvature defined as the distance from the
axis of rotation scaled by the total length of the Monopus (r [−]), as shown in Fig. 17. Similarly, the magnitude of angular
velocity (m [rad/s]) can be derived to yield the values depicted in Fig. 17. The turning radius varies according to the speed
of the body, thus explaining the initial values of about ∼ 1. and the later decrease to ∼ 0.3, which falls within the range
commonly encountered for sea-dwelling organisms (Domenici et al., 2004). As the body approaches a straight swimming
direction, the radius of curvature tends to infinity.

8. Conclusion

In this work, a geometrically exact model for underwater soft robots is presented. The model is capable of representing
a group of soft bodies connected together via a rigid root-body; this is done by taking into account the geometrical non-
linearity of the soft bodies (treated here as a Cosserat medium) along with the elastic responses, the mechanical actuation
and the inertial loads exchanged by the interconnected bodies. This model is of general applicability since the dynamic
equations of the soft bodies are derived from the unique knowledge of the Lagrangian density by mean of a continuous
extension of the Poincaré’s equations. To the best of the authors knowledge, this is the first example in literature where such
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a multi-soft-body geometrically exact model has been presented and used for the a-priori evaluation of possible robotics
design.

The work described in this manuscript constitutes the first milestone in our road map to the modelling and control of
soft robots inspired from flexible aquatic organisms such as cephalopods. The difficulty to exhaustively address the coupled
fluid-solid interactions acting upon the shell currently represents the major limitation of this formulation.

In particular, the model of the internal and external pressure due to the soft robot motion is simplified using the
well know solution of a one-dimensional momentum equation for a neutrally buoyant, rigid body translating in water
(as explained in (Renda et al., 2015b)) which drastically neglects potentially significant dyanmical terms associated with
body-shape modification. Indeed, the formal definition of the total propulsive force is simplified. While it does not prevent
the model from capturing the overall dynamics of the vehicle in surge motion, further refinements are sought for in order to
attain a more sound representation of the complex physics involved in the system. Evidence is emerging that a substantial
contribution to the total thrust of jetting bodies lies in the linked internal-external fluid dynamics of the collapsing shell.
To acknowledge these terms in detail, a fully coupled fluid-structure-interaction solver is mandatory. However, for the
purpose of controller design and quick dynamics investigation, a fast and computationally inexpensive alternative must be
looked into. This can be found from a coupled model which encompasses a quasi-analytic solutions of unsteady potential
flows of radially-varying slender, axisiymetric bodies (see (Karamcheti, 1966) and (Anderson et al., 2001) and an integral
description of the internal pressure of the deforming cavity body, as in (Krieg and Mohseni, 2015). In this formulation, a
prescribed kinematics of the shape-changing body enables the estimation of the added-mass variation as well as supplying
the condition for accurate estimation of the forces generated by the expulsion of fluid across the nozzle. Despite the limited
degree of reproducibility of the experiments, the model has been experimentally compared with a real multi-soft-body
prototype with satisfactory results and then used to explore the design space of underwater soft robots characterized by
different morphologies and actuation strategies. We show the varied range of dyanmical analysis that can be performed
on the newly-designed conceptual prototypes by deriving quasi-propulsive efficiency of a four-arm pulsed-jetting octopus-
like body and the time-dependent radius of curvature of a sperm-like vehicle. These demonstrate the capability of this
mathematical formulation to represent an unlimited range of possible designs as well as to perform a-priori evaluation of
their maneuvering capabilities and swimming performances.

The authors believe that the versatility, accuracy and conceptual simplicity of the model presented here make this
approach one of the most suitable in the frame of mobile soft robotics.

Funding

This work was partially supported by Foundation Grant project PoseiDRONE of the Cassa di Risparmio di Livorno. Dr.
F. Giorgio-Serchi is supported by the Natural Environmental Research Council (grant number NE/P003966/1) and by the
SMMI-HEIF grant. The Authors declare that there is no conflict of interest.

References

Abbott, J. J., Cosentino Lagomarsino, M., Zhang, L., Dong, L., and Nelson, B. J. (2009). How should microrobots swim? The International

Journal of Robotics Research.

Anderson, E. and DeMont, M. (2000). The mechanics of locomotion in the squid loligo pealei: locomotory function and unsteady

hydrodynamics of the jet and intramantle pressure. Journal of Experimental Biology, 203(18):2851–2863.

Anderson, E., Quinn, W., and DeMont, M. (2001). Hydrodynamics of locomotion in the squid loligo pealei. Journal of Fluid Mechanics,

436:249–266.

Antman, S. (2006). Nonlinear Problems of Elasticity. Applied Mathematical Sciences. Springer New York.



A Unified Multi-Soft-Body Dynamic Model for Underwater Soft Robots 23

Boyer, F. and Porez, M. (2015). Multibody system dynamics for bio-inspired locomotion: from geometric structures to computational

aspects. Bioinspiration & Biomimetics, 10(2):025007.

Boyer, F., Porez, M., and Khalil, W. (2006). Macro-continuous computed torque algorithm for a three-dimensional eel-like robot.

Robotics, IEEE Transactions on, 22(4):763–775.

Boyer, F., Porez, M., and Leroyer, A. (2010). Poincaré cosserat equations for the lighthill three-dimensional large amplitude elongated

body theory: Application to robotics. Journal of Nonlinear Science, 20(1):47–79.

Boyer, F. and Primault, D. (2005). The poincaré-chetayev equations and flexible multibody systems. Journal of Applied Mathematics

and Mechanics, 69(6):925 – 942.

Boyer, F. and Renda, F. (2016). Poincaré’s equations for cosserat media: Application to shells. Journal of Nonlinear Science.

Canavin, J. and Likins, P. (1977). Floating reference frames for flexible spacecraft. Journal of Spacecraft and Rockets, 14(12):724–732.

Candelier, F., Boyer, F., and Leroyer, A. (2011). Three-dimensional extension of lighthill’s large-amplitude elongated-body theory of

fish locomotion. Journal of Fluid Mechanics, 674:196–226.

Candelier, F., Porez, M., and Boyer, F. (2013). Note on the swimming of an elongated body in a non-uniform flow. Journal of Fluid

Mechanics, 716:616–637.

Colgate, J. and Lynch, K. (2004). Mechanics and control of swimming: a review. Oceanic Engineering, IEEE Journal of, 29(3):660–673.

Conte, J., Modarres-Sadeghi, Y., Watts, M. N., Hover, F. S., and Triantafyllou, M. S. (2010). A fast-starting mechanical fish that accelerates

at 40 m s 2. Bioinspiration & Biomimetics, 5(3):035004.

Domenici, P., Standen, E. M., and Levine, R. P. (2004). Escape manoeuvres in the spiny dogfish (squalus acanthias). Journal of

Experimental Biology, 207(13):2339–2349.

Elvander, J. and Hawkes, G. (2012). Rovs and auvs in support of marine renewable technologies. In Oceans, 2012, pages 1–6.

Featherstone, R. (2014). Rigid Body Dynamics Algorithms. Springer US.

Giorgio-Serchi, F., Arienti, A., Corucci, F., Giorelli, M., and Laschi, C. (2017). Hybrid parameter identification of a multi-modal

underwater soft robot. Bioinspiration & Biomimetics.

Giorgio-Serchi, F., Arienti, A., and Laschi, C. (2016). Underwater soft-bodied pulsed-jet thrusters: actuator modelling and performance

profiling. International Journal of Robotics Research, 35:1308–1329.

Giorgio-Serchi, F., Renda, F., Calisti, M., and Laschi, C. (2015). Thrust depletion at high pulsation frequencies in underactuated,

soft-bodied, pulsed-jet vehicles. In OCEANS 2015 - Genova, pages 1–6.

Giorgio-Serchi, F. and Weymouth, G. D. (2016a). Drag cancellation by added-mass pumping. Journal of Fluid Mechanics, 798.

Giorgio-Serchi, F. and Weymouth, G. D. (2016b). Underwater soft robotics, the benefit of body-shape variations in aquatic propulsion.

In Soft Robotics: Trends, Applications and Challanges, volume 17 of Biosystems & Biorobotics, pages 37–46. Springer.

Hover, F. S., Eustice, R. M., Kim, A., Englot, B., Johannsson, H., Kaess, M., and Leonard, J. J. (2012). Advanced perception, navigation

and planning for autonomous in-water ship hull inspection. The International Journal of Robotics Research, 31(12):1445–1464.

Johnson, W., Soden, P. D., and Trueman, E. R. (1972). A study in jet propulsion: An analysis of the motion of the squid, loligo vulgaris.

Journal of Experimental Biology, 56(1):155–165.

Karamcheti, K. (1966). Principles of ideal-fluid aerodynamics. Krieger.

Krieg, M. and Mohseni, K. (2015). Pressure and work analysis of unsteady, deformable, axisymmetric, jet producing cavity bodies.

Journal of Fluid Mechanics, 769:337–368.

Krieg, M., Sledge, I., and Mohseni, K. (2015). Design considerations for an underwater soft-robot inspired from marine invertebrates.

Bioinspiration & Biomimetics, 10(6):065004.

Licht, S., Polidoro, V., Flores, M., Hover, F., and Triantafyllou, M. (2004). Design and projected performance of a flapping foil auv.

Oceanic Engineering, IEEE Journal of, 29(3):786–794.

Lighthill, M. J. (1970). Aquatic animal propulsion of high hydromechanical efficiency. Journal of Fluid Mechanics, 44:265–301.

Linn, J., Lang, H., and Tuganov, A. (2013). Geometrically exact cosserat rods with kelvin-voigt type viscous damping. Mechanical

Sciences, 4(1):79–96.



24 Journal name 000(00)

Luh, J. Y. S., Walker, M. W., and I., P. R. C. P. (1980). On-line computational scheme for mechanical manipulator. Trans. ASME, J. Dyn.

Syst., 102:69–76.

Maertens, A. P., Triantafyllou, M., and Yue, D. K. P. (2015). Efficiency of fish propulsion. Bioinspiration & Biomimetics, 10:046013.

Marchese, A. D., Onal Cagdas, D., and Rus, D. (2014). Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer

actuators. Soft Robotics, 1(1):75–673.

Mortl, A., Lawitzky, M., Kucukyilmaz, A., Sezgin, M., Basdogan, C., and Hirche, S. (2012). The role of roles: Physical cooperation

between humans and robots. The International Journal of Robotics Research.

Murray, R., Li, Z., Sastry, S., and Sastry, S. (1994). A Mathematical Introduction to Robotic Manipulation. Taylor & Francis.

Poincaré, H. (1901). Sur une forme nouvelle des equations de la mecanique. Compte Rendu de l’Academie des Sciences de Paris, 132:369

– 371.

Reissner, E. (1990). Special issue: Frontiers in computational mechanics on a one-dimensional theory of finite bending and stretching of

elastic plates. Computers & Structures, 35(4):417 – 423.

Renda, F., Giorelli, M., Calisti, M., Cianchetti, M., and Laschi, C. (2014). Dynamic model of a multibending soft robot arm driven by

cables. Robotics, IEEE Transactions on, 30(5):1109–1122.

Renda, F., Giorgio-Serchi, F., Boyer, F., and Laschi, C. (2015a). Locomotion and elastodynamics model of an underwater shell-like soft

robot. In Robotics and Automation (ICRA), 2015 IEEE International Conference on, pages 1158–1165.

Renda, F., Giorgio-Serchi, F., Boyer, F., and Laschi, C. (2015b). Modelling cephalopod-inspired pulsed-jet locomotion for underwater

soft robots. Bioinspiration & Biomimetics, 10(5):055005.

Renda, F., Giorgio-Serchi, F., Boyer, F., and Laschi, C. (2015c). Structural dynamics of a pulsed-jet propulsion system for underwater

soft robots. International Journal of Advanced Robotic Systems.

Renda, F., Giorgio-Serchi, F., Boyer, F., Laschi, C., Dias, J., and Seneviratne, L. (2018). A multi-soft-body dynamic model for underwater

soft robots. In Robotics Research, pages 143–160. Springer, Cham.

Saimek, S. and Li, P. (2001). Motion planning and control of a swimming machine. In American Control Conference, 2001. Proceedings

of the 2001, volume 1, pages 125–130 vol.1.

Selig, J. (2007). Geometric Fundamentals of Robotics. Monographs in Computer Science. Springer New York.

Sfakiotakis, M., Kazakidi, A., Chatzidaki, A., Evdaimon, T., and Tsakiris, D. (2014). Multi-arm robotic swimming with octopus-inspired

compliant web. In Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on, pages 302–308.

Simo, J. (1985). A finite strain beam formulation. the three-dimensional dynamic problem. part i. Computer Methods in Applied

Mechanics and Engineering, 49(1):55 – 70.

Simo, J. C. and Fox, D. D. (1989). On stress resultant geometrically exact shell model. part i: Formulation and optimal parametrization.

Comput. Methods Appl. Mech. Eng., 72(3):267–304.

Vaganay, J., Gurfinkel, L., Elkins, M., Jankins, D., and Shurn, K. (2009). Hovering autonomous underwater vehicle-system design

improvements and performance evaluation results. In UUST, editor, International Symposium on Unmanned Untethered Submarine

Technology.

Vasilescu, I., Detweiler, C., Doniec, M., Gurdan, D., Sosnowski, S., Stumpf, J., and Rus, D. (2010). Amour v: a hovering energy efficient

underwater robot capable of dynamic payloads. The International Journal of Robotics Research.

Wang, L. and Iida, F. (2015). Deformation in soft-matter robotics: A categorization and quantitative characterization. Robotics Automation

Magazine, IEEE, 22(3):125–139.

Woodman, R., Winfield, A., Harper, C., and Fraser, M. (2012). Building safer robots: Safety driven control. The International Journal

of Robotics Research.

Yu, J., Ding, R., Yang, Q., Tan, M., Wang, W., and Zhang, J. (2012). On a bio-inspired amphibious robot capable of multimodal motion.

Mechatronics, IEEE/ASME Transactions on, 17(5):847–856.



A Unified Multi-Soft-Body Dynamic Model for Underwater Soft Robots 25

Fig. 10. Real and simulated swimming velocity of the soft robot for tests performed at 1.89, 1.51 and 1.26 pulsation per seconds (pps).
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Fig. 11. illustrative scheme of the kinematics of the new structures explored. The new structures are obtained simply by modifying the
value of the constant transformations grs and grb and the number of SRAs.

Fig. 12. Comparison between the swimming performance of the Quadropus under different SRAs actuations.
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Fig. 13. Few snapshots of the fast escaping maneuver of the Quadropus with active arms (mbaz = 5 [mN-m]).
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Fig. 14. Comparison of force exchange between the arms and root-body in the three actuation scenarios. The load exerted by the pulsating
shell is also reported.

Fig. 15. Comparison between the input and output power during swimming at steady state conditions.
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Fig. 16. Few snapshots of the 6D underwater locomotion of the Monopus (mbaz = 5 [mN-m]).
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Fig. 17. Turning radius and speed of angular velocity of the Monopus for two values of the SRA actuation.


